Regisztráció és bejelentkezés

Spektrumbecslési módszerek adatvesztés esetén

Manapság a kommunikáció nagyrészt elektronikusan történik, ami megvalósítható vezetékes vagy vezeték nélküli módon. Egy gyakran használt módszer például a rádiócsatorna alkalmazása, viszont legyen akármennyire is kényelmes, ennek is megvannak a hátrányai. Előfordulhat, hogy az átvitel során interferencia vagy zaj miatt az üzenet sérül, adatvesztés történik. Nemcsak a vezeték nélküli átvitelben történhet adatvesztés, hanem az internetes összeköttetések esetén is, erre jó példa a Skype. Az adatvesztés oka nem mindig kommunikációs természetű. Előfordulhat, hogy adott ütemezés szerint kell elvégezni egy méréssorozatot (pl. naponta adott időpontban egy csillagászati megfigyelést), és valamilyen hiba, külső körülmény következtében ez nem sikerül az összes kitűzött időpontban.

Az IoT (internet of things) és IoE (internet of everything) elterjedésével párhuzamosan növekszik a szenzorhálózatok jelentősége. Találkozhatunk velük például autókban, szabályozási körökben, és okos otthonokban is. Ezekben az esetekben a feladat valamit mérni, és mért adatokat továbbítani a feldolgozóegység felé. Természetesen ilyenkor is előfordulhat az átvitel során adatvesztés, ami alkalmazástól függő mértékű problémát okoz.

A dolgozatban bemutatok néhány példát adatvesztést okozó rendszerekre, illetve megadom az adatvesztés egy lehetséges matematikai leírását. Ismertetek néhány adatvesztési modellt, valamint ezek jellemző függvényeit.

A műszaki gyakorlatban fontos szerepet tölt be a spektrumbecslés. Ha ez a mérési feladat, és az adatok egy része elvész, az súlyos probléma. A mintavételezett jelek spektrumát DFT-vel lehet hatékonyan kiszámítani. Mivel a DFT bármely pontjának számításához szükség van az összes mintára, ezért pontos elvégzéséhez teljes, adatvesztés nélküli mintasorozat szükséges. Kézenfekvő lehetőségnek tűnik megvárni, amíg egy megfelelő hosszúságú blokk keletkezik. Az ehhez szükséges minták száma azonban már alacsony adatvesztési arány esetén is a DFT pontszámának többszöröse lehet, ami a legtöbb alkalmazásban elfogadhatatlan. A dolgozatban megvizsgálok néhány lehetőséget a probléma kezelésére.

A dolgozat megírásakor a témában már születtek eredmények, többek között a BME MIT tanszékén is. Két ilyen módszert is megvizsgáltam. Az első a periodikus jelek analízisére az említett tanszéken kifejlesztett rezonátoros struktúra adekvát kiegészítése. Bemutatom magát a rezonátoros struktúrát, azt, hogy alkalmazásával hogyan lehet meghatározni a spektrumot, illetve az adatvesztés hatását erre a struktúrára. A másik módszer az FFT-t alkalmazza, mivel ez rendkívül hatékony spektrumszámítási eljárás, éppen ezért szinte egyeduralkodó a valós idejű alkalmazásokban. Az adatvesztést ez a módszer úgy próbálja kezelni, hogy a jelet „levágja” az első adatvesztési pontnál, azaz az aktuális FFT-blokkban az első adatvesztési helytől kezdve az összes minta zérus.

A vizsgálatok eredménye alapján rezonátoros struktúra sokkal jobban tűri az adatvesztést, mint az FFT alapú megoldás. Ennek az az oka, hogy a rezonátoros struktúra a mintákat egyesével értékeli ki, míg az FFT blokkonként. Vagyis a rezonátoros struktúra általában képes a spektrum – viszonylag pontos – előállítására, ennek a „sebessége” (hány mintára van szükség) függ az adatvesztési aránytól. Ezzel szemben az FFT-s módszernél az adatvesztés hatására a spektrum „szétkenődik”, cserében ez az eljárás sokkal kevésbé számításigényes. A dolgozatban bemutatok egy új módszert, amelynek célja a két vizsgált eljárás előnyeit egyesíteni.

A dolgozatban összehasonlítom a három eljárást, mind elméleti meggondolások, mind szimulációk alapján. A módszereket DSP kártyán (Sharc ADSP 21364) is implementáltam, ismertetem ennek néhány főbb jellemzőjét és meggondolását. Az elkészült implementációval méréseket is végeztem, ezek eredményét is értékelem.

Kulcsszavak: spektrumbecslés, rezonátor, FFT, adatvesztés

szerző

  • Palkó András
    Villamosmérnöki szak, alapképzés
    alapképzés (BA/BSc)

konzulens

  • Dr. Sujbert László
    docens, Méréstechnika és Információs Rendszerek Tanszék