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Kivonat

A jelen munka célja egy olyan kifinomult megoldás kialakítása, mely lehetővé teszi internet-
szolgáltatók számára, hogy objektíven mérjék és értékeljék új funkciók és szolgáltatások
bevezetésének hatásait a rádió hozzáférési hálózatokban. Az új funkciók implementálá-
sa gyakran kiszámíthatatlan következményekkel járhat a meglévő szolgáltatásokra és a
felhasználói élményre, ebből kifolyólag elengedhetetlen, hogy a bevezetésük előtt alapo-
san felmérjük ezeknek a változásoknak a hálózatra gyakorolt hatásait. Az implementált
rendszer virtualizált konténerek használatával képes iperf3 méréseket végezni, amelyek
teljesen függetlenek egymástól. Ezen mérések révén a rendszer egy egységes, valós idejű
felügyeleti felületet biztosít, mely segítségével a hálózati adminisztrátorok precíz és megbíz-
ható információkhoz juthatnak a hálózat teljesítményéről. Ezzel lehetővé válik számukra
a hálózat megfelelő előkészítése, optimalizálása és finomhangolása az új funkciók/szol-
gáltatások integrálása érdekében, úgy hogy az ne befolyásolja negatívan a már meglévő
funkciók működését és a felhasználói élményt. A rendszer használata hozzájárul a meg-
növekedett stabilitáshoz, megbízhatósághoz és teljesítményhez, ami javítja a felhasználói
élményt, növeli a fogyasztói elégedettséget és hűséget. Ezen pozitív változások nem csu-
pán a technológiai innováció szintjét emelik, de közvetetten gazdaságélénkítő hatással is
bírnak, mivel ösztönzik a piaci versenyt és a technológiai fejlesztést.
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Abstract

The aim of this study is to develop a refined solution that enables internet service providers
to objectively measure and assess the effects of introducing new features and services in
radio access networks. Implementing new features can often lead to unpredictable con-
sequences on existing services and user experience, making it imperative to thoroughly
evaluate these changes’ impact on the network before their introduction. The imple-
mented system uses virtualized containers to perform iperf3 measurements, which are
completely independent of each other. Through these measurements, the system pro-
vides a unified, real-time monitoring interface, allowing network administrators to access
precise and reliable information about the network’s performance. This enables them
to adequately prepare, optimize, and fine-tune the network for the integration of new
features/services so that they do not adversely affect the operation of existing features
and the user experience. Utilizing this system contributes to increased stability, relia-
bility and performance, improving user experience, boosting consumer satisfaction and
loyalty. These positive changes not only elevate the level of technological innovation but
also indirectly have an economic stimulatory effect as they spur market competition and
technological advancement.
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Chapter 1

Introduction

In a typical mobile telecommunication’s system, the network consists of two main parts,
the Radio Access Network (RAN) and the Core part. RAN is the main component of a
wireless communication system. RAN is implementing a radio access technology (RAT),
such as GSM, LTE or 5G NR to handle the radio traffic received from smartphones or any
other devices and delivers it to the central core network [41]. Typically, mobile phones and
other wireless connected devices are varyingly known as a user equipment (UE), terminal
equipment (TE) or mobile station (MS). Figure 1.1 shows the relationship between RAN
and Core networks.

Figure 1.1: Relationship between RAN and Core networks

For most people, when hearing the TCP/IP stack, it refers to a fixed access situation,
where a group of nodes in a telecommunication network are interconnected using wired
connections such as Ethernet cables or fiber-optic links. In this wired framework, the com-
munication medium is typically stable and less susceptible to external disturbances. Issues
such as noise interference, signal attenuation, and communication failures are relatively
less frequent and can often be more predictably managed.
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This contrasts sharply with wireless communication systems, where the propagation
medium is the air, and data is transferred using radio waves. In this setup, many ex-
ternal factors come into play, which can hinder the efficiency of communication. Factors
like weather conditions, physical obstacles, electromagnetic interference from other de-
vices, and even the movement of users can have a considerable impact. These challenges
introduce variability and can result in fluctuating end-to-end network quality.
Given these dynamics in wireless radio systems, it becomes imperative to consistently
monitor and measure network performance. When it comes to introduce and test new RAN
functionalities it is essential for the RAN engineers, to have a stable way to reproducibly
measure the radio network’s Key Performance Indicators (KPI) which enables them to
effectively identify the upcoming problems and difficulties.
In an average mobile cell there are sometimes hundreds of active users served at a time,
who are constantly generating data up-link (from the UEs in the direction of Core) and
down-link (from the Core in the direction of the UEs). Today’s traffic runs on top of
TCP/IP stack mostly, and the trends are going in the direction of streaming, requesting
smaller parts of the data at a certain times. A typical use-case when people are watching
online videos on YouTube, or TikTok. From the end user’s point of view, it is expected if
the requested content is loaded as soon as possible, e.g.: can start watch the video shortly,
without loading the the whole content beforehand. This is also supported by the fact, that
in the majority of the cases people tend to watch only the first few seconds of a video, to
decide whether they continue watching it or not. On the other hand, from the provider’s
perspective, such small, but very frequent requests are more demanding when it comes to
queuing the requests.
At a mobile telecommunication provider, e.g.: Magyar Telekom Nyrt., new features are
tested in a test environment with real-world UEs and radio and core network elements
to make a more seamless introduction of newly tested features to the live network. For
this purposes mobile telecommunication providers would need to effectively and accurately
simulate real-world traffic. As I mentioned earlier, this would include hundreds, even 900
different parties to simultaneously generate traffic (on the radio channel via UEs) with
respect to the before-mentioned mobile data traffic trends. However, there are specific
hardware and software combinations to generate this kind of distributed traffic, its effi-
ciency in simulating a real-world case is still questionable. Instead of this, engineers needs
to have an another way to test the RAN networks capabilities. RAN networks work in a
way, that if only one user is in a cell, then the whole spectrum of available bandwidth will
be available for that user and allocated to handle it is data transfer if demanded. With
this in mind, we can still use the maximum capacity of the radio network and measure the
performance of the end-to-end network with the help of network traffic generator tools.
This work aims to study the latter approach to measure RAN KPIs and offers an imple-
mentation to make this kind of approach a more viable and refined method compared to
the former solution used in the company.
Given this backdrop, a proof-of-concept system was implemented utilizing Vue.js, Go,
and Docker technologies. Traffic measurement was integrated using iperf3, while the
parallelization and robustness of the solution were achieved through containerization. In
this setup, each measurement can be flexibly run in its own container, effectively isolating
and eliminating the cross-impact of multiple, concurrently running measurements and
ensuring accurate results while addressing security concerns.
The proof-of-concept validation demonstrated that the proposed solution operates reliably.
Measurements conducted in a real-world environment using industry standard devices
proved to be valuable and efficient in troubleshooting potential RAN bottlenecks. With
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this solution, RAN engineers could optimize RAN networks and facilitate the introduction
of new RAN features while ensuring a high-quality user experience. The implications and
broader applicability of the solution include its potential to serve as a valuable tool within
the company group, extending beyond just Magyar Telekom Nyrt.
The rest of this work is organized as follows: Chapter 2 provides an overview of the
theoretical background, the related solutions and the technologies I have used through-
out the developmental process. Chapter 3 introduces the developed system, including its
main components, and gives an insight into each of them regarding how they operate,
what specific technologies they utilize, and what considerations I have made during the
development. Chapter 4 overviews the proof-of-concept validation, while Chapter 5 dis-
cusses the achieved results and the efficacy of the developed solution. Finally, Chapter 6
concludes this work.
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Chapter 2

Background and Related Solutions

In this chapter I will provide a brief overview on network performance measurement and
its possible approaches. I will introduce the most important metrics used for the network
evaluations. I also took into accounts the possible measurement tools and argued in favor
of the chosen instrument that I will use in my proposed implementation. In the last section
of the chapter I presented the need for the possibility of parallel measurements and argued
for the use of containers, and argued for the chosen container technology.

2.1 Assessing Traffic Characteristics

Measurements to understand network characteristics can be acquired either through in-
ternal or external mechanisms. Internal mechanisms are often integral parts of a system,
such as the NetFlow [26] instrumentation in Cisco IOS software. This provides insights
into various aspects of the network’s operation, including user statistics, application traffic,
routing patterns, and peak activity periods. Typically, these mechanisms are positioned
at the interfaces of networking devices. However, as noted in [37], they can also be found
at system interfaces, like the /proc file system in Linux, offering data on system resource
load and performance metrics.
While a significant portion of contemporary networks is equipped with internal mecha-
nisms for traffic analysis, there remain many that lack such built-in capabilities. In these
instances, data is obtained through external mechanisms. These are not inherently part of
the network or its hardware. Commonly, these are sniffers — be they packet, Ethernet, or
wireless — that capture and record traffic at the point of observation. These sniffers can
be hardware-based solutions like NetScout [40], IPCopper [32], or Fluke [30], or software
solutions like Wireshark [51] or NFStream [23].
External mechanisms employ two primary strategies for network traffic analysis: (i) active
and (ii) passive. While both methods bring distinct results, they are chosen based on
the specific requirements of the measurement setup and the intended objectives. Active
measurements often involve sending test packets to determine network properties, whereas
passive measurements simply observe existing traffic without introducing any new data.

2.1.1 Active Measurement Approach

Active measurement is rooted in the principle of sending probe packets into a network.
The packets are then analyzed to determine the network’s characteristics and operational
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status. A depiction of this approach can be seen in Figure 2.1. While these probes can
sometimes be directed at specific servers or applications to assess the health of network
services, the essence of active measurements remains consistent. Two primary features
define active measurements: (i) they necessitate the creation of supplemental traffic and
(ii) the generated traffic and its properties are synthesized.
Typically, the volume and traits of the artificial traffic can be tailored to the user’s needs.
For a comprehensive understanding, only a modest amount of this traffic is generally
sufficient1. This approach offers granular control over various facets like traffic generation,
sampling methods, paths, and the dimensions and kinds of packets2, among others.

Source of
communication

Destination of
communication

Network Traffic

Generation of
probe packets

Collecting probe
packets

Figure 2.1: Illustration of the active measurement approach

However, active measurements are not without drawbacks. For one, they can amplify
network loads, potentially skewing or entirely distorting results. Thus, network managers
should be discerning about the relative cost of these measurements compared to standard
operations. The primary goal is to ensure monitoring exercises a negligible impact on the
network’s performance. Another limitation is that active measurements offer a somewhat
narrow view at the observation point, concentrating more on the relationship between two
nodes. Common metrics derived include performance indicators such as RTT, average
packet loss, connection bandwidth, and packet throughput.
There is potential in active measurements to deduce information about asymmetric delays
or routing modifications between nodes. Nonetheless, achieving this often necessitates
expanding the measurement tools or integrating complementary mechanisms.

2.1.2 Passive Measurement Approach

Passive measurement, as the name suggests, refrains from introducing or altering existing
network traffic. Instead, it solely relies on traffic naturally produced by network users and
applications. An illustrative approach to passive measurement is presented in Figure 2.2.
Passive measurement predominantly employs two strategies. Firstly, it utilizes inter-
networking devices—like routers, switches, and end devices—that come equipped with
mechanisms to gather data about network health and traffic, such as the IPFIX [27],

1It is crucial to note that the requirement varies based on the specific objective of the measurement.
2Crafting packets of diverse sizes or types is essential for simulating different applications.
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NetFlow [26], SNMP [25], and RMON [50] protocols. Secondly, it harnesses software
tools, including NFStream [23] and Wireshark [51], tailored to capture and analyze network
traffic.

Source of
communication

Destination of
communication

Network Traffic

Collecting data
from existing traffic

Figure 2.2: Illustration of the passive measurement approach

Interpreting these strategies can be complex, particularly when integrating them into an
overarching network monitoring framework. A fundamental challenge lies in the nuanced
processes of monitoring and their potential subdivisions. For instance, the IPFIX [27]
protocol splits the familiar data collection task into: (i) the measurement and export
process, and (ii) the collection process, as outlined in the IPFIX architecture [44].
Regular intervals punctuate data collection, either via inter-networking hardware or soft-
ware solutions. Subsequent analysis of this data reveals insights into network performance
and status.
Passive measurements’ intrinsic strength is their reliance on genuine traffic, ensuring no
artificial load gets imposed on the network. However, the act of gathering this data can
marginally boost network traffic, particularly when every packet gets captured. A solution
entails designating a dedicated route for this measurement-related traffic, ensuring its
non-interference with the primary flow and preserving result accuracy. Notably, when
packet-by-packet capture ensues, privacy and data protection concerns can arise [49, 48].
In contrast to active measures, passive ones offer a granular dataset about the observation
point, elucidating traffic composition (data types, services, protocols, multimedia, etc.),
packet frequency, timings, and delays.
Beyond real traffic properties, passive measures can also shed light on network infrastruc-
ture. This involves scrutinizing the NIB [35] of devices. Protocols exemplifying passive
measurement include BGP [43] and OSPF [39].

Packet Capture: An Overview

Packet capture, a cornerstone of network traffic monitoring, employs a passive measure-
ment technique that does not generate supplemental traffic. The primary components of
a typical packet capture tool include (i) a mechanism for collecting data traversing a given
interface or physical link, and (ii) a storage system designed to house the captured data
without negative repercussions, like packet loss.
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Considering the stringent performance criteria—encompassing computing power, memory
speed, storage velocity, and clock precision—packet capture is predominantly executed on
high-end computing systems. While specific monitoring tools like DAG cards [29] can serve
the purpose, their expense and integration challenges make standard computer systems a
preferred choice. Traffic is generally channeled to the packet capture system’s interface
via port mirroring, with captured data stored in a suitable format.
The ubiquity of the PCAP API across numerous operating systems positions it as the
dominant capture file format. On UNIX-like platforms, PCAP is realized through the
libpcap library, whereas on Windows, the WinPcap port is adopted. This library allows
users to specify interfaces, packet types, and various filtering rules for capture.
However, libpcap primarily offers raw data (see Figure 2.3). To decipher captured packets,
advanced software like TcpDump [46] or Wireshark [51] is requisite. One notable downside
of libpcap is its root access requirement, which could introduce security vulnerabilities.

Application for
packet capture

libpcap

Socket
Kernel Protocol
NIC Controller

Network Interface
Controller (NIC)

User Space

Kernel Space

Hardware

Figure 2.3: Illustration of packet capture via the libpcap library

Packet capture, when executed at the granularity of individual packets, offers unparalleled
insights into network traffic. Yet, this granularity is not devoid of challenges, especially
concerning lossless capture at elevated speeds, and the subsequent processing and storage
of vast data volumes.
To manage these challenges, capturing full packet data is not always pursued. Often, only
packet headers—along with metadata like data size and timestamps—are retained, while
the data payload is omitted. Despite this reduction, the sheer volume of per-packet capture
remains substantial, necessitating in-depth discussions on ensuing network monitoring
complexities.

2.1.3 Combined Measurement

Efficiency in assessing infrastructure or topology attributes can be significantly enhanced
through a combined measurement methodologies. Consider, for example, the challenges
inherent in active measurement: in specific scenarios, such as mapping an autonomous
system, it demands a substantial number of test packets. Incorporating passive measure-
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ment can drastically reduce this requirement, thus counteracting the limitations of each
individual method.
An intriguing aspect of combined approaches is the concept of semi-active measurements.
These augment standard traffic with additional data—like timestamps or unique packet
identifiers—to collect enhanced insights into network characteristics. While promising,
semi-active measurements come with their own challenges, notably demanding high per-
formance from the measurement points.

2.1.4 Summary of the Approaches

In summary, combining measurement techniques leverages the strengths of individual
methodologies while mitigating their drawbacks. This synergistic approach optimizes ac-
curacy and streamlines the measurement process, ensuring a focus mostly on the positive
attributes of the used techniques.
Due to the fact, that in my case the main originator of the measurements are to help the
introduction of new RAN features and not to assess some already set networks, the proper
approach was to follow the active measurement paradigm. Especially to use a network
traffic generator program, such as iperf3 or bwping to achieve the maximum possible
bandwidth on the IP network.

2.1.5 Determinants of Network Performance

When we discuss network performance, it is a confluence of various integral metrics and
influential factors. The interplay between physical components and data traffic determines
the actual performance of a network. Understanding this complicated dance is crucial for
both network design and its subsequent operations, like testing new features, especially in
the case of the radio communication domain.
Three key drivers primarily influence the performance of any network: Quality of Service
(QoS) [42, p. 206], Network Congestion [24], and Network Resilience [45]. These can be
viewed through different lenses, such as QoS parameters [36] or more generically as network
performance attributes. The key indicators of such attributes are called Key Performance
Indicators, KPI for short. In this subsection I will list the most important metrics used
for the evaluations.

Latency: Latency, commonly referred to as "ping time", encapsulates the time taken for
a data fragment, like a packet, to traverse from its origin to its intended destination.
Within this broad definition lie specific types of delays: routing delay, which refers
to the time taken for routers to process and forward a packet; transmission delay,
the time it takes to push the packet’s bits onto the link; and propagation delay,
the time required for a bit to travel across the link to the router on the other
end. Various tools, like ping and traceroute, are employed to evaluate this metric,
providing essential insights into network responsiveness.

Jitter: Beyond just measuring the consistency of packet arrivals, jitter highlights the
irregularities and variations in latency. Such inconsistencies, especially pronounced
in voice and video communications, can cause detrimental effects on call and video
quality. It primarily results from network elements, such as congestion, varying route
paths, and discrepancies in timing, which lead to uneven packet delivery patterns.
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Packet Loss: Not all packets dispatched from a source find their way to the designated
destination. Some packets are lost due to an array of reasons, ranging from deliberate
drops by routers in congested conditions to corruption en route. Visualizing this
metric over time can be revealing, shedding light on network health, congestion
levels, and potential areas of concern.

Throughput: Think of throughput as the practical manifestation of a network’s capacity.
It describes the actual volume of data packets that make their journey successfully,
without disruptions, through the myriad of network components. Tools like iperf3
and speedtest-cli prove invaluable in gauging this metric, revealing the efficacy
of data transfer and potential bottlenecks.

Bandwidth: A concept often merged with throughput, bandwidth is the maximal rate
at which data can potentially be transferred across a network. It is the theoretical
upper limit, often marketed by telecommunication service providers as a selling point.
However, real-world data transfer rarely hits this ceiling due to various limiting
factors, such as throughput restrictions and network barriers.

Error Rate: This metric dives into the integrity of the data being transmitted, represent-
ing the fraction of bits that get corrupted during transmission compared to the total
bits sent. A high error rate can signal physical issues, such as hardware malfunctions
or signal interference.

Round Trip Time (RTT): Expanding on latency, RTT measures the total time taken
for a packet to commence its journey from a source, reach its intended destination,
and then return. It is an all-encompassing metric, incorporating all forms of delays
encountered during this round trip.

In a more refined context, these performance metrics collectively provide a comprehensive
analysis of a network’s efficacy and efficiency. Each measurement, whether it is through-
put, jitter, delay, or latency, acts as an individual piece in the overarching puzzle of mobile
telecommunication network evaluation, especially within the RAN. By meticulously exam-
ining each metric—like the rate at which data is transmitted or any discrepancies in data
relay—we obtain a holistic view of the network’s performance. Among these, bandwidth,
jitter, and packet loss emerge as predominant indicators. A thorough understanding of
these key metrics is pivotal for optimizing and enhancing our network’s functionality.

2.2 Existing Tools for Performance Measurement

In this section I will examine possible network testing tools like iperf3, netperf, and
their counterparts, that are following the active based approach to measure a network.
These tools are valuable for a variety of reasons in the realm of network administration,
feature testing, performance tuning, and troubleshooting. In this section I will give a brief
introduction to the several possible solutions to generate network traffic.

2.2.1 Iperf3

Iperf3 is a widely used open-source tool designed to measure the bandwidth and the
quality of a network link. At its core, it measures the maximum TCP and UDP bandwidth
performance by creating data streams and assess the throughput of these streams between
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a client-server setup. The tool supports both TCP and UDP testing. While TCP is
connection-oriented and provides a reliable stream, making it useful for measuring the
maximum possible bandwidth, UDP, being connectionless, is employed to test parameters
like packet loss, jitter, and datagram delay.
The tool functions on a client-server model. One instance of iperf3 runs as the server,
and another connects to it as the client to perform the test. Notably, there are two main
versions of iperf that have been actively used: iperf2 and iperf3. These are distinct
tools, with each having its own set of features and command-line options. For instance,
iperf3 is a complete rewrite of the original iperf2.
A significant feature of iperf3 is its ability to handle multiple parallel streams. This
becomes invaluable in scenarios where a single TCP or UDP stream does not saturate
the available bandwidth, especially in high-speed networks. Moreover, it is capable of
testing bidirectional bandwidth simultaneously, shedding light on how a link performs
under simultaneous uploads and downloads.
During its operation, iperf3 can present bandwidth statistics at regular intervals, offering
users a detailed view of bandwidth variation over time. Another advantage of iperf3 is
its cross-platform availability, catering to Linux, Windows, macOS, and most importantly
some mobile platforms.
Beyond bandwidth testing, iperf3 has found utility in tuning the performance of specific
network paths or equipment, validating QoS (Quality of Service) configurations, and ver-
ifying SLAs (Service Level Agreements) with ISPs or cloud providers. Over time, various
extended versions and variations of iperf3 have emerged, like jperf, which furnishes a
graphical interface for iperf3.
In essence, iperf3 is a versatile tool that provides an uncomplicated avenue for network
administrators, engineers, and researchers to evaluate and diagnose network performance,
making it an essential asset in many network professionals’ arsenals.

2.2.2 Netperf

A networking performance benchmark that tests a variety of different types of network-
ing operations across different protocols (TCP, UDP, etc.). Originating from Hewlett
Packard labs, it provides a versatile means of determining raw socket and transport layer
throughput.

2.2.3 BWPing

As the name suggests, BWPing is a tool to measure bandwidth and the quality of the data
channels by sending ICMP echo requests. It allows for real-time data channel monitoring
to detect link faults promptly.

2.2.4 MTR (My TraceRoute)

MTR integrates the functionality of the ’traceroute’ and ’ping’ programs in a single network
diagnostic tool. As it sends packets, it provides real-time insights into latency and packet
loss for each hop along the route, making network troubleshooting more precise.
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2.2.5 BWCTL (Bandwidth Test Controller)

A command-line client-server tool used to coordinate performance tests between two hosts,
which can use several testing tools like iperf3, ping, and traceroute under its umbrella.
It is especially valuable for its scheduling capabilities, allowing for bandwidth tests to run
without human intervention.

2.2.6 TTCP (Test TCP)

An older utility for measuring TCP and UDP performance between two systems. It allows
both throughput testing and transaction testing.

2.2.7 Synthesis

iperf3 is an actively maintained and updated tool tailored to modern network environ-
ments, offering features that are in step with contemporary performance challenges. The
very fact that it is a successor to iperf2 means it benefits from lessons learned from its
predecessor. The cleaner and more efficient code base of iperf3 results in fewer bugs,
which can make it a more reliable choice than some older tools like TTCP.
In terms of reporting precision, while tools like Netperf provide a variety of tests across
different protocols, iperf3 has the edge with its interval-based reports, giving users a
granular understanding of performance over time. This is a stark contrast to tools that
only offer an end-of-test summary.
Performance-wise, iperf3 has features like support for zero-copy TCP sends, which can
significantly improve performance metrics. For instance, when trying to measure the
potential of high-speed networks where CPU overhead might be a concern, iperf3 can
outshine tools that lack this feature.
In scenarios requiring the testing of high-speed or multi-gigabit networks, the ability of
iperf3 to handle parallel streams gives it an advantage. This provides a more compre-
hensive view of network throughput and potential bottlenecks compared to simpler tools
that only handle single-stream tests.
When versatility is a concern, iperf3 shines with its support for both TCP and UDP
tests. While tools like BWPing are focused on specific protocols, iperf3 offers a broader
range of testing scenarios. Moreover, its capability to specify bandwidth during UDP tests
means it offers greater flexibility than many counterparts.
One distinct feature of iperf3 is its bidirectional testing capability. While many tools
require separate runs for upload and download tests, iperf3 can conduct them simul-
taneously, providing a clearer picture of full-duplex network conditions. This stands in
contrast to tools like MTR, which, while powerful in route diagnostics, do not offer the
same level of duplex testing.
Lastly, the ease of use and widespread adoption in the telecommunication industry of
iperf3 cannot be understated. Its straightforward command-line interface is both intu-
itive for new users and powerful for experienced ones. And since many network profes-
sionals are familiar with iperf3, there is a rich community ready to offer advice, scripts,
and troubleshooting tips, something that might not be as prevalent for lesser-known tools.
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2.3 Computing Parallelization and Its Role in Performance
Measurement

In the realm of network performance measurement, the significance of parallelization is
underscored by two primary considerations in your use case. Firstly, parallelization is
indispensable when multiple teams seek to concurrently utilize the application to assess
end-to-end network performance for distinct purposes. This concurrent usage ensures that
varied network analyses can be conducted simultaneously, enhancing efficiency. Secondly,
there are specific scenarios, such as within a given Dynamic Spectrum Sharing (DSS) cell,
where both 4G and 5G signals are being broadcasted concurrently. In such instances,
parallelization facilitates compatibility tests where data is transmitted over both tech-
nologies simultaneously to evaluate potential degradation and mutual interference. By
enabling parallelization, your application can comprehensively cater to diverse testing re-
quirements and scenarios, thereby ensuring a thorough and efficient assessment of network
performance. In this section I will provide a brief overview what kind of parallelizations
are there and argue for the virtualization as a choice of mine for this application.
For comprehensive network performance measurement, it is often imperative to carry out
multiple tests concurrently to simulate real-world loads and scenarios. Parallelization
plays a crucial role here:

• Parallel Testing: By employing software parallelization techniques, multiple in-
stances of a test can be run concurrently, providing a broader overview of network
performance under various conditions.

• Use of Containers: With tools like Docker, multiple containers (lightweight vir-
tualized environments) can be spun up rapidly to run parallel tests. For instance,
iperf3 servers inside Docker containers can be utilized to parallelize network band-
width measurements.

2.3.1 Hardware Parallelization

This refers to the intrinsic parallel architectures of modern computing hardware:

• Multi-core Processors: Modern CPUs have multiple cores, each capable of exe-
cuting its own thread.

• Graphics Processing Units (GPUs): Originally designed for rendering graphics,
GPUs are now utilized for general-purpose parallel computations due to their many
concurrent processing units.

• Field-Programmable Gate Arrays (FPGAs): These are integrated circuits
designed to be configured by the user for parallel operations.

2.3.2 Software Parallelization

Software parallelization involves designing algorithms and software to execute operations
concurrently. This includes:

• Thread-level Parallelism: The application is divided into multiple threads that
can be executed concurrently.
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• Data-level Parallelism: Data is divided into smaller chunks, and the same oper-
ation is applied to each chunk concurrently.

• Task-level Parallelism: Different tasks or operations within an application are
run in parallel.

2.3.3 Virtualization as a Form of Parallelization

Virtualization involves creating virtual instances (like virtual machines or containers) of
computing resources. While not parallelization in the traditional sense, it allows for mul-
tiple virtualized environments to run concurrently on a single physical machine (see Fig-
ure 2.4). This can be particularly useful for tasks such as testing different software ver-
sions or running isolated applications. Virtualization, at its core, is the act of creating
virtual (rather than actual) versions of computing resources, be it storage devices, net-
work resources, or computing environments. This technology has revolutionized the way
IT infrastructures are designed and managed.

Figure 2.4: Virtualization architecture

Pros:

• Resource Optimization: Virtualization enables better hardware utilization by
allowing multiple virtual environments on a single physical entity.

• Flexibility: Rapid deployment of new virtual environments and easy adaptation to
changing workloads.

• Isolation: Virtual environments are isolated, ensuring that failures or security
breaches in one do not affect others.

Cons:

• Overhead: Introducing a virtual layer can sometimes introduce performance over-
head.

• Complexity: Managing virtualized environments can be complex, requiring spe-
cialized tools and expertise.
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Containers: The Lightweight Virtualization Solution

Containers are a form of lightweight virtualization (see Figure 2.5) that package an ap-
plication and its dependencies together. This ensures that the application runs uniformly
across different computing environments.

Figure 2.5: Virtualization with containers

Pros:

• Portability: Containers ensure applications behave consistently across various en-
vironments.

• Resource-Efficiency: Unlike VMs, containers do not need a full OS stack, making
them lightweight.

• Rapid Deployment: Containers can be quickly instantiated, scaled, or decommis-
sioned.

Cons:

• Isolation: While containers are isolated, they are not as strictly separated as tra-
ditional VMs.

• Dependency on Host OS: All containers on a host share the same OS kernel,
potentially leading to compatibility issues.
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Traditional Virtual Machines vs. Containers

Both VMs and containers are pivotal virtualization techniques, but their operational
modalities differ. The conceptual difference can be seen in Figure 2.6.

Figure 2.6: Containers vs. Virtual Machines [4]

• Virtual Machines: VMs mimic physical hardware, running comprehensive oper-
ating systems. This results in bulkier, resource-intensive entities.

• Containers: Containers run on the same OS kernel but isolate the application
processes. This architecture ensures that containers are lightweight, efficient, and
quick to instantiate.

For network performance measurement endeavors, especially when deploying tools like
iperf3, containers offer clear advantages. Their lightweight nature, coupled with the speed
of deployment, makes them apt for quickly spawning multiple iperf3 server instances, thus
endorsing parallelized network bandwidth assessments.

2.3.4 Synthesis

Given the extensive examination of virtualization techniques, containers emerge as the
most fitting solution for our network performance measurement tasks. Their inherent
advantages, notably over traditional VMs, in terms of resource consumption, speed, and
scalability, make them the optimal choice for hosting iperf3 servers. Thus, our design
gravitates towards the strategic adoption of containerization.
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Chapter 3

Design and Implementation

In this chapter, I give an overview over my proposed architecture to the application (see
Figure 3.1). In the preceding sections I have made an conclusion to choose iperf3 as the
main measurement tool. This chapter seeks to introduce the fundamental building blocks
of the system.
At its core, the architecture encapsulates a web-based user interface, a single-page frontend
application that communicates with the backend services via a RESTful API. Through
the API endpoints users are able to instantiate new, or handle (start or stop) existing
measurement servers, in our case, iperf3 servers. To let users make parallel measurements
on the network, I have chosen a form of virtualization, the container-technology as a tool.
Each iperf3 server will be launched in its own container. In the following subsections I
will provide an overview over the three main components of the application, and reason
behind the chosen technologies I have used to make them.

Figure 3.1: Architecture overview

3.1 Framework Selection

In the realm of modern web development, frontend frameworks such as Vue.js [22],
Angular [2], and React [17] are pivotal. Rather than relying on vanilla JavaScript,
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these frameworks offer developers streamlined tools and structures for crafting dynamic
single-page applications. In my use-case it was imperative to use such a framework, as
end-users do not want to deal with SSH and terminal to launch a measurement server. In
the following sections I will briefly introduce the frontend frameworks I considered using
when I was planning the architecture of the application.

React

React, a product of Facebook’s innovation, has carved a niche with its component-based
architecture. It introduces a virtual DOM, uses JSX for templating, and complements itself
with tools like Redux for managing application state. Owing to its robust capabilities and
backing, React has seen immense adoption and boasts a vast community that contributes
resources, plugins, and libraries.

Angular

Angular, another popular choice in this domain, founded by Google. Unlike React, which
is more library-like, Angular is comprehensive. Its features, including two-way data
binding, dependency injection, and a modular structure, are its main features. It uses
TypeScript as its primary language. Angular’s long history, especially with its earlier
version AngularJS, makes it a popular choice for developers building big applications.

Vue.js

Vue.js, despite its relatively recent introduction, competes effectively with established
frameworks such as React and Angular backed by multi-million dollar companies like
Facebook and Google. Developed by Evan You, Vue.js incorporates a component-based
architecture similar to React. It adeptly positions itself between React’s library-focused
model and Angular’s comprehensive framework methodology. Features like the virtual
DOM, bidirectional data binding, and the distinct single-file components contribute to its
robustness. The swift increase in its adoption for large-scale applications attests to its
efficacy and value in the industry.

Synthesis

Frontend frameworks offer several advantages. They speed up development with reusable
components. Their reactive design ensures that the user interface updates immediately
when data changes. These frameworks have large, active communities, providing develop-
ers with many resources and solutions. Performance is a top priority, with features like the
Virtual DOM in React and Vue.js improving the rendering. They support single-page
applications, which improves user experience by reducing full page reloads. Moreover,
they encourage a modular approach, crucial for effectively managing large applications.
To wrap up, React, Angular, and Vue.js each bring unique strengths to the table. Vue.js,
however, shines brightly with its user-friendliness, adaptability, and seamless integration
capabilities. It effectively blends Angular’s systematic approach with React’s versatility.
A focus on performance in Vue.js ensures efficient application execution, supported by
its streamlined build. The framework’s design and API are coherent and straightforward,
streamlining development efforts. Additionally, its well-organized documentation eases
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the entry for new adopters. Because of the aformentioned reasons I have chosen Vue.js
as my applications frontend framework.

3.2 Frontend Component

To ensure a polished and professional appearance for the frontend, I utilized Vuetify [1],
an open-source UI library constructed atop Google’s Material Design guidelines. This
library empowers novice frontend developers to create pages that adhere to industry-
standard aesthetics. The landing page seamlessly redirects users to the login section of the
application, as illustrated in Figure 3.2. Unregistered users can navigate to the SignUp

Figure 3.2: Login page

page (see Figure 3.3) using the navigation bar situated at the top of the page. Upon

Figure 3.3: SignUp page

successful login, users are redirected to the Profile page (see Figure 3.4). The Profile
page displays fundamental user information such as username and email, a segment of the
authentication token used for backend communication, the assigned port range manageable
by the user and the current authorities and roles assigned to the logged-in user.
Utilizing the navigation bar, logged-in users can access the Home page (see Figure 3.5),
which serves as the gateway to the application’s main functionalities. For newly created
users, this view is initially empty as no servers are associated with the user. To create new
servers, users can click on the "Add Server" toggle button, revealing the corresponding form
shown in Figure 3.6. This form enables users to define attributes for the new server, such
as its name, the port for exposure, the server type (only iperf3 is supported by default),
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Figure 3.4: Profile page

Figure 3.5: Home page

Figure 3.6: AddServer view

the version (iperf3 3.13 and 3.0.11 versions are supported by default) and whether to
initiate the server immediately. The form incorporates numerous validation rules for each
field, demonstrated in Figure 3.7. Once a server is successfully created, it appears in the
list and the form recalculates itself to suggest the next available port for use, as shown in
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Figure 3.7: Field validations in the AddServer form

Figure 3.8. Users can toggle the status of each server between running and not running.

Figure 3.8: The form automatically offers the first available port

Servers that are active are highlighted with a light green background as indicated in
Figure 3.9. Users also have the option to delete servers using the Delete button.
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Figure 3.9: Running servers are with green background

3.3 Backend Component

The backend component serves as the central element of the application, orchestrating its
various functions. It exposes a variety of API endpoints, processes incoming requests, and
interfaces with the Docker engine on the host to manage container operations, all while
persisting data to a database. This component is also responsible for user authentication,
ensuring that each user is presented with the content specifically intended for them. As
illustrated in Figure 3.1, every use case interacts with the backend component.

3.3.1 GoLang by Google

When it comes to backend development, there are several programming languages you
can choose from, each with its strengths and trade-offs. After considerations of different
languages like Ruby [19], Python [16] or PHP [14] etc. the backend architecture springs
to life using the Go [10] programming language, commonly referred to as GoLang. This
language, birthed by Google, shines in scenarios that demand superior performance.
Go, developed at Google in 2007 by Robert Griesemer, Rob Pike, and Ken Thompson, is
a modern programming language that is both statically typed and compiled. What sets
Go apart is its focus on simplicity and developer productivity. With performance that
often rivals languages like C or C++, it also incorporates built-in support for concurrent
programming with goroutines and channels. This focus on parallel execution makes it
especially powerful for today’s multi-core systems. Go’s syntax is clean and straightfor-
ward, making it easy for developers to read and write code. Additionally, it offers a robust
standard library that is particularly adept for tasks like building web servers, handling
I/O, and manipulating common data structures. Cross-compilation is another feature
where Go shines, allowing developers to compile code for different platforms from one ma-
chine. On the memory management front, Go simplifies things with automatic garbage
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collection, reducing the risk of issues like memory leaks. Furthermore, Go’s static type
system, combined with tools like go vet and gofmt, ensures code quality and helps catch
potential errors early in the development process. The introduction of Go modules has
also made dependency management and versioning more streamlined and intuitive. With
the growing popularity of Go year-by-year I have opted for it as my main programming
language for the application’s backend component.

3.3.2 Web Frameworks in the Go Ecosystem

For the creation and management of the RESTful endpoints, there are several noteworthy
frameworks in Go designed for web development. These choices include Gin [9], Echo [7],
Gorilla/Mux [11], Revel [18], Fiber [8], Beego [3], and Buffalo [3].

• Gin: A high-performance web framework that is minimalist and efficient.

• Echo: A fast and unfancy HTTP server framework.

• Gorilla/Mux: A powerful URL router and dispatcher.

• Revel: A high-productivity web framework for Go that comes with a lot of features
out-of-the-box.

• Fiber: Inspired by Express (Node.js framework), it’s designed to jump-start your
web application development.

• Beego: An all-in-one framework with functionality for ORM, caching, and more.

• Buffalo: Aims to be a holistic web development environment, providing tools to
address a variety of development needs.

Gin stands out for its outstanding speed, making it one of the quickest web frameworks
for Go. The framework supports a vast array of middleware, offering developers flexibility
in crafting their applications. Gin does not impose any particular architecture pattern or
directory structure, allowing developers the freedom to structure their projects as they see
fit. Gin’s API is intuitive, establishing a smooth development experience. For this reasons
I opted for the Gin web framework out of the other choices I have considered. While
each library presents its advantages, Gin’s robustness and efficiency suited the project’s
demands the most.

3.3.3 Operation of the Backend

At the outset of this section, it was mentioned that the application uses a client-server
architecture, in which the frontend component interacts with the server through its Appli-
cation Programming Interface (API). This API uses the Representational State Transfer
(REST) paradigm. The backend comprises two primary groups of endpoints.

• AUTH group: login and register related endpoints

– POST /auth/register - User registration.
– POST /auth/login - User authentication.

• PROTECTED group: (Requires authentication for access)
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– GET /protected/servers - Retrieve all servers.
– GET /protected/server?id= - Fetch specific server details.
– POST /protected/servers - Add a new server.
– DELETE /protected/server?id= - Delete a specific server.
– PUT /protected/server?id= - Toggle a server state between halted and run-

ning.

3.3.4 Docker

Docker [6] is an open-source set of platform as a service, designed to facilitate the develop-
ment, deployment, and execution of applications in containers. The platform encompasses
several specialized tools for container-related tasks, such as:

• Software to run containers.

• Tools for developers to wrap applications into container images.

• A repository for storing container images.

However Docker is one of the most popular containerization tools, it is noteworthy to say
that it is not the only one. There are several other tools and technologies that enable
containerization like LXC [13], Podman [15] or CRI-O [5].
Docker’s immense popularity within the containerization landscape can be attributed to a
combination of timing, simplicity, a robust ecosystem, and innovation. Docker introduced
Docker Hub, a cloud-based registry where users could share and access container images.
This centralized repository played a massive role in promoting Docker’s widespread use.
Resulted from the massive popularity, knowledge base and community behind Docker is
massive. Additionally great documentation and tutorials make Docker a great choice for
newcomers in the field of containerization. For this reasons I have also opted for Docker
as my containerization tool.
Docker is integral to the architecture of the application, serving as the primary virtual-
ization technology responsible for initiating multiple iperf3 servers concurrently. When
processing specific requests, the Go application communicates with the Docker engine op-
erating on the physical server hosting the entire application. Utilizing various endpoints,
users can indirectly instantiate new containers, as well as halt and remove existing ones.

3.3.5 Role of Security

Today’s worlds trends are indicating and force developers to take into account the security
aspects of newly developed products more than ever. Various strategies and layers exist
to protect systems from malicious activities. In terms of user authentication, there are
two predominant approaches to consider. The first approach involves session-based au-
thentication, as illustrated in Figure 3.10. Alternatively, token-based authentication can
be employed, as depicted in Figure 3.11. A traditional approach employed on the web
involves utilizing cookie-based, server-side sessions. In this method, a user sends their
username and password to a server via an HTTP request. Upon validation, the server
initiates a session in the database and returns a session ID to the client, which is then
stored in the browser’s cookie jar. Each subsequent request to the server includes this
session ID, allowing the server to validate the session and respond with content tailored
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Figure 3.10: Session based authentication [20]

to the authenticated user, thereby establishing a stateful session between the client and
server. This method, however, presents certain shortcomings. For instance, it is vulnerable
to Cross-Site Request Forgery, although this risk is mitigated when using contemporary
frameworks. A more significant issue arises from the need for the server to retain the
session ID either in the database or in memory. Modern applications often employ hor-
izontal scaling (as is the case in this solution), makes worse this challenge. Token-based
authentication can be implemented as a solution (see Figure 3.11), though it comes with
its own set of limitations. The initial phase of the process remains consistent with the

Figure 3.11: Token based authentication [20]

session based methods: upon validation of the username and password, the server gener-
ates a JSON Web Token (JWT). This token is signed using a secret securely stored on the
server and subsequently transmitted to the client, where it is retained in the browser’s lo-
cal storage. Thereafter, for every subsequent request, the client appends this token to the
Authorization Header of the HTTP request, specifically in the Bearer field. Consequently,
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the server’s only task is to validate the token’s signature, eliminating the necessity to re-
trieve information from the database or retain information in memory. Nonetheless, there
are potential drawbacks, such as the vulnerability of tokens to hijacking and challenges
associated with their invalidation. After the consideration of the two dominant approaches
to user authentication, I have chosen the token-based one due to its scalability, stateless-
ness, ease of implementation, and cross-domain compatibility, which align well with the
requirements of the application.

Implementation of Token Based Authentication - JSON Web Tokens

JSON Web Tokens [33] (JWT) form the backbone of the authentication system in our
application and follows the token based authentication paradigm. JWTs are compact,
URL-safe tokens that can be encoded with specific claims. Once a user logs in, the server
generates and returns a JWT containing claims such as the username, user ID, token
expiration date, and other pertinent information. This token is subsequently attached
to every request from the client, serving as a proof of authenticity. Middleware on the
server-side then validates this token, ensuring that only legitimate requests gain access to
protected resources.

3.3.6 Database - MySQL

The persistence layer of the system rests on MySQL, a renowned relational database
management system. This layer is tasked with storing intricate details about servers and
users. Its role is essential to track which server corresponds to which users, also to track
the allocated port ranges of each user. Two main structures dominate this realm - the
‘Server‘ and ‘User‘ as can be seen below.

type Server struct {
gorm.Model
UserID uint ‘json:"userID" gorm:"column:user_id"‘
Name string ‘json:"name" gorm:"column:name"‘
Port int64 ‘json:"port" gorm:"column:port"‘
Type string ‘json:"type" gorm:"column:type"‘
Version string ‘json:"version" gorm:"column:version"‘
Running int64 ‘json:"running" gorm:"column:running"‘
ContainerID string ‘json:"containerID" gorm:"column:container_id"‘
}

type User struct {
gorm.Model
Username string ‘gorm:"size:255;not null;unique" json:"username"‘
Email string ‘gorm:"size:255;not null;" json:"email"‘
Password string ‘gorm:"size:255;not null;" json:"password"‘
StartPort int ‘json:"startPort" gorm:"column:start_port"‘
EndPort int ‘json:"endPort" gorm:"column:end_port"‘
Role Role ‘gorm:"type:ENUM(’ADMIN’, ’NORMAL’);default:’NORMAL’" json:"role"‘
}

The Object-Relational Mappings (ORMs) for these structures are facilitated using the
GORM [12] library. GORM aids in abstracting intricate database operations into more intu-
itive Go methods, enhancing code readability and maintainability. Its features like auto
migrations, hooks, and associations made it a valuable asset in my development process.
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Chapter 4

Proof of Concept Validation

In this section I will present a concrete real-life case, where an UE was examined, due
to its weaker speed compared to the expected results. The examination shed light on
interesting phenomenon which is caused by the capacity limitation of the specific hardware
component. Due to legal restrictions, I will avoid any specific information on the used
hardware and software.

4.1 The Test Environment

The UEs, such as mobile phones and tablets, are placed inside a Faraday cage or in a
so called RF-shielded box (see Figure 4.1 and Figure 4.2) to ensure a controlled test-
ing environment. In this way, they can simulate real network conditions and perform
measurements on the devices’ radio performance, data transfer speed, error rate, etc.,
all without external radio signal interference affecting the results. Within this isolated
environment, the UEs run an iperf3 client to initiate connections for testing network
performance. These UEs connect to iperf3 servers hosted on an application, utilizing the
underlying radio technology for the connection. The data then traverses the core network,
ultimately reaching the iperf3 servers situated at a different location. By conducting the
tests within this controlled environment, comprehensive end-to-end measurements of the
network’s performance and capabilities can be achieved.

4.2 Setup for the Examination

In this subsection I will provide a brief introduction to the used radio technologies and
to the used nomenclature to properly establish the context of the measurements and to
establish the clarity of the future analysis. During our investigations, we tested a specific
type of device, due to its weaker speed compared to the expected results. The device
was tested in a Carrier Aggregation (cf. Section 4.2) (CA) setup on B28, B3, B1 and
N1 carriers, in configurations of 10MHz 2x2, 20MHz 4x4, and 20MHz 4x4 MIMO (cf.
Section 4.2).
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Figure 4.1: Shielded box for RF signal testing [21]

Figure 4.2: Shielded box for RF signal testing [21]
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Primary Cell, Secondary Cell and Carrier Aggregation in Wireless Com-
munication

Carrier aggregation is a method employed in wireless communication to enhance the per-
user data rate by allocating multiple frequency blocks, known as component carriers, to
a single user [28]. The per-user data rate potential escalates with the assignment of more
frequency blocks to a user. This also results in an elevation of the cell’s aggregate data rate
due to improved resource utilization. Furthermore, CA enables load balancing [31]. Chan-
nel selection strategies for CA systems, which consider optimal values for training length
and power, the count of probed sub-channels, and the feedback threshold to maximize the
sum rate, are crucial for achieving optimal capacity [47].
In the realm of 4G LTE and 5G networks, the notions of Primary Cell (PCell) and Sec-
ondary Cell (SCell) are integral to understanding the operation of Carrier Aggregation.

• PCell: This is the primary cell or sector to which a mobile device connects when
it enters a network area. The PCell is responsible for basic communication ser-
vices, such as initiating and receiving calls, sending and receiving SMS, and data
transmission. Most of the communication and device control take place through the
PCell.

• SCell: The SCells are additional, secondary cells or sectors to which a mobile device
can connect to increase capacity and speed. CA technology allows a device to use
multiple cells (PCell + one or more SCell) simultaneously, combining their band-
width and thereby increasing data transfer speed. Thus, SCells assist the network
in using multiple frequency bands and resources at the same time to optimize data
transmission.

MIMO in Wireless Communication

Multiple-input and multiple-output (MIMO) is a technique that enhances radio link ca-
pacity by utilizing multiple transmit and receive antennas to leverage multipath propa-
gation [38, 34]. MIMO is integral to various wireless communication standards such as
IEEE 802.11n/ac (Wi-Fi 4/5), HSPA+ (3G), WiMAX, and LTE. MIMO techniques allow
for simultaneous transmission and reception of multiple data signals over the same radio
channel, exploiting signal propagation differences between antennas. Multi-user MIMO
(MU-MIMO) extends this concept by sending distinct data signals to different receivers.

Frequency Bands, BLER and MCS metrics

In telecommunications, a frequency band is a specific range of frequencies in the radio
frequency (RF) spectrum that is allocated for a particular type of communication or wire-
less service. These bands are designated by regulatory authorities, such as the Federal
Communications Commission (FCC) in the United States or the European Telecommu-
nications Standards Institute (ETSI) in Europe, to ensure organized and interference-free
communication.
Different frequency bands have varying characteristics: lower frequencies can cover longer
distances and penetrate obstacles more effectively, while higher frequencies can offer higher
data rates but may have a more limited range.
Used frequency bands in the testing:
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• B1 (2100 MHz Band): This is one of the most widely used bands for 3G (UMTS)
and 4G (LTE) technologies. It operates in the range of 1920-1980 MHz for uplink
and 2110-2170 MHz for downlink.

• B3 (1800 MHz Band): This band is also widely used for 2G (GSM), 3G (DCS),
and 4G (LTE) services. It operates in the range of 1710-1785 MHz for uplink and
1805-1880 MHz for downlink.

• B27 (800 MHz Band): This band is used for LTE services and is known for its good
coverage and building penetration characteristics. It operates in the range of 807-824
MHz for uplink and 852-869 MHz for downlink.

• N1 (2100 MHz NR Band): Similar to B1 in LTE, the N1 band operates in the
frequency range of 1920-1980 MHz for uplink and 2110-2170 MHz for downlink. It
is one of the bands identified for the deployment of 5G networks, ensuring a smooth
transition and coexistence with existing 4G LTE networks.

Block Error Rate (BLER) is a metric used in wireless communication to quantify the
quality of a transmitted data stream. It measures the proportion of incorrectly received
data blocks relative to the total number of transmitted blocks within a specific time period.
A lower BLER indicates better signal quality and more reliable data transmission.
Modulation and Coding Scheme (MCS) is a parameter used in wireless communication
that defines the combination of modulation type and error correction coding rate used
for transmitting data. The MCS index typically ranges from 0 to 31, and each index
corresponds to a specific combination of modulation (e.g., QPSK, 16QAM, 64QAM) and
coding rate (e.g., 1/2, 3/4).

4.3 First Test Case

In the first test case, the device was set up to use three LTE cells with the Carrier
Aggregation feature, where PCell was on B3, SCell_1 was on B28, and SCell_2 was on
B1 frequency band. Every diagram shows two identical measurements after each other,
that is why the line drops to almost zero at half-time. The first diagram (see Figure 4.3)
shows the total user throughput, while the other ones Figure 4.4, Figure 4.5 and Figure 4.6
show each cells Physical Data Shared Channel (PDSCH) throughputs. In this case, the
device approached the theoretical maximum with a few percent per-cell speed reduction,
achieving an MCS27 value with less than 5% BLER per cell.
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Figure 4.3: Total User Throughput (kbps)

Figure 4.4: PDSCH Throughput - PCell - B3

Figure 4.5: PDSCH Throughput - SCell_1 - B28

Figure 4.6: PDSCH Throughput - SCell_2 - B1
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4.4 Second Test case

In the second test, the device was set up to not have access to the B1 cell. Instead, we
used an NR cell with the same bandwidth and configuration, with the LTE PCell being
B3 and SCell B28 again. This time, the LTE side continued to weaken negligibly (see
Figure 4.7, Figure 4.8, Figure 4.9), but the N1 NR cell has four notable sharp drops (see
Figure 4.10) where the throughput goes down drastically. In one case the throughput
dropped to almost 50% of its theoretical maximum, as you can see in Figure 4.10.

Figure 4.7: Total User Throughput (Mbps)

Figure 4.8: PDSCH Throughput - PCell - B3

Figure 4.9: PDSCH Throughput - SCell_1 - B28
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Figure 4.10: PDSCH Throughput - NRCell - NR1
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Chapter 5

Discussion

In this chapter, I discuss the results and the presumed explanation of my throughput tests,
robustness, scalability and future enhancements of the proposed solution.

5.1 Analysis and Presumed Explanation of the Results

These results may have happened because the device’s HW/SW configuration is more
sensitive to interference in 5G technology, causing an increase in BLER and SINR. To
reduce these, the UE will limit its modulation depth, which we measure with the MCS
number. With this, the device will be unable to achieve higher speeds but will not generate
as much noise for itself and surrounding devices. Additionally, the device may increase its
power up to the value specified in the standard, but this will generate additional noise.
It is clearly visible that on the last graph (see Figure 4.10), the NR on 2100 Mhz is weaker
with an offset compared to the LTE on the same frequency (see Figure 4.6), and drops in
download speeds are also visible, due to reduced MCS to maintain the target Signal-Noise
Ratio (SINR). These observations are valuable, as we believe that NR cells are at least
the same or better by default then LTE cells, due to the fact that NR spectrum usage is
more efficient in general. These discrepancies can be observed because this phone has a
lower noise tolerance and receives more weakly under the same radio environment.
This type of issue can often be resolved with a software update, partly because the antenna
system is designed so that transmission and reception occur on multiple antennas and a
different antenna pair may be more sensitive per carrier. Also, the device’s behavior can
be modified at any time by optimizing resource utilization, in compliance with the relevant
standards.
In summary, the testing activity resulted that in case of LTE with 3 carriers in a CA
setup, more per-cell speed can be achieved on the same bandwidths than with 1 NR +
2 LTE cells. These results were revealed during the iperf3 measurements - using my
proposed solution - and can be attributed to the fact that the phone supports the use of
3 specific carrier frequencies on both NR and LTE, but has different physical capabilities
for each technology, thereby resulting in a reduced Overall Throughput and lower N1
layer throughput. These observations indicated the capacity defects caused by the specific
hardware components in the UE.
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5.2 Robustness

In this section, I will present the results of experiments and evaluations conducted on the
proposed solution, focusing on its scalability and robustness.
A critical aspect of robustness involves ensuring that the solution is adaptable to future
modifications, thereby accommodating evolving customer requirements within the selected
technological framework and stack. A potential consideration may involve extending the
application’s capabilities beyond initiating iperf3 servers to include other types of mea-
surement servers. As explored in Section 2.2, there exist several powerful tools besides
iperf3 that could be employed. The potential integration of diverse tools could enhance
the range of perspectives supported by the application or respond to shifts in specific re-
quirements. The virtualization strategy implemented using Docker containers, along with
the dynamic Docker-image creation functionality, effectively addresses this need.
An additional dimension of robustness applies to input validation within the frontend
interface. As presented in Section 3.2, the frontend incorporates multiple input validations,
as illustrated in Figure 3.7. Furthermore the AddServer component automatically re-
renders to display the first available port number, as depicted in Figure 3.8.

5.3 Scalability

To evaluate the scalability of the application, I focused on assessing whether the frontend’s
performance would be impacted by horizontal scaling. Specifically, I examined its ability
to manage an increased number of iperf3 server containers. The initial configuration
allowed for 5 servers per user, and I expanded this setup to accommodate 10 servers. The
test results demonstrated that the frontend maintained its responsiveness without any
slowdowns, indicating that horizontal scaling had no adverse effect on the user experience.
The consistency in the frontend component’s speed did not degrade at all, aligning with
expectations. This can be attributed to the fact that the frontend is not engaged in heavy
computation but is merely fetching data from the backend and populating a list to present
to the user.
In the initial phase of assessing the system’s performance, I conducted load testing to
understand how the application behaves under stress. For this purpose, I initiated 10
containers and, from another server, concurrently initiated iperf3 measurements on each
server. During this process, I monitored various metrics such as CPU and memory uti-
lization, as well as packet drop rates on the host server, using a combination of a Python
script and a Bash script.
The results from these tests were insightful. At maximum load, the CPU utilization
peaked at around 8%, while memory usage hovered between 4-5%. Importantly, there
were no packet drops recorded. Comparing these results with tests run on native iperf3
servers, which operated directly on the physical servers and not in a container, I observed
similar utilization metrics. This leads me to conclude that there is no significant overhead
introduced by the virtualization layer.
In order to optimally run the application, it is essential to host it on a server equipped
with a sufficiently powerful CPU and sufficient amount of memory. Additionally, it is
crucial to ensure that the network infrastructure used by clients to connect to the servers
is robust and capable, preventing any bottlenecks during measurements.
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5.4 Future Work

The existing solution serves as a functional application on its own, but there are plans for
further enhancements to optimize the entire measurement process by introducing several
novel elements. One such enhancement entails the integration of a Grafana dashboard,
enabling real-time monitoring of various metrics, such as server utilization during mea-
surements, to prevent possible conflicts with concurrent measurements. Implementing this
would necessitate the deployment of a Telegraf server and a Grafana dashboard.
Furthermore, in the realm of authentication and authorization, there is a proposal to in-
corporate two-factor authentication and synchronize with the company’s LDAP, thereby
streamlining the authentication process for internal users. External users, who may not
have access to this specific LDAP, would continue to utilize the local authentication mech-
anism.
Another significant aspiration is to enhance the portability of the entire application. Lever-
aging Docker technology is under consideration for this purpose, with the aim of facili-
tating quick deployment and setup on any server. The plan involves containerizing the
entire application, encompassing both frontend and backend components, and bundling
them into a docker-compose solution. This approach ensures that the benefits of the
application extend beyond Magyar Telekom Nyrt., potentially reaching engineers at other
telecommunications providers within the Deutsche Telekom group.
In terms of future directions, it would be valuable to explore opportunities for automating
the scaling of server resources based on real-time demand and implementing advanced data
analytics capabilities to derive deeper insights from the measurement data. Additionally,
assessing the feasibility of integrating with other cloud platforms and extending support
for more network performance measurement tools could further elevate the application’s
utility and versatility.
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Chapter 6

Conclusion

In conclusion, the development and implementation of the application have demonstrated
its significant value and relevance in the field of network performance testing and analysis.
The application, built with a Vue.js frontend for managing Dockerized iperf3 servers,
showcases a well-rounded architecture designed to address the specific needs of testing in
networked environments, particularly in RAN scenarios.
The identification of specific hardware and software issues through the presented real-
world test case underscored the relevance and usability of the application, affirming it
as a robust tool for testing and validating new RAN features. This test case not only
highlighted the application’s practical significance but also positioned it as a crucial asset
for ensuring the quality and reliability of future RAN tests.
By initiating multiple containers and conducting parallel iperf3 measurements, the tests
convincingly demonstrated that the application could handle increased loads efficiently.
Metrics such as CPU utilization, memory usage, and packet drop rates were monitored,
revealing that the virtualization layer introduced no significant overhead.
Attention to security was also a noteworthy aspect of the project. By incorporating JWT
for user authentication, the application ensured secure and authenticated access, thereby
addressing potential vulnerabilities. Various common security pitfalls were carefully con-
sidered and preemptively mitigated.
Moreover, in the project, careful consideration was given to ensuring both robustness and
scalability. With a focus on user experience, the frontend was designed to maintain its
resilience and responsiveness even when the number of managed iperf3 server containers
increased.
In summary, this application has the potential to be a major tool when it comes to devel-
opment, testing, and optimization of new RAN features and other network enhancements.
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