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Hungarian Abstract (Kivonat) 

A szakdolgozat egy robotkar fejlesztését mutatja be, amely képes az 

újrahasznosítható szemét szétválogatására. A dokumentáció ismerteti a robot 

mechanikai részei létrehozásának és az elektronikával való összeszerelésének 

folyamatát, továbbá tárgyalja egy objektumfelismerő modell mélytanulással 

történő betanításának menetét két különböző adatbázisból, amely lehetővé teszi, 

hogy egy Raspberry Pi zsebszámítógép kamerája felismerje a különböző típusú 

szemetet. Bemutatja annak a folyamatnak a programozási nehézségeit, amely 

során a kar egy monokuláris mélységbecslés alapján képes megfelelő távolságra 

elnyúlni a szemétért, és azt felvenni. Emellett a dolgozat feltárja az ehhez hasonló 

robotkarok sokoldalú alkalmazási lehetőségeit és az ezekhez társuló lehetséges, 

jövőbeli fejlesztéseket, miközben megvitatja a projekt motivációját.   
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Introduction 

Nowadays, an issue most households and individuals face almost every day 

is selecting and sorting out recyclable rubbish correctly. Distinguishing non-

recyclable garbage from recyclable trash can appear quite taxing sometimes. If 

recyclables are not sorted properly within the households, several further 

problems can arise. Let us be honest, we are humans, errors are made even 

unintentionally. For example, throwing a plastic cup with leftover coffee in it into 

the bin for recyclable plastic might cause further issues. A publication from 2018 

[1] shows, that “75% of the waste can be recycled, yet the national recycling rate 

was *only* 32.1%”, due to mistakes in sorting. The difficulties caused by not 

properly classified recyclables range from extra costs and system damage to 

previously recyclable materials turning unavoidably into non-recyclable garbage. 

Another study [2] analyses and reviews the connection between not-properly 

categorised recyclables and health problems of employees working at sorting-

plants. Therefore, having a robot doing this work with only a small margin of error 

can be quite helpful and can also save time, money, energy, resources, and not 

least human life.  

I was always interested in and passionate about robotics. For me an 

important aspect of robotics is building and designing mechanical and electrical 

devices and by this to create something that has a practical function: a machine or 

a mechanism that can perform the task it is taught to do way better than a human. 

The thesis presents how this recyclable material sorting robotic arm could 

help to solve some of the issues on a smaller scale: Starting from the idea, the 

basic design of the arm itself, creating the mechanical parts and putting them 

together with the electronic components whilst continuously testing them. Finally, 

writing and testing the object recognition program which enables the arm to detect 

and sort the refuse.  
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Abstract 

This paper presents the development of a robotic arm, capable of sorting out 

recyclable rubbish correctly. The documentation explains the process of creating 

the mechanical parts of the robot and assembling them with the electronics, 

furthermore, it discusses the process of training an object detection model from 

two different databases using deep learning, which enables a Raspberry Pi pocket 

computer’s camera to recognize different kinds of trash. It presents the difficulties 

of programming the arm to reach out to the right distance and pick up the trash 

based on a monocular depth estimation. In addition, the thesis explores a wide 

variety of applications of such robotic arms and the possible, future improvements 

in this field, while discussing the motivation behind the project itself. 
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Earlier works 

There have been previously created robotic arms, whose task was to sort 

out recyclable trash as well. We can usually see these kinds of arms in larger 

factories, which take the given type of rubbish off the conveyor belt and reorder 

it.  

There is a similar project to the one presented here, which was created in 

2019, by the name of “Recycle Sorting Robot With Google Coral” [3]. However, 

the final form of this robotic arm differs from the one discussed in this paper 

significantly. This previously created project uses a rather different approach with 

respect to how the recognition-program has been taught and how the arm is 

programmed to reach for the trash. The above-mentioned robotic arm’s 

recognition software utilized TensorFlow Lite [4] for learning, which is Google’s 

machine learning model (see for more detail about TensorFlow Lite section 3.2). 

It used solely the trashnet dataset, and hand-labelled the images’ bounding boxes. 

This project used transfer learning and applied the MobileNet SSD V2 (COCO) 

model [5] (see for more detail about MobileNet and COCO sections 3.3, 3.4). The 

arm’s movement is determined by the number of frames the camera sees the object 

at, and according to the placement of the object, the arm reaches out to a given 

distance. 

Another work worth mentioning is a project created by two Stanford 

University students in 2016, called “Classification of Trash for Recyclability 

Status” [6]. The project utilized the Torch framework (see for more detail about 

Torch section 3.2). Their thesis explains the method of creating an eleven-layer 

CNN [7] (short for Convolutional Neural Network, more detail about neural 

networks in section 3.1) model, which classifies objects based on their 

recyclability relying on a self-taught database. The dataset that was created is 

called trashnet, which was later published, and will be used for the object 

detection model (more detail about the object detection model in chapter 3.).  

The robotic arm presented in this paper, on the other hand, uses a 

framework called Pytorch [8] for the training of the recognition software, which 

is a machine learning framework based on the torch library, and can be utilized 

mainly for computer vision (see for more detail about Pytorch section 3.2). The 

final model this project uses is based on a training that is a combination of two 

datasets, the taco and the trashnet (see for more detail about datasets section 3.5). 

As a result, this arm is distinct from the machines taking the trash off a conveyor 
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belt, would be also usable in a natural environment and potentially could pick up 

trash from any surface and carry it to a designated place. Another main difference 

between the two projects is the method used when reaching for the identified trash 

(see for more detail about object-localization section 3.7).  
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 Chapter 1. - First Steps 

1.1. The Design 

After deciding on creating a robotic arm that would eventually be able to sort 

out recyclable materials, the first step was to decide how the mechanical body 

should be built, to enable it to carry out its task with the greatest precision 

possible.  

To create the sketches of each part of the arm, the application Sketchbook [9] 

was used, in which the components were first created individually, then layered 

to together. 

Originally, the plan was to have four servos altogether on the whole arm, two 

TP SG90 micro servos [10] and two MG996R servo motors [11], as shown on 

Figure 1.1. The SG90 micro servos are servo motors which operate using plastic 

gears, therefore weigh only nine grammes (thus, they are often referred to as 9g 

servos), but still have a surprisingly strong torque at 1.8 kgf*cm. These servos are 

usually used in smaller robotics projects, where less torque is enough. The 

MG996R motors feature metal gearing, resulting in an exceptionally high stall 

torque of 10 kgf*cm. These servos both operate at 4.8V to around 6.5V, but the 

stall current the MG996R servos can draw peaks up to 2.5 A. 

 

  

Figure 1.1.: The basic design of the arm. The third arm part is shown 

highlighted. 
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After researching other robotic arms, we realized that at least another smaller 

motor is needed to make the third arm part on the arm rotatable [Figure 1.1.]. 

Another option considered was at first to make the base part of the arm immobile, 

and to only move the other elements of it using servos. However, understanding, 

that this would limit its capability to pick up objects from all around, a new sketch 

was created, and the movement was planned to be done by a motor with the 

assistance of gears. Subsequently, it was decided to operate only an MG996R 

motor to move the base, as using electronics solely instead of extra gears offered 

a simpler and more convenient solution. Thus, at this stage, the arm was being 

moved by six servo motors. Table 1. shows the type of the servo used for each 

main joint. Figure 1.2. shows the second sketch made about the arm. 

 

Table 1. 

Main Joint: Servo used: 

Waist (base) part MG996R servo 

First arm part MG996R servo 

Second arm part MG996R servo 

Third arm part SG90 servo 

Head-part rotation SG90 servo 

Gripper SG90 servo 

The table shows the servos used for each main joint of the arm. 

 

Figure 1.2.: Highlighting the important edges, this way, we can get a better view 

of all the given components. 
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1.2. 3D Modelling, Printing and Assembling of the Parts 

The 3D designing of the components was done according to the plans created 

in Sketchbook, and the parts were remodelled based on .stl files [12] found on the 

internet. The STL format [13] is the most popular format for 3D printing of bodies, 

it is a neutral 3D file format and stores only geometrical information. The 3D 

designing of the objects was initially done in the CAD software Tinkercad [14], 

although later on Fusion360 [15] was utilized for the purpose of remodelling a 

part (for more detail see Appendix I). The STL files contained the parts of the arm 

divided into 10 different components. These components were the following: 

• Base component 

• Waist part 

• First arm part 

• Second arm part 

• Third arm part 

• Head part or gripper base 

• The gripper, which consisted of two gears, four grip links, and two 

gripper-fingers.  

The gripper was adjusted to allow it to grab onto objects better [Figure 2.1.]. 

The other parts were modified, with the aim of not using that much plastic when 

printing them, with the added benefit of certain parts of the arm becoming 

lighter. The waist part [Figure 2.2.] has been remodelled, cutting out additional 

plastic.  

A “Recycle” caption was added on the side of the second arm part, and the 

component was optimized, to make it lighter [Figure 2.3.].  

 
Figure 2.1.: Side by side 

comparison of the remodelled 

gripper finger (left) and the 

original one (right) 

Figure 2.2.: Side by side comparison of the remodelled 

waist part (left) and the original one (right) 
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The first arm part’s redesign included a perpendicular hole in the middle of 

the component to allow the tips of the servo cables to come out [Figure 2.4.]. 

Two cogs were added to the gears in order to achieve a larger angle of 

movement for the gripper [Figure 2.5.]. 

 

 

The parts were redesigned one by one, and after all components were finished, 

they were assembled in Tinkercad to form the 3D version of the arm. 

Finishing up the design, two types of rectangles have been added to the virtual 

model, each with the size of the given servo (9g or MG996R) and were placed in 

their designated places.  

Figure 2.4.: The first arm part with a hole in the middle to allow the ends 

of shorter servo cables to be led out of the part. 

Figure 2.5.: The redesigned gear (left) compared to the 

original one (right) 

Figure 2.3.: The remodelled part (left) was optimized to use 

less plastic than the original one (right) 
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Figure 3. depicts the final 3D model of the arm. The components were printed 

from a black, PLA type plastic filament.  

 

The servos required to assemble the 3D printed parts were acquired, along 

with the other electronics, and the assembling was done according to the sketches, 

models, and previous work. 

The first step was assembling the printed components. (for more detail on how 

certain parts were assembled see Appendix I). Figure 4.1. shows the waist part 

and the base assembled.  

 

 

Next, another MG996R motor was added, this time to the waist part, which 

would carry the whole arm’s weight. As the servo needed extra support, a rubber 

band was attached, connecting the waist component and the first arm part [Figure 

Figure 4.1.: The waist component secured on the top of the base part. 

Figure 3.: The final 3D model of the arm 
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4.2.]. Adding another circular head to that servo, the first arm part was screwed 

onto it. The following step was to assemble the second arm part with the first one.  

Subsequently came the smaller, 9g servos. The first servo was screwed inside 

the tip of the second arm part. The end of the motor was sticking out at the tip of 

the second arm part, and a horn was screwed on the tip of the servo, the third arm 

part was secured onto that. The second 9g servo was put into the third arm part, 

with its circular end also hanging out on the other side, so the head of the gripper 

could be secured onto it [Figure 4.3.]. 

 

 

A horn was placed on the servo, which first held the head part [Figure 4.4.], 

then another servo was screwed on it and with the help of that the two gears were 

pieced together [Figure 4.5.]. After securing the grip links to the head with bolts, 

the gripper-fingers had to be assembled with the gears and the grip links. 

Figure 4.2.: The rubber band attached to the first arm part and the 

waist, so, it can support the movement of the servo. 
Figure 4.3.: The third arm part  
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The last step was to put the arm on a foundation, to provide better stability for 

it when the servos move suddenly and must pick up an object of larger weight. A 

plastic board was used for this. The base was screwed onto the board [Figure 4.6.].  

Figure 4.7. shows the arm after all the mechanical components were 

assembled.  

Figure 4.5.: The half-assembled head part Figure 4.4.: The head part hanging from the third arm part 

Figure 4.6.: The foundation of the arm 
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Figure 4.7.: The Robotic Arm, fully assembled. 
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1.3. The Hardware – Electronics 

The basic circuit responsible for moving the servos is controlled by an 

Arduino Uno R3 circuit board [16]. The Arduino Uno is a microcontroller board, 

which has 20 digital input/output pins overall. The Arduino sends or receives the 

signals to or from the connected electronic components through these pins. Six of 

these pins can be used as PWM [17] (short for Pulse Width Modulation) outputs 

and 6 can be used as analogue (“analog”) inputs. Certain digital pins (namely: 3, 

5, 6, 9, 10, 11) are equipped with Pulse Width Modulation, or PWM, which is a 

technique for getting analogue results through digital means. Naturally, digital 

pins can only output serial data, meaning an “ON” or an “OFF” state, a “HIGH” 

or a “LOW”, or in a numerical form, a “0” or a “1” state. PWM modifies this, as 

it allows the digital pins to output analogue data, therefore the pins are not 

restricted to outputting only two values but can output an infinite number of values 

within a continuous range. Installing certain libraries for the use of given 

components allows them to be used from any digital pin, without having to worry 

about PWM. For instance, the Servo library allows servo motors to be controlled 

from any of the 13 digital pins, even though the values that are sent to them from 

the Arduino are between 0 and 180 (the range of degrees a servo can turn in).  

Furthermore, the Arduino can establish USB connection, it has a power 

jack, a reset button, and a bootloader [18] software pre-installed. The bootloader 

is the program that runs every time the reset button is pressed, or a new sketch is 

uploaded from the computer. This software is responsible for writing programs 

into the memory of the board. The Arduino R3 is the third, latest version of the 

Arduino Uno circuit boards. It contains everything needed to support the 

microcontroller; it can be programmed by simply connecting it to a computer 

through the USB port.  

The other core part of the hardware is a Raspberry Pi 4 Model B [19]. The 

Raspberry Pi is similar to a normal desktop computer. Some of the main 

differences between the everyday PCs and Raspberrys are for instance the 40 

GPIO pins the pocket computer has, the two camera ports which support the usage 

of the Raspberry camera add-ons, and that Pi 4 is powered through one USB-C 

port, with an adapter which outputs ideally 5 volts and 3 amperes. These small 

computers also have their own operating systems and all the information stored 

on a Mini-SD card, which allows simple data-transfer. The Raspberrys have their 

own version of Linux, the Raspbian OS. Raspberry Pis are often used in robotics 

projects, where it is crucial to have a computer that can fit in tighter places, is 
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easily transportable and can give out commands to electrical components through 

its own pins, like servos, or even a complete circuit board. Using a Raspberry Pi 

for this project proved quite convenient, as it allows the arm to be controlled solely 

from a box of electronics and used together with the Raspberry Pi Camera V2 

[20], which can be easily secured onto the head part of the arm, and thus object 

detection becomes possible. Figure 5.1. shows the Raspberry Pi connected with 

the camera, schematically.  

 

 

Table 2. shows each additional electric component that was used within the 

circuit.  

  

Figure 5.1.: A virtual representation of the Raspberry Pi 4 

connected with the Raspberry Pi Camera V2 [21] 
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Table 2. 

Electric components Short description 

Servos 
The motors responsible for moving 

the arm at each main joint. 

A breadboard [22] 

A simple, yet very useful extension to 

Arduino circuits. Breadboards allow 

cables to connect with other wires to 

form shorter paths between pins. 

AC adapter 

An outer power supply outputting 

sufficient current for the servo motors 

to operate simultaneously. 

Raspberry Pi Camera V2 [Figure 5.2.] 

The Raspberry Pi Camera is a custom 

designed add-on module for the 

Raspberry Pi hardware. The camera 

has a 5-megapixel resolution. 

Argon Mini fan [Figure 5.2.]  

A mini fan that was placed on the 

Raspberry Pi to keep it on operating 

temperature 

The table shows each additional electric component that was used within the Arduino circuit or 

together with the Raspberry Pi.  

 

  

Figure 5.2.: The Raspberry Pi connected with 

the camera (highlighted in red) and the Argon 

Mini fan (highlighted in blue) 
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The MG996R servo motors need at least 4.8V of voltage and 2.5A of current 

to operate properly, which can’t be supported from a computer’s USB port. A 

computer’s USB port can usually provide between 0.5 and 0.9A of current [23]. 

Therefore, an AC adapter had to be used, which is able to supply 6V of voltage 

and around 8A of current overall, to allow sufficient supply of energy for the 

motors to move. Figure 5.3. shows the completed circuit diagram, Figure 5.4. 

shows the same diagram schematically, and Figure 5.5. shows the Arduino circuit 

next to the mechanical body of the arm.  

 

 

Figure 5.3.: The Arduino circuit diagram. The blue servos are the SG90 micro 

servos, and the black ones are MG996R motors. 

Figure 5.4.: The schematic diagram of the Arduino circuit 
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The Arduino and the Raspberry Pi have to be connected in order for them 

to function together properly. The Arduino is the circuit board commanding the 

servos, and the Raspberry Pi will be providing the data necessary for the Arduino 

to be able to identify which servos to rotate. Since the Raspberry is just like a 

normal computer, the Arduino can be easily connected to it using a cable. This 

connection allows the devices to communicate via Serial communication. The 

Arduino will move the servos according to what the Raspberry Pi outputs.  

  

Figure 5.5.: A picture made of the wiring of the arm 
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Chapter 2. – Testing the Circuit 

2.1. The Code 

Following the completion of the mechanical body of the arm, the testing 

phase began. For the tests, codes were written in Arduino’s official coding 

software, Arduino IDE [24]. The Arduino language is quite similar to the well-

known coding language C++ [25], although it contains an addition of special 

methods, libraries, and functions, which are required for the smooth control of 

electronic components. The INO language has a simpler syntax, hence, it is easy 

to understand, and it also has built-in Serial communication, which is a necessity 

in certain cases. For instance, when the circuit board has to send information to a 

computer, communication via Serial is the most evident method. Regardless, the 

Arduino circuit boards can be programmed by a wide variety of other coding 

languages, including Python [26], C++, and C [27], although the use of these 

languages requires more than a novice’s understanding of coding in general.  

After connecting the servos to the Arduino, a code that was written in 

Arduino IDE gave the circuit board orders, to move one of the servos back and 

forth, from 0 to 180 degrees, with a 1 second delay in between. As mentioned 

previously, the Arduino IDE contains various libraries. The library required for 

the servos to move properly and for them to be controllable from non-PWM pins 

as well is called Servo library, which is easily downloadable inside the software. 

Therefore, the library was imported with just one line of code. After that the 

servos, then the pins that the motors were connected to were defined. (For more 

detail on testing the servos, see Appendix II). 

The TP SG90 micro servos have a stall current of around 650mA, and an 

operating voltage of around 4.8V, which the computer is able to support through 

its USB port. The servos were moving correctly, according to the angles outputted 

by the Arduino. The gripper was adjusted as well. In the closed state, the 

maximum weight of the object the gripper is able to grab and hold on to is around 

50 grams, which is sufficient for picking up smaller objects, such as aluminium 

cans and plastic cups. 
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2.2. Challenges with Moving Several Servos Simultaneously 

 

When an Arduino has to control more than six servo motors at the same 

time, or a stepper motor [28], a so-called motor shield is required to aid the 

Arduino. Arduino shields [29] are board-extensions, which easily integrate with 

the Arduinos, and offer a wide variety of specialized capabilities, such as 

controlling more motors with the previously mentioned motor shield, or sensor 

shields, which are engineered specifically for the use of certain sensors, or even a 

GIGA display shield, which allows a touchscreen solution specifically for Arduino 

Mega boards.  

Changing the code allowed the Arduino to send out signals to move more 

than one servo at a time through the pins. The following table [Table 3.] shows 

the servos moved along with the results of the various test-cases. 

 

Table 3. 

Servos Moved: Observation: 

Base, first arm part 
No recognizable delay or poor 

performance 

First arm part, Second arm part 

Some inaccuracies in the timing of 

the movement (no delay is taken), 

despite that it functions properly 

Base, Second arm part 

Some inaccuracies are also spottable 

in the movement of the Second arm 

part 

Second and Third arm parts, gripper-

head 

Functions as expected; however, the 

third arm part always moves a bit 

during the delay, when it should not 

First and Second arm parts, gripper 

head 

Some delay is recognizable in the 

movement of the first and second arm 

parts 

First and second arm parts, gripper 

head, gripper 

Delay is recognizable in the 

movement of the first and second arm 

parts, the gripper functions properly 

The table contains observations on the movement of the servos during testing. 
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Moving more servos simultaneously did not seem to cause any serious 

problems, however, the MG996R servos stopped from time to time or rotated with 

more delay than specified, which was a cause for concern [2. row of Table 4.].  

Several other difficulties arose throughout the creation of the mechanical 

body of the arm and the circuit. Table 4. summarizes these issues, and briefly 

presents the solutions to each and every one of these problems (for more detail on 

the problems and solutions see Appendix III). 

 

Table 4. 

 

The table briefly shows each hardware-related problem that was faced after the completion of the 

mechanical body of the arm. 

The performance problems observed in Table 3. and shown in  

Table 4., second row, were solved by changing the power supply, as the previous 

one was not able to provide sufficient current and voltage for the servos to operate 

simultaneously.  

  

 Issue: Cause: Solutions: 

1. 

Servos losing their 

functionality before the 

testing phase 

Short-circuited the 

Arduino at some point 

Changing the Arduino 

boards, updating the 

Arduino IDE, changing 

some of the electronics 

2. 
Poor performance of the 

MG996R servos 
Insufficient power supply Changing the AC adapter 

3. 

Servos not getting power 

from the outer power 

supply 

Wrong connections in the 

circuit 

Changing the 

connections in the circuit 

4. 
The servo was not able to 

move the second arm part 

The gripper head and 

second arm part were too 

heavy 

Adding a rubber band, 

reprinting certain 

components from a 

lighter plastic 
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Chapter 3 - The Object Recognition Model 

3.1. The Approach – How Should the Program Detect 
Trash? 

The main approach was to create an object recognition model that would 

eventually be able to detect trash, and then sort it into different groups based on 

their types. To create such models, a neural network [7][30] was utilized.  

Artificial neural networks are machine learning models, which consist of 

artificial neurons. Neurons are parameterized by adjustable weights and organized 

into multiple layers. The network takes images as inputs which are converted into 

real numbers based on the RGB values of the pixels. Subsequently, the network 

performs various computations using the inputs and weights (e.g., convolutions) 

and produces bounding box coordinates and labels as outputs. These predictions 

are compared with the known boxes and labels from the training images and the 

discrepancy is quantified as an error. During training, the network weights are 

optimized in order to decrease the error on the training dataset.  

The trained network can then be used to provide predictions on previously 

unseen, arbitrary images. Figure 6. is a representation of how this neural network 

learned, with an example image from the taco dataset (see for more detail about 

datasets section 3.3). 

Figure 6.: The learning curve of this neural network 
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The number of epochs a model was trained for represents the number of 

iterations, or how many times the model saw the whole dataset.  

The coding language that was used throughout the making of the object 

detection model was Python. Python is a high-level, beginner-friendly, and 

general-purpose programming language. Python was the obvious choice when it 

came to selecting the programming language to create the object detection model 

with, as it is the standard language used in machine learning projects, therefore a 

lot of websites offer great support, and Python is compatible with most libraries 

and extensions which are necessary to make the project work. 

3.2. Frameworks 

Throughout the creation of the object recognition model three frameworks 

were used. One of these utilized at the start of the project was TensorFlow Lite. 

TensorFlow Lite is Google’s machine learning model, an open-source deep-

learning framework. It is a collection of tools to optimize TensorFlow models [31] 

to run on mobile devices. TensorFlow was developed in 2015 and is a variety of 

open-source software libraries for AI and machine learning, which utilize deep 

neural networks. The difference between the two models is that TensorFlow Lite 

provides the ability to perform predictions and to recognize objects based on an 

already trained model and it is a lighter version of the original model, designed 

specifically for mobile computing platforms.  

As we ran into difficulties with the use of TensorFlow Lite (for more detail 

see Appendix IV), the framework we decided to use afterwards was Pytorch, 

which is another framework used for machine learning. Pytorch also provides 

access to state-of-the-art deep learning models for various computer vision tasks 

e.g., object detection. Moreover, these models are also available pre-trained on 

large image databases.  

Video streams were handled using the OpenCV framework [32], which is 

a general computer vision library, including all the necessary functionalities for 

camera handling, image conversion, pre-processing, and visualization. 
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3.3. Gathering Data 

To be able to create an object recognition model with the help of Pytorch, 

which detects and recognizes recyclable trash, we had to look for a large enough 

database, so the model would be able to distinguish between different kinds of 

recyclables with a small margin of error. The dataset we found and decided to use 

was taco [33]. Taco (short for Trash Annotations in Context) is an open image 

dataset, which contains images taken of litter in nature, but has pictures of rubbish 

from other environments as well. The annotations provided to the taco images are 

JSON files, which is a compact and convenient format for storing class labels, 

super categories and object bounding boxes. COCO (short for Common Objects 

in Context) [34] is known as a large database for object detection and 

segmentation, containing over 330,000 images of everyday items. The similarity 

between the two datasets comes down to the format used, which is JSON format 

in both cases, which allows a more convenient usage of the databases.  

Table 5. represents the common attributes of JSONs in object-labelled 

datasets [34] (such as COCO and taco). 

Table 5. 

Information 

General information about the dataset, 

such as version number, date created, 

and contributor information 

Licenses 
Information about the licenses for the 

images in the dataset 

Images 

A list of all the images in the dataset, 

including the file path, width, height, 

and other metadata 

Annotations 

A list of all the object annotations for 

each image, including the object 

category, bounding box coordinates, 

and segmentation masks (if available) 

Categories 

A list of all the dataset object 

categories, including each category's 

name and ID  

The table shows the attributes that the files with JSON format include. 
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The taco dataset contains 4613 images and for every image there is an 

annotation used to identify the picture, there are labels, which are used to classify 

objects, and a bounding box, indicating where the rubbish is located on the 

picture. Figure 7. shows an example image from the taco dataset of a “Meal 

carton” and a “Plastic Film”. Both litters are located and labelled on the image. 

On this picture, the object is segmented, meaning that the pixels on the image are 

classified based on whether they belong to the object or not. Segmenting an image 

is a more difficult task, but for this object recognition model it was not necessary, 

placing trash in bounding boxes was equally functional and proved more 

convenient, as it requires less memory to operate than image segmentation would.  

Inside the dataset each image is divided into a super category, and inside 

that super category, into a normal category. For instance, a picture of a plastic cup 

is in the super category ‘Cup’ and inside that, in the (normal) category ‘Plastic 

cup’. The “Categories.json” works similarly to a Python dictionary of the classes, 

meaning the taco dataset distinguishes between 60 categories overall (for all the 

categories see Appendix IV).  

  

Figure 7.: An annotated image from the taco dataset 
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3.4. Object Detection Using the Taco Categories 

For the object detection, the SSD MobileNet V3 [35] model was selected, 

which was pre-trained on the COCO database, and we fine-tuned it on the taco 

dataset using Pytorch. The SSD (short for Single Shot Multibox Detector) 

MobileNetV3 model is an object detection neural network designed specifically 

for mobile devices, therefore it only requires a small amount of memory to work 

from, which would allow the object detection to run smoothly from a Raspberry 

Pi as well. The reason we chose to use this model was that it has quite low-memory 

requirements compared to other CNN models, while its performance and accuracy 

is still sufficient. 

Another considered approach was not to fine-tune the whole network, but 

only the last few layers of the model, where the weights were almost set to the 

appropriate values, and the model did not have to “learn” that much. This 

approach would have taken less computational resources, but ultimately was 

rejected, as the predictive performance of this training was not as promising as 

retraining the whole model on another dataset.  

The script used for retraining the SSD MobileNetV3 model on the taco 

database (“training.py”) can be found in Appendix IV. Originally, we would’ve 

used a cloud to train the taco_190_full object recognition model solely from this 

database, however the training was done on the Informatics faculty’s computer, 

on an NVIDIA Titan XP graphics card, which made the process smoother.  

Tests on the first model indicated clearly, that a retraining was necessary in 

order to reach the desired results. Figures 8.1. and 8.2. show examples of such 

test-cases. On figure 8.1., a paper cup is recognized as “Plastic film” (not a Plastic 

cup), and the empty aluminium can on Figure 8.2. is detected as “Food waste” 

and “Foam food container”. 

Figure 8.1.: The paper cup detected as plastic 

film using the taco_190_full model 
Figure 8.2.: The aluminium can is recognized as 

food waste or/and “Foam food container with the 

taco_190_full model 
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The first model was trained for 190 epochs, which was insufficient, 

therefore we decided to increase this number up to 500 for training the second 

model, which simply meant that the program would have more chances to 

distinguish between objects on the images. Creating the second model took 

longer, than training the previous one. Following the training of the second model, 

the testing of the object-detection began. 

3.5. Testing 

Since object detection models are hard to evaluate in general, moreover, the 

size of the dataset is limited, we only performed testing on a case-by-case basis. 

In particular, a few tests have been made after each and every greater step. We 

also tested the default recognition model, which was the previously mentioned 

MobileNetV3 baseline model pretrained on the COCO database, which was not 

fine-tuned on taco. The default model was then imported into the code, and 

therefore we were able to test the labelling and the bounding capabilities of the 

framework. At first, the model was only able to detect objects present in the basic 

database, such as couches and humans, showing their assigned labels and drawing 

a rectangle around the perceived location of the bodies. 

Following, the next testing took place after the training of the model was 

successfully completed. The model’s trash recognition capabilities were tested by 

showing different household recyclables to the camera, from metal soda cans to 

plastic bottles and paper cups. The results of the tests clearly indicated that the 

model needed a larger set of data to work from and a longer time for training to 

be more precise, as it often misrecognized objects, for instance paper cups for 

plastic films, or the coloured side of an aluminium can for some kind of plastic or 

food waste, or it was not able to decide where the object was located, therefore 

the bounding box was misplaced inside the frame. Whilst using the model, even 

random objects have been recognized as rubbish of some sort, and even then, the 

wrong class of trash. Changing the angle or the distance did not resolve this issue.  
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The second model has been trained solely from the taco trash database as 

well, but now for more epochs, theoretically leading to better predictive 

performance. Giving the program more chances to be able to identify the objects 

with a smaller margin of error did not show significant change in its performance. 

The object recognition model was still unable to distinguish between a tissue and 

a plastic film, or between a plastic cup and an aluminium can. Figures 9.1. and 

9.2. represent some of the taco_full_500 model’s recognitions. 

 

A different approach was needed, because it was clear, that the dataset of 

taco in itself won’t be sufficient enough for detecting the correct type of trash.  

3.6. Object Detection Using the Trashnet Categories 

After concluding, that the taco dataset won’t be able to fulfil the needs of 

the object detection model in itself, we had to come up with a different solution. 

We concluded, that we couldn’t just retrain the previous model with more epochs, 

meaning, we couldn’t just show the whole dataset to the model more times during 

the training, because over-increasing the epoch number can lead to an overfit 

model which will function with only a small margin of error on the data it was 

trained on, but on every other kind of data the margin of error will be significantly 

higher. We agreed on the fact, that the root of the problem was the dataset itself, 

as it did not have a sufficient number of images to work from. One possible 

solution would have been to look for extensions to this dataset, which might have 

not existed, and another one would’ve been to create our own pictures and label 

them by hand, which would’ve taken a lot of time. Instead, we decided to 

approach the issue from a different angle.  

Figure 9.1.: A crumpled tissue recognized as a 

"Plastic film" by the taco_full_500 model. 
Figure 9.2.: An aluminium can recognized as two 

different rubbish: a "Meal carton" and a “Clear 

plastic bottle”. 
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Another dataset used for machines sorting recyclable rubbish is the trashnet 

dataset. This dataset contains less images than taco, with only 2525 pictures to 

work from overall. The images did not meet our expectations, with regard to the 

environment they were made in. The trashnet dataset has images made in front of 

a white background, which allows for a convenient localization of the object on 

the image, however, it does not grant support for when the arm would have to 

identify trash in a natural, messy, or crowded environment, as this dataset was 

mainly created for machines that take trash off the conveyor belt, but still, we 

decided to use it, as it would still add value to the model combined with taco’s 

images. The categories these images were sorted into were based on their 

materials as a litter, for instance cardboard and glass. We checked the bounding 

boxes of certain images, and concluded, that some boxes were drawn around the 

whole picture, meaning, certain rubbish took up the whole frame. This proved to 

be an unfortunate situation, as the camera won’t zoom in on the images in a way 

that the trash will fill out the whole picture, but it will observe it from a distance. 

Therefore, it won’t be able to distinguish that precisely between certain recyclable 

rubbish, which could lead to issues with the arm’s sorting capabilities. Figures 

10.1. and 10.2. show the differences between when the trash fills out the whole 

frame and when it is observed from a distance. The same piece of cardboard is not 

recognized by the model on the second picture (this test was done using the first 

iteration of the model combining the two datasets).  

 

 

We wanted to unify the two datasets, while keeping only six categories, 

which the trashnet images would be sorted into, and the plan was to assign the 

pictures from the taco dataset to these classes as well. This was done by assigning 

each taco category to one trashnet category in a text file. In the first row there was 

a number indicating the category. Table 6. represents the trashnet categories. 

Figure 10.1.: A piece of cardboard filling out 

the whole frame of the camera. 
Figure 10.2.: The same piece is not recognized 

when observed further away from the camera. 
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Table 6. 

Key Value 

“0” glass 

“1” paper 

“2” cardboard 

“3” plastic 

“4” metal 

“5” trash 

The table shows to which key which kind of material was assigned to. 

 

Using this text, the images of the taco database were recategorized, and 

then the trashnet dataset’s images were added as well.  

The models were trained systematically, there are ten models overall, each 

with a different number of epochs, ranging from 50 to 500, where the model which 

saw the whole dataset five hundred times has better predictive performance. 

Testing this model consisted of running it and then showing it different 

kinds of litter, items quite similar to the ones the object-recognition model was 

trained on. The first few tests gave positive feedback, the model trained for 500 

epochs was more accurate in identifying recyclable trash than the previous 

models, although it wasn’t perfect. Oftentimes the model detected the whole 

frame as an object, which will possibly lead to issues with the pick-up mechanism 

later. This is due to the fact that many bounding boxes in the trashnet database 

take up the whole frame, as mentioned previously (especially cardboard). Even 

though the recognition model was more accurate than the previous ones, further 

testing was necessary, to decide whether the program had to be retrained up to 

1000 epochs to theoretically increase accuracy, or not, as it currently seems as 

there are no other datasets which prove useable for the object recognition model. 

The following figures show test-cases made with the last iteration of the model 

(500 epochs). 
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Figure 11.1.: The model can detect shining 

metal surfaces quite well. 
Figure 11.2.: The aluminium can is still 

detected as plastic. 

Figure 11.3.: The model is able to recognize the 

plastic bottle. 
Figure 2.: The model recognizes the metal 

rubbish, but it cannot distinguish between the 

categories "trash" and "plastic" for the metal 

can. 
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3.7. Object Localization Via Monocular Depth-estimation 

We concluded that a reasonable approach would be for the arm to use a 

depth-estimation model to check the distance that the trash is located at. 

Following, the arm would deduct the distance the object is positioned at according 

to the values the measurement outputs or according to the body’s colour on the 

depth-estimated image. 

The project uses a depth-estimation model called MiDaS [36]. MiDaS 

depends on a library called timm [37], which is a deep-learning library and a 

collection of state-of-the-art computer vision models. MiDaS has 3 types of 

models, a low accuracy and low memory-usage one, there is a high accuracy 

model which uses the most memory, and one in between the two other models, 

with a medium size and accuracy. The plan is that the Raspberry will be running 

the model with medium accuracy, but this is quite dependent on how much RAM 

the other interfering programs (such as the object detection itself) will use. The 

model can be loaded in with just a few lines of code, although, to carry out the 

original idea -which was to run a depth-estimation on a picture captured by the 

camera the moment it detects trash- a new code has to be written, connecting the 

depth-estimation program with the object detection model and the movement of 

the servos. The task is to move the motors according to the distance of the trash 

on the picture. The way this would work is that the depth of the picture the camera 

captured would be estimated, and then the object would be located on the image. 

Then, the estimated depth of the object would be taken from a pixel (or a depth-

value which from the surface of the object), and to every different value the depth-

estimation outputs, a metric distance is assigned. This would require the 

calibration of the model [38], which we leave to be done as future work.  

This procedure would allow the arm to reach out to the right distance after 

spotting rubbish. Figure 12.1. shows an original picture from the trashnet dataset 

and 12.2. is the depth-estimated version of the image. The object is clearly visible 

on the estimated picture.  
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However, the depth-estimation MiDaS provides is not always completely 

accurate. Figures 13.1 and 13.2. are an example, where we can see, that the 

(darker) shadow of the glass bottle was estimated to be closest to the camera, 

although we can easily deduce, that the point closest is the bottom edge of the 

bottle. In this case, the software could not decide whether the shadow is part of 

the glass bottle, as the bottle’s colour almost perfectly matches the shadow’s. This 

mistake would not have a serious effect on how far the arm would reach, but on a 

larger scale it could manipulate it to move the wrong servos a wrong amount. 

 

  

Figure 12.1.: A plastic bottle from the 

trashnet dataset 

Figure 13.1.: A glass bottle from the 

trashnet database 

Figure 12.2.: The depth-estimated version 

of the image shown on Figure 12.1 

Figure 13.2.: The depth-estimated version of 

the glass bottle on Figure 13.1. Highlighted 

is shown the estimation of the shadow, which 

was estimated to be closest. This is a mistake 

of the depth estimation. 
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Figures 14.1. and 14.2. show an example of depth-estimation that was 

executed on a picture from the taco database. It is clearly visible that there are two 

objects and there are three spots where the yellowish/bright green colour is 

noticeable, meaning, there are three places which are equidistant from the camera. 

This example provides overview of why it is necessary to locate the trash on the 

depth-estimated picture, because if the arm was to only look for the object closest 

to the camera, it would not always reach for the trash, but for any other object that 

interferes within the frames. Therefore, the method to be used will consist of 

taking the depth value from the centre of the bounding box. 

 

 

One other considerable possibility would be estimating depth on a real-time 

video. This option was rejected for the time being, as this procedure would require 

a large amount of free memory from the Raspberry Pi to function, which won’t 

be necessarily provided, as running the object detection with the camera operating 

whilst the Raspberry Pi is also giving out instructions to the Arduino to control 

the servos would overwhelm the device.  

  

Figure 14.1.: An image of metal cans from the 

taco dataset 
Figure 14.2.: The depth-estimated version of 

Figure 14.1. 
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Chapter 4. - Future improvements 

4.1. Future Development of the Arm 

The arm still awaits its completion, the final stage would be to finish 

combining the depth-estimation model and the pick-up mechanism. The plan is, 

to have the camera do a depth-estimation once it spots litter, and then identify the 

rubbish on the depth-analysed picture. Then, according to that, the arm would 

classify the object into one of many “distance-groups”, meaning for instance if 

the value of the depth of a pixel which is located on the object is small (according 

to calibration), the servos should be moved a small amount in that direction. 

Completing this mechanism proves difficult, as it states issues that are still 

unresolved.  

Another method which is considered provides a different approach from 

when the trash is spotted. The key point of the new “theoretical” method is 

drawing vectors on the frame, from the centre of the frame towards where the 

centre of the object’s bounding box is located at. Then the vectors can be broken 

down to x-axis and y-axis components. Moving a certain amount on a certain axis 

would require the arm to move only one of its servos at a time. The closer it gets, 

the smaller the vector gets, and once it is in the centre of the frame, the arm would 

have to adjust according to the object’s vertical distance (z-axis component, which 

could not be shown on the frame) using the values taken from the depth-

estimation, or just move the head of the gripper downwards, if the arm is already 

over the object, and then grab it, in theory. Figure 15. shows an example of how 

this method would look like on the camera frame.  

Figure 15.: The red vector is the line pointing towards 

the middle of the bounding box from the centre of the 

frame, the blue vector is the x-axis component of the 

red vector, and the green vector is the y-axis 

component. 
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This method is still highly theoretical and has its weak points, but with 

some work it might replace the original approach.  

Following, if the previously mentioned vector-location approach is 

rejected, a path of improvement of the pick-up mechanism would be to add more 

distance groups over time, in hopes of achieving better accuracy.  

In addition, another path of development that is considered for the arm is 

to add wheels to the base, which would allow it to go around and scan in certain 

environments, then pick up any trash it has detected. For this, the arm would have 

to be recoded, and we would also need motors and a shield for the Arduino to be 

able to control the wheels. This possible upgrade of the arm states a lot of 

questions and problems, but it would be a great way to improve its efficiency.  

Finally, another way to further develop the robotic arm would be to make 

it remote-controlled and to create an interface for it. This would allow a user to 

control the arm remotely from a smartphone, the rubbish it picked up could be 

analysed/checked, and the arm could be controlled to move around as an RC car 

(having the wheels built on it). This upgrade would allow the arm to not only sort 

and pick up recyclable materials, but also to be controlled by a human being to 

perform other tasks, for example reaching into a narrow place or carrying certain 

objects. 
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4.2. Areas of Further Improvement on this Field 

Nowadays almost everything has become automated, and the waste-

industry should be no exception either. A study from 2006 [39] argues, that 

“Automated sorting for plastic recyclables has been seen as the way forward in 

the plastic recycling industry.”, which serves as a great example of how similarly 

automation of the recycling industry was perceived merely seventeen years 

earlier. The thesis is documenting the creation of the prototype of an Automated 

Plastic Sorter System, using image processing, rather than expensive state-of-art 

technologies, such as X-ray and Infra-Red monitoring. Although, the sorting of 

recyclables using machine learning is not mentioned in it.  

There is still plenty of room for improvement on this field, but a lot has 

changed since the beginning of the century. Recyclable sorter robotic arms have 

become rather popular in waste-sorting factories, as they can be much more 

efficient than human workers, if trained properly. Another study [40], from 2021 

discusses that “workers generally leave after a few months. Another challenge is 

that waste management companies are struggling to recruit workers […]” and 

then brings the argument “Waste separation can happen by hand […] or else 

automatically separated in the MRF (short for Materials Recovery Facilities). 

Sensor-based sorting techniques have been broadly used lately as an alternative 

to manual sorting of solid waste. Contrasted with the manual sorting, the material 

segments obtained are […] of higher purity, and economic value.” This study, 

along with several others [41] show the contrast between manual and automated 

waste-sorting. The technological advancements of the past few years would allow 

facilities to switch, sooner or later, to fully automated sorting of recyclable trash, 

not only in certain advanced sorting facilities, but all around the world.  

We can conclude that the AI powered sorting of litter is not yet 

industrialised, but chances are, it will be sooner rather than later, thanks to the 

rapid development of artificial intelligence and machine learning. Automating the 

waste industry has countless benefits, from saving resources and time to saving 

human lives, with the technology available nowadays, it is certainly an option to 

be considered. 
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Appendix I. – Modelling and Assembling the 
Parts in Detail 

During the redesigning phase, the sizes of the holes on the parts were 

changed, to match the diameter of the screws that were used, which were M4*30 

mm bolts and nuts, and the screws which were included with the MG996R and 

SG90 servos (two different sizes). Bolts were acquired, which were necessary to 

assemble certain parts of the arm, one of these was the gripper and the gears 

moving it. 

The redesigning was done according to the sketches, and the parts were 

remodelled based on the .stl files [See section 1.2.]. Before redesigning, a hand-

made sketch was created, to highlight the parts that required modifications [Figure 

A1].  

Other modifications to the original files included adding small captions on 

the base and grip links. 

Another 3D part was also created and printed, which was responsible for 

securing the camera onto the head part. This model was created in Fusion360, 

after measuring certain parameters of the camera, and the sides of the servo which 

it would be placed on. Figure A2.1 depicts this part’s virtual model, and Figure 

A2.2 shows this part already printed and placed on the arm.  

Figure A1.: A sketch representing certain parts and the necessary 

modification to each of these components. 
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Starting off the assembling process at the base, an MG996R servo was screwed 

into the bottom part, facing upwards, so the top of the bottom part could be put on 

it.  

At first, it seemed that the screws were not fitting in the printed holes, but 

shortly after, it became obvious that they only needed a stronger twist, so the 

thread could carve its way in the plastic. A circular horn was added on top of the 

first servo, and then the waist part was secured on top of that. In the original model 

of the waist part that was found on the internet, an extra pin was designed to hold 

a rubber band, that would help the servo to move, which was not changed during 

the redesigning.  

After adding the first arm part with another MG996R servo, the step that 

followed differed from the previous ones. The horn of the servo had to be screwed 

on the other end of the first arm part first, then a servo had to be added to the 

second arm part separately, following, the second arm part was assembled with 

Figure A3.: The third arm part with the servo’s tip hanging out 

(left) and the horn screwed on the first arm part (right)  

Figure A2.1.: The camera holder's 3D 

model 
Figure A2.2.: The camera holder 

assembled with the servo located on the 

head-part. 



49 

 

the end of the first component through popping the horn onto the servo’s end. 

[Figure A3].  

In addition, the cables were led through the first arm part’s hole, so they weren’t 

disturbing the assembling process. Subsequently, a servo was screwed inside the 

tip of the first arm part [Figure A4]. Then, a horn was screwed on the tip of the 

servo, and the third arm part was secured onto that, using two more bolts [Figure 

A4, highlighted].  

 

Before moving on to assembling the head part (gripper) of the arm, it was 

constructed separately, and after concluding the correct method for piecing its 

parts together, it was built onto the third arm part, which first held the head part 

on that, there was another blue servo and with the help of that the two gears were 

pieced together [For more Figures see section 1.2]. 

  

Figure A4.: An SG90 servo screwed inside the second arm part 

with the help of two servo screws, on the tip of that came the third 

arm part [highlighted] 
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Appendix II. – Moving the Servos – Tests in 
Detail 

At first, only one long cable was used to connect the servos with the 

breadboard, and from there another one to the desired pins on the Arduino. It was 

necessary to change this, so the robot would have greater freedom and space to 

move in. Therefore, cables were acquired and plugged together, making the initial 

wires longer. This caused the servos to slow down, and in certain scenarios 

completely stop moving, therefore we had to switch back to using only one cable 

to connect the servo’s pins with the breadboard. We concluded that poor 

connection between the cables or slow data transfer due to having more wires 

connected was the cause of the problem. Later on, we managed to fix this, and 

was able to use multiple cables with some of the servos.  

First, the angles that the motor would rotate were inputted. The code was 

verified, and then uploaded. The motor responsible for turning the arm around 

from the base worked well on the first try. Following, we disconnected the first 

motor and plugged the second servo into the Arduino. The rubber band we added 

to help support the movement of the second MG996R servo, which was carrying 

the whole weight of the arm and would eventually carry the whole weight of the 

object picked up as well, was adjusted, and the code was executed. The only task 

left was to adjust the range of the angles the gripper’s servo would move in. On 

the first try, we made it turn from 0 to 180 degrees. This caused the servo to 

overstrain the plastic cogs of the gears. Therefore, the servo was disconnected, 

and the script was changed, so the servos would only have to move from 0 to 90 

degrees. This range of motion permitted the servo to move freely, and the gripper 

could open fully without any issues. we defined 0 degree as the “closed” state of 

the gripper, and 90 as the “open” one. 

 

As the first test-case for moving multiple servos, the simultaneous 

movement was tested by moving the base 90 degrees, and at the same time, the 

first arm part from 0 to 120 degrees. This seemed to work, however, we were able 

to spot some delay in the movement of the first arm part, which we decided to 

ignore, as it didn’t seem relevant.  
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Subsequently, we experimented with moving some of the other joints 

simultaneously, only two at a time. After concluding that moving two motors at a 

time didn’t cause any issues to arise, we commanded the Arduino to move 3 

motors at once, then four. For the test-cases and observations see Table 3. of 

section 2.2 

Appendix III. – Challenges in Detail 

Following the completion of the mechanical body of the arm, the servos 

lost their functionality. We couldn’t identify the source of the problem, but we 

were aware, that the laptop was not able to upload the sketch on the board, 

therefore, it was assumed, that something was wrong with the Arduino Uno. 

Experimenting with different solutions, switching the board enabled us to start 

moving the smaller servos.  

Changing the boards once didn’t quite solve these problems in the long run. 

The same uploading problems appeared for a long time after the microcontrollers 

were changed. We concluded, that at some point the Arduino was probably short-

circuited, which could’ve damaged the processor or the bootloader [for more 

information on the bootloader see section 1.3]. Using the new board, the testing 

phase restarted, as the servos were first moved one by one, then together, and the 

arm seemed to be slowly gaining its functionality back. A hole was drilled at the 

tip of the first arm part to hold another rubber band which will support the 

movement of the second arm part, as the MG996R servo had difficulties lifting it.  

A third bolt was screwed into a hole that was drilled right next to the other screws 

holding the two arm parts together, to secure them together better [Figure A5]. 

Figure A5.: A screw added for 

stability, and the hole for holding the 

rubber band 
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We faced a greater issue with the other large, MG996R servos. As these 

motors can draw up to 2.5A of current during movement, especially when moving 

under load, we had to make sure the adapter that was used was able to supply that. 

An AC adapter was bought, as the computers USB port wouldn’t have been able 

to power all motors and an Arduino Uno alone. When plugging the Arduino on 

the power supply and the computer’s USB port together, the servos were able to 

move, but they weren’t operating properly for some reason. When we tried using 

only the power supply, the Arduino wouldn’t start moving the servos. After some 

research, we concluded, that even though the power supply should’ve supported 

enough current and voltage both for the Arduino and the motos to operate, either 

it wasn’t, or we connected the circuit the wrong way. Therefore, the connections 

were checked, and knowing that the outer power supply gives power through the 

Vin pin, not the 5V one, as the computer does, the circuit was rewired. Changing 

the order which the cables were connected in allowed the servos to finally operate 

properly, although their movement was still rather uncontrolled and slow. 

Therefore, we decided to use another AC adapter, which supplies more current 

and voltage than the previous one, and therefore makes sure the servos are not 

under-powered and can move precisely simultaneously.  
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Appendix IV. – Testing the Object Recognition 
Model 

Certain difficulties arose during the usage of TensorFlow Lite. First off, the 

utilizable version of the framework was not compatible with our version of 

Python, therefore we had to download an additional kernel, allowing us to switch 

between versions. Using the compatible version of Python, TensorFlow Lite was 

still operating rather slowly, even though this was the lighter version of the 

original TensorFlow. Therefore, concluding this would slow the process 

significantly, we decided to switch to Pytorch.  

Later on, after rewriting the test.py Python script, instead of showing a 

number, the labels were showing up as the name of the object the program was 

detecting. 

For the testings, the next testing took place after the training of the model was 

successfully completed and we were able to import the taco_full_190.pt model 

into the test.py code. 

The 60 taco categories, in JSON format: {"0": "Aluminium foil", "1": "Battery", 

"2": "Aluminium blister pack", "3": "Carded blister pack", "4": "Other plastic 

bottle", "5": "Clear plastic bottle", "6": "Glass bottle", "7": "Plastic bottle cap", 

"8": "Metal bottle cap", "9": "Broken glass", "10": "Food Can", "11": "Aerosol", 

"12": "Drink can", "13": "Toilet tube", "14": "Other carton", "15": "Egg carton", 

"16": "Drink carton", "17": "Corrugated carton", "18": "Meal carton", "19": 

"Pizza box", "20": "Paper cup", "21": "Disposable plastic cup", "22": "Foam cup", 

"23": "Glass cup", "24": "Other plastic cup", "25": "Food waste", "26": "Glass 

jar", "27": "Plastic lid", "28": "Metal lid", "29": "Other plastic", "30": "Magazine 

paper", "31": "Tissues", "32": "Wrapping paper", "33": "Normal paper", "34": 

"Paper bag", "35": "Plastified paper bag", "36": "Plastic film", "37": "Six pack 

rings", "38": "Garbage bag", "39": "Other plastic wrapper", "40": "Single-use 

carrier bag", "41": "Polypropylene bag", "42": "Crisp packet", "43": "Spread tub", 

"44": "Tupperware", "45": "Disposable food container", "46": "Foam food 

container", "47": "Other plastic container", "48": "Plastic glooves", "49": "Plastic 

utensils", "50": "Pop tab", "51": "Rope & strings", "52": "Scrap metal", "53": 

"Shoe", "54": "Squeezable tube", "55": "Plastic straw", "56": "Paper straw", "57": 

"Styrofoam piece", "58": "Unlabeled litter", "59": "Cigarette"} 
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The python file had to be rewritten, where the categories the model was 

sorting the items into was not the JSON dictionary containing the taco labels, but 

just a traditional python dictionary, with the keys as the indices of the recognizable 

materials, and the values as the class of the rubbish (metal, paper, etc.). For 

instance, when the output of the model would be “0”, the item pair with key “0” 

would be selected from the categories, and the corresponding value -which is glass 

in this case- would be showed above the rectangle drawn around the object in the 

camera frame, instead of the taco categories, which had the actual types of trash 

as labels in it.  

The training.py code was relying on using the previously mentioned 

neural networks and weights, together with the chosen optimizer to train an 

object-detection model from a given database. The source-code is shown on 

Figure A6. 

 

import numpy as np 

import torch, torchvision 

from matplotlib import pyplot as plt 

import cv2 

import json 

from tqdm import tqdm 

import os 

import xml.etree.ElementTree as ET 

 

num_epoch = 501  

bs = 64 

with open("Marci_taco_annot_640.json") as f: 

    annot = json.load(f) 

 

with open("Marci_taco_categories.json") as f: 

    cats = json.load(f) 

 

taco2trashnet = np.loadtxt("tacototrashnet.txt", dtype=int) 

 

images = [] 

targets = [] 

 

for a in annot: 

    im  = (cv2.imread(f"images_640/{a}")/255).astype(np.float32)[:,:,[2,1,0]] 

    labels = annot[a]['labels'] 

    boxes  = annot[a]['boxes'] 

    trashnet_labels = [taco2trashnet[l] for l in labels] 

 

    images.append(torch.tensor(im).permute(2,0,1)) 
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    targets.append({"boxes": torch.tensor(boxes), "labels": 

torch.tensor(trashnet_labels)}) 

 

trashnet_categories = {'metal' : 4, 'cardboard' : 2, 'paper' : 1, 'thrash' : 

5, 'glass' : 0, 'plastic' : 3} 

 

for file in os.listdir("thrashnettraining\Garbage classification\\train"): 

    if ".jpg" in file: 

        im = (cv2.imread(f"thrashnettraining\Garbage 

classification\\train\{file}")/255).astype(np.float32)[:,:,[2,1,0]] 

        tree = ET.parse(f"thrashnettraining\Garbage 

classification\\train\{file[:-4]}.xml") 

        root = tree.getroot() 

 

        for bbox in root.iter("bndbox"): 

            xmin = int(bbox.find("xmin").text) 

            ymin = int(bbox.find("ymin").text) 

            xmax = int(bbox.find("xmax").text) 

            ymax = int(bbox.find("ymax").text) 

 

        for n in root.iter("name"): 

            label = trashnet_categories[n.text] 

 

        images.append(torch.tensor(im).permute(2,0,1)) 

        targets.append({"boxes": torch.tensor([xmin,ymin,xmax,ymax]), 

"labels": torch.tensor([label])}) 

 

for file in os.listdir("thrashnettraining\Garbage classification\\test"): 

    if ".jpg" in file: 

        im = (cv2.imread(f"thrashnettraining\Garbage 

classification\\test\{file}")/255).astype(np.float32)[:,:,[2,1,0]] 

        tree = ET.parse(f"thrashnettraining\Garbage 

classification\\test\{file[:-4]}.xml") 

        root = tree.getroot() 

 

        for bbox in root.iter("bndbox"): 

            xmin = int(bbox.find("xmin").text) 

            ymin = int(bbox.find("ymin").text) 

            xmax = int(bbox.find("xmax").text) 

            ymax = int(bbox.find("ymax").text) 

 

        for n in root.iter("name"): 

            label = trashnet_categories[n.text] 

 

        images.append(torch.tensor(im).permute(2,0,1)) 

        targets.append({"boxes": torch.tensor([xmin,ymin,xmax,ymax]), 

"labels": torch.tensor([label])}) 
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model = 

torchvision.models.detection.ssdlite320_mobilenet_v3_large(weights_backbone="D

EFAULT",trainable_backbone_layers=6,num_classes=60).cuda() 

 

opt = torch.optim.Adam(model.parameters(),lr=0.002) 

model.train() 

with tqdm(total=num_epoch) as pbar: 

    for i in range(num_epoch): 

        idx = np.arange(len(images)) 

        nb  = int(np.ceil(len(images)/bs)) 

        np.random.shuffle(idx) 

 

        sum_loss = 0 

        for j in range(nb): 

            batch = idx[j*bs:(j+1)*bs] 

             

            opt.zero_grad() 

            loss = sum(model([images[b].cuda() for b in batch], [targets[b] 

for b in batch]).values()) 

            loss.backward() 

            opt.step() 

 

            sum_loss += loss.item() 

 

        if i%10 == 0: 

            torch.save(model.state_dict(),f"taco&trashnet_full_{i}.pt") 

 

        pbar.set_description("Avg loss: {:.3f}".format(sum_loss/nb)) 

        pbar.update(1) 

torch.save(model.cpu().state_dict(),"taco&thrasnet_full.pt") 

 

Figure A6.: The source code used for training the object recognition models. This is the last version of 

it, used for creating models from the taco and trashnet datasets.  
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