

Budapesti Műszaki és Gazdaságtudományi Egyetem
Villamosmérnöki és Informatikai Kar

Automatizálási és Alkalmazott Informatikai Tanszék

Jánoky László Viktor

PARTICIPATORY COMPUTING
PLATFORM IN A DYNAMIC WEB

ENVIRONMENT

KONZULENS

Dr. Ekler Péter
BUDAPEST, 2016

 2

Table of Contents

Abstract .. 4	

1 Introduction .. 5	

1.1 Overview ... 5	

1.2 Related work ... 6	

2 Problem statement ... 8	

2.1 Conceptual problems .. 8	

2.1.1 Client adaptation .. 8	

2.1.2 Application creation ... 9	

2.1.3 Setup and maintenance .. 9	

2.2 Technological problems .. 9	

2.2.1 Reliability ... 9	

2.2.2 Consistency .. 10	

2.2.3 Security .. 10	

2.2.4 Scalability .. 11	

3 The proposed solution ... 12	

3.1 Basic concepts ... 12	

3.1.1 Task .. 12	

3.1.2 Task Description .. 13	

3.1.3 Task Program ... 13	

3.1.4 Task Data Part .. 13	

3.1.5 Task Result .. 13	

3.2 Participants and responsibilities .. 14	

3.2.1 Clients .. 14	

3.2.2 System owner ... 14	

3.2.3 Application owner .. 14	

3.3 Scope and typical deployment .. 14	

3.3.1 Standalone deployment .. 14	

3.3.2 Secondary deployment ... 15	

3.4 High level architecture .. 15	

3.4.1 Backbone technologies .. 16	

3.4.2 System outline .. 17	

 3

3.4.3 Working modes .. 18	

3.5 Components and technologies .. 19	

3.5.1 Task Master .. 20	

3.5.2 System Configuration .. 23	

3.5.3 Centralized Task Group ... 24	

3.5.4 Peer-to-Peer Task Group ... 25	

4 Using the system ... 27	

4.1 Use cases ... 27	

4.1.1 Scientific uses .. 27	

4.1.2 Commercial uses .. 28	

5 Measurements .. 30	

5.1 Goals ... 30	

5.1.1 Proving feasibility .. 30	

5.1.2 Examining behaviour ... 31	

5.2 Measurement configuration .. 31	

5.2.1 Hardware configuration ... 31	

5.2.2 Software configuration .. 32	

5.2.3 Executed tests and measured data .. 33	

5.3 Results and evaluation .. 35	

5.3.1 Feasibility test .. 35	

5.3.2 Working mode comparison .. 37	

6 Overview and future work .. 42	

6.1 Summary ... 42	

6.2 Future research directions ... 43	

Bibliography .. 44	

Appendix .. 46	

 4

Abstract

The concept of a building a distributed computing system from volunteer nodes

has come up multiple times as the computing and networking technologies advanced.

Some successful implementations of the concept were done, and these systems enabled

some great scientific achievements to be made.

However, the concept did not get adopted by a wide audience, both the number of

participants and the beneficiaries of these systems are dwarfed by the size of their

potential target groups. Even the most successful of these systems, the SETI@home

project, built on the BOINC platform, could only reach around 1.5 million users during

its 17-year lifespan.

The reasons behind the low percentage of adaptation are mainly technical ones.

Creating and running a distributed participatory computing system is nontrivial,

participating in one requires deliberate intention and moderately complex steps from a

user.

In the dissertation we propose a solution to build a platform which enables much

larger adaptation by building on proven, widely used and supported technologies and by

using a different approach for users to participate.

The system that we show in this research is integrated into the web, allowing users

to participate simply by visiting a website. This way task givers don’t need specialised

infrastructure to facilitate the computing and it enables a much larger adaptation and

different uses for the system.

This could possibly include scientific computational projects on a much larger

scale or even commercial computing services provided by major websites, using the

computational power of their visitors. Our solution could provide an alternative way of

funding besides web based advertisements, with much less user experience deterioration.

 5

1 Introduction

1.1 Overview

A participatory computing system is a distributed computing system where the

participants are contributing processing power and storage to form a large, capable

system.

A similar concept is volunteer computing, where the participants provides their

resources voluntary, explicitly adding their resources the pool. However, in a

participatory system, the intent from the participants is not important, it can be a

secondary function of a system. For example, the main service could be a website, where

visitors will also participate in the computing system.

The previous example points to one of the greatest weaknesses of volunteer

systems, the clients have to have an explicit intention to contribute. In order to achieve

this, they have to know about the system, they must know how to join and how to take

the necessary steps for doing that. This severely limits the number of potential users, and

requires considerable effort from the system owner to grow their platform.

In this dissertation we outline a participatory system, built on web technologies

that requires no extra effort form the clients to participate. In practice joining can simply

be done by visiting a specific website. This allows for a much larger reach than traditional

volunteer systems. Instead of complicated user actions, a simple consent would be enough

to join, much like the consent given when dealing with cookies, in accordance with the

EU ePrivacy directive Article 5(3) [1].

We also investigate how accessibility can be improved from the perspective of the

system owner. Showing a model where the owner of the system and the user (who wants

to use the system for computational purposes) can be a different entity, and what benefits

this separation has.

Ultimately, given a system like this, participatory computing could become a

mainstream technology without requiring extra effort from the participants. Taping into

the vast unused resources of web clients, previously unimaginable scales could be reached

in computational resources.

 6

In this paper we analyse what kind of obstacles does a web based participatory

system has to face and we propose solutions how to overcome them. We prove the

feasibility of the solutions by demonstrating and evaluating a working proof-of-concept

system and we show measurements related to it.

1.2 Related work

As volunteer computing is a form a participatory computing, the advances of this

field had a rather significant effect on our system. Some of the most notable and

successful volunteer computing projects are built on the BOINC (Berkeley Open

Infrastructure for Network Computing) platform [2].

BOINC is a software system with the goal to make it easy for scientists to create

and operate volunteer computing projects. Supporting a wide range of possible

applications (even with large computational, storage or communication requirements),

the platform served and continuous to serve many successful projects. For example,

SETI@home [3] or Folding@home [4] to name a few.

Our goal, that we show in this paper, is different from BOINC’s, but some very

interesting lessons can be learned about how it deals with common problems in public

computing systems. For example, the handling of malicious clients or deviating numerical

results because of different execution platforms, has some great insights and solutions.

In [5] the authors introduce project Bayanihan, a web based volunteer framework

which relies on widely adopted technologies such as web browsers and Java. They created

a flexible software framework which could be programmed in Java and joined by the

clients using desktop Java applications or browser based Java applets. Bayanihan

provides a framework for building and composing a volunteer system by extending the

given components. This means there are multiple, specialized deployments of Bayanihan

systems, each with their specialized goals and tools.

The main difference between this work and ours is that we intend to create the

platform for executing tasks, without the need to write application specific modules. In

our system multiple different tasks can co-exist on the same deployment, using the same

resources, while executing completely different goals.

Several other projects were carried out with the intention of creating an easy-to-

access, web based volunteer system. In [6] the authors suggest a system (POPCORN

 7

Market) that could be used for global scale distributed computing. Their platform

provides a market based mechanic for buying and selling CPU time. Just like Bayanihan,

POPCORN Market also relies on Java from the client side.

In [7] the authors demonstrate their web based volunteer system; WebCom, which

is also built on Java. One of the most interesting features of this system is its capability

to scale dynamically. They achieved this feat by making it possible for clients to become

masters, central components in their architecture, tending several clients. With clients

becoming masters they could build a hierarchical structure of nodes, increasing the whole

system size and capability.

In their study about the computational and storage potential of such systems [8]

the authors concluded that not only processing power, but storage place can also be a

major resource in a volunteer system.

Our system leverages both of these resources, but not necessarily in a direct way.

Storage for instance can be used for storing and forwarding data related to the

computation between clients.

From a non-technical standpoint, the need to ease the joining process from the

perspective of the participant was already recognized in these past projects. Using the

web as a platform to achieve this goal was considered several times. Ultimately the

downfall of browser based Java applets (mainly because of past and perceived security

issues), meant that the seamless client joining was not possible until recently.

 8

2 Problem statement

In this section we discuss the conceptual and technological challenges the system

must overcome if it’s to succeed in reaching a large adaptation rate. Showing the sources

of these problems and the reasons why they effect adaptation, we can design our system

to mitigate their effects.

2.1 Conceptual problems

The problems that we are seeking to answer in this paper are not strictly bound to

the distributed nature of participatory systems. We would like to answer the question;

how to make participatory systems wide-spread, common tools. In this section we list

some conceptual problems regarding large scale adaptation of these kind of systems.

2.1.1 Client adaptation

Comparing the number of participants in volunteer computing projects to the total

number of internet connected PCs it is easy to see, that there are still vast computational

resources left untouched by these systems.

Behind the lack of client adaptation there are several factors, one of them is the

already stated user accessibility issue. For a user to join a traditional volunteer computing

network the following conditions have to be true.

• They know about the system.

• They have an intention to join.

• They have the means and knowledge to join.

• They participate at least for a minimum amount of required time.

Making sure that these points are actually fulfilled is not an easy task. It requires

a significant amount of resources to make the potential users aware of the system,

persuade them to participate and teach them how to do it, if necessary.

 9

2.1.2 Application creation

Another thing to consider is accessibility from the perspective of project owners

running applications in a participatory system. Writing an application for a massively

parallel system like this has its own limitations, mostly inherently parallel problems can

be solved using this technique. If the original problem can’t be parallelized well, the usage

of the system won’t provide much gain in terms of computation.

 Most of the time the goal of the owner is very specific, requiring a custom

application for each purpose, like in the case of SETI@home, where the goal is to analyse

radio signals. The burden of creating this goal specific application also lies on the owner.

At most what we can do is help them by providing a standardised set of tools and

interfaces.

2.1.3 Setup and maintenance

Setting up and maintaining a volunteer system also have costs associated with it.

Maintaining the infrastructure, providing tasks to clients, scheduling the task requires

effort from the owner.

This effort consists of two main parts. One is providing the necessary

computational resources for administrational purposes in the system, for example task

trackers and result storage. The other part is ensuring that the system has enough clients

to work reliably and profitable in terms of administrational overhead vs. gained

performance.

2.2 Technological problems

The problem of building a large, distributed, participatory/volunteer computing

system has been studied form a technical standpoint for a long time now. To the main

problems such as reliability, scalability, consistency there are multiple proven solutions.

2.2.1 Reliability

Reliability problems arises from clients joining and leaving the system on their

own will. When the number of clients is under a critical level, the operability of the system

cannot be ensured without adding artificial clients.

The problems of clients leaving before finishing tasks can be solved by assigning

tasks redundantly, monitoring their state and if necessary reassigning them.

 10

Thanks to the law of large numbers, the unpredictable nature of client fluctuation

decreases as the total number of clients increase. Statistical models can be deployed to

predict large scale variations in time, improving task allocation and mitigating problems

arising from client fluctuations.

Client profiling could also help with reliability and efficiency, assigning tasks to

clients who are more likely to complete them helps minimizing the number of failed and

reassigned jobs.

2.2.2 Consistency

Consistency problems can arise by having different clients coming to different

conclusions on the same problem. This can be caused by an intentional attack or different

hardware properties of different clients.

The effects of intentional attacks can be mitigated by detecting the malicious

clients in the system and removing their calculations from the results pool. However,

because of the nature of the system, if the attackers outnumber the valid clients it becomes

possible to reach a false conclusion. This type of attack is very resource intensive from

the perspective of the attacker, and becomes much harder to perform undetected as the

scale of the system grows.

Ultimately attacks aimed at creating false results can be entirely mitigated by

assigning authoritative clients, trusted clients who are guaranteed to return valid results.

To do this for the entire data set however requires a significant amount of resources,

somewhat invalidating the whole concept of using participatory computing.

2.2.3 Security

Besides false result attacks there are other security concerns regarding large scale

participator systems. Security issues must be investigated from both the client’s and the

application owner’s side.

On one hand the client software downloads and executes code from the internet

on the user’s machine, without them knowing what it exactly does. Therefore, the client

software must ensure that the code is from a trusted source and that it does not have any

harmful intent on the user’s machine.

 11

From the application owner’s perspective, the data and programs they send to the

clients for execution cannot be expected to remain private. This for example rules out

most of the cryptographic tasks where the owner wants to keep the data private. This

could also have effects on commercial uses, like graphics rendering or the processing of

any kind of sensitive data.

2.2.4 Scalability

In order for the system to be able to serve large number of clients it must be easily

scalable. With the increased number of clients, the number of administrational tasks also

rises, this is the main factor behind the scalability concern.

 By utilizing some clients for administration purposes, the system can scale with

the resources added. The inherently distributed nature of typical tasks executed also helps

with scalability as task-bound operations can be separated from each other.

 12

3 The proposed solution

To solve the previously shown issues we propose a system with accessibility as

its main feature. This is considered from both the client’s and application owner’s

perspective and allows for a much larger client adaptation.

From the client’s perspective accessibility is reached by placing the entire client

software in the browser. Using the built-in tools provided by modern web browser we

built a participatory client, which does not require any explicit action from the user when

participating in the system. This allows for much easier and faster joining from the client’s

side and eases the burden of providing guides and tutorials from the system owners side.

The application owner’s tasks are simplified by providing a standardized yet

freely extendable interface for task creation and execution. The details of this mechanism

are shown in the upcoming sections.

3.1 Basic concepts

The system is built around the following basic concepts in order to facilitate easier

application creation and unified execution.

3.1.1 Task

The unit of work in the system is a task. A task is made of data and program

executed on parts of this data. Because of the nature of distributed systems, a typical task

is usually a very well parallelizable problem.

When adding a new task to the system, the owner can specify parameters about

when is the task considered finished. For example, one of these parameters is the

confidence level, which determines that at least how many different clients must execute

each data part (and come to the same conclusion) for it to be accepted.

Another notable parameter, which depends on the deployment, is whether parts of

the results should be checked by the system. This is done by executing the same program

on the same data (called authoritative check). As this is a rather resource intensive task it

can’t be done on the whole Task. Otherwise there would be no need for clients to calculate

the answer, the system would authoritatively calculate every answer.

 13

In the system there can be 3 states of a task:

• New – meaning it has been newly created and not yet been sent out to

clients.

• Active – these tasks are currently under execution by clients.

• Finished – when the number of valid results reach the confidence level for

each Task Data Part, a Task is considered finished, therefore not assigned

to clients anymore.

3.1.2 Task Description

A Task Description is a minimal description of a task, it contains its priority, and

the number of data parts the task has. Information contained in the task descriptions may

be used by the system or the client depending on the working mode. Priority is used when

choosing which Task to execute in case of multiple concurrent active tasks.

3.1.3 Task Program

A Task Program is the code executed by the clients on the Task Data parts they

receive. The program gets two input arguments, the Task Data itself, and its index in the

task it belongs to. The Task Data can be of any kind mandated by the current application.

Each Task Program runs separately, there is no way for them to communicate or

synchronize by any system provided means.

3.1.4 Task Data Part

The Task Data Part is the data portion of the Task on which the program operates

on. Each client receives at least one Task Data Part, runs the program on it and then

returns the Task Result.

3.1.5 Task Result

The Task Result is what the clients generate for each Task Data Part by executing

the Task Program. It contains the original Task Data Part’s index and the computed result

data. This data can be also of any kind and size required by the actual application of the

system, it only has practical limitations.

 14

3.2 Participants and responsibilities

In order to create an easy-to-use, easy-to-join participatory system, we separated

the current client-server relations to three different actors and evaluated the requirements

for each of them. This section identifies this three main and lists their responsibilities.

3.2.1 Clients

The client is an actor who has computational resources which can be added to the

system. We do not presume any special knowledge or intention from the client.

3.2.2 System owner

The system owner is an entity who owns and maintains the infrastructure required

to facilitate the distributed computing between clients. The system owner themselves

doesn’t necessarily uses the system.

3.2.3 Application owner

The application owner is an entity who has a usage scenario for the system. This

could be a research institution, a commercial company or even a private person.

3.3 Scope and typical deployment

Our system has two usage concepts, from a technical standpoint they are very

similar, but the tasks and challenges associated with them are different.

3.3.1 Standalone deployment

The system can be deployed as a standalone deployment, where the owner hosts

the system as a primary service. Users are visiting web sites that are specifically designed

to let them join the computational network. This is very much akin to the traditional usage

model of volunteer systems, with all its drawbacks and benefits.

This kind of deployment is preferable in case the system owner also owns, or at

least have control over the client hardware. In this case the client accessibility helps with

minimizing administrational costs when setting up the system.

 15

3.3.2 Secondary deployment

The other usage concept is called Secondary Deployment, in this case the system

owner has a primary service which attracts the users (e.g. a popular website), and the

system is deployed parallel to it. In this mode clients may not even know about

participating in the system, if the primary service’s terms of service permit it.

Secondary Deployment may raise a few concerns about user privacy, security and

morality. Is it ethical to run code on a user’s computer without their explicit knowledge

of what it does? On one hand it is already happening, websites download all kinds of

analytics and tracking scripts to their user’s computers, mainly intended for more efficient

advertising. In [9] the authors show this as the process of privacy diffusing on the web.

Contrary to the initial belief, the proliferation of secondary deployment

participatory systems, could actually help with privacy concerns on the web. In the

modern web, a free to visit website has only one good to sell, their users. It may sell space

to advertisers or exchange their user data for services like analytics, but ultimately it

targets the person sitting behind the computer.

By enabling web content creators to harness and lease their visitor’s

computational resources, we could provide an alternative source of income. This could

very easily be beneficial for both parties, as in the current scheme not only the user is

taxed with distracting advertisements, but these usually have high performance and

network impact on the client’s computer.

3.4 High level architecture

One of the most important considerations when designing the system’s

architecture was the scalability aspect. We wanted to minimize administration costs

associated with maintaining the system, while retaining the maximum number of possible

clients.

Usability and extendibility was also a main concern, we wanted the system to be

easily available for both the owner and system and its users. From the application

creator’s perspective, the ability to easily use the system while being able to extend it is

an important factor.

Considering these points, we opted to use a loosely coupled, micro-services based

architecture as the high level pattern for our system.

 16

3.4.1 Backbone technologies

Usually when designing a new system, the basic architecture comes first and

technologies are selected later to suit the requirements stated by the previous step. In our

current case however the technologies we use, has a significant effect on the structure of

our system. That is why we have to mention a few before further detailing the architecture.

To satisfy the user accessibility requirements, we chose to build the system on

web technologies, enabling users to join from their preferred browsers. In our choice of

language, the main driving points were penetration, cross-platform support and

availability. Considering these points, we choose JavaScript, which is supported by all

major and minor web browsers, used in everyday web and requires no user interaction to

run.

With the advent of modern JavaScript engines, like Google’s V8 or Mozilla’s

SpiderMonkey [11] performance is no longer considered a major drawback of the

language. In case of naïve implementation, modern JavaScript has near native code levels

of performance.

It also worth noting that many features required by participatory systems like

networking, storage and execution are readily available in a modern web browser, with

standardized APIs. Networking can be done over HTTP, Web Sockets or even WebRTC

[12]. Thanks to HTML5 [13], for storage we have local storage, IndexedDB or cookies

and execution in the background is supported by Web Workers.

System-wide technological uniformity is something what was really hard to

achieve until now. Thanks to the performant JavaScript engines and Node.js, it became

possible to write high-performance server side applications in JavaScript [14]. This factor

was also a major point when we considered the technological choices for our system.

 17

3.4.2 System outline

Figure 1 System architecture

The components in the architecture can be categorized to three main groups, Task

Master, Task Group and System Configuration.

3.4.2.1 System configuration

The System Configuration module is responsible for storing configuration values

for each component in the system and maintaining information about the current system

state.

These two functions are served by two different applications; Configuration

Manager provides configuration data by a pull model for other components. The

Monitoring Service listens for incoming metrics and information form components

declared in the configuration manager.

Peer-to-Peer Task Group

NodeJS

Browser

DHT

Centralised Task Group

Implmentation agnostic
Web Server

Task Master

MongoDB

AngularJS

Clients

System
Config

[SysConf]
Config DB

C
o
n
f
i
g
u
r
a
t
i
o
n
M
a
n
a
g
e
r

M
o
n
i
t
o
r
i
n
g

M
a
n
a
g
e
r

Metrics

Config

[SeedNode]
Initial seeding &
peer discovery

[SinkNode]
Result recovery

& storage

[SignalServer]
WebRTC
Singaling

[ClientNode]
WebRTC enabled

browser

[Coordinator]
Task assignment &

result collection

[Delivery]
Task & data

delivery

[Client]
Non WebRTC

enabled browser

[Backend]
Admin WebApp

Backend

[Frontend]
Admin WebApp

Frontend

[TaskDB]
Task storage

[TaskMaster]
Storage
Interface

[ResAggregator]
Result

managment

[ResultDB]
Result

storage

[APIGateway]
External API

 18

3.4.2.2 Task Master

The group of components responsible for task management, it includes an

administration component, made of an Angular2 web application frontend and the

backend, a Node.js based server, using the express framework.

The TaskMaster also have a TaskDB, which stores Tasks and a ResultDB which

stores completed results. The implementation of these databases can vary, but the contents

are accessed using the StorageInterface, this enables a greater flexibility for the system.

For the current proof-of-concept (PoC) deployment, we used MongoDB [15].

Also for processing completed data we use the Result Aggregator component,

which works on the data stored in the ResultDB.

3.4.2.3 Task Group

The group of components responsible for Task execution and client management.

The Task Group usually concurs with a deployment instance of the system. For example,

the clients of a website with a Secondary Deployment system can make up a Task Group.

It has two distinct working modes which can run parallel, this behaviour is detailed in the

next section.

3.4.3 Working modes

Depending on client types and technology support a Task Group could either work

in a distributed (peer-to-peer) or centralised way. These two working modes are not

mutually exclusive, when both are enabled, we call it a hybrid working mode.

3.4.3.1 Distributed mode

The Distributed Task Group shifts the responsibility of storing and assigning jobs,

resources and results to the clients. The common channel for clients to access this data is

based on the JavaScript implementation [16] of the Kademlia Distributed Hash Table

(DHT) [17]. The connection between clients (nodes in the DHT) are facilitated over

WebRTC Peer connections [18]. In order to build these peer-to-peer connections a Signal

Server is required. The signalling is done over Web Socket protocol.

When joining the DHT, the entry point for the clients are the Seed Nodes. These

nodes also serve as the injection point for Tasks and Task Data Parts into the DHT.

Results are constantly collected and stored trough the Storage Interface by Sink Nodes.

 19

Both Seed and Sink Nodes are implemented by Node.js server applications, using

WebRTC support library for Node [19].

Unfortunately, at the time of writing this paper (2016 October) WebRTC is not

universally supported by all major browsers. Even in supported cases many of the features

are missing or incomplete, some of the implementation details are different from browser

to browser. Nevertheless, this working mode of the Task Group has much larger scaling

potential with minimal infrastructure costs compared to the centralized version.

3.4.3.2 Centralised mode

The Centralised Task Group on the other hand uses a traditional client-server

architecture, when a client joins the system, it communicates with the Coordinator. The

Coordinator assigns the Task and Task Data Parts to the client, which receives them

either from the Coordinator or retrieves them through the Delivery component (depends

on the configuration and size).

The Delivery component handles the serving of larger static resources. Because

of the stateless nature of these resources, this component can be scaled horizontally using

traditional techniques employed in web environments, like using a content delivery

network (CDN).

When finished with the Task Data Parts, the clients upload their results through

the Coordinator, which stores them in the Result DB (through the Storage Interface).

3.4.3.3 Hybrid mode

The two working modes are not mutually exclusive, it’s entirely feasible to have

a scenario where both modes could be used in parallel. Clients supporting the Peer-to-

Peer mode could join the Distributed Task Group, while older clients without the

necessary support could fall-back to the Centralised Task Group. This is the behaviour

implemented by the hybrid mode.

3.5 Components and technologies

The system is made up of several loosely coupled components, each

encompassing a specific functionality. This micro services architecture allows for much

better scaling and the fine tuning of different system components based on load.

 20

From the technological side accessibility from both client and developer

perspectives was our main concern. This mandated the usage of common, widely

supported technologies. In the client therefore we had to use JavaScript as the basis of

our system. For technological uniformity, we chose to create the server side components

also in JavaScript with the support of JavaScript backed databases, namely MongoDB.

Cross component communication is mostly done over HTTP or Web Sockets,

while peer-to-peer client connections are facilitated over WebRTC.

3.5.1 Task Master

The components in this group are responsible for administrational tasks and task

management.

3.5.1.1 Task DB

The Task DB is a database which is intended for Task storage. Because of the

nature of the system, this data is frequently read but sparsely written. Read operations

originate from clients who access their issued data parts and programs, while the database

is only written when the task states are changed or a new task is assigned to the system.

3.5.1.2 Result DB

The Result DB stores the execution results for Tasks computed at the clients.

These results are continuously written in the database as more and more clients execute

the Task. For Task Results, where enough clients have completed the calculations, the

Result Aggregator creates a final result. Task Results associated with completed Tasks

can be removed from this database when the final aggregation is over.

3.5.1.3 Storage Interface

The storage interface is a thin layer over the Task DB and Result DB, meant to

provide an implementation agnostic way for other components to access these resources.

It provides RESTful API [20] over HTTP for basic entities in the system, like Task, Task

Data Part, Task Program, Task Result. As part of the basic services, these entities are

validated then saved for future retrieval.

For our current system we used MongoDB for the databases but thanks to the

Storage Interface we can change the backing infrastructure to adapt to the specific

requirements for the actual deployment.

 21

The Storage Interface application is written in JavaScript for a Node.js execution

environment, using the Express framework Error! Reference source not found. for

structuring and serving requests and Mongoose [22] for database access.

3.5.1.4 Admin Backend

The Admin Backend is the server-side part of the Admin Web App. This application

is intended for providing tools for system and task management. Here the user can see

information about the Tasks currently in the system, view their results and see their

progress.

It also allows for viewing and editing system wide configurations managed

through the Configuration Manager component. Statistics and current status collected by

the monitoring service is also displayed in the application.

The Admin Backend is written in JavaScript for Node.js and uses the Express

framework.

3.5.1.5 Admin Frontend

The Admin Frontend is the user facing side of the Admin Web App. It features a

modern, responsive UI and is based on Angular 2 and Bootstrap.

This component diverges from the common technological stack, instead of

JavaScript it’s based on TypeScript [23], which is a superset of JavaScript and also

compiled to JS. Angular 2 supports both languages, the decision to use TypeScript instead

of JavaScript was based on the availability of documentation for the framework.

Figure 2 Admin Web Application Frontend

 22

3.5.1.6 Result Aggregator

The result aggregator periodically checks the Result DB for changes in task

results. When the criteria of a Task being marked as completed met, it aggregates the

results, and set the Tasks state to finished.

The requirement for a Result to be accepted as the correct result is that the number

of matching answers is at least the value of the Task’s configured Confidence Level

parameter.

The basic principle of defending against false results is to collect every result from

every client without giving the client any feedback about whether their response was

accepted. When enough results are accumulated for each Task Part, the aggregator checks

them for consistency, if there are conflicting results for a part it tries to resolve the conflict

by a simple majority decision.

If it’s not possible to resolve the conflict the Task will stay in an Active state, with

the number Data Parts reduced to those with conflicting results. If the results are not

conclusive after a specified number of tries the Task Aggregator may finish the task.

After pruning the incorrect results from a Task Data Part, the offending clients

get a negative score, in case of future conflicts the results of this client is weighted by this

score. If this score reaches the pre-set limit all results by this client is discarded.

If authoritative checks are enabled, the Result Aggregator randomly chooses Task

Data Parts and executes the Task Program on them. The results are then compared to the

ones given by clients, changing client scores and accepted results accordingly. As these

checks can be quite resource intensive in large numbers the usage of this feature is

optional.

The result aggregator is also a Node.js application, which can be deployed in

parallel for better performance.

3.5.1.7 API Gateway

The API Gateway is responsible for providing a programmable interface for the

system. Through this gateway it’s possible to create new tasks, retrieve results and

manage the system state. It’s responsible for authentication and authorization, providing

access control to system resources.

 23

From a technical standpoint, the API gateway is a Node.js application with

Express framework and Passport library for authentication, serving requests over HTTP.

3.5.2 System Configuration

The System Configuration module contains applications responsible for system

management and maintenance. The responsibility of this module is significant because

the micro services style architecture makes it difficult to maintain a consistent system

state.

3.5.2.1 Configuration DB

The Configuration DB stores the configuration settings for the system, it’s mostly

read and rarely written, making scalability easier. As it’s a central component, a redundant

deployment is preferable. Our choice in database was MongoDB, which provides this

redundancy with the usage of replica sets.

3.5.2.2 Configuration Manager

The configuration manager is responsible for storing and distributing centralized

configuration for each application component. While the configuration manager describes

the static structure of the system, actual component states are not stored in it, therefore

it’s mostly stateless.

When a component starts, the first thing it does is downloading the relevant

configurations from the Configuration Manager. This makes it a Single Point of Failure

(SPOF), so in order for higher availability it’s recommended to redundantly deploy it.

Luckily it’s mostly statelessness nature helps in great deal achieving this, multiple

instances can be deployed over the same replicated Config DB.

The Configuration Manager is a Node.js application with Express framework and

Mongoose for data access.

3.5.2.3 Monitoring Manager

The Monitoring Manager is responsible for maintaining information about the

system’s dynamic state. It collects information and metrics from each system component

by providing endpoints for their periodic updates.

The components receive the address of the Monitoring Manager in their

configuration at start up, and periodically send data to it. The Monitoring Manager stores

 24

and aggregates this data, in case of missing reports the component’s state is noted as

unavailable and corrective action can be taken by the system administrator.

The Monitoring Manager is a Node.js application using the Express framework.

3.5.3 Centralized Task Group

The Centralized Task Group is a collection of components responsible for

facilitating client joining and computing using the traditional client-server architecture.

In this working mode the Task Data Parts are assigned to the clients by the system.

3.5.3.1 Coordinator

The Coordinator is an application that handles client connections and task

assignment. When a client joins the system they communicate with the Coordinator

which in turn assigns Task Data Parts to them. Each client tries to execute every Task

Data Part in the Task, so this assignment is based on which parts are at the least

completion level.

3.5.3.2 Client

Each client is assigned a unique Client ID upon joining the system, which is

persisted on the client side, but checked with the also unique Connection ID on the server

side. These identifiers are used for statistical purposes and for identifying the work of the

same client in multiple results.

When a client in distributed mode joins the system, they get assigned a Task and

a number of Task Data Parts. Depending on system configuration and the size of the Task

Data Parts, they may either be retrieved directly from the Coordinator, or from the

Delivery component. They fetch the Task Program and start executing it on the Task Data

Parts, creating Task Results. These results are then uploaded to the server trough the

Coordinator and a new set of Task Data Parts are requested.

The connection to the Coordinator is done over Web Socket, while the connection

to the Delivery component is over HTTP.

3.5.3.3 Delivery

The Delivery component is responsible for serving static content for Clients. This

content includes Task Data Parts, and Task Programs as these resources are stateless and

read-only from the client’s perspective.

 25

The role of this component can be fulfilled by several well proven web servers,

like Nginx [24] or Apache [25]. The only requirement for it is to be able to serve JSON

content from the file system.

For our system we used a simple Node.js application with Express framework

configured for serving static files.

3.5.4 Peer-to-Peer Task Group

In the Peer-to-Peer Task Group the Tasks, Task Data Parts and Task Results are

stored in a Kademlia distributed hash table. This shifts the responsibility of serving these

resource to the client themselves.

Because there is no centralized state management of task completion levels, each

client must choose which Task Data Part to execute themselves. Currently this is done

by randomizing the starting index and working sequentially from there. In case of a

sufficiently large number of clients this will ensure homogenous Task Data Part

completion numbers.

Communication between clients are over Web RTC peer-connections, each client

has a nick name assigned which can be used to reach the client in the overlay network.

The connections are created using a Web Socket based Signal Server, through the usage

of these nick names.

3.5.4.1 Client

Clients connect to the DHT by first joining to a Seed Node. They reach these seed

nodes by using their pre-determined nick names trough the Signal Server. After

connecting the DHT trough the Seed Nodes the Clients are added as nodes to the DHT.

The unique ID for each client is stored when joining for later, result retrieval purposes.

Clients first fetch the list of Tasks available from the DHT, then chooses from

them randomly, weighted by their priority. After choosing the Task a starting point is

randomly set and Task Data Parts are retrieved from the DHT.

When finished with the calculation, the client stores their results with the

following key format:

[Task ID]_result_[Task Data Part Index]_[Client ID]

 26

This ensures that the results can be retrieved by using the previously stored client

IDs and knowing the Task details such as ID and the number of Task Data Parts.

3.5.4.2 Seed Node

The Seed Node is a special node in the DHT which is always present contrary to

a client which may join or leave freely at any time. Each Seed Node have a predefined

nickname by which they can be reached by newly joined Client Nodes.

For clients a Seed Node is the entry point to the DHT, when a client joins the DHT

it’s ID is stored by the Seed Node for later usage.

Another function of Seed Nodes is populating the DHT with the necessary data

for task execution. Each of them listens for changes in the Task DB trough the Storage

Interface by polling and timestamp based comparison.

The Seed Node is a Node.js application using the node-webrtc Web RTC stack for

Node and the Kadtools library.

3.5.4.3 Sink Node

A Sink Node is a special node that’s sole purpose is watching results accumulate

in the DHT and writing it to the Result DB trough the Storage Interface. They participate

in the DHT but do not contribute to any computations.

The Sink Node is a Node.js application using the node-webrtc Web RTC stack for

Node and the Kadtools library.

3.5.4.4 Signal Server

The Signal Server is a Node.js based application using Web Sockets to facilitate

signalling for opening Web RTC Peer connections. Signalling is required for building the

connections [27] but it’s implementation is not specified by the WebRTC standard.

For this purpose, our signalling server works by connecting clients through Web

Sockets. When joining the server, each client registers with its nick name and opens a

socket. Subsequent messages sent to this nick will be delivered to this socket.

 27

4 Using the system

The system can be considered a platform from the application owner’s

perspective, as a service from the system owner’s perspective and invisible from the

client’s perspective.

4.1 Use cases

Depending on the actor there can be several use cases of the system. For the

system’s users the main goal is executing a distributed computing task, while from the

system’s owner the main goal is forging some kind of advantage form the maintaining of

the system.

4.1.1 Scientific uses

Scientific usage would most likely entail a Primary Deployment system, as

organizations that are interested in solving scientific tasks are rarely in the possession of

popular websites that could serve as the host for a Secondary Deployment.

Nevertheless, it’s not entirely impossible that a scientific organization could profit

from a Secondary Deployment, for example a university could embed this system in its

websites, therefore harvesting the students’ computational power.

Use cases would likely closely resemble the current volunteer computing projects

as the largest advantage of the system in this model would be ease of access. A well-

received press release or a successful, widely covered article could garner the attention

of the public, greatly increasing the number of clients, thus computational power, even

for short amounts of time.

Some fields where volunteer computing is currently used and could profit from

this solution are the following:

• Astrophysics

• Mathematics

• Medicine

• Chemistry

• Engineering

 28

4.1.2 Commercial uses

Commercial usage would likely look very different form scientific uses. In this

case Primary Deployment is not feasible as most users wouldn’t visit a blank page for the

sake of participating and generating revenue for a 3rd party. The motivation of

contributing to a public interest research is not present in this case, so clients have to be

gathered by some other means.

In case of a Secondary Deployment the type and visitor characteristics of the host

website has significant impact on what kind of Tasks the system can handle. Usually the

minimum requirement for an operable system is that each client stays in the system for at

least the time it takes to complete a single Task Data Part and upload it. Otherwise no

progress can be made and the administrational costs of unfinished tasks are wasted.

Given a proper host website and configuration a commercial deployment could

provide an alternative revenue stream for websites. Compared to advertisements, the user

experience doesn’t suffer as much when using the visitors as clients. In both scenario

(advertisements and participatory computing) the browser downloads data and executable

code from the website, while the key difference being purpose.

Advertisements usually contain JavaScript to improve their hit rate by adding

visual enchantments, the participatory client uses it to compute the given tasks.

Participatory computing has its resource cost, but advertisements can also contain large

images or audio, taking up network bandwidth and processing power. The most important

difference is that advertisements target the user, distracting them, sometimes even

violating user privacy while the participatory client is user agnostic.

There is no need for any kind of interaction from the user and their browsing

experience is not disturbed. If the leasing of visitor computational power could become

an alternative revenue source, it could have significant effects on the internet. User

privacy could be restored to certain level on sites using this revenue stream instead relying

on advertisements and user browsing experience would improve, it could be a win-win

situation for both users and site owners.

The other question would be how can a website lease this gathered capacity. For

this purpose, a larger service could be built that collects several deployments and based

on their characteristics assign them tasks. This service could be compared to large cloud

 29

computing providers in a way, both of them would provide capacity on demand over the

internet.

Potential users of this service would be commercial entities requiring occasional

large computing capacity. Computer graphics is one of the fields which could benefit

from this service, but other usages are easily imaginable. Business analysis on larger data

sets could be conducted using the system’s resources and there are several machine

learning tasks which could be run in this fashion.

 30

5 Measurements

To prove the feasibility of the concept of a participatory system like this we

concluded several measurements, each focused at different aspects of the system. One of

the first question is whether the system can have a positive net result of computational

power when comparing administrational computing costs to actual task related costs.

Another interesting aspect to examine is the different characteristics of the two

working modes. For the Centralised Working Mode, we expect close to linear scaling in

terms of administrational costs as the number of clients increase. For the Peer-To-Peer

Working Mode we expect decreasing administrational costs on the server side, but

increasing overhead on the client’s side.

5.1 Goals

We had two main goals when preparing and conducting these measurements. The

first one is proving the feasibility of the system, the second is examining its behaviour

while it’s working.

5.1.1 Proving feasibility

When studying the feasibility of a participatory system like this, one of the most

telling number is the ratio of administrational tasks to actual, computational tasks. In order

for a system like this to be profitable in terms of computational gains, the administration

overhead of clients requesting and completing tasks must be lower than the cost of

executing the tasks themselves. Otherwise it would be faster to use the administrational

infrastructure for the calculations.

 In other words, the question can be phrased as the following: What is that point

in complexity, when the computational gains become lesser than the administrational

workload imposed by its execution?

In 5.3.1 we show our results concerning this goal.

 31

5.1.2 Examining behaviour

Our other interest is measuring the typical system behaviour in different working

modes. We are interested in client loads and system administration costs, their ratios and

how they change when switching working modes.

By measuring these values, we hope to provide some insight when to use which

kind of working mode and how to improve them in the future.

In 5.3.2 we show our results for this test.

5.2 Measurement configuration

In our measurement configurations for different test we sought to minimize the

distracting effects like network latency, or multi-tasking interference on the participating

machines.

However, because of the systems distributed nature, using network connections is

unavoidable. To minimize the effect of these, where it was possible we used wired local

area network connections, directly between the participants with no other sources of

traffic on the network.

In some of the measurements we used a single machine to host all components, in

others we used multiple computers, up to 20 physical machines running in parallel. We

avoided the usage of virtual machines in order to keep our results consistent and

repeatable.

In the following section we list some of the machines we used, in each

measurement we’ll detail which of the following were used for what purposes.

5.2.1 Hardware configuration

For our measurements we used standard, off-the shelf PCs, just like what we

would most likely find in case of a real-world deployment of the system.

5.2.1.1 Workstation A

• Intel Core i7-6700 3.40 GHz

• 16 GB DDR4 2133MHz RAM

• 256 GB Samsung 850 EVO SSD (SATA 6,0 Gbit/s)

 32

5.2.1.2 Workstation B

• Intel Core i5 – 3450 3.6 GHz

• 8 GB DDR3 1300 MHz

• 7200 RPM HDD

5.2.1.3 Laptop A

• Intel Core i7 4720HQ 3.60 GHz

• 16 GB DDR3L RAM 1600 MHz

• 500 GB Samsung 850 EVO M.2 (SATA 6,0 Gbit/s)

Figure 3 Workstations used in our measurements, running the web client

5.2.2 Software configuration

For our tests we used Windows 10 64-bit edition as operating system and Google

Chrome 54.0.2840.71 as the browser. We choose Google Chrome because of its support

for WebRTC and extensive developer tooling, used during our measurements.

 33

For our Node.js applications we used Node version 6.7.0. as this was the latest

available version at the time of developing the components. Our MongoDB instances

were versioned at 3.2.9.

During the tests we closed every non-essential application to avoid influencing

system performance.

5.2.3 Executed tests and measured data

In this section we detail the test setups for each measurement.

5.2.3.1 Feasibility test

In our testing setup we used a synthetic task to simulate client load, namely matrix

multiplication. Our clients were instructed to create two n * n sized (where n is a given

parameter) matrices, fill them with random numbers and multiply them, posting the

results to the system. The n parameter takes the powers of 2 from 1 to 1024, each value

is run 10 times and results are aggregated.

In this test we used the Centralized Task Group, in a Secondary deployment. We

created a small demo website and embedded the script in it, then visited the site with our

client computer (this was a single-host deployment on workstation A - 5.2.1.1).

We chose the Centralized Deployment for this test because we wanted to study

the impact of client task complexity and result size on system infrastructure. In case of a

Distributed Task Group these costs would be spread over many clients, not telling much

about the feasibility of the system from infrastructure cost vs client performance gain

perspective.

We measured the System’s processing time, which was calculated as the sum of

Coordinator and StorageInterface processing times. The Client processing time was the

time the client was actually doing the job related calculations, excluding network

requests. For both measurements we used the JavaScript engine-s built in instrumentation

tools for function execution time. As in our case both the client and server applications

were using the same V8 engine, we can be assured that the measurements are correct in

relation to each other.

 34

5.2.3.2 Working mode comparison

The Task executed in the working mode comparison test was much more complex

than our previous feasibility test, more closely resembling a real-world application. We

chose ray tracing for this test, as it can benefit greatly from parallelization and it’s entirely

conceivable that it will be a significant use-case for the final system.

We modified Salvatore Sanfilippo’s (author of Redis) open-source JavaScript ray

tracer [28] to run in our system and used Robert Eisele’s similary open-source JavaScript

PNG encoder [29] to encode the resulting images and upload them.

Figure 4 The Scene to be Rendered by the Clients

The overall dimension of the image is 3840 * 2160 pixels (UHD resolution). We

partitioned the image to 64 tiles, 8 by 8 in each dimension, meaning each tile is 480 * 270

pixels. In this test the Task Data Parts were structures describing which tile the client

should render, and the scene was embedded in the Task Program.

When a client finished rendering a tile it encoded it in PNG format, then uploaded

the result in Base64 encoding, thus each Task Result contained an index, and the Base64

string of the image.

We were interested in client and server loads so we set up the Task parameters to

be possibly the most demanding. We set Confidence level to 19 (the number of clients in

the system), meaning each client have to render each tile at least once.

 35

We executed this task in both Centralized Working Mode and Peer-to-Peer

Working mode.

5.3 Results and evaluation

On one hand our results supported our expectations about the feasibility of the

system. On the other hand, we observed some interesting behaviour in case of Peer-to-

Peer Working Mode, mandating further research.

5.3.1 Feasibility test

The following table show processing times for clients and the system in case of

different matrix sizes.

Table 1 Feasibility measurement results

Matrix

size (n*n)

System processing

time (ms)

Client processing

time (ms)

Ratio %

(system / client)

1 18,957 3,77 502,8

2 20,384 3,466 588,1

4 19,884 3,708 536,2

8 21,619 4,161 512,1

16 21,204 5,184 409

32 22,626 14,88 152,1

64 32,011 27,25 117,5

128 70,015 76,73 91,2

256 172,73 521 33,2

512 706,122 4103 17,2

1024 3211,275 55750 5,8

 36

Figure 5 Processing times compared

According to our measurements, in our test configuration the system become

computationally profitable at 128 * 128 matrix size. At this point the client spent more

time computing the results than the system spent with assigning the Task and retrieving

the result.

From the data we measured, we can see that after an initial turning point at around

75 ms of client calculations, the gap between client and system processing time starts to

widen exponentially. Notice the expanding gap between the two processing times on the

visualization of the measured data (note; the Y axis is logarithmic). We predict this

behaviour continues for more expensive calculations until it becomes impractical to run

on the clients.

From this observation we can conclude that even at relatively low individual task

costs (~75 ms) it’s profitable to use the system in Centralised Mode.

1

10

100

1000

10000

100000

1 2 4 8 16 32 64 128 256 512 1024

Processing	Times

System	processing	time Client	processing	time

 37

5.3.2 Working mode comparison

Figure 6 Average client computation time of each tile

The client processing time or Task Data Part execution time is the same in both

Working Modes, as it’s simply the rendering of the given tile. Tiles are numbered from 1

to 64 from the top left corner, from the chart we can see which parts of the scene are

computationally more expensive. For example, the bump at 33-35 is caused by one of the

specular spheres.

0

50

100

150

200

250

300

350

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61

Average	Client	Computing	Time	/	Tile

 38

5.3.2.1 Centralised Working Mode

Figure 7 Server and Client Times in Centralised Mode

According to our measurements the total server processing time spent was

3040,19 ms while the total client processing time was 327 453,44 ms. This means a ratio

of ~0,9% which is considered very good compared to our previous measurement.

This improvement can be attributed to the type of task executed and the way the

results are stored. In the first measurement the resulting matrices are stored as 2

dimensional arrays of integers in the database. This requires considerably more

manipulation of the data than simply storing the Base64 string of the current test’s result.

1

10

100

1000

10000

100000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Server	and	Client	Times

Server	Time Client	Time

 39

Figure 8 Comparison of Client Operation Costs on the Server

From the server’s perspective the computationally most expensive client

operation was the storage of the results, followed by the retrieval of the Task Data Parts.

5.3.2.2 Peer-to-Peer Working Mode

Peer-to-Peer Working Mode to our surprise proved to be much slower than

Centralised Working Mode in this measurement. During our tests 2 of the 19 nodes failed

to completely execute all of the calculations, this is not completely unexpected as our

underlying Kademlia implementation of the DHT has at most ‘bet effort’ guarantees.

Nevertheless, we did not expect this kind of reliability issues in a closed, controlled

environment like ours was for the measurements.

0 100 200 300 400 500 600 700 800 900 1000

Fetch	Task	Data	Part

Fetch	Task	Program

Fetch	Tasks

Upload	Result

Comparison	of	Client	Operations	on	the	Server

 40

Figure 9 Administration and computing times in clients

For the remaining nodes the computing times were very similar to the ones we

measured in the centralised test. This is expected as the Task remains the same, despite

the delivery and upload method.

What is more interesting to notice is that accessing the DHT provides a rather

significant overhead in the clients. On average it took ~1730% more time to retrieve the

Data Parts and upload the Results then actually calculating them.

Figure 10 Client DHT Operations Comparison

0

50000

100000

150000

200000

250000

300000

350000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Administration	Time	&	Computing	Time

Administration	time Computing	time

DHT	Operations	Comparison

Retrieve	Data	Part Store	Result

 41

The bulk of this administrational overhead came from storing the results. The ratio

between data retrieval and result storage was around 1 to 15, or ~6,49%. In overall we

concluded that, while the Peer-to-Peer Working Mode does indeed moves

administrational responsibility to the clients, it also does it rather inefficiently.

Ultimately the performance of Peer-to-Peer Working Mode proved to be

significantly under the Centralised Mode’s in this measurement. The reasons of this

performance drop can be attributed mainly to the overhead introduced with the usage of

DHT.

Further study of Kademlia’s behaviour in different configurations could lead to

optimizations and improvements in efficiency. We could also improve performance by

adapting our client specifically for the Kademlia library we use, for example by using

node id and locality for Task allocation and management.

 42

6 Overview and future work

At the first part of this paper we presented a problem, examined it from different

perspectives and showed a possible solution. In later parts we discussed this solution and

its uses and ultimately measured different aspects of it. In this final section we intend to

provide and overall summary of the work done and show some future research directions.

6.1 Summary

In this paper we showed some potential barriers in the proliferation of

participatory and volunteer computing systems. We identified one of this barriers,

accessibility as a major factor in the phenomenon and showed some previous works trying

to overcome it.

We listed the key features and requirements necessary from a system to achieve

the set of goals. Then we introduced our solution, a participatory system built on web

technologies, requiring no active participation from the client. We evaluated the required

technologies to build a system like this and selected JavaScript and web browsers for

clients, and JavaScript and Node.js for server applications. We detailed the

implementation of our system, showed benefits of the proposed architecture and used

technologies.

Finally, we measured the feasibility of this system by checking whether the final

balance between computational gains by adding clients and its administrational overhead

are balanced out in favour of the former.

We also investigated how does the system behaves in the two working modes

presented earlier. We’ve observed the expected behaviour in Centralised Working Mode,

further proving the operability of the system and found some interesting directions to

continue refining Peer-to-Peer Working Mode with.

As a result of these measurements we concluded that a participatory system using

JavaScript in browsers for clients is feasible, we’ve also showed trough a real-world

example that the system we implemented is capable of conducting these computations in

both working modes.

 43

6.2 Future research directions

One of the conclusions we’ve drawn from the measurements, was that the large

administrational overhead of the Peer-to-Peer Working Mode affects performance

negatively. In the future we intend to explore possibilities for further reducing these

administration costs when utilizing this working mode in the system.

Another interesting research direction is associated with the Secondary

Deployment Mode, when the system is deployed alongside an existing website. In this

case, the effects of different visitor behaviours could have very different impacts on the

system. For example, client joining and leaving frequency greatly depends on the type of

the host website. E.g. in case of a news portal, with long articles we may find users staying

on the same page for longer times, therefore it would be beneficial to assign them longer

tasks. Measuring how this client behaviour affects different types of Tasks could help us

in tailoring the configurations more precisely to the given deployment’s needs.

We would also like to improve our client software by providing persistence

options for Tasks, execution halting and restart, and general performance tweaks and

optimizations.

Another field worth investigating is improving the application creators

experience. The basic structure of the Task creation and execution could be improved.

Instead of pre-determined Task Parts and sizes, we could enable dynamic Task Part

creation on the server side.

Ultimately answering these questions could lead to a much larger adaptation of

participatory systems, enabling computationally expensive scientific and commercial

projects to become viable. By providing an alternative income for websites, namely

leasing their visitors computational power, participatory systems could also change the

way how the economy of the web works

 44

Bibliography

[1] Directive 2002/58/EC of the European Parliament and of the Council of 12 July
2002 concerning the processing of personal data and the protection of privacy in
the electronic communications sector (Directive on privacy and electronic
communications)

[2] David P. Anderson, “BOINC: A System for Public-Resource Computing and
Storage”, 5th IEEE/ACM International Workshop on Grid Computing (4-10)

[3] David P. Anderson, Jeff Cobb, Eric Korpela, Matt Lebofsky, Dan Werthimer,
“SETI@home An Experiment in Public-Resource Computing”, Commun. ACM
2002 Vol. 45 (56-61)

[4] Stefan M. Larson, Christopher D. Snow, Michael Shirts, Vijay S. Pande,
“Folding@Home and Genome@Home: Using distributed computing to tackle
previously intractable problems in computational biology”, Computational
Genomics, Richard Grant, editor, Horizon Press, 2002.

[5] Luis F. G. Sarmenta and Satoshi Hirano, “Bayanihan: Building and Studying
Web-Based Volunteer Computing Systems Using Java”, Future Generation
Computer Systems 15(5-6), New York, 1999.

[6] O. Regev, and N. Nisan, “The POPCORN market. Online markets for
computational resources”, Decision Support Systems, Vol. 28. (177-189) , 2000.

[7] John P. Morrison, James J. Kennedy, David A. Power, “WebCom: A Web Based
Volunteer Computer”, The Journal of Supercomputing vol. 18 (47-61), 2001.

[8] David P. Anderson, Gilles Fedak, “The Computational and Storage Potential of
Volunteer Computing”, Proceedings of the Sixth IEEE International Symposium
on Cluster Computing and the Grid (73-80), 2006.

[9] Balachander Krishnamurthy, Craig E. Wills, “Privacy Diffusion on the Web: A
Longitudinal Perspective”, Proceedings of the 18th International Conference on
World Wide Web (541-550), 2009.

[10] "Chrome V8 | Google Developers", Google Developers. [Online]. Available:
https://developers.google.com/v8/. [Accessed: 14- Oct- 2016].

[11] "SpiderMonkey", Mozilla Developer Network, 2016. [Online]. Available:
https://developer.mozilla.org/en- US/docs/Mozilla/Projects/SpiderMonkey.
[Accessed: 14- Oct- 2016].

[12] "WebRTC Home | WebRTC", Webrtc.org, 2016. [Online]. Available:
https://webrtc.org. [Accessed: 14- Oct- 2016].

[13] "HTML5", W3.org, 2016. [Online]. Available: http://www.w3.org/TR/html5/.
[Accessed: 14- Oct- 2016].

 45

[14] Stefan Tilkov, Steve Vinoski, “Node.js: Using JavaScript to build high-
performance network programs”, IEEE Internet Computing (2010 November)
Vol. 14 (80-83), 2010.

[15] "MongoDB", MongoDB, 2016. [Online]. Available: https://www.mongodb.com.
[Accessed: 14- Oct- 2016].

[16] "KadTools Index", Kadtools.github.io, 2016. [Online]. Available:
http://kadtools.github.io. [Accessed: 14- Oct- 2016].

[17] Petar Maymounkow, David Mazieres, “Kademlia: A Peer-to-Peer Information
System Based on the XOR Metric”, Revised Papers from the First International
Workshop on Peer-to-Peer Systems (53-65), 2002.

[18] "kadtools/kad-webrtc", GitHub, 2016. [Online]. Available:
https://github.com/kadtools/kad-webrtc. [Accessed: 14- Oct- 2016].

[19] "js-platform/node-webrtc", GitHub, 2016. [Online]. Available:
https://github.com/js-platform/node-webrtc. [Accessed: 14- Oct- 2016].

[20] Roy T. Fielding and Richard N. Taylor. Principled design of the modern web
architecture. ACM Trans. Inter. Tech., 2(2):115–150, 2002.

[21] "Express - Node.js web application framework", Expressjs.com, 2016. [Online].
Available: http://expressjs.com. [Accessed: 20- Oct- 2016].

[22] "Mongoose ODM v4.6.4", Mongoosejs.com, 2016. [Online]. Available:
http://mongoosejs.com. [Accessed: 20- Oct- 2016].

[23] "TypeScript - JavaScript that scales.", Typescriptlang.org, 2016. [Online].
Available: https://www.typescriptlang.org. [Accessed: 21- Oct- 2016].

[24] "nginx news", Nginx.org, 2016. [Online]. Available: https://nginx.org. [Accessed:
21- Oct- 2016].

[25] "Welcome! - The Apache HTTP Server Project", Httpd.apache.org, 2016.
[Online]. Available: https://httpd.apache.org. [Accessed: 22- Oct- 2016].

[26] "js-platform/node-webrtc", GitHub, 2016. [Online]. Available:
https://github.com/js-platform/node-webrtc. [Accessed: 23- Oct- 2016].

[27] Sam Dutton “Getting Started with WebRTC”, HTML5Rocks, 2016 [Online].
Available: https://www.html5rocks.com/en/tutorials/webrtc/basics/ [Accessed:
23- Oct- 2016].

[28] "antirez/jsrt", GitHub, 2016. [Online]. Available: https://github.com/antirez/jsrt.
[Accessed: 24- Oct- 2016].

[29] Xarg.org, 2016. [Online]. Available: http://www.xarg.org/download/pnglib.js.
[Accessed: 24- Oct- 2016].

 46

Appendix

Table of Figures

Figure 1 System architecture .. 17	

Figure 2 Admin Web Application Frontend ... 21	

Figure 3 Workstations used in our measurements, running the web client 32	

Figure 4 The Scene to be Rendered by the Clients ... 34	

Figure 5 Processing times compared .. 36	

Figure 6 Average client computation time of each tile ... 37	

Figure 7 Server and Client Times in Centralised Mode ... 38	

Figure 8 Comparison of Client Operation Costs on the Server 39	

Figure 9 Administration and computing times in clients .. 40	

Figure 10 Client DHT Operations Comparison .. 40	

Table 1 Feasibility measurement results ... 35	

