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Abstract 

With the rise of next generation low-level graphics and compute APIs such as 

DirectX 12 by Microsoft and Vulkan by the Khronos Group, developers became 

responsible for initializing the rendering context, memory allocations, resource lifetime 

management and much more. Subsequently, developing an easily extensible, highly 

efficient renderer that allows for creation of complex pipelines with ease has grown 

increasingly difficult. 

In my work, I will demonstrate the use of render graphs, a high-level 

representation of render passes and resources to vastly simplify the creation of complex 

rendering pipelines. The render graph system provides developers with a visual way of 

orchestrating complex rendering pipelines while hiding away much of the low-level 

operations, such as explicit resource barriers, lifetime management and memory 

allocations. This also allows for various background optimizations, such as resource 

repurposing which can end up saving significant amounts of memory. The use of render 

graphs has become the standard in modern game engine development: the most common 

example being Unreal Engine’s Render Dependency Graph, or Frostbite’s FrameGraph 

developed by DICE. 

I will also present a working render graph implementation that I developed using 

the Vulkan API.  
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Összefoglaló 

A modern új generációs alacsony szintű grafikus és számítási API-ok 

megjelenésével (például a Microsoft által fejlesztett DirectX 12, vagy a Khronos Group 

által specifikált Vulkan) a fejlesztők felelőssé váltak a renderelési környezet 

inicializálásáért, memória-allokációkért, az erőforrások élettartamának kezeléséért és 

még sok másért. Ennek következtében jelentősen nehezebbé vált egy könnyen bővíthető, 

hatékony grafikus motor fejlesztése, amely lehetővé teszi a bonyolult renderelési 

csővezetékek egyszerű létrehozását. 

A dolgozatomban bemutatom a Render Graph-ok használatát, ami egy magas 

szintű reprezentációja a render pass-oknak és erőforrásoknak. Segítségével jelentősen 

megkönnyíthető a bonyolult renderelési csővezetékek létrehozása. A Render Graph 

rendszer egy vizuális eszközt kínál a fejlesztők számára, mellyel könnyedén le lehet írni 

a renderelési folyamatot. A rendszer elrejti a fejlesztők elől az alacsony szintű műveletek 

nagy részét, mint az erőforrások, és azok élettartamának kezelését, valamint a memória 

foglalásokat. Ez továbbá lehetőséget nyújt különböző optimalizációkra, például az 

erőforrások újrahasznosítására, amivel akár jelentős mennyiségű memóriát takaríthatunk 

meg. A Render Graph-ok használata elterjedt a modern játékmotor fejlesztésben, erre a 

leggyakrabban emlegetett példa az Epic Games által fejlesztett Unreal Engine, és annak 

a Render Dependency Graph modulja, vagy a DICE Frostbite motorjának FrameGraph-

ja. 
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1 Introduction 

Ever since the introduction of low-level graphics application programming 

interfaces (APIs) like DirectX 12 (2015), Vulkan (2016) and Metal, they have only 

become an increasingly popular choice for rendering engines. These APIs target high-

performance real-time 3D rendering applications (interactive media) and highly 

parallelized computing. For example, today we see that a lot of videogames receive 

DirectX 12 (and less commonly Vulkan) support through engine upgrades. Compared to 

older APIs such as DirectX 11 and OpenGL, they more accurately resemble how current 

generation GPUs work and offer higher performance and more efficient CPU and GPU 

usage. 

Traditionally GPUs executed a single workload in parallel on multiple GPU cores, 

where multiple workloads were run after each other. That was until we saw the most 

recent improvements in GPU architecture, allowing for hardware parallelization of 

multiple workloads. Making use of hardware parallelization using the new, low-level 

API, developers can achieve the benefits mentioned earlier by submitting workloads to 

different “queue families”. 

However, these benefits come at the cost of developers now being responsible for 

setting up the hardware interface and rendering context themselves in an explicit and 

verbose manner. It takes a lot of code to get a simple example running while using these 

APIs, and it only gets more difficult if one would like to do something even remotely 

complicated. For this reason, if one would like to use such an API reasonably for 

implementing a rendering engine, it would be a great idea to first build an abstraction 

layer over the API or develop a comprehensive rendering hardware interface (RHI). This 

is easier said than done, as creating one that can utilize these APIs to their full extent 

requires careful planning and designing, especially if our requirements include supporting 

multiple APIs. 
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1.1 Render Graphs 

There are numerous ways of creating abstraction layers for these low-level APIs, 

one of them is the idea of Render Graphs. Render Graphs are a high-level description of 

graphics operations and resources used to render a scene. The system also has full control 

over the lifetime and usage of most render resources. This brings a well-defined structure 

for the rendering code, but also takes care of error-prone, low-level operations in the 

background such as automatic resource transitions and memory allocations. 

As of 2023 the use of Render Graphs has become a standard in modern game 

engine development: The most common example is the render dependency graph (RDG) 

from Unreal Engine. From various Game Developers Conference (GDC) presentations 

we know that there are other existing implementations used in engines like Frostbite by 

DICE [1] and Anvil by Ubisoft [2]. 

  



 8 

2 Existing Render Graph Implementations 

Using a Render Graph system is a popular choice among modern renderers. In the 

following section I will present various popular engines that implement their own version 

of Render Graphs and other similar graph-based techniques. 

2.1 Unreal Engine 

Unreal Engine (UE) is a state-of-the-art game engine developed by Epic Games, 

created by Tim Sweeney, and first released in 1998. Despite its origins as a game engine, 

Unreal Engine has become a powerful real-time 3D creation tool used in a variety of other 

fields such as movie production. The latest generation, Unreal Engine 5 is widely 

considered to be one of the most technologically advanced game engines today. Its major 

features include Nanite, Lumen and Virtual Shadow Maps. The engine's source code is 

publicly available and can be viewed on GitHub under the condition that one joins the 

Epic Games developers organization. 

Nanite is a virtualized geometry system that allows for an increase in geometry 

complexity by multiple orders of magnitude while handling the level of detail (LOD) 

automatically. Lumen is a fully dynamic global illumination solution that eliminates the 

need for lightmaps while allowing for real-time behavior of light sources. 

 

Figure 2.1: Screenshot taken from the Unreal Engine 5.2 real-time showcase. 

All these new rendering techniques are enabled by the underlying Render 

Dependency Graph (RDG) API [3], which they also refer to as “Render Graph”. The 
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RDG includes all the expected features of a render graph system: synchronizing 

asynchronous commands, allocation of transient resources with optimal lifetimes and 

memory aliasing, automatic resource transitioning, culling unused nodes and resources, 

API usage and resource dependency validation and visualization of the graph structure. 

The high-level rendering code of Unreal Engine should be written using RDG. 

Developers can build their own, custom rendering pipelines in code using the Render 

Graph Builder API. While it is recommended that for common passes developers use the 

collection of utility functions provided by UE, they also have the ability to define custom 

passes. 

The RDG splits the rendering pipeline into two phases: the setup and execute 

timelines. We as developers can set up the graph during the setup timeline by creating 

resources and adding passes using a Builder instance. Then, after calling execute, the 

graph is compiled and executed. All render hardware interface (RHI) commands are 

deferred into pass lambdas, which are called on the execution timeline. 

The allocation of underlying RHI resources is delayed until execution. Resources, 

buffers, and textures specifically can be either transient or external whether its lifetime is 

constrained to the graph. Transient resources can potentially alias with other resources 

with disjointed lifetimes. External resources lifetimes extend outside of the graph. These 

can be existing RHI resources, or resources extracted from the graph after execution. 

The RDG insights plugin can be used as a debugging and diagnostic tool and for 

visualization of the RDG structure. This visualization can be used to inspect various 

properties of the graph such as: resource lifetimes, asynchronous compute fences and 

overlaps. 

 

Figure 2.2: RDG Insights plugin interface. (Source: [3]) 
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2.2 Frostbite: FrameGraph 

Frostbite is the in-house game engine of DICE, a subsidiary of Electronic Arts 

(EA). First developed for first-person shooter games, its use since then has been expanded 

to a variety of genres. The renderer of Frostbite produces photorealistic images 

comparable to that of Unreal Engine. Due to Frostbite being a proprietary engine there is 

not much publicly available information about its design and architecture, except from a 

few presentations from the Game Developers Conference. 

From a presentation given by Yuriy O’Donnell at GDC, a rendering Engineer on 

the frostbite team, we know that the engine uses a similar system to render graphs called 

FrameGraph [1]. Overtime, the functionality and complexity of the rendering system has 

scaled up massively. Rendering systems became tightly coupled and as a result suffered 

from limited extensibility. With the renderer code growing from 4k to 16k source lines of 

code (SLOC), requiring explicit resource management with implementations differing 

across teams, the code became expensive to maintain and extend. 

The answer to these problems was designing a new, modular and extensible 

renderer architecture. This led to the creation of FrameGraph and Transient Resource 

System. Like render graphs, the FrameGraph is a high-level description of render passes 

and resources with full knowledge of the frame. The FrameGraph is supported by the 

Transient Resource System, which is responsible for resource allocation and memory 

aliasing. 

 

Figure 2.3: Comparing the old and new renderer architecture of Frostbite. (Source: [1]) 

The FrameGraph’s ambitions align with what we would expect from a render 

graph system. Moving away from immediate mode rendering, the rendering code is now 
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organized as efficient self-contained modules called passes. Among many things error-

prone operations such as resource management, async compute and memory barriers were 

simplified. Previously these had to be explicitly managed by the developers. FrameGraph 

implements a multi-phase retained mode rendering API (setup, compile, execute) with 

the graph being rebuilt from scratch every frame to support dynamically changing 

rendering configurations. 

Just like other render graph systems, during the setup phase developers can define 

passes with input and output resources. These are all virtual at this stage. Like in Unreal 

Engine’s RDG, resources can be either transient or external depending on whether its 

lifetime is constrained to the graph or not. External resources include the backbuffer, 

history buffer for temporal anti-aliasing and more. Resource parameters are derived based 

on its uses and creation is delayed until first use. Passes are declared using C++ lambda 

functions, because creating per pass C++ classes is inconvenient, as they require a lot of 

boilerplate code and break code flow. 

The compilation phase is as expected: unused resources and passes are culled, 

then resource lifetimes are calculated, and finally concrete GPU resources are allocated 

based on usage. Finally, during the execution phase the passes are iterated over and their 

callback functions are called. The system also provides tools for visualization and 

debugging. 

We can conclude that by using a render graph-like architecture, the Frostbite team 

managed to turn the old and hard to maintain renderer into one that is easily extensible 

and is more fit for complex rendering pipelines used today. 
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2.3 Other Applications of Graphs in Rendering 

The use of graphs in computer graphics is not limited to the rendering pipeline. 

The new Work Graphs specification [16] provides a way of organizing GPU work at a 

low-level using graphs and various tools exist that use a node-based editor to allow users 

to for example create shaders. 

2.3.1 Unity Engine: Shader Graph 

Unity is a widely popular cross-platform game engine. In Unity we see another 

application of graphs in rendering, shader graphs. The Shader Graph is a node-based 

system that lets developers visually author shaders and see results real-time. 

 

Figure 2.4: Interface of the Unity Shader Graph  

Shader Graph provides a large variety of predefined nodes for developers to work 

with. It is also possible to create “Custom Function” nodes with custom inputs and outputs 

and functionality defined by HLSL (High-Level Shader Language) code written by the 

developer. 

Compared to render graphs, this system works at a higher level, by using it we 

cannot modify the rendering pipeline itself but create materials. 

2.3.2 DirectX 12: Work Graphs 

Work graphs are a new system for GPU based work creation in DirectX 12. The 

preview for this feature was released recently in June of 2023 with the specification 

available for viewing on GitHub. The motivation for work graphs was to address some 

limitations in the programming model of GPUs and by doing so enabling the development 
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of future technologies. For example, the new rendering features of Unreal Engine 5 such 

as Lumen and Nanite are hitting the limits of the current compute shader paradigm. 

Traditionally compute workloads are dispatched to the GPU, then based on its 

result with a round trip back to the CPU we determine what subsequent work the GPU 

needs to do. Work graphs eliminate the need for this round trip by allowing running 

shader threads to dispatch new workloads on-demand. The system then can schedule the 

requested work as soon as the GPU has the capacity to execute it. Therefore, the system 

is asynchronous in nature. Work graphs are a graph of nodes where running shader threads 

can request invocations of other nodes, without waiting for them to launch. The graph is 

acyclic, with the exception that a node can output to itself. 

 

Figure 2.5: Example Work graph. (Source: [4]) 

This model is comparable to that of hardware-accelerated ray tracing. Ray tracing 

shaders already have the ability to call other shaders. Starting from a ray generation shader 

intersection a variety of shader types; any hit, closest hit, miss, and callable shaders are 

called. In concept, callable shaders are the most similar to work graphs. Callable shaders 

can be explicitly invoked from another shader in code via CallShader() in HLSL and 

executeCallableEXT() in GLSL. 

Developers can experiment with work graphs using preview drivers. As of now 

only AMD provides publicly available drivers with support for work graphs. In contrast 

to Render Graphs, work graphs aim to solve a problem of GPU workload scheduling at a 

vastly lower level. 
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3 Related Graph Theory 

Graphs are mathematical structures used to model relations between objects. In 

the context of graph theory graphs are an ordered pairing defined as 𝐺 = (𝑉, 𝐸), where 𝑉 

is the set of vertices (also called nodes, points) and 𝐸 is the set of edges that connect 

vertices together. A distinction is made between undirected and directed graphs. In an 

undirected graph, edges connect two vertices symmetrically, while in a directed graph 

edges connect two vertices asymmetrically. 

In computer science it is not uncommon to reach for graph theory to help us solve 

various issues. Graphs have many applications including representing network topology, 

state machines and dependencies between several objects. 

Dependency graphs are directed graphs that represent dependencies between tasks 

(a vertex of the graph) using directed edges. For some directed graphs it is possible to 

find a linear ordering of its vertices such that it respects the dependencies defined by the 

graph’s edges. The graphs that fulfill this property are known as directed acyclic graphs. 

The theories, definitions and algorithms mentioned in this section can be found in 

more detail in “Introduction to Algorithms”. [6] 

3.1 Directed Acyclic Graphs 

A directed acyclic graph (DAG) is a directed graph with no directed cycles. Such 

graphs consist of vertices and edges, with each edge directed from one vertex to another, 

such that these directed edges never form a closed loop. We can verify if directed graphs 

are acyclic or not using the following theorem: “The directed graph 𝐺 = (𝑉, 𝐸) is acyclic 

if and only if it can be topologically ordered.” This property of directed acyclic graphs is 

particularly useful as it allows us to verify if a given directed graph is acyclic or not. 

3.1.1 Topological Ordering 

The topological ordering of a directed graph 𝐺 can be defined as follows: 

Let (𝑣1, 𝑣2, . . . , 𝑣𝑛) be an ordering of the vertices of a directed graph 𝐺. This list of vertices 

is a topological ordering of 𝐺 if for every edge (𝑥, 𝑦) the vertex 𝑥 occurs earlier than 𝑦 in 

the list. 
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In the context of dependency graphs directed acyclic graphs play a crucial role: 

● The acyclic property of them ensures that there are no circular dependencies or 

infinite loops, making it possible to find a valid execution order of nodes. 

● They allow for efficient algorithms to find topological ordering. 

● Can be used to parallelize tasks, as nodes that do not depend on one another. 

● Provides an intuitive way of representing complex dependencies. 

 

Figure 3.1: DAG and its Topological Ordering. 

3.1.2 Topological Sort 

The topological ordering of a directed graph can be derived by various algorithms 

in linear time 𝑂(|𝑉| + |𝐸|) where 𝑉 is the set of vertices and 𝐸 is the set of edges. The 

two most common methods are Kahn’s Algorithm [5] and depth-first Search (DFS). 

Kahn’s Algorithm (first described by Arthur B. Kahn in 1962) can also be used to 

find if it is acyclic or not. This algorithm works by strategically removing the edges of 

the graph. 

3.1.2.1 Pseudocode for Kahn’s Algorithm 

L <- Empty list, this will contain the sorted nodes 
S <- Set (or stack or queue) of nodes which have no incoming edges 
while S is not empty do:  
 remove a node v from S  
 add v to L  
 for each node w with an edge e from v to w do: 
  remove edge e from the graph  
  if w has no other incoming edges then: 
   insert m into S 
if graph has edges then: 
 return error (the graph has at least one cycle) 
else  
 return L 
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3.1.3 Application of DAGs in Render Graphs 

Render Graphs are essentially dependency graphs in which nodes that represent 

various functions are dependent on one another’s resources. Therefore, we can use 

directed acyclic graphs to represent resource and data dependency through the rendering 

pipeline described by our Render Graph. 

Using the properties of DAGs, we can perform various optimizations and find a 

linear execution order of the Render Graph by running topological sort on it. 

One such optimization is the parallelization of various tasks that can be executed 

simultaneously. A commonly seen use case for this is asynchronous compute; the 

utilization of unused GPU resources (compute units, bandwidth, registers) by running 

compute dispatch calls asynchronously while rendering. 

3.2 Chordal Graphs 

Chordal graphs are a subset of perfect graphs in which all cycles of four or more 

vertices have a chord. A chord is defined as an edge that is not part of a cycle but connects 

two vertices of said cycle, meaning that every induced cycle should have exactly three 

vertices (triangulated graphs). A graph is chordal if and only if it has a perfect elimination 

ordering. A perfect elimination ordering of a chordal graph can be found in linear time 

using the lexicographic breadth-first search algorithm [7], the verification of the found 

ordering can also be done in linear time. Therefore, it is possible to recognize a chordal 

graph in linear time. As a result, several problems such as graph coloring can be solved 

in polynomial time for chordal graphs. 

Perfectly orderable graphs are graphs whose vertices can be ordered in such a way 

that a greedy coloring algorithm with that ordering optimally colors every induced 

subgraph of the given graph. 

An application of perfect elimination orderings is finding a maximum clique of a 

chordal graph in polynomial-time. As chordal graphs are perfect graphs, the size of the 

maximum clique equals the chromatic number of the chordal graph and since they are 

also perfectly orderable an optimal coloring can be obtained by applying a greedy 

algorithm to its vertices in the reverse of its perfect elimination ordering. 



 17 

3.2.1 Interval Graphs 

Interval graphs are a special subset of chordal graphs. An interval graph is an 

undirected graph formed from a set of intervals, with a vertex for each interval and an 

edge between vertices whose interval intersect. Therefore, the edge set of 𝐼 interval graph 

is defined as 𝐸(𝐼) = {(𝑣𝑖, 𝑣𝑗) | 𝑆𝑖 ∩ 𝑆𝑗 ≠ 0} 

As interval graphs are chordal graphs, they are also perfect graphs. They can be 

recognized in linear time, and an optimal graph coloring can be found in linear time. 

3.3 Breadth-First Search 

One of the most known and used algorithms that operates on graphs is the breadth-

first search (BFS). The algorithm traverses the given graph such that it first explores all 

nodes at the current depth level before moving on to the nodes of the next depth level and 

stops when a node that satisfies a given property is found. Breadth-first search can also 

be used to determine which nodes can be reached from the root node by running the 

algorithm so that it does not search for a node but returns the set of visited nodes. 

3.3.1 Algorithm pseudocode 

G <- Graph 
R <- Root node, a vertex of graph G 
Q <- Let Q be a queue 
add R to Q 
mark R as visited 
while Q is not empty:  
 v <- dequeue vertex from Q  
 for all neighbors w of v in graph G  
  if w is not visited    
   add w to Q    
   mark w as visited 

 

Later, this algorithm will be useful during the Render Graph compilation phase to cull 

nodes that are not connected to the input graph. 
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4 Designing a Render Graph based Renderer 

It is for a reason that the rendering process is commonly referred to as a pipeline. 

The rendering process usually is organized as a sequence of multiple stages of rendering 

work where each stage consumes and produces GPU resources. Passes depend on one 

another based on the resources they use. Graphs are natural candidates to model these 

relations between stages. Using the relations, we can build a directed acyclic graph that 

describes the rendering pipeline. The Render Graph is exactly this, a dependency graph 

where edges represent resource usage and are drawn between two vertices: one that 

produces the resource and one that consumes the resource. 

This gives us the opportunity to create a system that has high-level knowledge of 

the rendering pipeline that renders a frame and determines an optimal way to execute it 

ahead of time. A render graph system is expected to automatically take care of low-level 

operations (memory barriers, state transitions) and optimize the rendering pipeline 

(memory usage, execution order). This system can also be used to cull redundant stages 

and validate the correctness of the described pipeline. 

4.1 Resources 

Resources primarily represent GPU resources such as images, buffers and 

acceleration structures. However, it is also possible to extend these with “special” types 

of resources including but not limited to camera data and scene objects. 

The Render Graph system is the owner of GPU resources and is responsible for 

managing their lifetime. Resources store the underlying GPU resource and are produced, 

consumed, and stored in heterogeneous containers by nodes. 

Taking these requirements into consideration, we can define a bare minimum 

Resource base class. The specific types of resources then can be implemented by 

inheriting from this class, for example: ImageResource that stores an Image as its 

underlying resource. 

In my implementation I included image, top-level acceleration structure, camera 

data and scene object data resources. The last two are external resources to the graph, 

which are owned by a scene, and exist for the sole purpose of making scene data available 

for nodes to consume. 
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4.2 Nodes 

In the context of Render Graphs, a node represents a self-contained unit of work, 

a render pass. Nodes consume and produce resources which are represented by input and 

output GPU resources and stored in a heterogeneous container. Nodes also need to be 

able to represent various GPU workloads: graphics, compute and if applicable hardware 

accelerated ray tracing and expose various configurable parameters of these workloads. 

These are the properties all nodes will share, therefore when working with inheritance we 

can define the bare minimum Node base class as following: 

 

Figure 4.1: simplified class diagram of nodes, resources, and their specifications 

I opted to use inheritance as it is a straightforward way of allowing for developers 

to create new nodes with complete control over their inner implementations. My Render 

Graph implementation provides eight different nodes with various functionality and 

support for deferred shading and ray tracing. 

I included a special kind of node; the SceneProvider, whose sole job is while 

acting as the root node of the graph to make the resources (Objects, Cameras and when 

applicable Top-Level Acceleration Structure) of a scene available for nodes later down 

the pipeline. While this node could be removed and implicit connections could be used 

instead, I chose to include it so the developer can see which nodes consume these 

resources in an explicit manner. 

The other seven nodes are all GPU workloads including a few frequently used 

techniques in computer graphics: Ambient Occlusion, Anti-Aliasing, Gaussian Blur, 

Lighting Pass, G-Buffer Pass, Ray Tracing and Present. 

4.3 Setup Phase 

When using a Render Graph based system there are two phases; a setup phase 

where the user can set up and modify the rendering pipeline, then comes the compilation 
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phase which is a completely autonomous procedure with no user input. The result of the 

compilation process is a render path, the resources, nodes and their execution order. 

The user can create and set up a Render Graph using two different interfaces: in 

code using the Graph Builder API or using the visual graph editor. 

4.3.1 Builder Interface 

The Graph Builder API can be used to construct Render Graphs by code written 

in C++. Using the builder interface, it is possible to programmatically create Render 

Graphs according to our needs. This is particularly useful when we need to dynamically 

change the rendering pipeline (e.g.: cutscenes) or we are creating our rendering pipeline 

based on user configurations like in video games. 

The builder API allows the developer to create nodes, configure the parameters of 

them and define resources. Then once ready, the graph can be compiled and used as the 

render path in our application. 

 

Figure 4.2: Using the Builder Interface. 

4.3.2 Editor Interface 

The visual Render Graph editor is particularly useful when debugging and 

experimenting. The developer can quickly create and modify complex rendering pipelines 

using the node-based graph editor that when compiled immediately replaces the old 

render path with the new one. The visual editor is built using ImGui [8] and an extension 

of it; imnodes [9]  that provides the node editor. Editor features include but are not limited 

to adding nodes, selecting the active scene, compiling the graph, and resetting the graph 

to the initial state. 

Each node in the graph declares what resources it consumes on the left side and 

produces on the right side by name. The user can connect resources between nodes using 

the points next to the resources name. Both the points and connecting lines are color coded 

by resource type. 



 21 

 

Figure 4.3: Node-based editor interface. 

As seen on figure 4.3, it is also possible to expose various configuration options 

for a node, for example the user can enable raytraced shadows, or explicitly disable the 

ambient occlusion input for the lighting pass node. 

If the Render Graph is successfully compiled, the rendering pipeline defined by it 

will replace the old one and will be used to render the selected scene. This provides the 

user the ability to quickly test various pipelines and verify if a resource produced by a 

node is as expected or not with ease without the need for debugging tools such as NVIDIA 

Nsight Graphics or Radeon GPU Profiler. 

For example, we can view the image produced by the ambient occlusion node 

directly, while only using the bare minimum required nodes and connecting the image in 

question to the Present node. 

 

Figure 4.4: Presenting the Ambient Occlusion result. 

The editor also logs compiler messages and most actions to the standard output. 

It also notifies the user about errors that occurred while editing or compiling the graph. 
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4.4 Compilation Phase 

The compilation phase is a completely autonomous process in which the user has 

no input and where the input Render Graph is processed into an executable render path. 

All optimizations such as resource or memory reusing are done during this phase. A 

render path is the collection of nodes with their execution order and resources required to 

execute the rendering pipeline defined by the render graph. 

The compilation phase consists of five key steps: 

1. Culling unreachable nodes using BFS graph traversal started from the 

SceneProvider node. 

2. Using topological sort to verify that the input graph is a DAG and therefore has 

no circular dependencies, while determining an execution order of nodes. 

3. Evaluate and create the resources required by the remaining nodes. 

4. Connecting the resources to nodes. 

5. Compiling the execution order, nodes, and resources into a render path. 

One possible optimization we can make during the compilation phase is reducing 

the number of resources: instead of naïvely creating all resources, we could try optimizing 

the required number of resources for example by resource or memory aliasing. 

During compilation, the given input Render Graph is validated for correctness, 

checks for circular and missing required dependencies are made. It is important to note 

that if for whatever reason the compilation fails feedback about the error is given to the 

user through log files or the standard output. When using the editor interface this is 

particularly useful as failed compilation will not cause unexpected crashes. Regardless of 

the compilation result, when compiling with verbose mode on log files are produced 

containing log messages and a data dump of the nodes and resources of the render graph. 

In my implementation making use of the strategy design pattern, I created two 

graph compilers: one that naïvely creates all required resources, and one that first 

optimizes the number of required resources before creating them. Other developers can 

also create their own compilation strategy by implementing the proper interface. 
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5 Implemented Techniques 

To demonstrate the render graph system, I created various nodes that implement 

commonly seen techniques in computer graphics. 

5.1 Deferred Shading 

Deferred shading is a screen-space shading technique that aims to overcome the 

performance drawbacks of forward shading. With standard forward shading we render 

each object and light it according to all light sources in the scene. This is a performance 

heavy and wasteful operation as for each rendered object we iterate over all light sources 

for each fragment and with overlapping objects a lot of fragments get overwritten. 

The primary benefit of using deferred shading is the decoupling of scene geometry 

and lighting making it possible to render scenes with hundreds of lights at an acceptable 

frame rate. Deferred shading splits the rendering process into two passes. During the first 

pass we gather the data required for computation such as positions, normals (rendered 

into texture buffers, commonly referred to as G-buffer). The second pass; the lighting 

pass will use the data contained within the G-buffer to compute the lighting at each pixel 

in screen space. The data generated during the first pass can be used by various other 

techniques such as ambient occlusion. 

 

Figure 5.1: Multiple target rendering (MRT) to the G-Buffer and Lighting result. 

Using deferred shading has a few serious consequences we might need to consider 

for our application: we lose the ability to handle transparency and hardware anti-aliasing 

will not produce correct results anymore since anti-aliasing the data of the G-buffer would 
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result in nonsensical values. This is one of the reasons why post-processing anti-aliasing 

is preferred over hardware anti-aliasing. 

In my implementation the first pass aside from position, normal and color data 

also produces motion vectors that can be used later in the pipeline for motion blurring or 

temporal anti-aliasing. 

5.2 Ambient Occlusion 

Ambient occlusion (AO), in 3D computer graphics is a commonly used global 

technique to approximate full global illumination. It simulates the soft shadows that occur 

when surfaces are close to each other by approximating how much ambient light can hit 

a point on a surface. For this reason, AO is used to add more realism to the rendered 

image by visually highlighting the separation of objects. There are various methods for 

real-time ambient occlusion simulation, with ray traced ambient occlusion joining the list 

of viable methods since the release of real-time ray tracing capable hardware (NVIDIA 

RTX 20 series GPUs, 2018). 

Ambient occlusion is calculated by constructing a hemisphere of rays originating 

from a point in all directions then checking for ray intersections. Mathematically, we can 

define the ambient occlusion at a point 𝑝 as the integral of the visibility function of a point 

𝑝 and its normal 𝑛 over the normal-oriented hemisphere with respect to the projected 

solid angle 𝜔. 

𝐴𝑂(𝑝, 𝑛) =
1

𝜋
∫ 𝑉𝑝,𝜔(𝑛 ⋅ 𝜔)𝑑𝜔

 

𝛺

 

To most straight-forward way of approximating this integral in practice is using the 

Monte Carlo method: we take samples by casting rays in random directions within the 

hemisphere from point 𝑝 and testing for intersection with other geometry. This method 

also requires some form of denoising as we can only take a limited number of samples 

before significantly affecting performance. 

The two traditional methods used by game engines are screen space ambient 

occlusion (SSAO) [10] and horizon-based ambient occlusion (HBAO) [11]. Both 

techniques were developed by NVIDIA. SSAO works well enough, with the obvious 

limitation of it being that it is a screen space technique. This means that geometry not 

visible to the camera will not affect ambient occlusion. 
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A recently popular method is ray traced ambient occlusion (RTAO). Its main 

benefit is that it produces higher quality, physically correct results compared to existing 

techniques. The drawbacks of using RTAO in real-time applications is its considerable 

impact to performance and that denoising becomes mandatory, otherwise the resulting 

image even at a high sample count (64) would be significantly noisy. This method also 

requires a GPU capable of hardware accelerated ray tracing. Various game engines 

support this technique; examples include Unreal Engine and the Luminous engine 

developed by Luminous Productions. 

     

Figure 5.2: RTAO with sixteen samples in a single frame vs. samples accumulated over time. 

In my implementation I chose ray traced ambient occlusion using ray queries. The 

ambient occlusion parameters: radius, power and sample count are configurable, with 

support for over time sample accumulation when the camera is stationary. However, the 

node could be expanded with other techniques by creating different ambient occlusion 

strategies which the node can use. 

At 2560x1440 (2k) resolution, my implementation of ray traced ambient 

occlusion takes sixteen milliseconds to calculate, which is a non-negligible impact on 

performance. For this reason, it is common to use a lower resolution for ambient occlusion 

than the rendering resolution. 

5.3 Anti-Aliasing 

In computer graphics anti-aliasing algorithms are used to remove the aliasing 

effect from rendered images. Aliasing in 2D images commonly manifests as pixelated 

edges and the moiré pattern and is a result of undersampling. Real-world objects consist 

of continuous curves and lines while on a computer screen, lines can only be displayed 

as a collection of pixels. Therefore lines, unless they are perfectly vertical or horizontal, 

will appear jagged. 
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To achieve perfect elimination of aliasing, spatial sampling should be done at the 

Nyquist rate or higher after applying an anti-aliasing filter. We can classify these anti-

aliasing techniques into two broad categories: spatial and post process anti-aliasing. 

5.3.1 Spatial Anti-Aliasing Techniques 

The most naïve method of combating the aliasing effect is increasing the sample 

rate, in this case the resolution of our image. This is commonly known as supersampling, 

which is a spatial anti-aliasing method that aims to reduce the aliasing effect by rendering 

the image at a much higher resolution than the one being displayed. By downsampling 

the high-resolution image, we get smoother transitions between pixels along the edges of 

objects. 

However, the simplicity of supersampling comes at a cost: it is computationally 

expensive as the required GPU memory and memory bandwidth becomes several times 

larger. A less expensive and special case of supersampling is multisample anti-aliasing 

(MSAA), which is hard and inefficient to use in combination with deferred shading. 

5.3.2 Post-Processing Anti-Aliasing Techniques 

The performance drawbacks of using spatial anti-aliasing led to the development 

of post processing anti-aliasing techniques such as FXAA (fast approximate anti-aliasing) 

[12] and MLAA (morphological anti-aliasing) [15]. 

Early post-processing-based techniques (such as FXAA) tend towards a lower 

performance impact at a cost of accuracy. More recent techniques rely on temporal data 

from previously rendered frames to produce an anti-aliased image. Such methods are 

referred to as temporal anti-aliasing (TAA). Popular TAA implementations include deep 

learning supersampling (DLSS) by NVIDIA and AMD’s FidelityFX Super Resolution 

(commonly referred to as FSR). 

Taking the benefits and drawbacks of various anti-aliasing techniques into 

consideration I chose to include fast approximate anti-aliasing (FXAA) in my rendering 

engine. 

5.3.2.1 Fast Approximate Anti-Aliasing 

FXAA is a screen-space anti-aliasing algorithm created by Timothy Lottes at 

Nvidia [12]. Its main benefit is its considerably lower performance impact compared to 
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spatial anti-aliasing techniques. It achieves this by smoothing jagged edges according to 

how they appear on-screen while accounting for lighting, unlike MSAA. To this day 

FXAA is a commonly seen method in game development. 

The downside of using FXAA is that it will smooth not only edges between 

triangles, but also edges inside textures requiring it to be applied before rendering HUD 

elements. 

      

Figure 5.3: On the left: without anti-aliasing, on the right: with FXAA. 

5.4 Gaussian Blur 

One of the most used blur operations in image processing is the Gaussian blur. 

Mathematically, by applying a Gaussian blur filter to an image, we convolve it with a 

Gaussian function. In implementation it is best to take advantage of the Gaussian blur’s 

separable property. With two passes, we can use a one-dimensional kernel to first blur the 

image in either horizontal or vertical direction, then in the other direction. The resulting 

effect is the same as when using a two-dimensional kernel, but computationally less 

expensive. 

 

Figure 5.4: Gaussian blur applied to the rendered image. 

I chose to implement a two-pass Gaussian blur using a compute shader. Using 

push constants, the shader can be configured to blur the image horizontally or vertically. 
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5.5 Ray Tracing 

With the advent of GPUs capable of hardware accelerated ray tracing; interest in 

real-time ray tracing and path tracing has skyrocketed. All major vendors (AMD, Intel, 

NVIDIA) latest GPUs now support ray tracing to some capacity, even Apple joining this 

list with the release of its latest SoCs (System-on-a-Chip) the A17 Pro and M3 (2023). 

Both DirectX 12 with DirectX Raytracing (DXR) and Vulkan with the Ray 

Tracing Pipeline extension support hardware accelerated ray tracing features. A critical 

use case for these features is real-time ray tracing in video games, typically combining 

rasterized scenes with ray traced aspects. Some examples include using ray tracing for 

ambient occlusion, shadow map generation. DXR and Vulkan Ray Tracing can also be 

used to accelerate offline rendering and even non-rendering techniques. 

In the context of the Vulkan API, the ray tracing functionality consists of various 

Vulkan, SPIR-V and GLSL extensions. The primary Vulkan extensions are acceleration 

structure building and management, ray tracing pipelines and shader stages and ray query 

intrinsics for all shader stages. 

Forming the backbone of high-performance ray tracing are acceleration structures 

(AS), an optimized data structure built on the scene information organized in a two-level 

hierarchy. Ray intersections are then performed against the acceleration structures. The 

bottom-level acceleration structures (BLAS) contain either the triangles or axis-aligned 

bounding boxes (AABBs) of some geometry in the scene. The top-level acceleration 

structure (TLAS) is made of references to bottom-level acceleration structures paired with 

transform and shading information. How the building of either type of acceleration 

structure is performed is up to the driver implementation. The BLAS is only used by 

reference from the TLAS. The TLAS can be accessed from shaders as a descriptor binding 

or device address. 
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Figure 5.5: Inspecting a TLAS with 1024 BLAS instances using NVIDIA Nsight. 

The ray tracing pipeline provides five new shader stages that developers can use 

to define pipelines of varying complexity: ray generation, closest hit, any hit, intersection 

and callable shaders. Ray traversal begins when a ray generation shader calls the shader 

language appropriate ray tracing function (traceRaysEXT in GLSL). During traversal, 

intersection and any hit shaders have the ability to control how traversal proceeds, after 

traversal is complete either a miss or closest hit shader is invoked. The ray tracing shader 

stages can communicate parameters between all stages of traversal using ray payload 

structures. 

 

Figure 5.6: Ray tracing pipeline flow diagram (Source: [13]) 

The ray tracing features also include ray queries. They can be used in all non-ray 

tracing shader stages to perform ray intersections against the top-level acceleration 

structure. 
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6 Optimizing the Rendering Pipeline 

Organizing the rendering pipeline as a graph makes several automatic 

optimizations possible, that otherwise would make the renderer code deeply coupled and 

hard to maintain. Usually, a Render Graph system is expected to handle task ordering, 

memory barriers and much more automatically. These expectations also include various 

optimizations it can make in the background, reducing the required GPU memory through 

resource or memory aliasing. 

6.1 Task Ordering 

Depending on how our renderer is structured the room for optimizing the 

execution varies a lot. When dispatching workloads only to a single queue, we restrict 

our renderer to run tasks sequentially. This makes organizing GPU workloads simple and 

straightforward, however can leave a significant amount of performance on the table. 

6.1.1 Sequential Execution of Tasks 

When executing tasks sequentially, the only restriction imposed on the ordering 

is defined by the dependencies between the tasks. These tasks and dependencies form a 

directed acyclic graph with a root node as its starting point and a sink node with its end 

point. Between these two points we can determine an execution order of tasks by running 

an algorithm such as Kahn’s algorithm on our graph that topologically sorts its vertices. 

The main drawback of executing tasks sequentially is that we are not utilizing the 

GPU to its fullest potential. 

6.1.2 Parallelizing Execution Using Multiple Queues 

The latest GPU architectures were designed with parallel execution of workloads 

in mind at a hardware level. Developers have the option to dispatch workloads to various 

queue families supported by the GPU which get executed in parallel. However, this 

introduces a completely new set of problems we need to solve. We also need to determine 

which tasks can be executed in parallel and now we must take care of the synchronization 

of workloads with fences. A Render Graph based system would be expected to do all this 

automatically, without any input from the user. A commonly seen use for multiple queues 



 31 

that modern game engines make use of is running compute tasks asynchronously while 

rendering on a dedicated graphics queue. 

In my Render Graph implementation, I choose sequential task execution, as it 

vastly simplifies the renderer architecture and compilation of the graph. Using Kahn’s 

algorithm to form the execution order of tasks between a SceneProvider and Present node. 

6.2 Resource aliasing 

As mentioned earlier, it may be possible to reduce the amount of GPU memory 

used by a rendering pipeline by resource or memory aliasing. This effectively creates a 

system where resources are transient; they only exist for a certain section of the rendering 

pipeline. 

Resource aliasing occurs when a resource is used for multiple purposes during the 

rendering process. While slightly easier to implement than memory aliasing, it brings 

several restrictions with itself. As opposed to memory aliasing, where multiple resources 

share the same allocated memory, resource aliasing makes use of a single, already 

allocated resource. In the context of GPU image resources, this would mean that for 

example images of different formats are incompatible with each other. This means that 

resource properties like image format also need to be tracked. 

This optimization can be done algorithmically, for which I propose the following 

algorithm: 

6.2.1 Algorithm for Resource Usage Range-based Memory Usage 

Optimization 

As input, the algorithm takes in a directed acyclic graph, and a valid topological 

ordering of its vertices. The graph's vertices are nodes of the Render Graph, and edges 

represent the mapping of resources between nodes. To preserve these resource mappings 

while running the algorithm some bookkeeping is required. 

The idea behind the algorithm is that using the input graph, we can determine for 

each resource which nodes will either produce or consume them. Using this knowledge 

then we can construct “resource usage ranges” that represent the effective lifetime of each 

resource. A resource usage range is defined by the earliest and latest point it is used in the 

execution order of nodes. 
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This information can be generated from the input as a preparation step. Once we 

have this information ready, we can run the algorithm on the evaluated resource 

requirements. 

Pseudocode: 

R <-- List of resource requirements with usage ranges 
X <-- Empty list, will contain the optimizer generated resources 
for each ResourceRequirement "rr" in R do: 
 if X is empty: 
  create a new optimizer resource "or" 
  add the usage points of "rr" to “or” 
  add "or" to X  
 else: 
  was_inserted <-- false 
  for each OptimizerResource “or” in X do: 
   if "or" is compatible with "rr": 
    add the usage points of "rr" to "or"   
    was_inserted <-- true 
  if not was_inserted do: 
   create a new optimizer resource "or" 
   add the usage points of "rr" to “or” 
   add "or" to X 
 return X 

This algorithm essentially delays extra resource creation until it is necessary. It 

does so by attempting to repurpose resources when their usage ranges allow for it. This 

is the most important constraint, as for a defined resource usage range, the data contained 

within a resource is expected to be constant by its users, therefore overlaps of ranges 

cannot be allowed under any circumstances. In other words, resources can only be aliased 

if they are disjoint in time. However, this means that after or before said range, it is 

possible to use the resource for a different purpose. 

The beauty of this algorithm comes from its flexibility, the compatibility 

constraint can be changed and used to control how exactly resources are aliased. As 

mentioned, the most important constraint is that usage ranges cannot overlap with each 

other, but other than that, we are free to define any other constraints we want. 

6.2.2 Optimality 

The algorithm described above is essentially a greedy coloring algorithm. 

Examining the problem in the context of graph coloring it is possible to prove that by 

applying a greedy coloring in the reverse of the perfect elimination ordering of an 

incompatibility graph's vertices we get the optimal solution. 
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Let graph 𝐺 = (𝑉, 𝐸, 𝑅) be the compatibility graph of resources. Each vertex in 

the set 𝑉 represents a resource. The conditions for compatibility between vertices can be 

defined by us. 

6.2.2.1 Accounting for compatibility 

Compatibility can be defined as a symmetric transitive homogeneous relation 𝑅 

on the set 𝑉. If the relation 𝑅 applies to vertices 𝑢 and 𝑣 we add the edge (𝑢, 𝑣) to 𝐺. 

Therefore, the set of edges 𝐸 of graph 𝐺 is composed of edges between compatible 

resources. Due to the nature of compatibility we can assume that the relation 𝑅 is a 

symmetric transitive relation, therefore the following statements are true for R: ∀𝑢, 𝑣, 𝑤 ∈

𝑉: (𝑢 𝑅 𝑣 ∧  𝑣 𝑅 𝑤) ⇒ 𝑢 𝑅 𝑤 and  ∀𝑢, 𝑣, 𝑤 ∈ 𝑉: (𝑢 𝑅 𝑣, 𝑢 𝑅 𝑤) ⇒ 𝑣 𝑅 𝑤. Therefore if 

𝑢 and 𝑣, 𝑣 and 𝑤 are compatible, then so are 𝑢 and 𝑤. From the symmetric transitive 

property of compatibility, we can conclude that in the compatibility graph 𝐺 a set of 

compatible vertices will always form cliques. A clique is an induced subgraph of 𝐺 that 

is complete. 

Now if we take the graph 𝐺′ = (𝑉, �̅�), we get a graph with edges between 

incompatible resources. Since in graph 𝐺 compatible resources formed cliques, there are 

no edges between compatible resources in graph 𝐺′. Let us take a maximal clique 

(complete subgraph) 𝐻 of 𝐺, then let the set of incompatible vertices be �̅�, the 

complement of the set 𝐻. In the graph 𝐺′ the following applies: ∀𝑣, 𝑤 ∈ 𝐻: (𝑣, 𝑤) ∉ �̅� 

and ∀𝑥 ∈ 𝐻, 𝑦 ∈ �̅�: (𝑥, 𝑦) ∈ �̅� . This means that in graph 𝐺′ every vertex of a clique (in 

𝐺) will be connected to the vertices of the other cliques. Therefore, we can conclude that 

𝐺′ is a complete multipartite graph, where the partitions are formed from cliques in the 

original graph 𝐺. Without temporal constraints on compatibility the optimal number of 

resources would be the number of partitions in graph 𝐺′. 

 

Figure 6.1: Visualizing cliques transforming into a complete multipartite graph. 
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6.2.2.2 Accounting for the temporal constraint 

However, for the problem of resource aliasing we also need to consider the 

effective lifetime of resources, introducing a temporal constraint on compatibility. Using 

the calculated effective lifetime of resources, it is possible to construct an interval graph 

𝐼 = (𝑉, 𝐸𝐼), where vertices are connected if their effective lifetimes overlap. 

After partitioning the vertices based on our non-temporal constraints into 𝑛 sets, 

we can apply the relevant edges of 𝐼 to each set, resulting in 𝑛 interval graphs. Since 

interval graphs are a special case of chordal graphs, we can make use of the fact that 

chordal graphs are perfectly orderable. Therefore, an optimal coloring of its vertices may 

be obtained by applying a greedy coloring algorithm in the reverse of its perfect 

elimination ordering using unique colors across partitions. This generated coloring is the 

optimal solution to the resource aliasing problem. 

Based on the above, we can modify the proposed algorithm to iterate over each 

set of compatible resources separately, and if we order R by the reverse of the 𝐺′ graphs 

perfect elimination ordering we get an optimal solution. 

6.2.3 Time complexity analysis 

The time complexity of the algorithm can be described by 𝑂(𝑛2). Let the size of 

the set 𝑅generated during the preparation step, be |𝑅|. The algorithm’s outer loop runs 

for |𝑅| iterations. The inner loops iteration count will never exceed the size of |𝑅|. 

Therefore, the algorithm takes quadratic time: 𝑂(|𝑅|2) = 𝑂(𝑛2). The optimal version of 

the algorithm does not impact the time complexity. 

6.2.4 Results 

In my implementation the algorithm only optimizes image resources, and all other 

types are marked as non-optimizable. Since I am dealing with image resources, I also 

need to include image format as a constraint. This resulted in four constraints: no 

overlapping ranges, resource types and image formats must be compatible, and the 

resource must be marked as optimizable. 

Take the following Render Graph as example: 
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Figure 6.2: Example Render Graph with seven nodes. 

After running the algorithm on this graph, the number of required image resources 

was reduced from 9 to 6. For the specific graph shown above, optimization resulted in a 

40% reduction in memory usage at various resolutions. 

The figures 6.3 and 6.4 showcase the resources allocated by the render graph 

compiler with and without optimization. 

 

Figure 6.3: Unoptimized resource allocation. Resource allocations are exclusive, each horizontal 

line represents the effective lifetime of a resource. 

 

Figure 6.4: Optimized resource allocation. Resource allocations are shared, each horizontal line 

represents different usages of a resource. 

  



 36 

The following tables detail the memory consumption of images before and after 

optimization: 

Table 6.1: Images and their GPU memory requirements at various resolutions 

Resolution Image Count 4 Channel Images Single Ch. Images Σ Memory 

1920x1080 9 7 2 265.5 MB 

2560x1440 9 7 2 471.1 MB 

Table 6.2: Pre-optimization image count and memory usage 

Resolution Image # 4Ch. Images 1Ch. Images Σ Memory Reduction Reduction 

1920x1080 6 4 2 159.3 MB 106.2 MB 40.0000% 

2560x1440 6 4 2 283 MB 188.1 MB 40.0042% 

Table 6.3: Post-optimization image count and memory usage 

While for a simple graph like the example; a reduction of 188.1 megabytes may 

not seem like much, but for pipelines many times the size and complexity of the example 

it can end up saving a significant amount of memory. Applying this 40% reduction in 

memory usage may allow for more memory for nodes in a more complicated Render 

Graph, or an increased texture streaming budget which is increasingly important in an age 

where the use of 4k high-resolution textures is increasingly common. 

6.2.5 Memory aliasing 

As mentioned earlier, memory aliasing occurs when multiple resources share the 

same allocated memory. While not as easy to integrate as resource aliasing, it comes with 

the benefit of not needing to conform to an already existing resource's properties while 

Color Channels Bits per Color Resolution Memory 

4 32 1920x1080 34.5 MB 

1 32 1920x1080 8.85 MB 

4 32 2560x1440 62.9 MB 

1 32 2560x1440 15.7 MB 
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optimizing. Instead, we need to pay careful attention to the memory requirements of each 

resource. 

The previously detailed algorithm with a slight modification is perfectly suitable 

for memory aliasing. Let our only constraint for allowing aliasing be that there must be 

no overlapping usage ranges. While running the algorithm we keep track of the memory 

requirements at each point of usage, and at the end take the largest memory requirement 

and use that while allocating. 

6.3 Existing solutions 

Similar algorithms have been described by others previously such as in an article 

by Pavlo Muratov titled “GPU memory aliasing” [14], in which they propose an algorithm 

to solve memory aliasing. They did not evaluate the optimality of their proposed 

algorithm, but similarly to the algorithm designed by me, it works by first evaluating the 

“effective lifetime” (which I referred to as usage range) of resources. 
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7 Conclusion and Future Work 

In this work, after evaluating existing implementations I introduced a way of 

designing a Render Graph based rendering engine then explored methods to optimize the 

memory usage of the rendering pipeline. Using various commonly used techniques in 

computer graphics I highlighted the possibilities of such a rendering engine. The node 

editor provides a quick and effortless way of prototyping and testing rendering pipelines. 

Complementing the node editor, the builder interface provides a simple method for 

building complex rendering pipelines in code. 

With the algorithm I introduced I saw a reduction of up to 40% in video memory 

usage by resource aliasing. While not yet perfect, these savings can be significant for 

larger, more intricate rendering pipelines. Doing memory aliasing would improve the 

solution, as it would eliminate restrictions like image formats for aliasing. 

Moving forward, aside from implementing memory aliasing, extending my 

Render Graph implementation with support for parallel task execution would be the next 

major step in improving its capabilities. 
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