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Kivonat

A tervezésitér-bejards (Design Space Exploration - DSE) célja olyan kiilonb6zé rendszert-
erv javaslatok félautomatikus elkészitése, amelyek kielégitik a rendszerrel szemben tamasztott
numerikus és strukturalis kényszereket. A DSE széles kérben alkalmazott megkozelités a mod-
ellvezérelt rendszertervezésben (Model Driven System Design - MDSD) tervezési folyamatok rés-
zleges automatizalasara vagy autonom rendszerek dinamikus tjrakonfigurdlasara. A szabaly alapt
DSE megkozelitések egy kezdeti modellbdl kiindulva, transzformécids szabdlyok alkalmazasa-
val érik el a kivant célallapotot, amelyet jellemzéen deklarativ modell-lekérdezések definialnak.
Ilyenkor a tervezési tér bejaras eredményként transzformacids szabalyok egy sorozatat kapjuk,
amely a kezdeti modellt egy a célokat kielégito allapotba viszi at.

A DSE kihivésait sokszor tobbceélu optimalizdcids (Multi-Objective Optimization - MOO)
problémaként is felfoghatjuk, amikor néhany numerikus érték minimalizalasa vagy maximalizalasa
mellett kell érvényes megolddst taldlni. A genetikus algoritmusok (GA) és a metaheurisztikus
modszerek elterjedten hasznaltak MOO problémék esetén. Ezek a modszerek egy elére meghataro-
zott mennyiségli egyedet (azaz lehetséges megolddst) tartanak szdamon és iterativan bovitik ezek
halmazat mutéaciés és keresztezo operaciok felhasznalasaval, mikozben folyamatosan eldobjak a
célfiiggvény altal gyengébbnek mindsitett egyedeket.

Ebben a dolgozatban egy olyan (az Université de Montréal egyetem kutatoéival kozosen kidol-
gozott) megkozelitést mutatok be, amely a tébbcéli optimalizdlds technikait hasznélja fel a ter-
vezési tér bejarashoz, megtartva a szakteriilet fiiggetlenség és a magas absztrakcids szint eldnyeit.
Az egyedeket szabalyok egy sorozata reprezentalja, a mutacios operatorok ezeket a sorozatokat
modositjak példaul 4j szabdly besztrasaval, a keresztezo operatorok pedig szabalyokat cserélnek
ki két egyed kozott. Az optimalizalandé numerikus értékeket deinidlhatjak a szabalysorozat altal
elérheté modellallapotra tett modell-lekérdezések, illetve szarmaztathatéak szabdly végrehajta-
sokbol is. A szelekcids operator az NSGA-II genetikus algoritmuson alapul.

A TDK munkam keretében egy Eclipse alapu prototipus implementaciot is elkészitettem a
VIATRA-DSE keretrendszerre épitve, ahol a modellek reprezentalasara az Eclipse modellez6 kere-
trendszerét (EMF) hasznaltam, mig a modell-lekérdezések és transzformécios 1épések definidlasat
az. EMF-IncQueryvel végeztem el. Az 1j keretrendszer biztositja a DSE probléma (1) egysz-
eri definidldsat a célok lefrasatdl az operdtorok megaddsaig, (2) részletekbe mend konfiguraldsét
(példaul megéllasi feltétel, valdszintiségek), tovabba (3) szabadon testreszabhaté 1j mutécio,
keresztezo és szelekcié operatorokkal. Ezenfeliill tAmogatja a tobbszalu végrehajtast is és egy lazan
csatolt tesztkeretrendszer konnyiti a mikodés analizalasat. Két kiilonbozo alkalmazasteriiletrol
szarmazo esettanulméanyon elvégzett mintakisérletekkel és mérésekkel tamasztottam ald a kidol-
gozott megoldés gyakorlati alkalmazhatdsagat.
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Abstract

The goal of Design Space Exploration (DSE) is to semi-automatically synthesize various
design candidates satisfying numerical and structural constraints. DSE is frequently used in
Model Driven Systems Design (MDSD) to partially automate design processes or to dynamically
reconfigure autonomous systems. Rule-based DSE aims to achieve this by starting from an initial
model which evolves by transformation rules until the desired goals are reached (which are captured
by model queries). As a result, rule-based DSE finds a sequence of rules which transforms the
initial model to reach a target state satisfying the goals.

Many DSE challenges can be seen as Multi-Objective Optimization (MOO) problems i.e.
it should find valid solutions while maximizing or minimizing several numerical values derived
from the model. Genetic Algorithms (GA) and meta-heuristics are widespreadly used for MOO.
They maintain a predefined number of solutions or individuals and iteratively create new ones by
mutation and crossover operations while it drops the low quality candidates.

In this report I present an approach (developed in collaboration with researchers from BME-
MIT and Université de Montréal) to exploit multi-objective optimization techniques for rule-based
design space exploration keeping both domain independence and high level abstraction. Individ-
uals are represented as rule trajectories, mutation operations modify the trajectory, crossover
operations exchange rules between trajectories, while objectives are defined by model queries or

are derived from rule executions. The selection operator is based on the Non-dominated Sorting
Genetic Algorithm (NSGA-II).

I developed a prototype implementation built upon the VIATRA-DSE framework which uses
Eclipse-based tools like EMF for model representation and EMF-IncQuery for model queries.
The newly created framework supports extensive configurations like different stop conditions,
custom genetic operators and multithreaded execution. The practical feasibility of the approach is
demonstrated by experimental evaluation carried out on two case studies from different application
domains.
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Chapter 1

Introduction

As a challenging branch of search based software engineering (SBSE), design space exploration
(DSE) aims at searching through different design candidates to fulfill a set of constraints and then
proposing optimal designs with respect to certain objectives. It frequently supports activities
like configuration design of avionics and automotive systems. Many of such traditional static
DSE problems can be solved by using advanced search and optimization algorithms or constraint
satisfaction programming techniques [1, 2, 3, 4, 5].

In model-driven engineering (MDE), rule-based DSE [5, 6, 4] aims to find instance models
of a domain that are (i) reachable from an initial model by applying a sequence of exploration
rules, while (ii) constraints simultaneously include complex structural and numerical restrictions.
Model driven techniques offer expressive modeling languages and advanced tools to capture the
DSE problem of different domains independently on a high level of abstraction close to the domain
itself. However, solving a rule-based DSE problem is a difficult challenge due to the inherently
dynamic nature of the problem. Such dynamic complex reconfiguration challenges of supervising
cyber-physical systems (CPS) or IT infrastructure [5] or quick fix generation in domain-specific
modeling environments [7].

As a practical observation, the solution space of a rule-based DSE problem is dense in princi-
ple, but one cannot put an a prior: upper bound on the number of model elements used in a design
candidate (i.e. model elements may be created and deleted during exploration). Unfortunately,
this makes the exhaustive exploration of the design space intractable. Furthermore, many prac-
tical problems necessitate to continue the exploration of the design space incrementally from a
previous solution (instead of starting the search from scratch each time). Such incremental solving
is rarely handled by state-of-the-art constraint solvers (as demonstrated in [8]).

Rule-based model-driven DSE problems have additional challenges also from an optimization
perspective. First, some objectives are not values of simple cost attributes but complex model
metrics calculated by model queries. Furthermore, certain cost calculations may depend on the
sequence of exploration rules applied on the design model. Finally, we may not find a single
combined objective function but multiple objectives may need to be incorporated to identify the
best design candidates.

Existing rule-based DSE solutions exploit (1) model checking with powerful graph-based
symmetry reduction [6], (2) dependency analysis and hints by formal abstractions [5] or (3) dif-
ferent search strategies (e.g. hill climbing, simulated annealing) [4]. As a commonality in these
approaches, the core exploration procedure follows a local-search based approach, i.e. it gradually
extends the search towards promising candidates by priorities defined by local heuristics. these
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heuristics fail, no solutions will be retrieved.

Global search techniques (like genetic algorithms or multi-objective optimization) have al-
ready proved to be successful in various MDE scenarios for finding constraints [9], model transfor-
mations [10] or solving static DSE problems [11] where an exhaustive search algorithm becomes
infeasible. Moreover, they provide graceful degradation for problems where no solutions exist
which meet all the objectives and constraints by relaxing hard constraints to soft constraints.

In the current report, I present an approach (developed in collaboration with researchers
from BME-MIT and Université de Montréal) to integrate multi-objective optimization techniques
by using the Non-dominated Sorting Genetic Algorithm (NSGA-II) [12] to drive rule-based design
space exploration. For this purpose, finite populations of the most promising design candidates
are maintained with respect to different optimization criteria. In our context, individuals of
a generation are defined as a sequence of rule applications leading from an initial model to a
candidate model. Populations evolve by mutation and crossover operations which manipulate
(change, extend or combine) rule execution sequences to yield new individuals. However, a key
technical challenge that we face in genetic rule-based DSE is to preserve the feasibility of candidate
solutions which are generated using genetic operators. Indeed, in rule-based DSE, crossing two
feasible solutions, and/or randomly mutating a feasible solution, may yield infeasible candidates
if the corresponding rule execution sequence is infeasible. In our approach, candidate solutions
generated using genetic operators are automatically corrected to preserve their feasibility.

The main added value of our multi-objective optimization approach for rule-based DSE is
to seamlessly lift multi-objective optimization techniques to a domain-independent model-level
exploration process while preserving a high-level of abstraction. Design candidates will still be
represented as models and the evolution of these models as rule execution sequences. Constraints
are captured by model queries while objectives can be derived both from models or rule applica-
tions. On the theoretical level, models are formalized as graphs, model queries as graph patterns
and exploration rules as graph transformation rules, thus our work can be considered as a multi-
objective exploration of graph transformation system.

I developed a prototype implementation built upon the VIATRA-DSE framework (developed
by Miklés Foldényi and me and presented in [13]) which uses Eclipse-based tools like EMF for
model representation and EMF-IncQuery for model queries. The newly created framework sup-
ports extensive configurations like different stop conditions, custom genetic operators and mul-
tithreaded execution. The practical feasibility of the approach is demonstrated by experimental
evaluation carried out on two case studies from different application domains.

The report is structured as follows:

e Chapter 2 presents two motivating examples along with their challenges and gives a brief
introduction to modeling techniques, including the definitions of metamodel and graph trans-
formation.

e Chapter 3 explains the different approaches for design space exploration.

e Chapter 4 describes the different metaheuristic techniques for optimization problems, in-
cluding local search techniques and genetic algorithms.

e Chapter 5 presents our approach for rule-based design space exploration for multi-objective
optimization with the NSGA-II algorithm.

e Chapter 6 overviews my contribution to the approach and implementation details.
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e Chapter 7 evaluates the approach with an extensive analysis on the two case studies.

e Chapter 8 summarizes the report.

In order to maintain a consistence appearance of the report, the following rules are imposed:
1) the three background chapters are written in third person singular, 2) as the approach and the
evaluation is a result of a collaboration with researchers from BME and Université de Montréal
chapter 5 and section 7.1 are mainly written in first person plural to emphasize joint work, while
3) chapter 6 and section 7.2 is written in first person singular as those results are built exclusively
on my own work.

Our initial results have been published in [14] at the IEEE International Conference on
Automated Software Engineering. This report uses text and figures from this paper, but also
significantly and conceptually extends by (1) presenting the background in more details, (2) pro-
viding insights on how NSGA-II can be adapted to rule-based DSE and (3) introducing a new
case study on business process modeling.



Chapter 2

Preliminaries

In this chapter section 2.1 describes two motivating example: configuration of cyber-physical
systems (2.1.1) and optimization of business process models (2.1.2). Section 2.2 takes an intro-
duction to modeling, including the definition of metamodels (2.2.1), how validation of a model can
be achieved (2.2.2) and rules which embrace the possible modifications of a model. Lastly related
tools are discussed.

2.1 Motivating scenarios

This section presents two case studies which are used to evaluate the approach presented in
this paper and to demonstrate definitions and concepts required to understand the approach.

2.1.1 Case study - cyber-physical systems

Cyber-physical systems (CPS) integrate computation, networking and physical processes [15].
Services deployed on a network of computers, monitor physical processes with sensors and inter-
vene into them using designated actuators, while changes in the physical world can also affect
computations. Thus CPS creates a very strong connection between the cyber and physical parts
of the system.

Smart buildings are frequently considered as a cyber-physical system. In such a building
offices are offered for companies for rental consisting of multiple rooms with highly configurable
services such as fire alarm, air conditioning and security monitoring as depicted by orange boxes in
Figure 2.1. These services require certain types of applications (presented in the middle with green
boxes including smoke detection): temperature measurement (Measure Temp) air conditioning
(Set Temp), heat map, video recording and motion checking. This cyber-physical system has four
type of sensors, namely Smoke Sensor, Temperature Sensor, thermographic camera (Infra Cam)
and Video Camera which presented at the bottom of the figure in purple boxes with a Compute
Server handling computationally intensive tasks. Applications require certain host types to able
to fulfill their functionality, this dependence is represented as dashed arrows, while numbers on
them mean further requirements: exclusive usage of a host is presented by a number one, while
x/y like numbers denote the memory unit / permanent storage unit required from the Compute
Server.
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Requirements and Application Types m Appl Types

Fire Alarm Air Cond Security Basic Fire Alarm  Smoke Detect

Comfort + Air Cond  + MeasureTemp
+ SetTemp
Measure Temp Motion Check Secure +Security  +MotionCheck

+VideoRecord

Smoke Detect [l Set Temp

|
# Heat Map m\

..l‘m

Max +HeatMap

my TN

1 Comfort (2) 3xSD, 2xMT, 3xSS,6xTS,

Smoke Temp Compute Video Basic(1) 25T 2XCS,
Sensor Sensor Server Cam 2 Max(2) 2xSD, 6xMT, 2xSS,6xTS,
32/128 18 2xST, 2xMC,  8xCS, 2xIC,

Host Types (with install. costs and memory/storage regs ) 2xVR, 2xHM  2xVC,

Figure 2.1: Model of the smart building Figure 2.2: Services are organized into packages

Rooms are offered to rent with four type of packages (see Figure 2.2):

e Basic: This package runs the compulsory fire alarm service which requires one smoke sensor
for each room.

e Comfort: This package also offers air conditioning by measuring temperature by three
sensors (per room) and setting the required temperature. Measuring the temperature also
offers a backup solution for fire alarm in case the sensors fail.

e Secure: This package extends the Comfort package to offer security surveillance by a video
camera continuously recording events in the room and a motion check application which
highlight critical events automatically.

e Max: This package enhances the Secure package by providing a heat map of the room which
can be used for fire alarm as well as for surveillance purposes.

Two sample company requests are also listed in Figure 2.2 which summarizes the selected
packages for a certain number of rooms together with the application instances to be deployed and
hardware devices to be installed. For instance, the first request consists of 2 rooms with comfort
package and 1 room with basic package, and it necessitates to run smoke detector (SD) service (for
3 rooms, 1 device per room), the measure temperature (MT) service (for 2 rooms, 3 devices per
room) and the set temperature application (for 2 rooms, jointly installed on a compute server).

Configuring a cyber-physical system (i.e. installing devices, allocating and running applica-
tions) can be considered as a design problem as multiple constraints and optimization objectives
must be incorporated. However, this configuration is a dynamic problem as (1) requests may
change over time (new requests arrive, existing ones are canceled) and (2) certain faulty devices
may no longer function. This way, the system must be reconfigured at run-time calculating a new
design which starts from the last configuration and incorporates the changes in the context and
requirements of the system.
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2.1.2 Case study - business process modeling

Business process modeling and notation (BPMN) [16] is an Object Management Group
(OMG) [17] standard providing an abstract syntax and graphical notation for business workflows.
BPMN is widespreadly used where business processes are complex and collaboration between
organizations is required as well as between different software components.

BPMN defines different types of tasks as basic elements, like manual task which have to
be done by a person without aid of the software, while a script task should be executed by the
business process engine. Directed edges between tasks describe data and control flow, which can
also have conditions on them. Events can start, end or interrupt a process. Resource types can be
allocated to tasks and resource instances can be used by the running tasks with mutual exclusion.
Furthermore parallel gateways can disjoint a flow into multiple parallel tasks.

For example, Figure 2.3 presents a simplified business process of a web shop. After autho-
rization (i.e. the user is signed in) the request can be about either a purchasing (e.g. editing user
information, paying with a bank card, etc.) or about browsing items. In the later case recommen-
dations are calculated in parallel with fetching item data and logging. All tasks need a particular
resource either a web server, a SQL or a NoSQL database.

TR
12 ms 24 ms
33 %
O—) Authorize - Purchase }—
- @

Startevent Web server 67 % sQL
v
15 ms b 4
> Recommend ——

NoSQL A End event . .
0sQ Resource Type | Variantl Variant2
factor/cost | factor/cost
Web server 1/1 -
10 ms 12 ms
NoSQL DB 1/3 0.75/5

saL NoSQL

Figure 2.3: An example BPMN model Figure 2.4: Resources type variants

Simulation of business processes can reveal performance bottlenecks or analyze sensitivity to
parameters. For a simulation run certain number of tokens are sent through the system, which are
processed for a predefined time and flow probability is assigned to the directed edges to randomly
drive the business process execution to different paths. Simulation needs several extra information,
e.g. task execution time, decision flow probability, etc. which can be found on Figure 2.3 with
brown colour. In this example resources can have different variants, which influence the execution
time and is shown on Figure 2.4.

However, optimizing a process with respect to multiple objectives (e.g. response time, re-
source usage, etc.) is a time consuming and erroneous task. Running simulations with different
parameters is required to find an optimal solution, while evaluating results to identify a promis-
ing configuration is essential. On the other hand, bad design can lead to an inefficient workflow,
making the optimization stuck in suboptimal solutions. Therefore automating the optimization
is crucial. By simulating the business process and evaluating the results, one can simultaneously
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search for an optimal parametrization and design flaws. In addition, contradicting objectives may
be present, for example increasing resource utilization can lead to reduced throughput.

2.1.3 Challenges

The common challenges between the two case studies are the following:

e Optimization includes multiple objectives which potentially conflict with each other.

e Objectives can have different priorities (e.g. response time is more important than resource
usage).

e Simultaneously with the optimization process, validation of complex structural constraints
are also necessary.

e Further constraints and restrictions can filter out acceptable solutions.

e Reconfiguration might be needed at run-time. Therefore incremental solutions have to be
created, i.e. the previous solution have to be reevaluated upon changes in the environment
and objectives.

e The system need to apply the solution of a reconfiguration to itself, therefore a solution have
to provide well-defined steps or rules which can be executed by the system.

2.2 Introduction to modeling techniques

This section introduces several definitions and concepts used in model driven system design
(MDSD) including metamodels, graph patterns and transformation rules.

2.2.1 Metamodels and instance models

Model driven system design (MDSD) aims to lift the abstraction level of a problem allowing
a better overview of it. For this purpose a domain model is created which describes the possible
elements of the problem, their properties and their relations. For example the domain model of
cyber-physical systems must somehow define sensors and how applications can use them, as they
are part of the core concept. However, a domain model lacks describing a concrete system like
a smart room from subsection 2.1.1 with several devices. This information is included in a(n
instance) model. Domain models are also called metamodels as a metamodel describes the
possible components of a semantic model, also called an instance model. In a metamodel classes
describe objects from the domain which can have attributes, while references specify the relations
between classes.

To show an example of a domain model Figure 2.5 shows a possible metamodel of any cyber-
physical system (while the BPMN metamodel can be found in Appendix A for space restrictions).
Then the smart building case study on Figure 2.1 can be interpreted in this metamodel in the
following way: rental companies will issue Requests for implying a set of Requirements (defined
by the number of rooms and desired packages) each of which identifies a required application
type (ApplType) and the number of redundant instantiations for satisfying the requirement (count

7
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attribute). Sensors and computation units are uniformly called HostTypes. Each application type
may claim several host types and sufficient amount of resources (e.g. memory, storage) for its
execution as defined by a resource requirement (ResReq). For instance, calculating a heat map
requires five units of memory and five units of permanent storage as defined by the labels of dashed
arrows in Figure 2.1.

0. requests

H Request |e « 5 CyberPhysicalSystem
—_—
1
request
5 0.
0. < <enumeration = = hostTypes
0.r applicationTypes >
requirements = l_pp_ P = S;ate H HostType
' ApplicationType = Stoppe .
B Requirement o = SEIHU:W;;”UW  Elnt
0.1 . = defaultHdd : EInt
= count : EInt | ty5e L] = InMaintenance
1
type
0.* 1T *
requirements hostType 1
. type
= ResourceRequirement
= requiredhMemory @ EInt
= requiredHdd : EInt
B > 0.r hosts
applications Friistances instances
B _ derived edges H Hostinstance
REE ek S = availableMemoaory : EInt
0.* = state : State 0 0,.* = availableHdd : EInt
instances applications allocatedTo

= totalhemory @ EInt
= totalHdd : Elnt

Figure 2.5: Metamodel of cyber-physical system

In the running system, multiple application instances (shortly Appllnst) of an application
type may exist each of which is deployed on a host instance (HostInst) corresponding to a specific
host type. Such deployment consumes a certain amount of resources in the host instance (up to its
total memory and storage) as specified by the corresponding resource requirement. Application
instances need to be started after they are allocated to a host instance, and stopped when they
are no longer needed, which fact is represented by the state attribute.

2.2.2 Well-formedness constraints

Well-formedness constraints extend the expressive power of metamodels by capturing fur-
ther restrictions for instance models. For example a cyber-physical system requires that all the
application instances are actually running. Constraints can be used to capture these valid or
invalid configurations. They are frequently defined by model queries and formalized by graph
patterns.

A graph pattern can be seen as a small instance model, which should be found within the
actual instance model. Given a graph pattern p and an instance model M, m : p — M denotes a
graph morphism identifying a match fragment of M. For example, a single application instance

8
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without defining its attributes can be a graph pattern and it has as many matches as many
application instances are in the instance model. A graph pattern can also capture relations,
attributes and negative conditions. Figure 2.6 presents four constraints (graph patterns) as an
example, where the first three constraints define desired situations, while the fourth constraint
captures an undesired case:

e satisfiedReq(E) identifies a requirement F of a request R which is instantiated into a
sufficient number of application instances (i.e. the number of instances is equal to the
required redundancy);

e allocated Appl(Al) identifies an application instance Al which is allocated to a host in-
stance HI to fulfill the resource requirement between the corresponding application type
AT and host type HT

e applnstRun(AT) identifies an application instance of a configuration which is running;

o extraHost(H) identifies a host instance H which does not host any application instances.

satisfiedReq(E) allocatedAppl(Al) applinstRun(Al) extraHost(H)

Al:Applinst ATApplType Al:Applinst
Al:Applinst

R:Request

E:Requirement
instances

count
A:Applinst

check: R.count=M

host

\

Hl:Hostinst
check:

R.state ==running

Figure 2.6: Constraints for smart building configuration

2.2.3 Transformation rules

Modification to an instance model are often described as transformation rules. A rule
R = (LHS, RHS) consists of a precondition or a left hand side (LH S) which is captured by a graph
pattern and a right hand side (RHS) which declaratively defines the effects of the operation. A
rule is applied on a model by (1) finding a match of graph pattern LHS (also called an activation
of the rule), then (2) removing elements from the model which have an image in LHS \ RHS,
then (3) changing the value of attributes which are reassigned in RH S and finally (3) creating new
elements RHS \ LHS. The rules of the examples are depicted in Figure 2.7 and in Appendix A
(as a combined notation like in GROOVE [6]).

e Rule newHostInst installs a new host instance H I of a host type HT' and sets the available
resource parameters to that of the host type.

e Rule newApplInst creates a new application instance Al in accordance with the count
attribute of requirement F (by reusing the condition defined by graph pattern wunsatis-

fiedReq(E)).
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rule stop(Al) rule start(Al) rule newApplinst(E) rule newHostInst(HT)

1 Al:Applinst 1

|check: Al state=="RUN" I

> |~ r

Al:Applinst P E-Requirement

host find
unsatisfiedReq(E)

m instances

Ia:tion: Al state="RUN" I -
Al:Applinst action:
i rule move(AlHI,RR) Hl.availMem=HT.defMem
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Figure 2.7: Exploration rules of the smart building example

Rule start initializes a stopped application instance Al which is already allocated to a host
device while rule stop stops a running instance.

Rule allocate aims to allocate (an unallocated and stopped) application instance Al to a
host instance HI in accordance with the resource requirement RR provided that sufficient
memory and storage space is still available at H 1.

Rule delete removes an existing allocation of a stopped application instance Al from a host
instance HI, and frees the related memory and storage resources of HI.

Rule move combines the allocate and delete rule into one, and changes the allocation of
an application instance Al from host instance HI to HN, and adjusts the resource usage
accordingly.

2.2.4 Related work

There are various tools which can help the modeling process. Domain models can be rep-
resented in Unified Modeling Language (UML) [18] which is an Object Management Standard
(OMG) [17] standard and there is a wide range of tools for UML including Visual Paradigm for
UML [19] and Papyrus [20]. Eclipse Modeling Framework (EMF) [21] is a de facto standard for
creating UML class diagram like domain models and generating Java code from it and widely used
in the industry. Resource Description Framework (RDF) [22] is originally designed for metadata
modeling for web technologies, but can be used for metamodeling to. Web Ontology Language
(OWL) [23] is an ontology language and tools like Protégé [24] support it.
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CHAPTER 2. PRELIMINARIES

Model queries, expressions, constraints on UML models can be defined with Object Con-
straint Language (OCL) [25] which was originally developed by IBM and now an OMG standard.
SPARQL Protocol and RDF Query Language (SPARQL) [26] is a RDF database query language
and managed by the World Wide Web Consortium (W3C) [27]. EMF Query [28] is query languages
for EMF models, while the purpose of EMF-INCQUERY|[29] is the same, but has a declarative
language and evaluate the expression incrementally on model changes.

For graph transformation tools see the related work of the next chapter (section 3.3).

In this report domains are modeled with EMF, constraints are defined by EMF-IncQuery
and model transformations are executed via the VIATRA framework [30]. Conceptually, many
other tools could potentially be used.
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Chapter 3

Design space exploration

Design space exploration (DSE) aims to find optimal design candidates of a domain with
respect to different objectives where design candidates are constrained by complex structural
and numerical restrictions. It can be either used to partially automate a design process or to
dynamically reconfigure an autonomous system at run-time.

Design space exploration can be categorized as follows:

e Constraint-based DSE CDSE = (M, C), consists of an initial model M, and a set C' of
constraints. As result, design space exploration returns a solution model Mg; (there can be
more than one solution), which is a modified version of M, and satisfies all the constraints
from C.

e Rule-based DSE RDSFE = (My,C, R), also consists of an initial model Mj and a set C' of
constraints, but allows the modification of the initial model M, along a set R of rules. As
result, it returns a sequence of rules which if applied to the initial model, it will satisfy all
of the constraints.

There are two options to carry out design space exploration:

e Model-driven DSE solves a problem directly over models.
e A DSE problem can be solved on a mathematical representation by back-end solvers and

back-annotation.

Table 3.1 presents the available approaches for design space exploration in the previously

defined categories. GROOVE, Henshin and VIATRA are frameworks.

Constraint-based Rule-based
Back-end solver CSP, SMT, SAT Planners, Model-checkers
Model-driven Alloy | GROOVE, Henshin, VIATRA

Table 3.1: Design space exploration classification
This chapter introduces design space exploration and its two main approach. Section 3.1
describes how to use constraint satisfaction problem solvers for design space exploration, while

model-driven, rule-based design space exploration and its challenges are explained in section 3.2.
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CHAPTER 3. DESIGN SPACE EXPLORATION

3.1 Constraint based design space exploration

The input of constraint satisfaction problems can be defined as a triple CSP = (Z, D, C),
where Z is a set of variables x1, z, ... 2,, D defines the domains of the variables (e.g. all of them
are integers) and C' a set of constraints between the variables (e.g. x; > x2). A solution to a
CSP is an assignment of donaim values to variables which also satisfies the constraints of the CSP
problem. There are three major type of CSP according to the domain: 1) CSP(B) consist of
boolean variables and boolean expression as constraints, 2) CSP(FD) takes integers as variables
and 3) CSP(R) is defined by real numbers.

Famous CSP problems include the map colouring problem, the eight queen puzzle, minimum
set cover or popular logic puzzles like Sudoku. These problems are old enough that mature
solvers and constraint satisfaction methods exist. CSP(B) are solved by SAT solvers, CSP(FD)
are solved with methods from the field of artificial intelligence [31] (like constraint propagation
and backtracking), while Gauss elimination and simplex method are used to solve CSP(R).

Solving a DSE problem as a constraint satisfaction problem is traditionally carried out by
automatically generating the CSP problem by a forward model transformation from high-level
engineering models and then back-annotating the results of the analysis to the source domain [2].
Thus DSE = (My, G) is mapped to CSP = (Z, D, C'), where the variables Z and domains D are
derived from My, while constraints C' is derived from the goals G.

For example, Figure 3.1 illustrates an allocation problem where software modules should be
deployed on a hardware architecture and all the possible allocation is depicted by the arrows.
These arrows can be represented as binary variables z;; € {0,1} where 1 (true) means it is used
in a solution. Goals such as 1) all software modules should be allocated to a single hardware and
2) maximum two software modules can be allocated to HW1 can defined by constraints on z;; as
shown in Equation 3.1 and Equation 3.2.

Figure 3.1: All possible allocations of an allocation problem

However, in model driven system design the representation of the problems are graph like
structures and constraints are defined by graph patterns (explained in section 2.2), which can be
hard to map into variables and equations. Especially constraints like connectedness are mathe-
matically impossible to map as graph patterns have a bigger expression power. For these reasons
a new approach was appeared which raises abstraction level by introducing existing algorithms
and heuristics directly on the model level.
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Apart from CSP other back-end solvers can be used to design space exploration. SMT
solvers and alloys are logic based techniques which can find counter-example models for a set of
constraints.

3.2 Rule-based design space exploration

This section presents the definition and the challenges of the rule-based approach of model-
driven design space exploration.

3.2.1 The problem of rule-based design space exploration

The aim of model-driven design space exploration is to seamlessly integrate the search for
design candidates to modeling techniques where models are given as graph like structures and
constraints as graph patterns which are described in section 2.2. The rule-based approach of
model-driven DSE also defines a set of domain dependent graph transformation rules over the
model.

Note: from now on design space exploration will stand for only the model-driven, rule-based
approach.

The input of rule-base DSE consists of four element RDSE = (M, G, R, GC): 1) an initial
model My, 2) a set G of goals given by graph patterns which should be satisfied by the solution
model Mg;, 3) a set R of transformation rules (ry,rs,...r,) which defines how the initial model
M, can be manipulated to reach a solution model Mg; and 4) a set GC of global constraints
(also graph patterns) which has to be satisfied along each valid execution path i.e. trajectory
7= My =5 My ... ™ M,. As a result it produces several solutions (Mg, Mgy ... Mg,)
consisting sequence of rules (rgo, 751 . . . rs,) which if applied to the initial model, it will satisfy all

of the goals and global constraints.

For example a cyber-physical system can be reconfigured by rule-based design space explo-
ration. DSE requires the actual state of the system model, the set of constraints defined on
Figure 2.6 and the rules on Figure 2.7 (global constraints are not necessary). During design space
exploration, the exploration rules are applied to the system model to drive reconfiguration as
illustrated by the trajectory of Figure 3.2.

Renceliera SmokeSensor: Rnce e SmokeSensor: Rl SmokeSensor:
HostType HostType HostType
type l instances rule: type l instance instances rule: type l instances instances|
newApplns allocate
SmokeDetect: SS1: SmokeDetect: SS1: SmokeDetect: SS1:
ApplicationType HostInstance ApplicationType HostInstance ApplicationType HostInstance

instancesl instancesl
SD1: SD1: allocatedTo

@ Applicationinstance { \1\9 Applicationinstance 1 \1\9

Figure 3.2: A solution trajectory

This approach has two major advantages compared to using constraint satisfaction problem
solvers. Rule-base DSE has the ability to keep the high level abstraction of the domain model
therefore lacking the mapping problem to CSP. Furthermore it returns a trajectory how to produce
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a particular solution from the initial model by using the given rules, while a CSP solver only
produce an assignment of the variables.

3.2.2 Challenges of Rule-based design space exploration

To comprehend the challenges it is necessary to understand the structure of design space.
The design space (or state space) can be imagined as a directed graph as in many search based
tasks. Nodes represent certain states of the model M;, while arcs serve as rule activations (r;, mg).
Node of the initial model M, is called a root node, while certain nodes can be solution nodes
(Msp) which satisfying the goals.

Figure 3.3: Design space as a directed graph

Rule-based design space exploration has two major challenges. Firstly, DSE must find the
best solutions according to the objectives and goals fast. Secondly, identifying already traversed
model states requires state encoding and rapid comparing of these codes, while encoding activations
during exploration is a challenge too.

Challenge 1 As in many search based tasks, finding solution states is hard because of the
size of the design space. The size of the model, the number of rules influence the design space
exponentially as rules have more activations in bigger models and further rules imply even more
raising the number of outgoing arcs from nodes. Furthermore the design space can be growing
unboundedly if the problem includes rules which can create object without limitations.

There are two options to overcome this challenge. The size of the design space can be reduced
by using extra global constraints, which restrict the solution space by pruning some potential
solutions, and by choosing the rules carefully. The other option is to guide the exploration and to
use a proper traversal strategy. Possible strategies are explained in chapter 4.

Challenge 2.1 The other challenge is to identify already traversed states. Ignoring these states
can lead to infinite loop when traversing the design space, while same solutions can be returned
multiple times reducing efficiency and effectiveness. Detection can be achieved by saving the
model itself after every step and comparing it to all the previous ones but this is computationally
intensive. Another option is to store deltas between model states as comparing them is a less
difficult task (as used in GROOVE [32]). Alternatively compact IDs can be generated after every
rule execution and saved in a data structure where efficient comparing is possible like a hash map
as proposed in VIATRA-DSE [13].
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Challenge 2.2 Encoding of rule activations is beneficial. Most traversal strategies need to know
which activations were tried, for example a depth first search must backtrack if all of them were
traversed. Also if a solution is found (a sequence of activations) and it should be applied to the
initial model, identifying the activations in the process is required. Although these problems can
be bypassed with working on the initial model itself and using an appropriate strategy, it limits the
capabilities of an actual tool, hence it remains a challenge. The problem of comparing activations
is very similar to comparing states, thus computing IDs for activations is a more feasible approach.

3.3 Related work

Rule-based design space exploration frameworks Model checking approaches to analyze
graph transformation systems are similar to DSE as they also perform state space exploration.
One can categorize them as compiled approaches such as [33, 34, 35, 36, 37|, which translate
graphs and graph transformation rules into off-the-shelf model checkers to carry out verification,
and interpreted approaches like [38, 39, 40], which store system states as graphs and directly apply
transformation rules to explore the state space, similarly to our approach.

In [6] the state space explored by the GROOVE framework is stored as a structured graph
model that can be queried using logical expressions. This approach allows the evaluation of
trajectories using cost functions defined after the exploration and even the combined assessment
of multiple solutions.

Common in these approaches that they place emphasis on exhaustive traversal (e.g. by
optimizing the storage of individual states), while we aim at finding solutions quickly as stated in
subsection 3.2.2.

In [4] the T-Core framework is used for implementing typical meta-heuristic exploration
strategies, such as hill climbing and simulated annealing using the transformation primitives of
the framework while the operations are specified as graph transformation rules.

Other design space exploration The DESERT tool suite [2] provides model synthesis and
constraint-based DSE for DSMLs with structural semantics using ordered binary decision diagrams
for encoding and pruning the design space. [41] presents a generic DSE framework extending upon
DESERT by supporting arbitrary analysis tools and includes model transformations for mapping
design problems to intermediate and low-level formats.

The OCTOPUS Toolset [1] uses an intermediate representation for design problem specifica-
tion and performs DSE using integrated analysis tools. It has been successfully applied to design
software-intensive embedded systems [42].

The GASPARD Framework [3] is specifically focused on the design of massively parallel embed-
ded systems and uses multilevel modeling where high-level UML models are automatically refined
to allow design space exploration to evaluate performance characteristics through simulations.

An efficient design space exploration approach was also presented built on the FORMULA
framework in [43]. The design problem is described using domain-specific languages and explo-
ration is done with symbolic execution and automatic theorem proving by an SMT solver.

These are all compiled approaches, where the design problems are specified as models and
model transformations are applied to derive inputs for third party analysis tools (e.g., SMT or SAT
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solvers). These analysis tools then perform the exploration and propagate the results back to the
original model. However, as the analysis tools are usually used as black boxes when exploring the

design space, they cannot be easily extended to support conceptually novel exploration algorithms
(e.g., NSGA-II).

[44] presents a framework for the automatic deployment of software components to hardware
architecture that uses design space exploration to find deployment alternatives that offer near-
optimal reliability characteristics. The design problem consists of architecture models annotated
with reliability-relevant properties, while the exploration uses an evolutionary algorithm to find
possible alternatives. Unlike our approach, in this work (and also a follow-up paper [45]) global
constraints are set as hard selection criteria to prevent the exploration (optimization) of invalid
solutions.

Schiitz et al. [46] developed an interactive, incremental process using declarative transfor-
mation rules for driving the exploration. The rules are modified interactively (user guided) to
improve the performance of the exploration.
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Chapter 4

Meta-heuristic techniques for
optimization problems

This chapter summarize problem-independent (meta-heuristic) search-based techniques which
can be applied to a broad range of optimization problems. section 4.1 overviews local search
techniques, global search techniques are described in section 4.2. Finally, section 4.3 presents
challenges of multi-objective optimization.

Optimization seeks the best solution from all feasible solutions. For example, the traveling
salesman problem is a famous optimization problem, where the shortest path is searched in a
graph from a specific starting node, touching all nodes and finishing with the starting node.

As stated in [47] an optimization problem can be defined as a triple OOP = (S, C, f), where
(1) S is the search space usually defined over a finite set of decision variables X1, Xo,... X, (2) C
is a set of constraints between the variables and (3) f : s — R is a function which maps all possible
states to a real number. The goal is to find a solution s € S such that f(s) > f(s'),Vs' € S in
case OOP is a maximization problem.

To solve optimization problems many techniques emerged, which is frequently classified as
local search techniques or global search techniques.

4.1 Local search techniques

Local search techniques aim to find the best solution by traversing the solution candidates
using single steps [31]. Usually, the state space of the optimization problem can be represented as
a directed graph, where nodes denote solution candidates and edges represent the available steps
to new feasible solutions. Considering the traversal strategy (i.e. how to choose the next step to
take) the local search algorithms can be classified in two category:

e Systematic local search techniques include depth first search (DFS) and breadth first
search (BFS). These techniques explore the state space in a predefined pattern. They have
many different variations (like iterative deepening depth first search). Usually random is
used to avoid determinism.

e Guided local search techniques use knowledge from either previously explored states
(e.g. cost of the path) or from prediction (e.g. estimation of solution distance) to decide the
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next state to unfold. They are often based on systematic searches. For example, the greedy
search which always goes to the most promising direction ignoring previously explored states
uses a DF'S, while A* is based on BFS, keeping in mind all of the previously found states.

A well-known guided local search technique is hill climbing [31] which is a greedy algorithm.
It follows the next steps:

1. Start from a random initial solution.

2. Generate all neighbour solution (stochastic hill climbing [31] creates only several alterna-
tives).

3. If none of them are better then it stops returning with the actual state.

4. Choose the best neighbour solution to continue with.

A possible state space traversal is shown on Figure 4.1. Hill climbing can stuck in a suboptimal
solution by converging to a local maximum. To overcome this situation variations of hill climbing
(e.g. random-restart hill climbing [31]) can be used.

Not all states are checked necessarily

Stops if the new solutions are all worse

Figure 4.1: Trajectory of the hill climbing algorithm

4.2 Global search techniques

The main difference between global and local search is that while local search explores along
a single path, global search simultaneously traverses the state space along multiple trajectories.
By looking for solutions in more than one direction it avoids stucking in a suboptimal region of the
state space and can find the global maximum or minimum where a local search could fail. However,
global search needs more memory and computational power and are harder to implement. There
are many global search techniques, this report provides an overview on: swarm-based and genetic
algorithms.
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4.2.1 Swarm intelligence

Swarm intelligence is a collection of global search techniques which takes inspiration from the
collective behaviour of social insects such as ants, bees and wasps, as well as from other animal
societies such as flock of birds or schools of fish [47]. Although these animals are simple individually,
they can solve complex tasks with cooperation. Ants can find food source in a large area, while
bees can explore huge fields of plants with flowers. The main characteristics of swarm intelligence
are: 1) individuals or agents are many in number, 2) they all do simple tasks, 3) they communicate
with each other along the exploration and 4) they are decentralized and self-organized without a
mastermind.

In solving optimization problems all individuals represent a feasible solution and modifying
it based on simple mechanics and communication with near mates. For example, in ant colony
optimization [48] ants individually modifying the solution at hand, while choosing its path with
a probability calculated from attractiveness, a heuristic implying the desirability of the step, and
trail level, which indicates how many ants passed that route recently.

Other notable algorithms are the particle swarm optimization [49], the bee colony algorithm
[50] and the grey wolf optimizer [51].

4.2.2 Genetic algorithms

Genetic algorithms are global search methods mimicking the process of natural selection [12].
It performs an exploration by creating and evolving finite populations of candidate solutions using
selection and genetic (mostly random) operators. Figure 4.2 presents a general process of the
genetic algorithms:

1. Create an initial set of solutions. Usually, a random function is used for that purpose.

2. Generate new solutions from the initial solutions using mutation and crossover operations.
A mutation operation modifies a single solution, while a crossover operation merges two
solutions into new ones.

3. Group the initial and the new population into one set.

4. Evaluate solutions based on the fitness function which can calculate the achieved objective
values on them.

5. Sort solutions based on their fitness value and select the best ones (the first half).
6. Start over from step 2 using the newly selected solutions as an initial population.

7. Usually, the process stops after a pre-defined number of iterations.

There are number of challenges when implementing a genetic algorithm. 1) Diversity of the
population must be maintained, as if the solutions are too close to each other the algorithm can
degrade to a random local search nullifying the advantages of global search techniques. Maintaining
diversity should be carried out by the selection operator and the population generator (e.g. deleting
duplicates, filtering or correcting unfeasible solutions). 2) Crossover operations should create new
individuals keeping the good characteristics from the parents while omitting the bad ones. 3) The
initial population must be healthy in diversity and feasibility, and it should lack bad characteristics
if possible, as the population might be unable to grow out those.
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Figure 4.2: Overview of genetic algorithms

4.3 Multi-objective optimization

A multi-objective optimization problem is an optimization problem with multiple objective
functions. For example, minimizing response time and maximizing resource utilization is both im-
portant in business processes. Multi-objective optimization different solution techniques compared
to regular (single-objective) optimization since objectives can be contradictory. Minimizing time
and cost while maximizing quality at the same time is impossible in many application domains.
Decreasing the invested money leads to bad quality, while reducing the available time might raise
costs. Therefore optimization should find the best trade-offs between those objectives.

A multi-objective optimization problem MOOP = (S,C,O) can be defined in the same way
as single-objective optimization OOP = (S, C, f) in beginning of this chapter. The only difference
is that there are multiple fitness function {o01,05...0,} € O, 0; : s — R instead of a single one f.

If all objective functions O are for maximization, a feasible solution s; dominates another
feasible solution sy (s1 =0 s2), if and only if, s; is better than s, for at least one objective, while
sy is not better than s; regarding all the objectives in O [12]:

do; € O : 0j(s1) > 0j(s2) A Bo; € O 1 0i(s3) > 0i(s1) (4.1)

The solution for a multi-objective optimization problem is the Pareto front instead of a
single solution. The Pareto front Sp is a set of solutions which dominates all the other solutions
(Equation 4.2), but do not dominate each other (Equation 4.3).

Vs; € SP, VS]‘ € S\Sp DS 70 S (42)
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Vsi,s; € Spt S Y0 85,55 Fo S (4.3)

The possible solutions can be illustrated in a coordinate system, where every axis represents
an objective and a point is a solution with the corresponding objective values. The possible
solutions form a bounded or a semi-bounded shape (assuming the objectives to be maximized
have a maximum value) and the best solutions can be found on the front of this shape which is
the Pareto front as it can be seen on Figure 4.3 (for two objectives). Solutions are considered to
be equal as they non-dominate each other, therefore a domain expert can decide which solution
should be used by analyzing the trade-offs.

A
Time (@)
©)
e ©
(O}
@ O
©)
. @)
Pareto front -
>
Cost

Figure 4.3: The Pareto front of a solution set with two objectives to minimize

Using global search techniques is a popular option for solving multi-objective optimization as
they work with multiple solutions and they aim to find the Pareto front. In contrast local search
techniques may find only one element of the Pareto front.

Non-dominating Sorting Genetic Algorithm (NSGA-II) [12] is a well-known genetic algorithm
used in multi-objective optimization. Its main contribution to the genetic algorithms is selecting
the individuals into fronts by using the domination function. The first front F} is the Pareto front
of the population P, the second front F; is the Pareto front of P\ Fj, the third front Fj is the
Pareto front of P\ (F} U Fy), etc. as shown on Figure 4.4. After the grouping it selects the first &k
front to the next population. As next population needs an exact number of individual, usually a
few solutions need to be dropped from the front Fj. For this purpose it calculates the crowding
distance of the individuals, which is a similar number of the distance of the closest individual in
the same front, and chooses the individuals with highest crowding distance maintaining diversity.

Figure 4.5 shows an overview on the NSGA-II. The aim of NSGA-II is to find a set of Pareto
optimal solutions in a single run. As a genetic algorithm, NSGA-II performs a global exploration
of the search space by making and evolving finite populations of candidate solutions using selection
and genetic operators. The output of the algorithm is a set of the fittest solutions (i.e. the Pareto
front) produced along all generations. When searching for solutions to a problem using Pareto
optimality (i.e. multi-objective), the search yields a set of solutions that are not-dominated [52].
The decision maker can select one of the fittest solutions according to his/her preference (e.g. the
solution which satisfies all the requirements).

However, from a practical MDSD viewpoint, constrained multi-objective optimization is im-
portant in the context of DSE. This is due to the fact that the primary objective of a DSE
approach is to find valid solutions that satisfy all the requirements of the underlying problem.
Other objectives, such as reducing the cost of obtained solutions, could not add an effective value
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Figure 4.5: Overview on NSGA-II process
to the optimization results unless the obtained solutions are valid. Hence, we adapt the constraint-
handling strategy with NSGA-II that was proposed in [12, 53].

In the presence of constraints (i.e. requirements), a solution can be either valid (i.e. it satisfies
all the constraints) or invalid (i.e. it does not satisfy all the constraints, totally or partially).
Therefore the domination function in Equation 4.1 is modified as follows: A solution s; is said to
constrained-dominate a solution sy, if one of the following conditions is true:

1. s7 is valid and ss is not.
2. Both solutions, s; and ss, are invalid, but s, has a smaller overall constraint violation.

3. s1 and s are valid and s; dominates s with the usual domination function (Equation 4.1).

The idea behind this constrained-domination strategy is that, on the one hand, any valid
solution has a better non-domination rank than any invalid solution. On the other hand, valid
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solutions are ranked into their non-domination level based on their associated quality as measured
by the values of objective functions. And, invalid solutions are ranked into their non-domination
level in descending order according to the value of their associated constraint violation.

Multi-objective optimization in model driven engineering Multi-objective optimization
techniques are widely used in Model Driven Engineering (MDE) field [54, 9, 55, 11]. Recently,
Kessentini et al. [56] proposed an MDE-based framework for easing the adoption of search-based
techniques (such as genetic algorithms) to MDE problems. In this work, the authors describe the
logic layer of their MDE-based framework based on previous experiences in using SBSE (Search-
Based Software Engineering) in hand-crafted applications. However, the realization of the frame-
work is only planned as future work. Moreover, it is not clear how the proposed framework can
be adopted for rule-based DSE. Etimaadi and Chaudron [55] proposed the AQOSA tool which
uses a model-based approach to evaluate component-based software architecture quality. It uses
multi-objective evolutionary algorithms to automatically optimize software architecture design
with regard to multiple quality objectives, such as response time, processor utilization, safety, etc.

Despite the popularity of applying search-based techniques for MDE problems, to the best of
the authors’ knowledge, there is not existing work in the literature dealing with rule-based DSE
using multi-objective optimization techniques. Indeed, existing work on Automatic Design Space
Exploration (ADSE) using multi-objective optimization techniques are not rule-based DSE, and
they are proposed for specific domain problems. For example, Calborean et al. [57] proposed
recently the FADSE (Framework for ADSE) for DSE of computer systems using different multi-
objective search-based algorithms. In this paper, the authors compare the results produced by
different genetic algorithms for optimizing the parameters of the Grid ALU Processor (GAP)
microarchitecture and the post-link code optimizer GAPtimize. In their framework, application-
specific rules that describe existing knowledge can be defined and used as constraints to constrain
the DSE process [58]. A similar work is performed by Bolchini et al. [59]. Bolchini et al. propose
a framework based on the multi-objective genetic algorithm NSGA-II for DSE of reliable Field
Programmable Gate Array devices.
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Chapter 5

Multi-objective optimization for rule
based design space exploration

This chapter describes our approach to integrate multi-objective optimization techniques by
using the Non-dominated Sorting Genetic Algorithm (NSGA-II) [12] to drive rule-based design
space exploration. In the following, section 5.1 defines rule-based DSE as an optimization problem,
section 5.2 overviews the approach, while section 5.3 describes how the objective can be captured
and section 5.4 presents the genetic operators for rule-based DSE.

5.1 Rule-based design space exploration as an optimiza-
tion problem

Rule-based design space exploration RDSE = (M, G, R, GC) can also be seen as an opti-
mization problem. The state space S is the possible states of the the initial model M, using the
set R of rules and is shown on Figure 3.3. The constraints C' are the global constraints GC' and
also implicitly the rules R. The objectives O (or f in single objective optimization) is defined by
the goals GG, although the definition of design space exploration in section 3.2 uses a single binary
objective: it is a solution or not.

Most local search techniques can be applied in rule-based design space exploration. Different
strategies specify the order of choosing the next rule activation to execute. Depth first search
applies a random activation after each step and backtracks if there are no more activations to
apply, while breadth first search executes every n long trajectory after all n — 1 long was tried,
thus systematic local searches can be used easily in design space exploration. Guidance can rely on
calculating objectives on the actual model and the traversed trajectory, while priorities assigned
to rules and rule dependency analysis [60] can also be used for directing the traversal.

Applying global search techniques to rule-based design space exploration is still a research
field and wasn’t carried out until now. In the following we present our adaptation of the NSGA-II
to the problem of rule-based DSE (which demonstrates the feasibility of global search techniques
in rule-based DSE) by defining our implementation of the following elements:

e Representation of candidate solutions (individuals) in section 5.2.

e Optimization objectives in section 5.3.
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e Genetic operators used to explore the search space section 5.4.

5.2 Optimization inputs, procedure and results

Figure 5.1 shows an overview of our approach. Given an initial model M, belonging to a
domain model DM, a set of requirements to be satisfied Req, and a set R of exploration rules, our
multi-objective search-based approach for rule-based DSE explores the design space starting from
My by maintaining finite populations of the most promising design candidates with respect to the
set of requirements Req and other optimization criteria O. In our approach, each individual of
evolving populations is a map of a candidate model M,, obtained as a sequence of rule executions,
denoted as 7, leading from the initial model My to M,: r, = M ML M, where
r; € R and m; is the match of r; in M.

Domain Model Requirements Exploration Rules B
DM q R |
\3 A
satisfies ﬂ P
"™ belongs to™.__ . existing D
-__-Model [Domain
MO experts

gy

‘é step 1 step 2

S initiallization NSGA-II based evolution
QZ {initial population} {population 1} {populationl\ﬁ
L individual 1 Pareto Fittest

_g front Models

& | individual x

S

O\ individual z

Figure 5.1: Approach Overview

The generation of the initial population starting from Mj (step 1 of the optimization process
in Figure 5.1) is achieved by applying random (but executable) exploration rules from R on
My. The second step of the optimization process in Figure 5.1 is based on the NSGA-II as
explained with Figure 4.5, where populations evolve by applying mutation and crossover operations
which change and/or extend existing rule execution sequences to yield new individuals. The
requirements are defined as soft constraints C' that are captured by model queries (see Figure 2.6)
while other optimization objectives can be derived both from models or rule execution sequences.
Each constraint ¢; in C' can be associated to a specific weight w; describing the relative importance
of this constraint, thus each violation of ¢; (calculated as a match of the corresponding graph
pattern) will be weighted accordingly.

The multi-objective rule-based design space exploration problem can be defined as:
MRDSE = (M,,C,0,R) where M, denotes the initial model, C' denotes the (structural and
attribute) constraints characterizing valid design candidates, O is a set of numerical objectives
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which needs to be optimized, while R is a set of exploration rules describing valid evolutions of
the design.

A candidate solution of a DSE problem is a pair Secsng = (Meand, Teana) Where (1) the
candidate model M, ,,q fulfills all (or some) constraints in C' and (2) it is reached from the initial
model M, by a sequence of rule executions 7..,s. A model objective o,, is evaluated for a
candidate solution S,,,4s on the candidate model M,,,q while a trajectory objective o; for S...q
is evaluated on the sequence of rule executions 7..,q leading to Sc.,q. Considering our running
example, reducing the number of constraint violations is a model objective or increasing utilization,
while reducing the cost associated to the trajectory 7..,q4 is a trajectory objective.

By definition, a candidate solution is called feasible if its rule execution sequence 7 is exe-
cutable. In a genetic approach for rule-based DSE, infeasible solutions can occur when applying
genetic operators (e.g. crossover) on existing feasible solutions. However, in our approach, such
infeasible solutions are automatically corrected (or truncated) to guaranty their feasibility, or
omitted if they cannot be corrected.

Consider newHostInst(HI);allocate(AI, HI, RR) (see Figure 2.7) which is a rule execution
sequence that aims to create a new host instance A1 and then allocate an application instance
Al to it is not executable if there is no application instance AI to be allocated. To correct
this infeasible sequence, the creation of a new application instance Al by rule newAppInst(AI),
should precede the allocate(AI, HI, RR) rule. Otherwise, the sequence must be truncated so that
it includes only the rule execution newHostInst(CS1).

A feasible solution S = (M, 7) is defined as a valid solution if its associated model M fulfills
all constraints in C: i.e. Ve e C Am :cw— M.

5.3 Objectives

The objective of constraints fulfillment As constraints are formalized by graph patterns, in
order to evaluate the degree of well-formedness constraints are met or ill-formedness constraints
are violated in a candidate model M,,, we use the weighted sum of the number of matches for the
corresponding graph patterns P.

For instance, let us evaluate the constraints of Figure 2.6 on a sample model M of Figure 5.2.
For this model, our optimization approach will return that the graph pattern satisfiedReq has 1
match and the graph pattern extraHost has 1 match. In our example, the weight of satisfiedReq
is set to w; = 2 and the weight of extraHost is set to we = —1, therefore, the degree of constraint
violations in M is: ConstViol(M) =1 x wy +1 X wy = 1.

Formally, let matches(p, M) return the number of matches of the graph pattern p € P in the
model M, and let w, denote the weight associated to the constraint described by p (where w,, is a
positive value for well-formedness constraints and a negative value for ill-formedness constraints).
Then our objective of constraints fulfillment is defined as follows:

ConstFul fillment(M) = Z w, X matches(p, M) (5.1)

VpeP

The primary optimization objective of our approach, as explained in section 5.2, is to maximize
ConstFul fillment(M), i.e. to maximize the fulfillment of positive constraints and minimize the
degree of negative constraint violations.
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al:Applinst applinstRun 0 4 0
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h1:Hostinst 1

Figure 5.2: Objective of constraint fulfillment

Model-specific objectives Our approach allows to define domain-specific objectives captured
by graph patterns over the underlying model. Thanks to the incremental query evaluation ap-
proach (EMF-INCQUERY), the re-evaluation of such model objectives is instantaneous upon model
changes.

In the context of our motivation example in this report, we define the model-specific objective
of maximizing the utilization of compute servers (C'SUtil), so that the best utilization of memory
or storage is incorporated for each server.

Let Util(C'S;) return the (normalized) resource utilization for the computer server C'S; while
the system-level utilization of computer servers C'SUtil for a solution S = (M, r) is defined as the
mean of the utilization of each individual computer server element in M:

1 =
CSUtil(S) = — > Util(CS;) (5.2)
j=1

In the above equation, n is the number of computer server instances in the underlying model M.

Rule sequence objectives Two valid solutions can be achieved via two different feasible se-
quence of rule executions. Therefore, we may define objectives specific to rule execution sequences
to evaluate the cost incorporated in achieving a valid solution along a specific path.

For this purpose, we define the cost of a feasible solution S = (M, ) as the sum of costs of
all rule executions in its sequence of rule executions 7

Cost(S) = Cost(M;_y ™5 M;) VM;_y ™™ M; € (5.3)

Cost(S) takes its values in the interval [0..00[. Minimizing C'ost(S) is an objective of our opti-

mization approach. Computing the cost Cost(M; 1 = M;) of a rule execution in 7 depends on
three parameters to be defined by the domain experts:

e Fized cost: the fixed cost C} of the applied rule r;; formally, Cost(... JREEK )E = Cylry). As
defined in Figure 2.7, creating an application instance will always have the same cost, which
is Cp(newApplinst) = 2.

e Match cost: the match cost C,, which is associated to the match m; in M;; formally
Cost(... “5 )M = Cy(r;) + Cp,(r;), where Cy, (r;) returns the cost of r; according to
its match m;. For instance, the cost of rule newHostInst is specific to the matched host

type element HT' (as defined by the black circles in Figure 2.1).
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e Sequence cost: the sequence cost C may depend on the position of the rule execution ... ~5
... in 7. For this purpose, we define the cost of such a rule execution as relative to its position
in 7 on the same match m: Cost(... *% ..} = position(ry, my,) x Cost(... =™ )M swhere

position(ry, my) returns the position of 7 application on the same match my in 7.

5.4 Genetic operators (mutation and crossover)

In this report, we define and use different types of mutation and crossover operators for
exploring the design space. In our context, mutating a solution S = (M, ) means to modify the
sequence of rule executions 7, which is conceptually different from most genetic approaches used
for DSE purposes. This can be achieved in different ways:

e Add new rule execution: a new sequence of rule executions 7 is generated by selecting an

appropriate exploration rule ' from R, that can be applied on M, and execute it: 7 =

P M My

e Delete a random rule execution: a new sequence of rule executions 7 is generated by deleting
a random rule execution re; in 7, so that: # = {reg,...,re;_1,re;117,...7}. The question
marks in the aforementioned sequence denote the execution rules which will be checked for
executability after delete is performed. Indeed, after deleting re;, the executability of the
new sequence 77 is checked starting from the rule execution re;,;, so that if re;,,; is not
executable anymore it is then ignored (removed from the sequence), and so on for each

reiik, k> 1.

e Swap between two rule executions: a new sequence of rule executions 7’ is generated by
selecting a random rule execution re; in 7, then selecting another rule execution re; (j > 1)
in 7, that can replace re; and still executable, then swap between re; and re; so that:
7 ={reg,...,rej,re;i1?, ... 7, re;?,rej?, ... 7} Similarly to the case of delete a random
rule execution discussed above, the executability of the new sequence 7 is checked starting
from the rule execution re;, .

The crossover operators apply on two individuals represented by the sequences of rule exe-
cutions of two parent solutions S' = (M',7') and S? = (M?,7?), and generate two new offspring
individuals (children). figures 5.3, 5.4 and 5.5 describes the three crossover operators that our

optimization process uses:

cut point c_fzgg‘_fg_g);ecutabﬂfty
individual 1 .~ Offspring 1
individual 2 7 Offspring 2

Figure 5.3: One-point crossover

e One-point crossover (Figure 5.3): a single crossover point on both sequences of rule execu-
tions of parents is selected. All rule executions beyond that point in either sequences of rule
executions are swapped between the two-parent sequences. The resulting sequences of rule
executions are the children.
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Figure 5.4: Cut-and-splice crossover

cut point

ndividual 1 [l 5| 3 4 I 5
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Figure 5.5: One-point permutation crossover
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e Cut-and-splice crossover (Figure 5.4): cut-and-splice crossover is a variation of the one-point
crossover where the difference is each parent’s sequences of rule executions has a separate
choice of crossover point. As a result, the children sequences of rule executions will have
different length than that of their parents.

e One-point permutation crossover (Figure 5.5): in this crossover operator, every rule execu-
tion re; in either sequences of rule executions (parents) will have an ID. This ID is based
on the applied rule r; and the match element m; of re;. Hence, two rule executions, r; and
rj, can have the same id if they are applications of the same rule r on the same match
m. Representing the rule executions by their IDs, a sequence of rule executions will have
a permutation representation, as in Figure 5.5. With the one-point permutation crossover,
one crossover point is selected on both sequences of rule executions of parents, from the first
(second) parent the permutation is copied up to this point, then the second (first) parent is
scanned and if the ID of the rule execution is not yet in the offspring, the rule execution is
added.

For every crossover operation, our approach performs an automatic executability check of rule
executions occurring after the cut point(s) in children sequences of rule executions. The correction
mechanism is identical to that used in the delete and swap mutations that we described above.
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Chapter 6

Architecture and prototype
implementation

This chapter presents three more conceptual challenges about the details of the approach in
section 6.1 and further insight about the implementation in section 6.2.

6.1 Conceptual challenges

Chapter 5 proposed an approach about integrating multi-objective optimization techniques
by using the Non-dominated Sorting Genetic Algorithm (NSGA-II) [12] to drive rule-based design
space exploration. It defined how an individual can be interpreted in the context of DSE, what
is a feasible and valid solution, how to capture objectives on the individuals and proposed a few
mutation and crossover operations. However, additional conceptual questions need to be clarified:

1. How to apply global search techniques to VIATRA-DSE.
2. How to encode individuals.

3. How to exploit VIATRA-DSE’s support on parallelization.

The next sections address these questions in this specific order.

6.1.1 Applying global search techniques to VIATRA-DSE

VIATRA-DSE, a rule-based design space exploration framework supports local search based
state space traversal, i.e. a traversal strategy needs to be defined by the next step it takes in the
already traversed design space. Until the deciding of the next step, traversal among the explored
states is possible via basic operations like backtracking and executing an activation again from
the corresponding model state.

However, global search techniques need several or even hundreds of separate local search units.
For example, ants of ant colony optimization randomly explores their immediate environment
based on heuristics and pheromone trails. Thus a solution is needed to carry out global search as
a reduction to a single local search.
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CHAPTER 6. ARCHITECTURE AND PROTOTYPE IMPLEMENTATION

I propose the following solution to this problem:

1. Generate an initial set of trajectories (or individuals) through a local search. As stated in
section 4.2 global search techniques maintains a set of solutions and expect an initial set
at the start of the search. However, it is usually undefined how to generate them, it only
declares that it should be random. In rule-based design space exploration the initial model
needs to be transformed to generate a feasible rule sequence (an individual), thus a local
search is needed to explore possible trajectories. This search can be random, systematic or
even guided, but it should return a pre-defined number of different trajectories during its
exploration.

2. Store the context of the individuals, i.e. the sequences of activations and calculated fitness
values. During the initial selection the local search have to store these information as they
are needed in the next steps.

3. Carry out additional calculations, which are necessary from a global point of view such as
communication between the individuals (e.g. fading of pheromone in case of ant colony
optimization), dropping individuals with bad characteristics based on fitness values or gen-
erating new ones and any guidance from a global point of view should be executed in this
step.

4. For each individual: 1) execute its trajectory and load its context, 2) execute one step based
on the rules defined by the global search technique and 3) calculate their fitness values.

5. Continue from step 3. until a pre-defined stop condition is satisfied. A stop condition can
be an upper bound on the number of iterations, the exploration found a solution within a
certain range of a predefined limit or unable to reach better solutions.

For example the genetic algorithm can be interpreted to the above solution by the followings:

1. Generate an initial population in any choosen way.
2. During the generation store the trajectories along with the calculated fitness values.

3. Select the best ones (e.g. by grouping them into fronts as NSGA-II does) to reduce the
number of individuals to the population size. Then generate the children population via the
crossover and mutation operators working only on the representation of the individuals.

4. For each newly created individual check its feasibility and calculate its fitness values execut-
ing the trajectory on the initial model.

5. Continue from step 3. until a pre-defined stop condition is satisfied.

6.1.2 Encoding of individuals

As stated in section 5.2 individuals are represented as sequences of rules. VIATRA-DSE
creates activation and state codes (or IDs), thus storing individuals as a list of activation codes
seems an obvious choice. The built in encoder for VIATRA-DSE is domain independent and
incremental [13]. Thus it can be used for any DSE problem and its incrementality makes it
efficient for a wide range of problems as it recalculates only the parts of the code which has been
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modified by the rule execution. However, it has two shortcomings: 1) although it is incremental
a domain specific state coder designed directly for a problem may outperform it by an order of
magnitude and 2) activations codes (IDs) are different from each other, which makes crossover
operations impossible to implement properly.

The latter issue is illustrated in Figure 6.1. It shows a part of a design space, where activations
are encoded symbolically by the built in state coder to Latin letters. Also there are two individuals
(solutions) Si(a,e, k) and Sy(b, g,n). If a single point crossover operation takes place between S;
and Sy, the new individuals would be S3(a, g,n) and Sy(b, e, k). When feasibility of these new
individuals are checked, the last two activations for both solution will be omitted, because it is
impossible to match an activation encoded as g in M; for solution S3 and vice versa. Therefore, the
crossover operation will fail to fulfill its function and will only generate children with a truncated

trajectory.

b,

a,a

m,

1

S

S,

Figure 6.1: Encoding of activations

Nevertheless, a domain specific state coder can overcome this limitation. Most of the activa-
tions are independent from each other and executing one will make only a small set of activations to
appear and/or disappear. For example, on Figure 6.2 activation 1 is independent of the execution
of activation 2. Hence, if encoding of the activations is independent of the source state, they can
get the same code. Figure 6.1 shows such a state coder by symbolically encoding the activations
into Greek letters. Using this state coder the crossover operation can perform its function and the
parents Si(a,d,n) and Sa(3,7, () will produce children S3(a,~, () and Sy4(5,0). In the example,
the child S, loses the last activation n from the parent S; as it is unavailable from M.

6.1.3 Parallelization

VIATRA-DSE gives support for parallelization of a traversal strategy [13]. For that purpose,
it copies the initial model for every new thread and initializes an EMF-INCQUERY engine on
it. Thus, threads can explore the design space independently and have to synchronize only for
building the design space representation, allowing to recognize already traversed states by other
threads.
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Implementation of the NSGA-II algorithm exploits this feature by creating worker threads
which check the feasibility of an individual and compute its fitness, while the master thread
performs the rest of the work. Figure 6.3 shows an overview of the implemented process. The
master thread is responsible for 1) generating the initial population, 2) selecting the population
into fronts, 3) generating the child population using simply the state and activation IDs and 4)
removing potential duplications. When new valid children are generated they are immediately
sent to the worker threads for processing. The trajectory of the individual is applied to the initial
model for (i) checking its feasibility, (ii) correcting if needed (i.e. omitting all the non-executable
activations) and the objectives of the new individual are calculated. After the necessary amount
of children are generated by the master thread and processed by the worker threads, the master
thread starts a new iteration by executing its selection operator.

Synchronization of the threads is solved by two queue and one binary flag.

1. Worker threads are created in the initialization phase and they start to listen to the same
concurrent queue as soon as they are ready.

2. The master thread puts the newly created candidate children into this queue and the first
available worker thread processes the candidate.

3. Workers put the validated children to an other concurrent queue which is monitored by the
master thread.

4. If children were dropped for either being completely unfeasible or were corrected to an
individual already present in the population, new children may be generated by the master
thread to substitute the dropped indiviuals and fill up the population.

5. If the stop condition is fulfilled the worker threads are signaled with a specific flag to stop.

During the generation of the initial population and selection only one thread is working
which may reduce the efficiency of parallelization. The generation of the initial population can be
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Figure 6.3: Workflow of the main and worker threads

thought of as a local search and can be easily implemented to multiple threads as VIATRA-DSE
supports that as one of its main features. Multithreaded selection (i.e. sorting into fronts) is also
possible as comparing the individuals sequentially is unnecessary. Parallel computation of these
tasks remains future work.

6.2 Implementation details

The conceptual contributions described in the previous section are implemented but not
discussed here.

6.2.1 Configuration and logging

Genetic algorithms has many adjustable input parameters. Properties of the initial selection,
size of the population, stop condition, chance of mutation and crossover operations, etc. can be
configured to run the algorithm. These parameters may have a big impact on the results. Therefor
it is crucial to be able to monitor and then analyze the internal behaviour of the various executions
to achieve the required parametrization options.

For this reason, I created an executable file, one for each case study, which can run the design
space exploration and is configurable via a coma separated values (CSV) configuration file. During
the execution it creates and appends the results into several CSV files which includes information
about every individual of every population. Figure 6.4 shows the overview of the testing process.
Each row in the config.csv means a different configuration and run multiple times defined in the
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row. Runs for the same configuration result in the same output CSV file, while a new is created
for each configuration. A new row is appended in a results overview file after every run containing
information about the Pareto front, run time, memory usage, etc.

Read next
configuration row
———— E population details
for every configuration
Configure DSE @
Geneticalgorithm
iteration -~
append .
e - = S @ results overview

config.csv

Run again with
same config __

Figure 6.4: Architecture of the logging frameworks

6.2.2 API usage

The new algorithm on the VIATRA-DSE framework received a new API by wrapping the
original one, keeping the domain independence and high level abstraction and extending it with
configuration options for overriding its default behaviour.
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GeneticDesignSpaceExplorer gdse = new GeneticDesignSpaceExplorer () ;

// rule—based dse

gdse.setInitialModel (model) ;

gdse.setSerializerFactory (new CPSSerializerFactory()):;
6 gdse.addTransformationRule(startRule);

7 gdse.addTransformationRule(allocateRule);

8 gdse.addTransformationRule (createAppRule);

9 gdse.addTransformationRule (createHostRule);

U W N =~

11 // objectives

12 gdse.addSoftConstraint (”RunningApps”, runningAppQuerySpecification, —4);

13 gdse.addSoftConstraint (” AllocatedApps”, allocatedAppQuerySpecification, —3);

14 gdse.addSoftConstraint (”"RequirementHasApp”, applicationsQuerySpecification , —2);
15 gdse.addSoftConstraint (”UnusedHosts” ,unusedHostQuerySpecification , 1);

16 gdse.setModelObjectiveCalculator (new ObjectivesCalculator ());

17 gdse.addObjectiveComparator (”ResourceUsage”, comparator);

19 // genetic operators

20 gdse.setInitialPopulationSelector (new BFSSelector (0.4));
21 gdse.addMutatitor (new AddRandomTransitionMutation (), 2);
22 gdse.addMutatitor (new ModifyRandomTransitionMutation () ,
23 gdse.addCrossover (new CutAndSpliceCrossover (), 1);

24 gdse.addCrossover (new OnePointCrossover (), 1);

25 gdse.setMutationChanceAtCrossover (mutationChance) ;

26 gdse.setSelector (new NonDominatedAndCrowdingDistanceSelector ());
27

28 // other options

29 gdse.setSizeOfPopulation (15);

30 gdse.setStopCondition (StopCondition .ITERATIONS, 50);

31

32 gdse.startExploration (timeout);

1);

Code 6.1: API usage

Code 6.1 shows a possible configuration of the smart house cyber-physical system case study.
GeneticDesignSpaceEzxplorer is used for configuring a problem. Method calls at lines /-9 show
the configuration options VIATRA-DSE initially has: setting the initial model, the state and
activation encoder and the transformation rules (see Figure 2.7).

Lines 12-17 shows how to define the objectives and soft constraints (see Figure 2.6). Soft con-
straints consist of a name, a model query specification (derived from an EMF-INCQUERYpattern)
and its weight. Objectives derived from the model are calculated via an interface implementa-
tion, while whether it is for maximization or minimization is defined by a comparator. Objectives
derived from the trajectory are defined on the rules.

Lines 20-25 configures the genetic operators. Line 20 sets the initial selection rate which
is a breadth first search strategy with 0.4 chance to choose a trajectory to the initial population.
Then the mutation and crossover operations are defined with a relative usage rate (i.e. AddRan-
dom TransitionMutation is used twice as many times as ModifyRandom TransitionMutation; same
for the crossover operations). At what rate to use mutation or crossover operations is set in a
separate method call. The selection operation of the NSGA-II algorithm is set.

Before starting the exploration at line 32 the size of the population and the stop condition
is configured. Exploration can be stopped after a pre-defined number of iterations, after a good
enough solution is reached or after the exploration cannot reach a better solution after a number
of iterations.
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Chapter 7

Evaluation

As there are no widely established benchmarks available for evaluating rule-based DSE ap-
proaches, we carried out experimental evaluation in the context of our case study. section 7.1
carries out evaluation on the cyber-physical system case study, which is a collaborative work, and
section 7.2 discusses my own analysis on the BPMN case study.

7.1 Experimental analysis of the cyber-physical system
case study

We compare our multi-objective optimization (NSGA) approach with (1) random simulation
(Random) and (2) a fixed priority local search (FPLS) strategy used as a basis of comparison in [5].
As a consequence, the DSE problem is identical in both cases, furthermore, the evaluation of graph
patterns and execution of graph transformation rules is carried out by the same implementation.
This way, any difference between the measurement results is expected to be affiliated to the
substantially different search strategies. Our measurements aim to address which DSE approach
finds better candidates with respect to different objectives. For this purpose, we test the following
hypothesis using two-tailed Wilcoxon tests:

e Hypothesis H, There is no significant evidence that NSGA outperforms FPLS and/or
Random.

e Hypothesis H; There is a statistical evidence that NSGA outperforms other DSE ap-
proaches with respect to different objectives.

7.1.1 Scenario

In our experimental scenario, we generate requests for an increasing number of rooms (4, 6,
8, 12) with an equal use of all packages (and respective model sizes of 130, 200, 230 and 330 graph
elements). The initial model only contains the requests with requirements and the application and
host types but no host instances are available. Therefore, it is the role of the DSE process to 1)
create a sufficient number of application and host instances, 2) allocate application instances to
host instances, and then 3) start and stop the application instances by applying the appropriate
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exploration rules. In the most complex case, the different exploration techniques had to synthesize
a rule sequence consisting of over 200 steps.

In a preparatory phase, we experimented with different configurations of our multi-objective
DSE approach, and we decided on the most promising configuration parameters, such as population
size of 15 individuals, iterations between 400 and 1200 steps, crossover by permutation, and high
rate of mutations. Our measurements were run on 8-core desktop computers with 32 GB of RAM

running on Linux operating system. The used Java version was 1.7.0_55 and the heap size was
24GB.

Then for the experiments, we set up a timeout of 2 minutes for test cases (except for the
largest example where it was 5 minutes) and run 30 experiments on the different problem sizes.
One experiment was constructed as follows:

e NSGA: We selected population size pop and iteration number it for a problem size, and run
our algorithms. At the end of each run, we selected only one solution from the Pareto front
produced by NSGA. We selected the solution which has the best constraints’ fulfillment
value. If several solutions have the best constraints’ fulfillment value, then we select the
solution which is characterized by the minimal cost and/or the maximum usage of computer
servers.

e Random: We executed pop X it random simulation runs and recorded the best result.

e Fixed priority LS (FPLS): We set up priorities in a way to guarantee that all application
instances will eventually be allocated to host instances. Our priorities guaranteed that the
first three soft constraints will definitely be guaranteed, but we may generate more host
instances than necessary.

7.1.2 Analysis of results

. RegRooms
1 OOD/O T * /A
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Figure 7.1: Quality of NSGA solutions produced in 30 runs for different problem sizes, as
measured by the measurements normalized constraints’ fulfillment, cost and computer server
utilization

Before comparing the results of our approach NSGA with those of FPLS and Random, we
analysis the quality of NSGA solutions. Figure 7.1 shows the distribution of NSGA produced so-
lutions in 30 runs for considered problem sizes (4, 6, 8 and 12 requested rooms). The figure shows
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that in all considered scenarios, NSGA produced solutions have overall good quality. Considering
all the produced solutions (30runs x 4scenarios = 120solutions), the minimum fulfillment of con-
straints is above 80%, and for the major body of produced solutions, the fulfillment of constraints
is above 90%. Analyzing the evolution of the mean value of constraints’ fulfillment through dif-
ferent problem sizes, we find that it takes its minimum value, around 90%, in the problem size 12
where the incorporated cost in the sequences of rule executions is relatively small, as compared
to the cost of other solutions in the problem size 12. Indeed, this relative low fulfillment of con-
straints is mainly due to the following fact: the optimization process was stopped before reaching
sequences of rule executions that have enough depth to satisfy all the requirements associated to
this problem size. Increasing the number of iterations of the optimization process in this problem
size, NSGA was able to find better solutions in terms of constraints’ fulfillment, as demonstrated
by solutions which have high cost. As for smaller problem sizes, such as in the scenarios of 4 and
6 requested rooms, in almost all runs NSGA was able to find fully valid solutions that satisfy all
the constraints.

A(NSGA - FPLS) A(NSGA - Random)
Pb  Const. Solution CS Const.  Solution CS
size Ful Cost Util. Ful Cost Util.

4 420%*  -369%* 40.32%*% 444%** _145%* 40.19**
6 427F%  -559%*%  40.37** 491** _118%* +0.06

8  +420%*  -746*%* 40.46** +92%* _239%* 4 (.22%*
12 +6 -1058** 40.51%* 55%* -8 +0.18%*

Table 7.1: Comparing between the results of our approach NSGA and FPLS, and between the
results of NSGA and Random, with different problem sizes with regard to the number of
requested rooms: two-tailed Wilcoxon tests with o« = 0.05 and adjusted p.value using the

Benjamani and Hochberg (BH) correction for multiple tests.

To confirm our claim that NSGA produces good results, we compare NSGA’s solutions to
those produced by FPLS and Random. Table 7.1 shows clearly that NSGA outperforms both
FPLS and Random, with statistical evidence, in almost all cases. Indeed, only in the problem
size 12, there is no significant statistical evidence that NSGA outperforms FPLS with regard to
constraints’ fulfillment. However, in this case, NSGA significantly outperforms FPLS in reducing
the cost of solutions and increasing the usage of computer server resources. Hence, NSGA overall
significantly outperforms FPLS, and the same finding apply for the Random approach. As a
consequence, we reject the null hypothesis Hy and accept H;.

7.2 Experimental analysis of the BPMN case study

7.2.1 Scenario

In this scenario, the BPMN process of Figure 2.3 is optimized using the transformation rules
of Appendix A. The role of the exploration process is to 1) assign a Resource Type Variant to
each Tusk (reassignment is not possible by the rules), 2) create Resource Instances, 3) modify
the process with either parallelizating a sequence of tasks or vice versa and 4) for each solution
simulate the business process with a predefined number of tokens (100) and token rate (20 ms).
The objectives are the following:
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1. Two soft constraints depicted in Appendix A, with weights of 1 and 10. When such a
constraint matches the business process cannot be simulated.

2. Minimize average response time based on the tokens spent in the business process.
3. Maximize minimum resource usage based on the individual utilization Resource Instances.

4. Minimize rule execution costs: costs of rule createResource is dependent on the resource type
variant and is shown in Figure 2.4, rule allocateTaskToVariant has no cost and the other
two rules have a cost of one.

Average response time is considered infinite and minimum resource usage becomes zero when a
business process cannot be simulated.

The analysis is executed with the following configurations (after several experimental tests):

e 50 iterations,

population size of 13 individuals,

breadth first search with 0.3 selection rate as an initial selector,

crossover by cut and splice,

two types of mutations:

— add new random rule execution

— and a slightly modified version of it: add new random rule execution by priority which
chooses randomly from the available activations with the highest priority (rule allocate-
TaskToVariant: 3; rule createResource: 2; other two has a priority one)

The aim of the measurements is to investigate the impact of the mutation rate (chance the choose
a mutation operator instead of a crossover) to the Pareto front. The measurements were carried
out on a desktop computer with 4 logical cores and 8 GB of RAM running Windows 7 operating
system and Java 1.7.

7.2.2 Analysis of results

The scatter plots in Figure 7.2 show the objective values of Pareto fronts from 30 separate
runs with different mutation rates. Grey points depict out of range cost values.

General observations:

e It is clear in the results of all three run configurations that the lowest response time (24-25
ms) can only be achieved with higher costs (>16) and lower resource utilization (<0.4).

e Cost and resource utilization have high correlation: higher resource utilization has lower
costs as less resource instances are created during the exploration.
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Figure 7.2: Values of objectives in the Pareto front, plotting 30 runs

e [t is interesting that the system cannot be configured with minimum resource utilization
higher than 60%. It probably means that only a relatively small number of tokens reach one
of the tasks and it is waiting most of the time leaving the resources unused, i.e. the rate of
the incoming tokens is lower than the execution time of the task. There are three possible
reasons for this: 1) the rate of tokens (requests) is inherently low, 2) the decision gateway
directs most of the tokens in the other direction and 3) there is a bottleneck before this task.

e The same spike can be seen at minimum resource utilization 0.3. A possible explanation
would be the same as the previous, but the particular task has twice as many resources.

Higher mutation rate increases the number of solutions with high resource utilization and
low costs. The reason behind this is that cut and splice crossover can add two long trajectories
(see Figure 5.4) resulting in many resource creation rules, thus reducing resource utilization and
raising costs. Also two trajectories may have different resource type variants allocation and the
child solution may have unused resource instances as they belong to unused variants. However,
these trajectories are likely to remain in the Pareto front as they have high response time. On the
other hand, mutation operators only add one activation to the trajectories which will be probably
dropped if an unusable resource instance was created as minimum resource utilization 0 can be
easily dominated by other solutions. Therefore, by raising mutation rate (and decreasing the
chance of crossover) these trajectories are less likely to appear and better results can be achieved.
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Chapter 8

Summary

In this report, we proposed to integrate constrained multi-objective optimization as a search
strategy for rule-based design space exploration frameworks. In contrast to existing genetic ap-
proaches for design space exploration, in our approach, a genetic population consists of rule ex-
ecution sequences from an initial model to design candidate, constraints are captured by model
queries, objectives are calculated from models or rule sequences, while crossover and mutation
operations are manipulating rule sequences.

A first key challenge in this setup is that traditional encoding of populations as fixed width
bit vectors is unable to represent rule sequences of increasing depth, while it is very difficult or im-
possible to give a priori upper bounds for feasibility checks. Moreover, unlike in most application
scenarios of genetic algorithms, crossover and mutation operations may derive non-executable ap-
plication sequences as individuals which must be omitted from the population. As a consequence,
we had to integrate multi-objective optimization techniques to a model-driven rule-based DSE
framework as a mapping from a rule-based DSE to a genetic algorithm proved to be infeasible.

Our initial experiments demonstrated that multi-objective optimization is an effective strat-
egy for solving rule-based design exploration problems. However, using a randomly synthesized
initial population appears to be suboptimal choice in our context and further research is subject
to future work.

This line of research has been carried out in close collaboration with researchers from BME-
MIT and DIRO at Université de Montréal reported in [14]. The core theoretical novelty of adapting
the global search technique of NSGA-II for multi-objective optimization techniques for rule-based
design space exploration is a joint contribution. This report summarizes the entire line of research
(where T continuously and actively participated in) and below I highlight my own contributions
within this line.

e Conceptual contributions

— I proposed to integrate global search techniques as local search based rule-base design
space exploration by switching between trajectories and generating the initial popula-
tion with an arbitrary local search technique.

— I proposed to replace the built-in domain independent state coder of VIATRA-DSE
with a domain specific one allowing activations to be encoded to the same ID.

— I developed a concept of a parallel genetic exploration strategy for multi-objective
rule-based design space exploration by executing the model transformation, fitness cal-
culation and correction of the trajectories in worker threads.
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e Practical contributions

— I proposed an architecture and implementation with an easy to use API for multi-
objective rule-based design space exploration built on top of VIATRA-DSE, which
enables the overriding all of the genetic operators and parallel execution.

— I developed an evaluation framework especially for this new exploration strategy which
enables extensive and customizable monitoring of the execution internal behaviour and
wrapped them with executable files which allows easy testing on several computers.

— I prepared two case studies with domain specific state encoders for experimental eval-
uation.

— I evaluated the effectiveness of the proposed techniques on two case studies (where the
BPMN evaluation is my own contribution).

Future work In the future I would like to extend the approach with adaptiveness of the pa-
rameters, experiment with different genetic operators (like a guided local search as an initial
population selector and guided crossover operations) and support hierarchical (prioritized) objec-
tives with different selection operators. Furthermore, I would like to evaluate the feasibility and
possibly implement other metaheuristic techniques like the ant colony optimization.
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Appendix A

BPMN case study
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