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Kivonat

A technológia fejl®désével egyre több kritikus területen alkalmaznak szoftver alapú megol-
dásokat, ilyen esetekben azonban a szoftver hibás m¶ködése akár katasztrofális következ-
ményekhez is vezethet. Fontos feladat tehát a helyesség ellen®rzése és a hibák megtalálása
lehet®leg már a fejlesztés korai fázisaiban is.

Kritikus rendszerek tervezése során gyakran használnak magas szint¶ modellezési
nyelveket. A viselkedés leírására elterjedten használt az állapottérkép formalizmus, amely
különösen alkalmas kritikus reaktív rendszerek tervezésének támogatására.

Modellek ellen®rzésére többféle megközelítés is ismert, amelyek közül a formális ve-
ri�káció alkalmas a modellek összes viselkedésének felderítésére és ellen®rzésére. Többféle
formális temporális logikai nyelv is rendelkezésünkre áll a követelmények megfogalmazásá-
ra, azonban kevés eszköz támogatja ezeknek a kifejez® � ezáltal mérnökök által is könnyen
használható � temporális logikáknak a használatát. A lineáris idej¶ temporális logikai
speci�kációk ugyan nagyon kifejez®k, de ellen®rzésük különösen számításigényes feladat,
emiatt az ellen®rzési módszerek hatékonyságának növelése állandó kihívás. A formális ve-
ri�káció alkalmazásának másik kihívása, hogy alacsony szint¶ matematikai modelleken
m¶ködik, és ez megnehezíti a mérnöki alkalmazást.

Munkám célja, hogy egy olyan formális veri�kációs algoritmust adjak, amely támo-
gatja a lineáris idej¶ temporális logika használatát a veri�káció során. A hatékonyság
érdekében egy absztrakció alapú algoritmust fejlesztettem, amely lehet®vé teszi adatvezé-
relt reaktív rendszerek hatékony veri�kációját is. Megközelítésemet egy mérnöki tervez®
eszközbe is integráltam, ezáltal lehet®vé téve az új megközelítés mérnöki alkalmazását.
Az elkészült algoritmust az egyetemen fejlesztett formális veri�kációs keretrendszerben
valósítottam meg, így támogatva a keretrendszer összes többi bemeneti formalizmusát is
- többek között szoftverek forráskód alapú veri�kációját is.

Az elkészült algoritmus hatékonyságát a szoftverellen®rzés területének egyik szabvá-
nyos benchmarkján vizsgáltam meg.

i



Abstract

With the rapid advancements of technology, more and more critical areas see the in-
troduction of software-based solutions, where faulty behavior of the software can have
catastrophic consequences. This means identifying faults and proving correctness are cru-
cial parts of the development of such systems and should be done as early in the process
as possible.

High-level modeling languages are often used when designing critical systems. The stat-
echart formalism is a commonly used way of describing behavior and is suitable for the
modelling of reactive systems. Several approaches exist to veri�cation, from which formal
veri�cation is capable of fully exploring and verifying the behavior of a system. Various
temporal logical languages exist, but not many tools support the use of expressive � and
thus easy-to-use � linear temporal logics. Linear temporal logical speci�cations, while be-
ing particularly expressive, lead to a computationally demanding veri�cation task, making
the improvement of the performance of such techniques a permanent challenge.

My work aims at creating a formal veri�cation algorithm that supports the use of linear
temporal logic. My algorithm is based on abstraction for e�ciency, enabling the veri�ca-
tion of data-driven reactive systems as well. I integrated my solution into a modelling tool,
creating a way for engineers to utilize my approach in real-world projects. I implemented
my tool using a model veri�cation framework developed at the University, supporting all
input formalisms - for example, source code based analysis - of the framework.

I evaluated the e�ciency of the implemented algorithm using a standard software veri�-
cation benchmark.
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Chapter 1

Introduction

With the rapid advancements of technology, more and more critical areas see the in-
troduction of software-based solutions, where faulty behavior of the software can have
catastrophic consequences. This means identifying faults and proving correctness are cru-
cial parts of the development of such systems and should be done as early in the process
as possible.

High-level modeling languages are often used when designing critical systems. The stat-
echart formalism is a commonly used way of describing behaviour and is suitable for the
modeling of reactive systems. Several approaches exist to veri�cation, from which formal
veri�cation is capable of fully exploring and verifying the behavior of a system. It seems
however, that high-level modeling tools that are suited for engineering work and e�cient
formal veri�cation tools rarely intersect. Various temporal logical languages exist, but not
many tools support the use of expressive � and thus easy-to-use � linear temporal logics.
Linear temporal logical speci�cations, while being particularly expressive, lead to a com-
putationally demanding veri�cation task, making the improvement of the performance of
such techniques a permanent challenge.

In this thesis I present my formal veri�cation algorithm that supports the use of linear
temporal logic. My algorithm is based on counterexample-guided abstraction re�nement
for e�ciency, enabling the veri�cation of data-driven reactive systems as well. I integrated
my solution into a modeling framework, creating a way for engineers to utilize my approach
in real-world projects. I implemented my tool using a formal veri�cation framework devel-
oped at the University, supporting all input formalisms - for example, source code based
analysis - of the framework.

I evaluated the e�ciency of the implemented algorithm using a standard software veri�-
cation benchmark and engineering models.

1.1 The structure of this thesis

The structure of this thesis is the following. Chapter 2 presents the theoretical concepts
on which I based my solution. Chapter 3 details the theoretical advancements I made. In
Chapter 4 I provide details about my implementation. Chapter 5 presents benchmarking
results of running various model checking tasks. In Chapter 6 I draw the conclusions of
my work and lay down possible paths to continue.

1



Chapter 2

Background

In this chapter I brie�y present the theoretical concepts on which I based my solution. In
section 2.1 I introduce model checking.

Section 2.2 is a summary of theformalisms I use to model the systems I intend to verify.
Kripke structures (Section 2.2.1) provide a strong foundation on top of which many of the
model checking methods are built. Statecharts (Section 2.2.2) o�er an intutive, but at
the same time strict and well-de�ned way of representing reactive systems.Control �ow
automata (Section 2.2.3) are a commonly used way of representing computer programs in
a formal manner.

In Section 2.3 I present how abstraction can be used to tackle the performance challenges
of model checking.Counterexample-guided abstraction re�nement2.3.1 is a commonly used
way of calculating the desired abstraction-level when analyzing a system's behaviour. Its
two main components , theAbstractor and the Re�ner are discussed in Sections 2.3.2 and
2.3.3.

Section 2.4 is a summary of the convential way of linar temporal model checking. Section
2.4.1 introduceslinear temporal logic, a formalism for describing correctness requirements.
Section 2.4.2 gives an introduction toautomata theory, and shows (Section 2.4.2.2) how
linear temporal logical formulas can be expressed using automata. Section 2.4.3 discusses
how automata theoretic approaches can be used to check linear temporal properties.

2.1 Model checking

Formal veri�cation consists of numerous methods for proving the correctness of systems
with mathematical certainty, one of which is model checking[13]. It aims to exhaus-
tively analyze all possible behaviours of a system to check if it meets a given correctness
speci�cation.

Formally, given a model M and a speci�cation ' determine whether or not the behavior
of M meets the speci�cation ' . The result of model checking can be eithertrue if the
speci�cation holds, or a counterexampleif it doesn't.

Model checking oftemporal logical properties[20] is a speci�c class of model checking prob-
lems and is the primary focus of this thesis. In case of such problems the correctness
property ' is speci�ed using atemporal logical formula.

The biggest challenge of model checking is dealing with the problem ofstate space explo-
sion[6]. As the number of state variables in a system increases, the size of the system's

2



Figure 2.1: An illustration of model checking

state space grows exponentially, which makes its exploration impossible in practice. Var-
ious approaches have been developed to tackle this problem, includingbounded model
checking[3], symbolic model checking[4] and abstraction[5].

2.2 Modeling formalisms

In order to be able to reason about the correctness of a system using formal veri�cation
techniques the model of the system needs to be de�ned with mathematical precision [19].
A model can be called formal if it has a well-de�ned syntax and precise semantics.

Choosing a suitable abstraction-level for the model is a crucial question when designing
a formal veri�cation method. Lower-level models are usually easier to handle mathemat-
ically, but can be harder to comprehend for humans, meaning they are impractical for
direct modeling of a system. A good example of low-level models areKripke structures
which are often used in model checking. Higher level models on the other hand allow
engineers to model more e�ciently by abstracting away less important details. Some ex-
amples of these models areControl �ow automata and Statecharts. These higher level
models can be transformed to lower-level ones, enabling e�cient lower-level algorithms to
be used when verifying them. This process is calledstate space generationor exploration
and can easily lead tostate space explosion.

2.2.1 Kripke structures

Kripke structures are �nite directed graphs whose vertices are labeled with sets of atomic
propositions [7][18]. We call the nodes of these graphsstates and the edgestransitions.
Paths in these graphs (alternating sequences of states and transitions) represent possible
behaviours of our system.

De�nition 1 (Kripke structure). Given a set of atomic propositionsAP = f p; q; :::g,
a (�nite) Kripke structure is a 4-tuple M = hS; I ; R ;L i , where:

� S = f s1; :::; sng is the (�nite) set of states;

� I � S is the set of initial states;

� R � S � S is the transition relation consisting of state pairs (si ; sj );

3



Figure 2.2: A Kripke structure modeling a tra�c light.

� L : S ! 2AP is the labeling function that maps a set of atomic propositions to each
state. �

For a state s 2 S, the set L (s) represents the set of atomic propositions that are true when
the system is in states, and the set AP n L(s) contains the propositions that are false in
state s. We assume the transition relationR is de�ned as left-total, meaning for all si 2 S,
there exists sj 2 S such that (si ; sj ) 2 R , i.e., that all states have non-zero outdegree.
This ensures that all �nite paths can be extended to an in�nite path. A deadlock state
can be modeled by a state having a single outgoing edge back to itself. We de�ne apath
in M as an in�nite sequence� 2 S ! with � (0) 2 I and (� (i ); � (i + 1)) 2 R for every i � 0.

2.2.2 Statecharts

The de�ning characteristic of reactive systems is that they are event-driven, they have to
continuously react to outer and inner events [16]. These systems appear everywhere in
our daily lives, we interact with them without even knowing they belong in this category.
For example operating systems, avionics systems, ATMs or even microwave ovens can be
categorized as reactive systems. As these examples show, reactive systems often appear
in areas, where safety-critical operation is crucial, as even the slightest misbehaviour can
have catastrophic consequences. This makes the veri�cation of these systems an important
part of their design process.

Reactive systems can only be veri�ed using model checking techniques if they are rep-
resented by mathematically precise models.Statecharts[17] provide an intuitive way for
describing the behaviour of reactive systems, and are at the same time formal and rigorous.
Statecharts are an extension of �nite state machines, introducing hierarchy, orthogonality
and broadcast communication.

Figure 2.3 shows the statechart representation of a tra�c light. There are two states at
the upmost level of the state hierarchy,O� and On. On is a composite state, it contains
3 substates,Red, Green and Yellow. Switch and toggle are outer events. The black dots
represent entry points, their single outgoing edge leads to the initial state of their regions.

This thesis proposes an e�cient way of verifying temporal logical properties of mod-
els created in the Gamma Statechart Composition Framework1, and thus models of the
YAKINDU Statechart Tools 2 as well. Gamma statecharts can be transformed to Extended
symbolic transition systems (Section 2.2.4), a lower-level formalism.

1http://gamma.inf.mit.bme.hu
2https://www.itemis.com/en/yakindu/state-machine/
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Figure 2.3: The statechart model of a tra�c light.

2.2.3 Control �ow automata

The main focus of this thesis is the veri�cation of reactive systems, but the constructed
algorithm, while being optimized for this domain, can be used to check the correctness
of program code as well. Programming languages are usually designed to be human-
readable and are easy to use for programmers, but are practically impossible to process
mathematically. To allow program code to be reasoned about using methods of formal
veri�cation, it needs to be transformed to a formal model, in our case aControl �ow
automaton (CFA)[2]. This transformation can be carried out automatically, for example
by the veri�cation compiler proposed by Gyula Sallai[21], which is capable of transforming
a subset of theC programming language toControl �ow automata .

De�nition 2 (Control �ow automaton). We de�ne a Control �ow automaton as a
4-tuple hV; L; l0; lend; E i , where:

� V = f v0; v1; :::g is the set of variables. 8vi 2 V variable has aDvi domain;

� L = f l0; l1; :::g is the set of control locations, which model the program counter;

� l0 2 L is the initial location;

� lend 2 L is the ending location;

� E � L � Ops � L is the set of transitions �

A state is a tuple s = ( l; d1; d2; :::; dn ), where l 2 L is a control location and di 2 Dvi is
the value assigned to variablevi 2 V . A transition is a directed arc between twolocations
labeled with statement. A statement can be:

� An assumption statement ([x == 0] ). A transition labeled with an assumption
statement can only �re if the condition of the assumption statement evaluates to
true in the source location;

� An assignmentstatement (x := y + 1 ). An assignment statement consist of a refer-
ence to a variable and an expression that will be assigned to it;

� A havocstatement (havoc x). A havoc statement is a non-deterministic assignment,
the variable is assigned a random value from its domain.

5



A transition can be labeled with multiple statements, these statements are executed con-
secutively. Ending locations allow for �nite paths to exist in our model. However, we
only want to reason about in�nite paths, so we extend these �nite paths to in�nite ones
by adding the ending state in�nitely many times to the end of any path that reached the
ending location, i.e., by assuming that an assumption transition with the condition [true ]
exists that starts and ends in the ending location and only this transition �res after the
ending location is reached.

CFA can be visualized as directed graphs, whose nodes represent the control locations
and whose edges represent the transitions. The ending location has a dashed border.
The starting location has an incoming edge without a source node. See Figure 5.2 for an
example a CFA.

Control �ow automata can be illustrated with directed graphs, whose nodes and edges
correspond to the locations and transitions of the automata. Edges are labeled with
statements. The initial location is denoted with an incoming edge that has no source
node. In graphical representations the ending node has double borders.

2.2.4 Extended symbolic transition systems

The extended symbolic transition system(xSTS) formalism is an extension to symbolic
transition systems [15].

De�nition 3 (Extended symbolic transition system). An extended symbolic transi-
tion system is a tuple T = hV; T ran; Init i , where:

� V = v1; v2; :::; vn is the set of variables, with domainsDv1 ; Dv2 ; :::; Dvn ;

� T ran is the set of transitions;

� Init is the initial transition �

A state is a tuple s = ( d1; d2; :::; dn ), where di 2 Dvi is the value assigned to variable
vi 2 V . A transition is built up of actions. Actions can be de�ned as follows:

� An assignment action is an atomic action describing the assignment of a value to a
variable;

� An assumption action is an atomic action describing the expectation of a certain
condition. It contains a single expression that has to evaluate totrue, otherwise that
certain action branch (see nondeterministic actions for the description of branches)
containing the false assume action cannot be executed;

� A sequential action is a composite action that contains one or more actions that are
executed in order, one after another;

� A parallel action is a composite action that contains one or more branches. Upon
execution one of the branches is selected nondeterministically.

Transitions are atomic in the sense that either all their actions are executed or none.

6



2.3 Abstraction-based model checking

The two most well-known abstraction based methods tackle the problem of state stace
explosion di�erently:

� Explicit value abstraction[2] reduces the state space by marking a subset of the
variables untracked. For example if our model has the variablesx and y, then we
might only track x and mark y as untracked. This meansy can take any value from
its domain.

� Predicate abstraction works by only tracking if the predicatesde�ned by the current
abstraction precision evaluate to true of false. These predicates are logical expres-
sions, which can contain variables of the model, for example(x > 0), (x > y ) or
(true ).

These methods work by analyzing the behaviour of abstract, simpler models, which con-
tain less information than the original ones. One would think that losing information
leads to incorrect analyses. However, both of these methods areover-approximations,
meaning they only add behaviours to the model and do not remove any. When looking for
counterexamplesfalse positivescan occur, but no false negatives. If no counterexample
is found in the abstract model, then the original model doesn't contain one either. On
the other hand, �nding a counterexample in the abstract model isn't enough to be certain
about the existence of one in the original model. The veri�cation algorithm has to check if
the counterexamples obtained through abstraction are concretizable, i.e., if the path they
describe can be traversed in the original model.

Figure 2.4: An illustration of abstraction

When analyzing the abstract model we explore the abstractstate space, which is a set
of abstract statesand abstract transitions. An abstract state can contain multiple (even
an in�nite number) of concrete states. All concrete states belong to at least one abstract
state, and each concrete state can belong to at most one abstract state.

2.3.1 The CEGAR-algorithm

Counterexample-guided abstraction re�nement(CEGAR) [5] is an abstraction-based model
checking algorithm. The CEGAR-loop (Figure 2.5) is the heart of this algorithm. The
veri�cation process starts with an initial precision. Depending on the type of abstraction
we use, a precision can either be a list of tracked variables (explicit value abstraction), a
list of tracked predicates (predicate abstraction), or something else in case of a di�erent
abstraction-method. In every iteration of the loop the abstractor component checks if an
abstract counterexamplecan be found in the abstract model with the current precision.
There are two possibilities after this:

7



� If no counterexamples are found, then the model is deemedcorrect, as over-
approximation means the original model doesn't contain one either.

� If a counterexample is found, there�ner component checks if it's concretizable:

� If it is, then the counterexample is valid in the original model as well, so the
model is deemedincorrect .

� If not, then the re�ner returns a re�ned precision , and the loop starts again.
Ideally, this re�ned precision adds just enough detail to the abstract model,
that the same false counterexample can't surface again.

Figure 2.5: The CEGAR-loop

The loop keeps running until the model is deemed eithercorrect or incorrect . In extreme
cases the abstract state space can become so re�ned, that each abstract state contains
only one concrete state, i.e., the abstract state space becomes equal to the concrete state
space.

2.3.2 The abstractor

The veri�cation algorithm presented in this thesis uses a predicate abstraction based
CEGAR-algorithm for state space exploration. When using predicate abstraction we only
track if certain expressions that contain the variables of the model evaluate to true of false.
These expressions are calledpredicates.

Predicates are Boolean formulas overV , for example (x > 0), (x + 2 == y). We call the
set of tracked predicatesprecision, P = f p0; :::; png. The abstract state space is denoted
with bS. An abstract state contains all concrete states in which the associated predicates
evaluate to true:

� In case of an xSTS, an abstract state is anbs = ( cp0; :::; cpk ) 2 bS n-tuple.

� In case of a CFA, an abstract state is anbs = ( l i ; cp0; :::; cpk ) 2 bS n-tuple, where l i 2 L
is the control location. Abstract states can only contain concrete states of the same
control location.

bpi = pi if pi evaluates to true in the concrete states, bpi = : pi if pi evaluates to false, and
bpi = true if pi cannot be evaluated (for example if a variable hasn't been initialized yet).
Given an abstract state bs 2 bS, let its label be Label(bs) =

V
p2 ŝ p, i.e., the conjunction of

predicates (or their negations) in bs. A concrete state s is mapped to bs if sj = Label(bs).

CEGAR is usually used for safety checking. In case of such problems a set of states are
marked aserroneous, and the model checking task is to determine if any of the erroneous
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states are reachable from the initial state. A counterexample is a path starting in the
initial state and leading up to an erroneous state in this case.

2.3.3 The re�ner

The re�ner component has two main tasks:

� To determine whether the abstract counterexample is a valid path in the concrete
model;

� To return a new predicate to re�ne the precision in case the abstract counterexample
is not concretizable.

In my work I used interpolation-based re�nement [14][15]. This re�nement method uses
Craig interpolation to extend the set of tracked predicates.

De�nition 4 (Craig interpolant). Let A and B be �rst-order logic formulas such that
A ^ B is unsatis�able. A formula I is a Craig interpolant (or simply an interpolant) for
(A; B ) if the following properties hold [10]:

� A =) I ;

� I ^ B is unsatis�able;

� I refers only to common symbols ofA and B (excluding the symbols of the logic). �

In model checking Craig interpolants are usually used as explanations of why a trace can't
be concretized. They can be used to split abstract states into two parts, if the �rst set of
concrete states can be described with the formulaA and the second set with the formula
B . When an interpolant between A and B is added to our precision, the concrete states
that A and B characterize will be mapped to di�erent abstract states.

Let b� = ( bs1; t1; bs2; t2; bs3; :::; tn� 1; bsn ) be the abstract counterexample, wherebsi 2 bS is an
abstract state and t i is the transition between bsi and bsi +1 . In this case the erroneous state
is bsn .

In order to be able to re�ne the counterexample trace using interpolation it needs to be
transformed to a list of constraints. This transformation consists of two steps. First, the
states and transitions need to be expressed as logical formulas, denoted withLabel(bs) in
case of states andLabel(t) in case of transitions. In case of states this expression is the
conjunction of the predicates that apply to a state, as de�ned in Section 2.3.2. In case of
transitions, we need to transform each statement to an expressionLabel(t) the following
way:

� An assignment statement can be expressed with an expression stating the next value
of the left operand variable is equal to the assigned value. The next value of a variable
can be referenced using theprime operator. For example the assignmentx := x + 1
can be expressed asx0 = x + 1 ;

� Assumption statements can be expressed using the conditions (as a formula). For
example, the assumption statement[x > 0] is expressed as a formulax > 0;

� A havoc statement can be expressed as an empty expression.

9



After all states and transitions are expressed as logical formulas, their labels need to be
unfolded to the static single assignment form. In the static single assignment form each
variable is assigned exactly once and every variable is de�ned before it is used. This can
be achieved by replacing each variable with an indexed form of itself. Each state has its
own indexing. All indices start at 0 and only get incremented afterassignmentand havoc
statements. A primed variable is substituted using an increment of the current index of
the variable. We denote with Label(t) i the indexing of state bsi applied to the label of the
transition t. Similarly, Label(bs) i denotesLabel(bs) with the indexing of state bsi applied to
it. Figure 2.6 illustrates the transformation process using an example.

x := 0
y := 0
[y = x + 2]
x := x + 1
[x > y]

x_0 = 0
y_0 = 0
y_0 = x_0 + 2
x_1 = x_0 + 1
x_1 > y_0

Figure 2.6: An illustration of statement to constraint transforma-
tion.

Next, the re�ner determines what is the furthest reachable state in the counterexample
starting from the initial state. Let this state be bsf . This state is reachable, meaning
Label(bs1)1^ Label(t1)1^ Label(bs2)2^ :::^ Label(t f � 1)f � 1^ Label(bsf )f is satis�able. However,
Label(bs1)1 ^ Label(t1)1 ^ Label(bs2)2 ^ ::: ^ Label(t f � 1)f � 1 ^ Label(bsf )f ^ Label(t f )f ^
Label(bsf +1 )f +1 isn't as bsf is the furthest reachable state of the counterexample. In this
case we call the statebsf a failure state since a concrete path leads there but it cannot be
extended any further. Please note that theerroneous state and the failure state do not
refer to the same thing (even though they can be the same state). Theerroneous state
refers to the last state of the counterexample, the state about which we want to decide if
it's reachable or not, while the failure state refers to the furthest reachable state of the
counterexample. The set of concrete states mapped to the failure statebsf are partitioned
into the following three groups: states that can be reached from an initial state aredead-
end, states having a transition to bsf +1 are bad, while other states areirrelevant. It is clear
that a state cannot be dead-end and bad at the same time since thenbsf would not be a
failure state.

Figure 2.7: Illustration of the re�nement. Lighter rectangles de-
note abstract states, while darker circles denote con-
crete states.

The purpose of abstraction re�nement is to map dead-end and bad states to di�erent
abstract states so that the spurious counterexample cannot occur in the next iteration.
Predicate abstraction uses predicate re�nement to obtain new predicates.
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Dead-end and bad states can be characterized with formulasD and B respectively in the
following way.

D = Label(bs1)1 ^ Label(t1)1 ^ Label(bs2)2 ^ ::: ^ Label(t f � 1)f � 1 ^ Label(bsf )f

B = Label(t f )f ^ Label(bsf +1 )f +1

It is clear that D ^ B is unsatis�able, otherwise a longer pre�x could be found or b� would
be concretizable. Consequently, Craig interpolation can be applied, yielding an interpolant
I with the following properties.

� D ! I , i.e., I is a generalization of dead-end states,

� I ^ B is unsatis�able, i.e., bad states cannot satisfyI ,

� I refers only to common symbols ofD and B , which are variables with indexing of
state bsf .

Therefore, removing the indices from the variables inI yields a new predicate that sepa-
rates dead-end and bad states mapped tobsf .

We need to remove the indices from the interpolant we got so that it isn't in static single
assignment form. This means that we have to replace variables in their indexed form with
their unindexed form. We denote with av the index of variable v 2 V in state bsf . The fact
that past values of variables can't be referenced in our expressions (only future using the
prime operator), and the characteristic of Craig interpolation that states the interpolant
can only contain symbols that are present both inD and B , mean that for every variable
v 2 V , the index with which v appears in the interpolant is equal to or greater thanav .
When folding in the interpolant if variable v appears with an index a, then:

� if a = av , then we simply replace it with its unindexed form;

� if a > a v , then we apply the prime operator to it av � a times.

For example if we have the variablesx and y with corresponding indicesax = 2 and ay = 3
state bsf , then the interpolant x2 + y4 > x 4 is going to be unfolded tox + y0 > x 00.

2.4 Linear temporal logic model checking

Temporal logics [13] were developed by philosophers and linguists but later found use in
model checking. They describe the ordering of events in time without introducing time
explicitly. A formula can specify for example that a state has to occur some time in the
future, or that it can never occur. Temporal logics describe these relations using temporal
operators, which can be nested in each other or combined with logical operators. Depend-
ing on the structure of time linear and branching time temporal logics are distinguished.
This thesis focuses on linear temporal logic (LTL), which is detailed below.

2.4.1 Linear temporal logic

LTL has a linear time model, meaning that it is interpreted over a single realized future
behavior of a system, i.e., over a linear sequence of states.

In my work I used the following temporal operators [7][11][20]:
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� X ' (�ne X t�): ' holds in the next state

� G ' (� G lobally�): ' holds somewhere on the subsequent path

� F ' (� Future�): ' holds in all states of the subsequent path

� ' U  (� U ntil�):  holds at some state in the future, and' holds at all states until
 holds

� ' R  (� R elease�):  has to be true until ' ^  becomes true ( should stay true
if ' ^  never becomes true)

The syntax of LTL expressions is de�ned as follows [7]:

� All p 2 AP atomic propositions are LTL-formulas

� If ' and  are LTL-formulas, then : ' , ' ^  , ' _  , X ' , G ' , F ' , ' U  and ' R  
are LTL-formulas

The negation normal form of LTL-formulas is usually used when transforming them to
automata. In negation normal form:

� all negations appear only in front of the atomic propositions;

� only the logical operators true , false , ^ and _ can appear;

� only the temporal operators X , U and R can appear.

Figure 2.8: Illustration of temporal operators

2.4.2 Automata theory

Automata are simple mathematical models that model computations over sequences of
input symbols. In formal language theory they are usually used as �nite representations
of in�nite languages.

De�nition 5 (Finite automaton). A �nite automaton is a 5-tuple A = ( Q; � ; �; q0; F ),
where:

� Q is the set of states;

� � is the �nite alphabet, i.e. the set of possible symbols;

� � � Q � � � Q is the transition relation, a set of state-symbol-state triples;

� q0 2 Q is the initial state;
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� F 2 Q is the set of accepting states. �

For a given word w = a1a2:::an 2 � * , the behaviour of the system if de�ned as follows:

De�nition 6 (Run). A � w = r0; r1; :::rn (r i 2 Q ) sequence of states is arun reading the
word w = a1a2:::an , if r0 = q0 and (r i � 1; ai ; r i ) 2 � for all i = 1 ; :::; n. �

In simpler terms, the automaton starts in the q0 state, and steps according to the transition
function for each symbol of the input word. A word w of length jwj = n is accepted if
the run reading it ends in an accepting state, i.e., ifrn 2 F . If the run doesn't end in an
accepting state, or the automaton reads a symbol for which no transitions are de�ned in
the current state, then the word is rejected. The languageL(A) � � * is the set of words
that the automaton A accepts.

An automaton can be visualised using an edge-labeled directed graph, whose nodes rep-
resent elements ofQ and whose edges represent elements of� .

Finite automata can only recognize �nite words, but the systems we would like to analyze
usually do not stop during their normal operation. The di�erent possible behaviours of
these systems can be modeled using in�nite paths in Kripke structures, which can be
considered asin�nite words in terms of automata theory.

2.4.2.1 Büchi automata

Büchi automata are �nite automata that work on in�nite words[7]. They consist of the
same components as the �nite automata we discussed above, the di�erence lies in the
acceptance condition. Büchi automata readw 2 � ! in�nite words. Let inf (� w) denote
the set of states that appear in�nitely often in � w . A run � w is considered accepting, if it
visits at least one accepting state in�nitely often. Formally, if inf (� w) \ F 6= ; . A word w
is accepted by an automatonA if there is an accepting run ofA on w.

An extension to Büchi automata aregeneralized Büchi automata. Such automata can have
multiple acceptance sets. A run is accepted if at least one member of each acceptance set
appears in�nitely often in it. Generalized Büchi automata can be transformed to Büchi
automata.

Büchi automata can be used to recognize so called! -regular languages, just like LTL-
expressions[24]. Nondeterministic Büchi automata can recognize every! -regular language.
In contrast linear temporal formulae can only recognize so called star-free languages, a
strict subset of ! -regular languages, meaning Büchi automata are more expressive than
LTL-expressions.

2.4.2.2 Transforming LTL-expressions to Büchi Automata

As LTL-expressions can only characterize a strict subset of! -regular languages, all LTL-
expressions can be transformed to equivalent Büchi automata. The algorithm of Gerth,
Peled, Vardi and Wolper [12] can transform LTL-expressions in negation normal form to
generalized Büchi automata. I do not detail this algorithm here, as I only used it as a
black box in my work.

In my work I used the LTL to Büchi Automata translator implementation of the Spot
framework3 [11]. The translator does not require the LTL-formula to be given in negation

3https://spot.lrde.epita.fr
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normal form. The translator has an input �ag (�-B�), with which a Büchi automaton is
marked as the desired output instead of a generalized Büchi automaton. If this is used
the translator degeneralizes the output automaton.

2.4.3 Automata theoretic model checking

Automata theoretic model checking provides a way of making LTL model checking com-
putationally easier by reducing it to a language emptiness problem [19].

Given a Kripke structure M and an LTL-formula ' using the same atomic propositions
AP , let L (M ) and L(' ) denote the language that the Kripke structure can produce and
the language that the LTL-formula speci�es. L (M ) contains all possible behaviours of our
model and L(' ) contains all behaviours that comply with the correctness speci�cation.
The ltl model checking problem can now be restated as follows: is the set of provided
behaviours a subset of the valid behaviours, doesL(M ) � L (' ) hold?

An equivalent formalization is L (M ) \ L (' ) ?= ; , where L(' ) is the complement of the
languageL(' ). Complementation is computationally hard, but it can avoided in case of
LTL model checking, by utilizing that the complement of the language of an LTL-formula
is the language of the negated formula:L (' ) � L (: ' ). This allows the model checking
problem to be reduced to language intersection and language emptiness, both of which
can be e�ciently computed on Büchi automata.

2.4.3.1 Algorithms for checking language emptiness

A possible way of checking the language emptiness of a Büchi automaton is checking
whether at least one strongly connected component (SCC) that contains an accepting
state is reachable from the initial state [22]. If such a strongly connected component
is reachable, then the Kripke structure can produce words that contain in�nitely many
accepting states, ful�lling the acceptance condition of Büchi automata.

De�nition 7 (Strongly connected component). A component of a directed graph is
strongly connected, if a path exists in both directions between each pair of vertices of the
component. �

Robert Tarjan proposed a linear time algorithm for �nding SCCs in 1972 [23]. The al-
gorithm is based ondepth-�rst search (DFS) and determines which nodes belong to each
SCC using clever indexing.

Algorithms based on Nested DFS o�er a di�erent approach to checking language empti-
ness. These algorithms usually conduct two depth-�rst searches, the former one to �nd
and sort accepting states, and the latter one to �nd cycles around accepting states. The
�rst Nested DFS algorithm (Algorithm 1) was proposed by Courcoubetis, Vardi, Wolper,
and Yannakakis in 1992 [9]. Two bits per state, a red bit and a blue bit are used to
keep track of which states have been visited by the two depth-�rst searches. Both bits
start with the value false . The initial state is denoted by q0 and post(q) refers to the
set of possible next-states (i.e. out-neighbours) of the stateq. When a cycle is found a
counterexample can be easily obtained from the call stack.
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Algorithm 1 Nested DFS

1: procedure nested_ dfs
2: call dfs_ blue(q0 );

3: procedure dfs_ red(q)
4: q:red := true ;
5: for all t 2 post(q) do
6: if : t:red then
7: call dfs_ red(t );
8: else
9: if t = seedthen

10: report cycle;

11: procedure dfs_ blue(q)
12: q:blue:= true ;
13: for all t 2 post(q) do
14: if : t:blue then
15: call dfs_ blue(t );

16: if q 2 F then
17: seed:= q;
18: call dfs_ red(q);

2.5 Related work

In this section I brie�y present related results in the domain of model checking.

2.5.1 Related theoretical domains

Bounded model checking[3] algorithms look for counterexamples of length equal to or
shorter than k at a time, and encode them as SAT-problems. The process is repeated
with larger and larger values ofk until all possible violations are ruled out.

In symbolic model checking[19], states and state transitions are not simply enumerated,
but represented symbolically by functions, encoded in e�cient data structures such as
decision diagrams.

Partial order reduction[8] is a state space reduction technique used in model checking of
concurrent processes. It exploits the commutativity of actions, whose order of execution
compared to each other does not matter.

2.5.2 Related model checking frameworks

The SPIN 4 model checker is a formal veri�cation tool for multithreaded applications.
The tool allows for veri�cation of LTL properties on models de�ned in a language called
Promela. SPIN uses explicit model checking techniques.

NuSMV 5 is a symbolic model checker based on binary decision diagrams that supports the
analysis of speci�cations expressed as CTL and LTL formulae. NuSMV uses a di�erent
approach for LTL model checking, based on decision diagrams.

PertiDotNet 6 is a framework for the editing, simulation and analysis of Petri nets. It
supports saturation-based techniques for LTL and CTL model checking and CEGAR-based
reachability analysis on Petri nets. However, CEGAR-based analysis is not integrated with
LTL model checking.

CEGAR-based approaches are used for software and also or high-level models. However,
they are usually not capable of verifying more complex properties, such as LTL.

4http://spinroot.com
5http://nusmv.fbk.eu/
6https://inf.mit.bme.hu/research/tools/petridotnet
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Chapter 3

LTL model checking of critical
systems

Figure 3.1: Overview of the approach

3.1 Overview of the approach

In my work, I developed a solution to support engineers in the veri�cation of high-level
engineering models. My work focused on two main aspects:

� Integration of the veri�cation engine into high-level modeling tools using an inter-
mediate formal representation and providing the algorithms for this representation.
I also provide veri�cation support for simple programs in the C programming lan-
guage.

� I developed a new algorithm that exploits the e�ciency of abstraction in LTL model
checking.
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During my work, several challenges had to be solved. First, theoretical and algorithmic
developments were needed to support Linear Temporal Logic in CEGAR-based model
checking. As LTL model checking is reduced to �nding strongly connected components
(cycles) in the state space, I had to develop new search and re�nement strategies. Secondly,
I had to adapt my algorithm to work on the intermediate models that the high-level
engineering models can be transformed to. A result of this is that my novel algorithm can
not only be used to verify low-level formal models, but also supports the veri�cation of
statecharts and C source code. In the following sections I detail my work.

3.2 Integration into the engineering work�ow

Engineers use high-level engineering languages in system design, so my approach was
designed to support the engineers to use the concept of hidden formal methods. The
goal was to hide formal methods from the engineers in a way that they only have to
be familiar with high-level modeling languages and they do not need knowledge about
formal models/methods and veri�cation. To achieve this high-level goal, I integrated my
model checker into the Gamma Statechart Composition Framework1. The models of this
framework are based on statecharts. The users can de�ne components, which are the
basic building blocks of Gamma models. Composite components can contain instances of
other components and de�ne channels between them for communication, enabling users
to model highly complex systems using a standardised formalism. The framework already
supports model checking, but only of CTL properties using the UPPAAL2 model checker.
The drawback of UPPAAL is that it does not use abstraction and it supports only a
very limited subset of CTL. Despite the fact that LTL model checking is a more complex
problem than CTL model checking, LTL can be used more e�ciently by the engineers. [8]

Figure 3.2: Integration into the engineering work�ow

These composite statechart models are too complex to be checked e�ciently using math-
ematical methods. However, Gamma models can be transformed to xSTS models, a for-
malism which is more suited for model checking. This is why I decided to �t my algorithm
to xSTS models as well and enable engineers to check their complex models using my tool.

3.3 LTL-formula preprocessor

My goal was to provide the engineers using my tool with an intuitive interface, so that
they can easily integrate model checking techniques into their development work�ow. In

1http://gamma.inf.mit.bme.hu
2http://www.uppaal.org
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order to achieve this I extended linear temporal logics in such a way that enables engineers
to formulate relevant requirements about their systems.

Per de�nition linear temporal logics only allow us to reason about atomic propositions.
In contrast, in my approach linear temporal logical formulas can be used to formulate
requirements about any logical formula overV (the set of variables in our model). An
example of such a formula isG(x > 5), which states that the value of the variable x is
always greater than 5. The task of the LTL-formula preprocessor is to transform these
extended formulas to reqular LTL-formulas to allow the use of existing LTL-modi�cation
methods on them. In our previous example this would mean transformingG(x > 5) to
G(p), where p is an atomic proposition that applies to a state if and only if in that state
the logical formula x > 5 evaluates to true.

This extended formalism can be described with the following context-free grammar, where
n 2 Z is an integer andv 2 V is a variable:

' ::= >j ? j vjnj: ' j[' ^ ' ]j[' _ ' ]jG ' jF ' jX ' j[' U ' ]j[' R ' ]j

[' ) ' ]j[' > ' ]j[' < ' ]j[' � ' ]j[' � ' ]j[' = ' ]j

[' + ' ]j[' � ' ]jj [' � ' ]j['=' ]j[' %' ]j(' )

Operator precedence can be seen in Table 3.1 (with increasing priority from top to bottom).

Lower Operators?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
y

)
_
^
:

U ; R
F; G; X

=
>; <; � ; �

+ ; �
� ; =;%

v; n; > ; ?
()

Higher

Table 3.1: Operator precedence

A semantic analysis is required to detect invalid formulas, as not all words that can
be generated using this grammar are valid. For example the wordG(true ) > 5 can be
generated using this grammar, but is invalid, as an LTL-operator cannot be the operand of
a relational operator. During this semantic analysis nodes of the syntax tree are assigned
one of the three following types:

� int-type nodes can only have int-type children. The following nodes are always int-
type: n 2 Z integers, + ; � ; � ; =;% operators. Variables v 2 V can be int-type
depending on their declaration.

� bool-type nodes can belong to two subcategories:

� relational operators can only have int-type children. These operators are the
following: >; <; = ; � ; � ; 6= .
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� boolean operatorsare bool-type if they only have bool-type children. These
operators are the following: ^ ; _ ; ) ; : ; > ; ? . Variables v 2 V can be bool-type
depending on their declaration.

� LTL-type nodes can only have bool-type or LTL-type children.

� The following operators are always LTL-type: F; G; X ; U ; R .

� The boolean operators listed above (̂ ; _ ; ) ; : ) are LTL-type if they have at
least one LTL-type operand.

The parentheses operator can be of any type, it inherits the type of its child. Figure 3.5
shows an example of the types that get assigned to the nodes on the syntax tree of the
formula FG(x + 2 > 5) ^ ? .

In order to be able to transform our extended formulas to LTL-formulas we need identify
maximal bool-type subtrees (i.e. look for bool-type nodes, whose parent nodes are ltl-type)
in our syntax tree, store them as logical formulas and replace them with di�erent atomic
propositions. Our previous example,G(x > 5) would be transformed to the LTL-formula
G(p) this way, see Figure 3.3 for an illustration. Our other example,FG(x + 2 > 5) ^ ?
would be transformed to FG(p1) ^ p2.

Figure 3.3: Illustration of the transformation process

The replaced logical formulas need to be stored and then evaluated in each state to deter-
mine if the corresponding atomic propositions are valid in them.

Figure 3.4: Illustration of the type system in action
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3.4 CEGAR-based LTL model checking

In this section, I introduce the novel, CEGAR-based LTL model checking algorithm. This
algorithm I developed is based on the combination of two model checking techniques
that weren't used for this purpose together before,counterexample-guided abstraction re-
�nement and automata theoretic LTL model checking. LTL model checkers have always
struggled with performance. I propose that introducing counterexample-guided abstrac-
tion re�nement can signi�cantly increase performance in most cases of LTL model check-
ing. The algorithm allows for �on the �y� model checking, meaning that usually only a
portion of the state space has to be explored, further improving performance.

Figure 3.5: Overview of the algorithm

The algorithm has the following steps:

1. The requirement speci�cation is given in the form of an LTL-formula ' . Negate this
formula and transform it to an equivalent Büchi automaton S;

2. Apply abstraction to the concrete model with a given initial precision, calculate the
abstract state space and represent it with an automatonM ;

3. Calculate the product of the two automata S � M . In this product the speci�cation
automaton steps based on the target state of the model automaton;

4. Check the language emptiness of the product automatonS � M ;

� If the language of the automaton is empty, then the model meets the correctness
speci�cation as no counterexamples were found;

� If a counterexample is found in the abstract state space, then verify whether it
is valid in concrete state space as well;

� If it is, then the model does not meet the correctness speci�cation;
� If it isn't, then then re�ne the abstract model with a new precision, calcu-

late the abstract state space again, and jump to the 3rd step.
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The basic challenges that had to be solved when constructing this algorithm are the
following:

� Generation of the synchronous product: I needed to determine how the synchronous
product of the abstract model and the Büchi automaton are to be calculated.

� Language emptiness checking in the abstract state space: I had to devise a way to
search for accepting runs in the abstract state space.

� New re�nement strategy: I also needed to construct a way to re�ne the abstraction
if the abstract counterexample isn't concretizable.

Some steps of this algorithm can be executed simultaneously. For example, state space
generation, calculation of the product automaton and language emptiness checking can
be conducted together, which can result in a signi�cant increase in performance. If these
three tasks are carried out at the same time, then the model checking is said to happen
�on-the-�y�.

I'm going to demonstrate the steps of the algorithm using a CFA, which can be seen in
Figure 3.6, and the LTL expression F (x = 1) . The preprocessor transforms this LTL
expression toF (p0), and returns (x = 1) as the atomic proposition p0. This LTL expres-
sion can be transformed to the Büchi automaton in Figure 3.7. When illustrating Büchi
automata I replace the atomic propositions with the corresponding logical formulas, so for
examplex = 1 appears instead ofp0 in �gures.

Figure 3.6: The example CFA

Figure 3.7: The Büchi automaton generated fromF (x = 1)

3.4.1 The abstract state space

The main task of the abstractor component is the generation of the abstract state space.
This state space is an over-approximation of the concrete state space, compared to the
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concrete state space it can contain additional behaviour, but has to contain all behaviours
of the concrete model. Abstract states can contain multiple concrete states. Each concrete
state belongs to exactly one abstract state.

Figure 3.8: The abstract state space of the CFA presented in Fig-
ure 3.6 using predicate abstraction with the precision
[(x < = 0)] .

The algorithm can work with multiple abstraction methods, such as explicit value abstrac-
tion, predicate abstraction, or a mix of the two. The appropriate abstraction method can
only be selected based on the desired application domain. I chose to build my implemen-
tation on predicate abstraction, because it is more suited for reactive systems as variables
in such systems usually only get assigned a few di�erent values, not their whole domain.

Figure 3.8 shows the abstract state space of the CFA in 3.6 when applying predicate
abstraction to it with the precision [(x < = 0)] . The set of active predicates is displayed in
a white rectangle next to each state. Please note that this �gure illustrates the abstract
state space, not a CFA, thus nodes of this graph represent abstract states of the abstract
model and not locations. This means that a location can appear multiple times in this
graph, whereas in a CFA it can only appear once. Each node is labeled with the set of
predicates that apply to the corresponding abstract state.

3.4.2 The product state space

The algorithm then generates the state space of the product of the abstract model and
the Büchi automaton. A state in this product state space is anhs; qi pair, where q 2 Q is
a state of the Büchi automaton, and:

� if the model is an xSTS, thens = ( cp0; :::; cpk ) is a state of the the abstract model;

� if the model is a CFA, then s = ( l i ; cp0; :::; cpk ) is a state of the the abstract model.

The initial state of the product consists of the initial state of the abstract model and the
initial state of the Büchi automaton. A product state is called accepting if the correspond-
ing Büchi state is accepting. At each step of the product the abstract model steps �rst.
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After this the atomic propositions are evaluated based on the target state of the abstract
model, and lastly the Büchi automaton steps based on the atomic propositions.

The product of the abstract model from Figure 3.8 and the Büchi automaton from Figure
3.7 can be seen in Figure 3.9.

Figure 3.9: The product state space. A possible counterexample
is denoted with red colour.

3.4.3 Counterexamples

In case of language emptiness checking of Büchi automata our counterexamples have a
�lasso�-like form. The �rst half of the counterexample is a path leading up to an accepting
state and the second half is a cycle which starts and ends in said accepting state. If
such a counterexample is found, then an accepting run is possible, because by repeatedly
traversing the cycle an accepting state can be entered in�nitely many times. In extreme
cases it is possible that either the cycle, the path leading up to it, or both only contain
one state.

An abstract counterexample can be seen in Figure 3.9 with red colour. In this example
h(l0; > ); b0i ; x := 0 ; h(l1; x < = 0) ; b0i ; [x < 5]; h(l2; x < = 0) ; b0i ; x := x + 1 ; h(l1; !(x < =
0)); b0i is the path leading up the the accepting stateh(l1; !(x < = 0)) ; b0i , and h(l1; !(x < =
0)); b0i ; [x < 5]; h(l2; !(x < = 0)) ; b0i ; x := x + 1 ; h(l1; !(x < = 0)) ; b0i is the cycle. If we
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traverse this cycle in�nitely many times, then the accepting state h(l1; !(x < = 0)) ; b0i is
entered in�nitely many times, ful�lling the acceptance condition of the Büchi automaton.

One of the challenges I had to face when constructing this algorithm is checking the
feasibility of abstract counterexamples. Counterexample-guided abstraction re�nement
is usually used for safety checking, i.e. checking if any error states are reachable from
the initial state. The counterexamples in these cases are alternating sequences of states
and transitions, the only thing that has to be veri�ed about them is whether they are
traversable or not. However, when checking the feasibility of our �lasso�-like counterex-
amples traversability is required but not enough to prove that the counterexample is valid
in the concrete model. A �lasso�-like counterexample has to be traversable in the concrete
model in a way that the starting state of the cycle is the same concrete state as the ending
state. This is required because as abstract states can contain multiple concrete states it
is possible that an alternating sequence of states and transitions appears as a cycle in the
abstract model, however -while being traversable- isn't a cycle in the concrete model.

Figure 3.10 shows this problem on the cycle of the counterexample from Figure 3.9. Ab-
stract states are denoted with rectangles, while concrete states are denoted with circles.
As can be seen in the �gure, abstract states can contain multiple concrete states, for ex-
ample h(l1; !(x < = 0)) ; b0i contains all states, where the CFA is in location l1, the Büchi
automaton is in state b0, and where x is assigned such a value, that!(x < = 0) holds.
In our case the counterexample is traversable, however, what appeared as a cycle in the
abstract model is not a cycle in the concrete model. This is easy to see, as the value ofx
gets increased in every iteration, making it impossible to return to the same state. The
abstract state h(l1; !(x < = 0)) ; b0i has to be split in two in order to separate the cycle's
starting and ending state from each other. This is the task of there�ner component.

Figure 3.10: Illustration of the cycle validity problem. The cycle
is denoted with red colour.

24



3.4.4 Re�nement

The re�nement algorithm discussed in 2.3.3 has to be extended to be able to handle
�lasso�-shaped counterexamples. The re�ner �rst checks the traversability of the coun-
terexample the same way the original algorithm does. If the counterexample is found to be
untraversable, i.e. there is at least one state in the counterexample that can't be reached
using the given path, then the precision is re�ned as discussed in 2.3.3.

The re�ner receives an alternating sequence of states and transitions b� =
(bs1; t1; bs2; t2; bs3; :::; tn� 1; bsn ) and an index 1 < = c <= n indicating the start of the cy-
cle in this sequence as input.

The next step is checking whether the abstract cycle is a valid cycle in the concrete model
as well. We already veri�ed traversability, so we know that all constraints can be satis�ed
together, formally: Label(bs1)1 ^ Label(t1)1 ^ Label(bs2)2 ^ ::: ^ Label(tn� 1)n� 1 ^ Label(bsn )n

is satis�able (we can reach from an initial state to a �nal, goal state). Please note that
in this case the last state of the counterexample, namelybsn is not an erroneous state,
simply the end of our cycle. In order to de�ne a �lasso�, we have to de�ne identical
states: two product states are identical if both their states in the abstract model and their
Büchi states are identical. In an xSTS, two concrete states are identical if the variable
assignments are the same. In case of CFA, the locations have to be the same as well
(locations are also stored in a variable, so the de�nition is practically the same). Büchi
states and CFA locations are tracked explicitly, meaning a state of the product state space
can only contain concrete states that have the same Büchi state and the same location.
This means that we only have to consider the values of the variables to determine if two
concrete states inside an abstract state are the same.

Figure 3.11: Illustration of the cycle re�nement.

They key point in symbolic lasso detection is the symbolic encoding. To check this we
are going to add a new constraint to the already checked ones and see if it is satis�able
together with them. This constraint is going to express that each variable has the same
value assigned to it in the starting state and the �nal (recurrent) state of the cycle. If we
have n variables and denote the index of variablev 2 V in the starting state with av;s

and in the ending state with av;e, then our constraint is
V

v2 V
(vav;s = vav;e ). For example

if variables x and y had the indices 2 and 1 in the starting, and the indices 3 and 1 in
the ending state of the cycle, then our constraint would bex2 = x3 ^ y1 = y1. If this
new constraint is consistent with the earlier constraints, then our cycle is realizable in
the concrete model as well, meaning the counterexample is valid and the model does not
satisfy the requirements.
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However, if it isn't consistent with the earlier ones, then we need to re�ne our precision. In
the previous steps we constructed logical formulas that express that the counterexample
has to be traversable such that the starting and ending state of the cycle is the same state,
but it seems that such a concrete path is not realizable. By feeding our constraints to an
interpolating SMT-solver, we can obtain an interpolant that clari�es why our path couldn't
be concretized. If we create a new predicate by folding this interpolant and extend our
list of tracked predicates with the newly gained predicate, then we eliminate the spurious
counterexample and the algorithm continues the search.

How we can fold this interpolant is also di�erent from the foldin procedure discussed in
2.3.3. This interpolant can only contain indexed variables from either the starting or
the ending state of the cycle. One of the options would be to replace the starting ones
with the variables themselves and the ending ones with primed versions of the variables.
However, predicates that contain variables that have multiple prime operators applied to
them (for example (x > x 000)) are very ine�cient to process during state space generation,
because they require determining what can be the value of a variable multiple states from
now. I chose a di�erent option, replacing the ending ones with the unprimed variable and
replacing the starting ones with a value that they can have in the starting state. If a set
of constraints is satis�able, then we only need to select one of the possible valuations that
satisfy it and extract the value it assigns to our variable from it. In the example from 3.10
a possible value for the variablex in the starting state of the cycle is 1, so assuming the
variable x had the index 1 in the starting and the index 2 in the ending state of the cycle,
the interpolant x1 > = x2 would be folded in as1 > = x. We add this new predicate to
our precision and start a new iteration of the CEGAR-loop.

Figure 3.12: Illustration of the re�nement process of the coun-
terexample from Figure 3.9
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