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1 Introduction 

Requirements against modern IT infrastructures are high availability and low response 

times. Such systems usually run in a distributed way. For this reason, the networking 

infrastructure that interconnects the components is one of the most important building 

block of the system. Because, even if the components are performing well one by one, 

the underlying network can cause bottleneck in the whole system. 

In this paper I show a solution for enhancing networking performance by using Remote 

Direct Memory Access (RDMA). I show how RDMA influences network latency, and 

how can we gain more performance with the use of subtle programming steps. 

In the next Section I present the motivation of my work and provide an overview of the 

related literature, then in Section 3 I review the networking technologies related to my 

work. In the Section 4 I provide a detailed description of the RDMA approach. In 

Section 5 I present the results of my research, including my proposed mechanisms and 

the measurement results. Finally, I summarize these results. 
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2 Motivation 

When RDMA appeared first in the world of computer networking a lot of research and 

development project has started to utilize its possibilities and exploiting the gains of 

low latency and high bandwidths supported by the technology. Since RDMA is only 

supported by special Network Interface Cards (NICs) and in the early 2000s the 

requirements of typical use cases were not so high for networking infrastructures, these 

projects have been soon stopped. It can be said that RDMA has appeared before the 

time has come for leveraging its features. 

Nowadays, the demand has increased for networking infrastructures that have high 

availability and the ability of serving huge amount of tasks. Such environments need to 

support low response times and high bandwidths, a typical use case being the 

telecommunication networks with high Quality of Service (QoS) requirements. Today, 

in modern data center servers are required to handle massive amounts of data. 

Latency-sensitive applications like virtualized telecom and industrial IoT systems 

require a service with very low latencies to become cloud-native. Recent proposals that 

confer determinism to standard Ethernet, e.g., Time-Sensitive Networking (TSN) are 

not mature enough yet, and there are very few networking devices that support such 

features.  

Today, Ethernet is the default option to solve the networking needs of the data centers. 

Nevertheless, as for now, Ethernet cannot support the increasing QoS requirement. The 

research community revisited RDMA as a known option to achieve low latency 

networking. The first widely used RDMA networking architecture was Infiniband, but 

it was designed to be deployed in dedicated networks. This was a major impediment in 

the wide adoption of the technology, and the most successful contender proved to be the 

RDMA over Converged Ethernet (RoCE), which combines the ubiquity of Ethernet and 

the certain advantages of RDMA.  

RDMA based improvement of specific distributed applications has been actively 

studied in the recent years. Due to lack of space I cannot offer a detailed review of all 

the relevant articles, but I will highlight several contributions covering various fields. 

HERD is an RDMA based key-value system, which supports up to 26 million 

transactions per second with 5 us average latency. HERD shows how effective systems 

can be implemented by using RDMA [26]. As RDMA technologies has evolved, HERD 

has been improved as well, increasing both the CPU efficiency and the throughput 

performance [27]. The uRDMA project has started to implement RDMA over DPDK 

[28], answering need of providing RDMA over commodity hardware. FaRM shows an 

example how RDMA can be used to implement distributed memory, too.  By replacing 

TCP/IP with RDMA, FaRM improved both its latency and throughput performance by 



   
 

5 
 

an order of a magnitude. RDMA also can be used to support low latency file transfers, 

by leveraging the possibility of copying data from the server's memory to the client's 

page cache [29]. This solution minimizes memory copies that are otherwise executed in 

the client interface or the operating system kernel.  

The application of RDMA to speed up the networking process is a hot topic among the 

designers of Data Center communication. Besides providing a good review of the 

historical RDMA technologies, [30] also proposes a software RDMA solution that can 

cope with high-performance computation loads. This trend is sensed by the networking 

equipment manufacturers, too. A good example of a recent high-performance network 

adapter family is presented in [31], where the authors also presents a good background 

and motivation for the adoption of this technology. [32] presents a detailed overview of 

RDMA based intra-data center communication solution, which is deployed in the data 

centers of one of the leading public cloud service provider. 
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3 Technologies used 

3.1 Traditional networking solutions 

When creating computer networking systems the first thoughts are about traditional 

networking devices like switches, routers and cables used to connect servers or storage 

nodes. This is a network centric, bottom-up approach. According to this view the 

overwhelming part of the design is about the underlying networking architecture. 

Applications running in such environments are highly different by the nature of the 

traffic, for example storage, web, inter-process communication, etc.  

Traditional local networking solutions are mostly implemented by Ethernet devices and 

links and build communication channels over IP. The majority of applications running 

over IP are using socket based communication, such as TCP or UDP sockets. An 

application using such communication types are relying on the main memory of the 

operating system for creating an anonymous buffer pool which is integral for the 

networking stack. Each in/outbound packets are copied via these buffers as they are 

traversing through the networking stack. When remote applications communicate with 

each other by transferring data, for every send or receive operation at least two copies 

are required, one for copying the data to the buffer of the transport protocol, and another 

for delivering the data to the application's virtual memory space as shown in Figure 1.  

 

Figure 1 – Extra copying cycles using socket based communication [1] 

These extra copies, induced by the transport layer, are very expensive both for latency 

and bandwidth, not to mention the CPU time consumed by the copy operations. This 

results in pure overhead spending the time with copying data through the buffers.  
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The load of the memory originated from the network traffic is largely dependent from 

the aggregated traffic that has been created by the hosted applications. As the number of 

processors in computers increases and the number of threads executed per core 

increases the offered network load can increase proportionally.  

Further, each incoming packet moves from the NIC to a ring buffer and an interrupt is 

asserted, the driver serves the interrupt, receives the packet, and pushes it to the 

networking stack. The packet then traverses through the networking stack and arrives in 

a socket. Lastly, the data is copied from the socket buffer located in the kernel space to 

the memory space of the application in the user space.  

3.2 Solutions applied in data centers 

Traditional local area networking is predominantly based on Ethernet. Ethernet does 

not provide any guarantees that data is delivered, i.e. the delivery is best-effort, that can 

lead to packet loss typically due to congestion or corrupted packets. Higher layer 

protocols can handle these packet losses, taking TCP for an example. TCP is a reliable 

connection oriented transport protocol, which guarantees reliability by retransmitting 

packets if loss occurs. Combining the latency coming from the buffer copy operations 

happened as the data traverses the networking stack, and the latency caused by packet 

retransmissions can result in serious latency increase and bandwidth drops.  

Data Center Bridging (DCB) is a solution for implementing lossless Ethernet by 

providing hardware-based bandwidth allocation to specific types of traffic. It enhances 

Ethernet transport by several protocols such as Priority based Flow Control (PFC), 

Enhanced Transmission Selection, and Congestion Notification [2][3]. 

3.3 Data Plane Development Kit 

Data Plane Development Kit (DPDK) is a Linux Foundation Project, developed by 

hundreds of contributors, supported by strong leading members, and used in a growing 

ecosystem. DPDK runs mostly in Linux userland, it consists of libraries and drivers for 

fast packet processing [4]. DPDK achieves fast packet processing by controlling the 

NIC from user space as opposed to kernel space, by using DMA operations to move 

incoming traffic to application buffers, thus DPDK can avoid expensive kernel to user 

space copying. The User-space IO (UIO) driver is responsible for mapping the device 

to user space. DPDK polls the memory for receiving packets from the hardware instead 

of interrupt based processing, the Poll Mode Driver (PMD) implements this task. By 

this DPDK can achieve much faster packet processing than the classical solution [5]. 
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3.4 Solutions for virtualized environments 

3.4.1 Using software based layer 2 forwarding 

There are different networking solutions for environments running virtual machines 

(VM) or containers. The basic solution supported by every cloud platform is using a 

virtual software switch that interconnects the physical network interface and the VMs 

(Figure 2), like LinuxBridge, part of the Linux kernel, or Open Virtual Switch (OVS). 

In this networking setup VMs running in the cloud on different hosts communicate via 

the software switches, the physical interfaces of the compute nodes and the underlaying 

physical network. However, if we would like to implement some kind of latency 

sensitive communication this solution has some drawbacks, since software based L2 

forwarding consumes CPU time, and adds overhead in latency. Using OVS latencies 

coming from the network stack can be eliminated by using DPDK based extensions  

[7]. 

  

Figure 2 – Software based L2 forwarding [6] 
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For eliminating these overheads using software switches Intel introduced hardware 

based solutions for virtualization. As the number of VMs are increasing on a host the 

required traffic is increasing nearly proportionally. This increase in traffic has a serious 

impact on CPU usage, and can cause bottlenecks regarding the latency of network 

communication. 

3.4.2 Virtual Machine Device Queues 

Intel introduced Virtual Machine Device Queues (VMDQ). By using VMDQ the 

arriving packets are sorted to destination queues using MAC address and VLAN tag 

filtering, the sorter then places the packets to the receive queue belonging to the 

respected VM. The hypervisor’s software bridge then routes the packets to the 

respective VMs, thus VMDQ performs the heavy lifting work by sorting the packets. 

Figure 3 shows this mechanism [6]. 

  

Figure 3 – VMDQ packet sorting [6] 
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3.4.3 Single Root I/O Virtualization 

Intel later introduced further latency eliminations by presenting Single Root I/O 

Virtualization (SR-IOV). SRIOV allows a single PCIe (PCI Express) physical device 

under a single root port, to appear to be multiple separate physical devices to the host 

OS or the hypervisor. SR-IOV operates by introducing Physical Functions (PF) and 

Virtual Functions (VF). PFs are full PCIe devices that include the SR-IOV extended 

capability for managing and configuring SR-IOV functionality. VFs are lightweight 

PCIe devices that contain the resources for data transferring but they offer less 

configurational opportunities [8]. 

By using the features of an SR-IOV capable NIC one can assign Virtual Functions (VF) 

to the VMs using PCI passthrough. Thus, VMs can use dedicated hardware resources 

for network communication, and are able to bypass the hypervisor's software based L2 

forwarding services (Figure 4).  

 

Figure 4 – SR-IOV [9] 

The previous solutions are enough for eliminating overheads regarding latencies 
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coming from software based L2 forwarding, for eliminating the latencies coming from 

the usage of the networking stack DPDK based extensions or custom solutions should 

be used.  
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4 Remote Direct Memory Access 

Direct Memory Access (DMA) is a feature of a device to send or receive data directly to 

or from the main memory, without any interaction of the computer’s CPU. Remote 

Direct Memory Access (RDMA) is the ability of accessing memory on a remote 

computer without any CPU interruption on the remote system. 

4.1 Differences between traditional IO and RDMA 

The basic idea behind RDMA is the kernel bypass which means the elimination of extra 

copying cycles through the networking stack that was described before. Logically 

RDMA creates a direct communication channel between the buffers of the remote 

applications. 

 

Figure 5 – RDMA creates a channel between the virtual address space of remote applications 

[10] 

The key approach is that the architecture offers availability to applications to directly 

access the hardware resources. This means that the application does not rely on the 

operating system for transferring messages, in consequence of this, RDMA implements 

zero copy as well, since each inbound packets are directly copied to the virtual memory 

space of the application and every outbound packets to the NIC’s physical buffer. The 

differences between the usage of traditional networking stack and RDMA is shown in 

Figure 6. 
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Figure 6 – Comparison of socket and RDMA based communication [11] 

4.2 RDMA communication 

Applications using RDMA can communicate by using queues.  Three types of queues 

exist, Send Queue, Receive Queue and Completion Queue (SQ, RQ, CQ). SQs and RQs 

are always used together as Queue Pairs (QP). QPs are much like sockets in traditional 

TCP / UDP communication, the difference between sockets and QPs is that QPs are 

mapped to hardware resources, while sockets are implemented purely in software. For 

sending or receiving messages Work Requests (WR) should be inserted in the 

corresponding queues of the QPs. There are two types of WRs, Send Requests (SR) are 

for transferring data to the receiving side of the communication, while Receive 

Requests (RR) are for catching incoming messages. Inserting a SR into the SQ results 

in sending a message, which is fragmented to frames by the RDMA hardware. Figure 7 

depicts how QPs are connected to each other [12]. 
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Figure 7 – RDMA communication is implemented by using QPs [12] 

One can be sure that a WR has completed by gathering the Work Completions (WC) 

from the CQ. WCs contain data about the state of the completed WR. Work 

completions can be retrieved from the CQ by polling it, or by using events. On the other 

hand, polling the CQ consumes much more CPU resources than using events, on the 

other hand, using events cannot guarantee the immediate access to the WC elements 

[13]. The states of WRs are shown in in Figure 8. 

 

Figure 8 – States of a WR from creation to completion [12] 

When creating WRs the memory region where the data will be sent from or received to 

should be specified by the developer of the application. In case of RR only the address 

of the destination buffer, and its length must be specified. SRs are a bit more complex. 

Three main types of operations can be used for SRs. If one uses send - receive 

operations, then SRs should be posted on the side of the communication where the data 

will be sent from, and RR are posted on the receiver side. In this case the checking of 

completion queues is mandatory on both sides, for making sure that the data transfer 
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has ended. However, RDMA supports WRITE and READ operations as well. When 

using RDMA WRITE, the sender side is able to directly write data into the virtual 

memory region of the receiver application. This permits to eliminate the CQ checks on 

the receiver side. RDMA READ also happens in the background on the receiver side. 

RDMA READ can be used if the sender side would like to read from the memory of the 

receiver application. For being able to directly write to or read from the remote memory, 

the application should be aware of the starting address and the length of the remote 

buffer. Figure 9. depicts the differences between send – receive (a) and RDMA WRITE 

(b) operations. 

Figure 9 – Send – Receive operations compared to RDMA WRITE [14] 

RDMA defines three types of connection modes, Unreliable Datagram (UD), 

Unreliable Connection (UC), Reliable Connection (RC). 

Using RDMA UD is much like UDP in socket transport. UD is a connectionless 

transport type, a QP can send to or receive from messages from every other QP in the 

network. This solution scales the best, since there is no need to create as much QPs as 

much communicating parties are in the fabric. However, UD has its drawbacks as there 

is no guarantee that the packets are received in order or not got corrupted. Further, the 

maximum message size must equal to the Maximum Transmission Unit (MTU) of the 

transport path. In case of UD only send-receive operations can be used. Since UD is 

connectionless, the destination should be set for every message, this can be done by 

creating Address Handles (AH) and passing it to the corresponding SRs. UD is a good 

choice if the fabric size is large, and the reliability by the fabric is not a requirement. 

In case of using UC, a QP is connected to exactly one UC QP in an unreliable way. UC 

does not guarantee the arriving of packets in order, and if a packet is corrupted there 

will be no retransmission. Corrupted and out of sequence packets are silently dropped. 
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If a frame is dropped, the whole message is dropped. This can lead to serious latency 

problems. The supported message size is up to 2 GB. UC enables the usage of RDMA 

WRITE besides send - receive operations. UC QPs can be used if the fabric size is not 

oversized and the reliability of the connection is not a requirement. 

One RC QP is connected to exactly one RC QP in a reliable way. RC QPs guarantee that 

the messages are received at the remote side at most once and in order, without any 

corruption. RDMA RC uses selective acknowledgements, for properly received packets 

the receiver side answers with an ACK message, but if the sequence number of the 

arriving packet number is out of order, or the packet is corrupted the receiver side sends 

a NACK message to the sender side. For a NACK message the sender will retransmit 

the corresponding packets. One can set timeout values for waiting ACKs / NACKs to 

be received. In this case the maximum supported message size is up to 2 GB. RC QPs 

support RDMA READ operations in addition to the ones supported by UC. RC QPs are 

in use if the fabric size is not too large and there is a need for reliable data transfer. Table 

1. summarizes the capabilities of each RDMA connection types. 

Opcode UD UC RC 

Opcode: SEND (w/o 

immediate) 

Supported Supported Supported 

Opcode: RDMA 

Write (w/o 

immediate) 

Not supported Supported Supported 

Opcode: RDMA 

Read 

Not supported Not supported Supported 

Opcode: Atomic 

operations 

Not supported Not supported Supported 

Connection type Datagram (One to 

any/many) 

Connected (one to 

only one) 

Connected (one to 

only one) 

Maximum message 

size 

Maximum path MTU 2 GB 2 GB 

Multicast supported Not supported Not supported 

Table 1. RDMA connection types and capabilities [15][19] 

4.2.1 Programming interface for RDMA 

For creating applications implementing RDMA communication one should use the 

verbs API or ibverbs, which is a unified library for developing applications using 

RDMA. The verbs API can be used for IPC, storage and network communication as 

well. 
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4.3 RDMA transport technologies 

There are three implementations of RDMA, using the same programming interface, 

these are Internet Wide Area RDMA Protocol (iWARP), Infiniband and RDMA over 

Converged Ethernet (RoCE). 

4.3.1 InfiniBand 

InfiniBand (IB) is a computing networking communications standard used in High 

Performance Computing (HPC) environments, developed by the InfiniBand Trade 

Association (IBTA). IB provides the combination of high bandwidth and low latency, 

and also implements RDMA.  

The smallest IB architecture (IBA) is the subnet, built by Channel Adapters (CA) 

connected to switches (SW). Software can access Host CAs (HCA), and send data to 

Target CAs (TCA). In every IB subnet, at least one Subnet Manager (SM) should 

present in the subnet. IB communication is forwarded by Local Identifiers (LID) within 

a subnet [12]. 

SM configures the local subnet, including assigning LIDs to devices, discovering the 

network topology, managing forwarding tables of the SWs, and monitoring the changes 

occurred in the subnet. [InfiniBand Essentials Every HPC Expert Must Know] There 

can be multiple SMs in a subnet, while only one has an active state. Non-active SMs are 

keeping the copies of the information of the active one. If an active SM goes down, one 

of the inactive SMs takes its place. 

IB uses Global Identifiers (GID) for packet forwarding over subnets. Traffic is 

forwarded between subnets via IB routers. An IB router reads the Global Routing 

Header (GRH) of the incoming packets containing GID and LID of the target, and 

rebuilds these packets with the proper LID on the next subnet [16]. 
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Figure 10 – Components of an IB fabric[16] 

IB also enables building IP connections between hosts, using IP over IB. Using IP over 

IB does not require any modification of packets used by IP or the layers built on top of 

IP. IP packets are encapsulated in IB frames, as shown in Figuere X. The only 

difference between IP over Ethernet is the payload size, since IB defines different MTU 

values than Ethernet. The size of an IB packet using IP over IB can be the MTU - 4 

bytes due to the IB frame of which payload field starts with a four bytes long header 

[17]. 

 

Figure 11 – IB frame containing IP packet [17] 

The differences between IP over IB and IP over Ethernet can be seen in Figure 12, it 

also shows that no modifications are required in the upper layers. 
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Figure 12 – IP over IB stack compared to IP over Ethernet [18] 

The IB chicken and egg problem. QP communication requires knowing the needed data 

of the remote QPs. Sharing data related to accessing the remote QP must be done out of 

band since QPs cannot communicate without knowing the required data [19]. To handle 

this, IP over IB provides out of band channels like TCP or UDP connections. 

4.3.2 RoCE 

RDMA over Converged Ethernet (RoCE) implements RDMA and provides the 

opportunity for building flexible heterogeneous fabrics. Since RoCE uses Ethernet for 

link layer RDMA traffic can traverse through ubiquitous Ethernet networks. RoCE 

implements two versions, RoCE v1 and RoCE v2. 

RoCE v1 

RoCE v1 encapsulates InfiniBand traffic in Ethernet frames. This version enables 

RDMA communication between hosts in the same subnet. RoCE v1 uses ethertype 

0x8915, this also means that the frame length is limited to standard Ethernet MTU size. 

The modification done for RoCE v1 compared to IB is depicted in Figure 13. 
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Figure 13 – Differences between IB and RoCE frames [20] 

RoCE v2 

RoCE v2 or Rouatable RoCE (RRoCE) overcomes the problem of v1 being bounded to 

a single broadcast domain. RoCE v2 encapsulates IB payload into UDP packets and 

enables routing RDMA traffic across IPv4 and IPv6 subnets. Differences between 

RoCE v1 and v2 can be seen in Figure 14. 

 

Figure 14 – Differences between RoCE v1 and v2 frames [21] 

4.3.3 iWarp 

iWarp builds RDMA on top of TCP/IP. iWarp leverages the advantages of this 

ubiquitous stack. Without RDMA the TCP/IP stack is implemented by software and 

puts significant load on the CPU. As NICs are evolving and bandwidth capabilities are 

getting higher the usage of CPU is increasing proportionally. For eliminating the 

overwhelmed usage of CPU iWarp introduced an extension with which it can enable 

Ethernet to offload transport processing from CPU to a specialized hardware, which 
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can save 40% of CPU utilization on networking tasks. Transport offload can be 

implemented by a standalone transport offload engine on the network interface. By 

moving transport processing to the NIC also offloads the system memory from 

intermediate TCP/IP protocol stack copies by moving these operations to hardware 

space [22]. 

 

Figure 15 – Moving TCP from the kernel to the hardware [22] 

Implementing RDMA over TCP enables packet forwarding through traditional 

networks without any hardware based support. On the other hand the implementation 

only enables RDMA RC communication, since TCP implements a connection oriented 

and reliable type of connection. 

4.4 Technology comparison 

The DPDK project provides an alternative to RDMA that can be used with commodity 

hardware [23]. DPDK similarly to RDMA implements kernel bypassing by enabling 

managing the hardware resources of the NIC from user space. Both solutions exploit 

the advantages of zero-copy and kernel bypassing for earning gains in networking 

performance. In contrast with RDMA, DPDK managed interfaces cannot use the 

networking stack, since the hardware is taken away from the kernel. In case of 

InfiniBand the IP over IB driver implements the necessary environment for being able 
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to use the networking stack, while RoCE and iWarp can directly use the networking 

stack supported by the kernel. Therefore, DPDK managed NICs cannot be used for 

tasks requiring the kernel's network stack, unless implementing it on top of a DPDK 

application [5]. Using RDMA based solutions gives the ease of using the hardware for 

low latency tasks which requires the bypassing of the kernel, at the same time with 

applications running that need to use the kernel's networking stack. 
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5 Measurement based latency evaluation 

5.1 Measurement environment and benchmarking tool 

I have created a test environment for measuring and comparing the latencies of 

traditional socket based and RDMA based communications. The two most important 

performance metrics of networking capacity are throughput (bandwidth) and latency. 

During my work I focused on evaluating and optimizing the latency of RDMA based 

communication. The main reason for this is that while achievable throughput is 

specified by the NIC vendors, the networking latency is not. Moreover, the throughput 

is not only depends on the NIC itself, but it is also influenced by the hardware 

environment (e.g., CPU power, disk and bus I/O capacity) it is deployed to. It is true 

that throughput may be influence by the virtualization environment of the datacenter, 

too, but that is an operational aspect that was out of the scope of my research. When 

considering latency, it is also influenced by the infrastructure environment. The 

difference compared to throughput is that it is not the performance of the host machine 

that counts, rather the external networking environment (switches, routers, interfering 

traffic).  

In order to give a non-biased result, I used a simple, interference-free measurement 

scenario, my results being able to serve as benchmark for later analysis. Measurement 

based analysis might be biased by vendor-specific implementation details. That is the 

reason I used NICs from the same vendor. For the measurements I have used Mellanox 

ConnectX-3 IB and ConnectX-4 RoCE QDR NICs. Connectx-4 NICs have been 

communicating through a switch, while Connectx-3 NICs have been connected directly. 

Still, the measured latencies on the two setups can be compared, because the switch was 

previously tested and the switching latency established by measurements is 625 

nanoseconds. Note that the end to end latencies measured with the RoCE NICs were 

above 3 microseconds, thus the sub-microsecond switching delay did not dominate the 

other delay components. 

I have implemented an application that measures round trip times (RTT) for being able 

to compare the latencies of different types of network communications, and supports 

performing measurements with variable length of data. I considered it important to 

develop an own measurement tool instead of using third party utilities, for having full 

control over the application. I have performed measurements by pinning the application 

to exactly one CPU core avoiding the scheduling of the application to other cores and 

preventing further overhead latencies being added to the results. 

In a local network, latencies of both RDMA and socket communication are relatively 
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low, in the range of microseconds to tens of microseconds. For this reason, the usage of 

a high-resolution clock is required. Using the Time Stamp Counter (TSC) of the CPU is 

an appropriate choice for measuring communication latencies in such networking 

architectures. TSC is a high-resolution counter inside the CPU which counts CPU 

cycles from which the duration of a set of instructions can be determined. TSC can be 

read through an assembler instruction, so the overhead is lower than calling any other 

pre-implemented standard functions for time measurement. When executing 

TSC-related instructions we should bear in mind that most of the modern CPUs enable 

out of order execution. Hence a dedicated instruction, called Read TSC and Processor 

ID (RDTSCP) should be used for reading the TSC, because RDTSCP disables out of 

order execution in the CPU. If RDTSCP is not supported by the processor, then RDTSC 

can be used instead. Nevertheless, since it is not a serializing instruction, it should be 

used with a previously executed serializing instruction, such as CPUID. This latter 

avoids the out of order instruction execution of the RDTSC instruction [24]. 

5.2 Differences between latencies of RDMA and socket based I/O 

My goal was to measure the latency gap between RDMA and traditional socket based 

communication. I have compared the latency values of UDP to its RDMA based 

counterpart, RDMA UD. I chose UDP instead of TCP, since UDP communication does 

not require acknowledgement messages causing overheads in latency.  Figure 16 

shows the differences between using UDP and RDMA UD. The differences are coming 

from the copies through the networking stack; according to the values using RDMA can 

save at least two third of the UDP latency. 

Figure 16 – Latency differences between RDMA UD and UDP, showing the 50th and 99th 

percentiles of the latency series 
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I have performed measurements for examining what happens if the payload of L2 

exceeds the MTU and also examining the differences of UDP (the best performing with 

sockets because of no ACKs) and RDMA RC (expected to perform with highest latency 

because of ACKs). In case of UDP we can see a definite jump in the data series (Figure 

17). The reason for the jump is the software based implementation of the networking 

stack which implements packet fragmentation (MTU is 1500 for UDP and 1024 for 

RDMA). RDMA NICs are designed for performing packet fragmentation in hardware 

if using RC / UC QPs, thus we see only a slight increase in latency. 

Figure 17 – Latency for different packet sizes  

5.3 Latency differences between RDMA communication modes 

I have also measured the differences between RDMA communication modes both with 

IB and RoCE cards. I have performed measurements without exceeding the MTU of the 

link-layers supported by the different technologies. As shown in Figure 18 RoCE 

performs slightly better than IB, which can be explained by the fact that ConnectX-3 IB 

cards are not as recent as CX-4 RoCE cards. Examining the latency values, we can 

observe only small differences between the different communication modes, see Figure 

18. This means that RoCE offers reliable communication at the speed of unreliable 

connection, which is an important feature in standard Ethernet networks. 
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Figure 18 – Differences between RoCE and IB latencies 

5.4 Mechanisms to enhance the performance of RDMA 

In my experiments presented so far, I focused on the performance analysis of the 

RDMA networking solution, using the default configuration options, which already 

offered an impressive performance compared to standard Ethernet based solutions. 

However, when I analyzed the details of the communication logs, I realized that there 

are several possibilities to further improve the latency.  In what follows I propose 

several mechanisms that I found effective, and also discuss their advantages. 

5.4.1 Using aggregated posts for RRs 

One can post RRs to the RQ by calling ibv_post_recv verb. This verb requires passing a 

QP and a RR for parameter, and puts the RR into the RQ of the QP. One can call this 

verb repeatedly for posting multiple RRs, which can result in higher latency values due 

to the repeated function calls. Posting multiple RRs is also feasible by calling 

ibv_post_recv. The structure of RR implements a linked list element, hence by linking 

RR elements after each other we can post more than one RR at a time, which eliminates 

repeated function calls. Figure 19 shows that aggregated send does not have a huge 

impact on lower percentiles, but on Figure 20 we can see that repeated function calls 

can result higher outliers in latency. In the followings I used the aggregated posts for 

RRs in all measurements. 
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Figure 19 – Aggregated RR posting cannot influence spectacularly the latency values when 

talking about lower percentiles 

 

Figure 20 – Repeated function calls can result in high outliers for higher percentiles 

5.4.2 Using inlined sends 

For understanding inlined data and inlined sends first we need to have an overview of 

SRs and the mechanism of posting them to the SQ. As it was discussed in 4.1 one can 

post SRs for sending data to the remote side. For sending data over RDMA the user 

should first register an un-swappable memory region where the data will be sent from. 

A SR should contain the starting address of the data within the registered memory 

region, and the length of the data to send. The RDMA hardware reads the posted SR for 
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getting the address and the length of the data, then turns to the memory for retrieving it. 

In contrast when using inlined sends the hardware does not need to look back to the 

physical memory because the data is nested – inlined – into the SR. This gives the ease 

to the user for not having to use registered memory, and also provides lower latencies 

by leaving out the reading of data from the physical memory. However, inlined sends 

have their disadvantages as well. One can only send a limited amount of data inlined. 

The maximum size of the inlined data depends not only on the hardware but the type of 

the connection mode. In our case the maximum sizes of the inlined data are shown in 

Table 2. 

 UD RC / UC 

RoCE 956 Bytes 828 Bytes 

IB 884 Bytes 912 Bytes 

Table 2 – Maximum size of data to send inline 

Figure 21 shows the changes in latency due to the application of SRs using inlined data. 

Using inlined sends can save about 1.2 - 2.3 us in RDMA communication. It also can be 

seen in Figure 21 that in case of RoCE over 256 bytes the latency values are better for 

non-inlined data. Using inlined send is a good choice for sending messages shorter than 

about 400 bytes, according to the crossing point in the figure. The measurement results 

are shown in the following sections has been generated by using inlined send 

operations. 

 

Figure 21 – Changes in RDMA performance by using inlined send 
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5.4.3 RDMA WRITE compared to send – receive mode 

As it was discussed in chapter 4.1 sending data through an RDMA network can be done 

by using send and receive requests or using one-sided operations by RDMA WRITE. 

The first case requires checking the CQs on both the sender and the receiver side, while 

RDMA WRITE only requires CQ polling on the sender side. For general use RDMA 

WRITE is used for sending large data. One example for using RDMA WRITE is 

writing 2 GB to the memory of the receiver and notifying the receiver side by posting 

an empty send request to a pre-posted RR of the receiver. After the receiver gets the WC 

about the receive request it can be sure that all the data has arrived. Figure 22 shows this 

mechanism for easier understanding. 

 

Figure 22 – RDMA WRITE with a signaling send 

RDMA WRITE can be used without any signaling send request, that indicates the end 

of the WRITE. To achieve this, a specific message format can be used, since the 

incoming messages are being written to the memory using DMA. DMA is not an atomic 

operation therefore corrupt data can be read from the memory. Using specialized 

message structures can help deciding if the data has successfully written into the 

memory. A simple implementation for such message structure can be seen in Figure 23. 

The first part of the message is the length of the payload, the last n bytes are used as a 

trailer defining a pattern. If the trailer is correct, then the whole packet has arrived 

successfully. 

 

Figure 23 – Message format for using RDMA write without the use signaling sends 

In Figure 24 we can see that using RDMA WRITE instead of send – receive does not 

have a heavy impact on the majority of the results, while Figure 25 clearly shows that 
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WRITE can influence the values of the higher percentiles of the data series, but this is 

not a spectacular difference. 

 

Figure 24 – Write has no influence on the majority of the latency values 

 

Figure 25 – The impact of using RDMA WRITE on high percentiles of the latency values  

5.4.4 Introducing RDMA WRITE-like send-receive 

Using RDMA WRITE and leveraging the gains of single sided polling is only available 

when using connected QPs. Following the method in the previous section (checking the 

memory for incoming messages and examining the message trailers) for making sure a 



   
 

31 
 

message has arrived, we can eliminate checking the CQ on the receiver side after the 

arrival of every single message. However, with this method -- because of the RRs 

posted on the receiver side -- we must retrieve WCs by polling the CQ (or receiving 

events about completions). This method eliminates many individual calls on the CQ 

after each incoming message. Measuring with this method can result in such RTT series, 

where the high percentiles are showing huge latency values because of the rare WC 

retrievals which consumes much CPU time than the ones for getting a single WC. For 

implementing this behavior the receiver side needs to post a huge amount of RRs to its 

RQ, and should poll on the memory region that is used for receiving data. If a new 

packet is found in the memory a RR must have been used. After polling the number of 

messages from the memory that equals to the number of posted RRs all the WCs should 

be retrieved from the CQ. This is shown in figure 26. 

  

Figure 26 – implementing RDMA WRITE-like operation by using UD 

I have been performing measurements with this solution, Figure 27 shows that 

elimination of WC retrieving from the CQ on the receiver side decreases the lower 

percentiles of the latency values when using UD QPs, while Figure 28 shows the 

outliers for the higher percentiles resulted by aggregated WC retrievals. This solution is 

a good choice if we want to decrease the average latency for most of the transfers, up to 

99%, however the worst case latency is higher.  
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Figure 27 - Using WRITE-like send-receive performs slightly better for the majority of time 

 

Figure 28 – WRITE-like send results in higher outliers than send – receive 

5.4.5 RDMA RC timeouts for ACK / NACK 

Using RDMA RD, one can set the minimum timeout that a QP waits for ACK/NACK 

from remote QP before retransmitting the packet. The verbs API defines 31 levels of 

timeouts. Level zero is special value which means waiting infinite time, this can be 

used for debugging. For any other value of timeout, the time calculation is: 

4.096*2timeout us [25].  

I have implemented an application generating packet loss on the traffic, and I used the 
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setup shown in Figure 29 to use it in my experiments. The application drops the 

EtherType = 0x8915 packets with a low P probability, and was deployed on node B.  

This dropper application was implemented in DPDK, because it offers the possibility to 

inspect the frames, while they are still on the NIC. The application cannot be used with 

RoCE cards, since these cards are directly processing Ethernet frames used for RDMA 

communication. Thus, RoCE NICs do not forward them to the upper layers, in my case 

to the DPDK dropper application. Therefore, I had to use an Intel network interface 

card. 

 

Figure 29 – The architecture for packet dropping 

I measured the latencies coming from the timeouts waiting for NACK packets. The 

results are shown in Figure 30. The values plotted are coming from the higher 

percentiles of the data series. It can be seen that the reference and empirical values are 

overlapping only from level 16. If the desired application should implement some 

latency sensitive functions then using timeouts is not the appropriate choice. 

 

Figure 30 – Differences between the reference and the measured values 
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5.5 Discussion of the results 

 In Section 5.4 I have proposed several optimization methods to enhance the RDMA 

networking latency. I provide an overview of the proposed methods in Table 3, and 

summarize their benefit in the followings.  

 RC/UC UD 

Aggregated post of 

RRs 
Decreased outlier values Decreased outlier values 

Inlined send 

~50% gain on  

performance 

for small messages 

~50% gain on  

performance 

for small messages 

RDMA WRITE Decreased outlier values - 

WRITE-like send 
Lower average latency, but 

higher outliers 

Lower average latency, but 

higher outliers 

Using Timeouts for 

ACK / NACK 
Higher latencies - 

Table 3 – Combining optimization techniques with RDMA communication modes 

When posting multiple RRs, aggregated posts should be used, since this solution results 

in lower worst-case values than posting RRs one by one. Taking the advantages of 

inlined send, one can halve the latencies for short messages. In case of subnets that are 

not oversized one should use RDMA UC or RC, since connection oriented RDMA 

supports RDMA WRITE operations, which has an impact on the rare but high latency 

values. In case of a huge subnet the best choice is RDMA UD, since there is no need to 

manage a huge number of RDMA connections. If the application is running over 

RDMA UD networks and the desired behavior is to react as fast as possible for most of 

the time and slower response time is allowed for the worst cases, the WRITE-like send 

- receive operations (described in 5.4.4) should be used. In case of using RC 

communication, using timeouts can result in high latency values. 
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6 Conclusion 

RDMA was introduced to replace traditional socket based communication in order to 

enhance the performance of latency sensitive network applications. I have shown 

through a series of measurement based experiments, that indeed, the use of RDMA 

results in a significant gain in networking performance, regardless to the 

communication modes (i.e., reliable, unreliable or unreliable datagram). Nevertheless, 

the latency of RDMA based communication can be further reduced. During my 

research I proposed several mechanisms to achieve this goal.  

I implemented and analyzed the effectiveness of these mechanisms, highlighting the 

gains achievable by their introduction. Selected features of these proposals were 

included by a major telecommunication equipment vendor to enhance the networking 

performance of its telco grade shared memory platform. My future work is to propose 

further refinements and adapt the RDMA based networking solution to meet the strict 

QoS requirements of telecommunication services. 
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