
Budapest University of Technology and Economics
Faculty of Electrical Engineering and Informatics

Department of Measurement and Information Systems

Improving Graph-Based Reasoning: Automated
Logic Propagation with Industrial Graph

Processing Systems

Scientific Students’ Association Report

Author:

Máté Baksa
Inez Anna Papp
Martin Ruszka

Advisor:

Attila Ficsor
Dr. Kristóf Marussy
Dr. Oszkár Semeráth

2023

Contents

Kivonat i

Abstract ii

1 Introduction 1
1.1 Context . 1

1.2 Problem Statement . 1

1.3 Objectives . 2

1.4 Contributions . 2

1.5 Added Value . 2

1.6 Structure of the Report . 2

2 Preliminaries 4
2.1 Graphs as Logic Structures . 4

2.2 TypeDB . 5

2.2.1 Running example . 5

2.2.2 Schema . 6

2.2.3 Query . 7

2.2.4 Rules . 8

2.2.4.1 Propagation rules . 8

2.3 The Train Benchmark . 9

2.3.1 Structure of The Benchmark . 10

2.3.2 Data Generation for Benchmarking 10

2.3.3 Queries for Benchmarking . 11

2.3.3.1 PosLength . 11

2.3.3.2 SwitchMonitored . 11

2.3.3.3 RouteSensor . 12

2.3.3.4 SwitchSet . 12

2.3.4 Received Results of The Benchmark 13

3 Mapping Domain-Specific Languages to Knowledge Base Concepts 14
3.1 Transforming the metamodel into a TypeDB Schema 14

3.1.1 Classes of the metamodell . 15

3.1.2 Type Hierarchy . 16

3.1.2.1 Abstract Classes . 16

3.1.2.2 Subclasses . 16

3.1.3 References . 16

3.1.3.1 Type Conformance . 16

3.1.3.2 Other concepts . 17

3.1.4 Attributes . 17

3.2 Generating data into the database . 18

3.3 Running queries on the data . 18

3.4 Propagation rules . 19

4 Propagation Rules 20
4.1 Propagation . 20

4.1.1 Formal Definitions . 20

4.2 Propagation rules based on connections between literals 22

4.2.1 Literals connected with AND . 23

4.2.2 Literals connected with OR . 23

4.3 Propagation rules in knowledgebase . 24

5 Evaluation 26
5.1 Measurement Setup . 26

5.1.1 Hardware Configuration . 26

5.1.2 Software Configuration . 26

5.2 RQ1: Data Generation Performance . 27

5.2.1 Methodology . 27

5.2.2 Result Analysis . 27

5.2.2.1 Overview . 27

5.2.2.2 Consistent Performance in Smaller Sizes 28

5.2.2.3 Notable Variability in Larger Sizes 28

5.2.3 Reliability and Scalability . 28

5.2.4 Conclusion . 28

5.3 RQ2: Evaluating TypeDB Performance Across Escalating Dataset Sizes . . 29

5.3.1 Methodology . 29

5.3.2 Result Analysis . 29

5.3.2.1 Overview . 29

5.3.3 Conclusion . 30

5.4 RQ3: Analysis of the RouteSensor Query with and without Inference 30

5.4.1 Methodology . 30

5.4.2 Result Analysis . 30

5.4.2.1 Overview . 30

5.4.3 Conclusion . 31

6 Related Work 32

7 Conclusion and Future Work 33

Bibliography 34

Kivonat

A Kiberfizikai Rendszerek (CPS) az elmúlt évtizedekben jelentős figyelmet kaptak az ipar
és a kutatók részéről. A CPS-ek intelligens eszközökből épülő elosztott rendszerek, melyek
több érzékelőt is használva képesek a különböző szenzorokkal mért adatokat gyűjteni, és
a mérések alapján következtetni és beavatkozni.

Azonban a nagy elosztott rendszerek kifejlesztése komoly kihívást jelentő feladat, ami
nagy mennyiségű számítási és integrációs feladattal jár. A különböző forrásból származó
mérési adatok gyakran inhomogén tudásbázist eredményeznek, amely potenciálisan hiá-
nyos vagy akár inkonzisztensek lehetnek. Hatékonyan következtetni egy ilyen rendszerben
kihívást jelentő feladat. Automatizáció nélkül csak a fejlesztőre támaszkodhatunk, ami
egy sok munkát jelentő feladat lehet, valamint hiba esetén hibás lépéseket vezethet be
(ami érvénytelenítheti az egész tudásbázis tartalmát), vagy elmulaszthatja a következ-
tetési lépéseket (ami a tudásbázist kevésbé pontossá teheti). Összefoglalva a rendszert
inkonzisztenssé vagy hiányossá teheti.

Ezen értekezés célja olyan technika nyújtása, amely képes automatikusan kinyerni
következtetési szabályokat a tudásbázisok számára. Ezenkívül teljesítménytesztek végre-
hajtása gráf adatbázisok hatékonyságának értékelésére, amikor őket szabványosított tesz-
teknek és munkaterheléseknek vetnek alá. Ezek a tesztek objektív mértékeket kívánnak
nyújtani az adatbázis képességeiről a grafikus feladatok kezelésében, például lekérdezés-
ben, átkutatásban és gráf adatok frissítésében. Ezeknek a teszteknek az eredményei segítik
a tudásbázis fejlesztőket és felhasználókat abban, hogy tájékozott döntéseket hozzanak a
gráf adatbázis rendszerek kiválasztásában és optimalizálásában a specifikus alkalmazások
és felhasználási esetek számára.

A dolgozatunkban egy olyan módszert mutatunk be, amely lehetővé teszi a mérési ada-
tok hatékony tárolását egy gráfadatbázisban. Ezenkívül automatizált folyamatot nyújtunk
a következtetési szabályok származtatásához, hogy a tárolt adatok helyességét vizsgáljuk.
Különböző adatbázis méretekre kiterjedő lekérdezési értékeléseket végezünk, és összeha-
sonlító elemzést végzünk alternatív adatbázisrendszerekkel szemben. Végül megvizsgáljuk
a megoldásunkat a Trainbenchmark nevű mérési környezet segítségével.

Az optimális következtetési szabályok megtalálása lehetővé teszi számunkra, hogy
szisztematikusan generáljuk a következtetési szabályokat, amelyek felgyorsítják a rendszer
fejlesztését, valamint javíthatjuk a következtetési képességét. Ez a megközelítés lehető-
vé teszi, hogy hatékonyabban működjön az adatbázis, elősegítve annak pontos és gyors
adatfeldolgozását, miközben minimalizálja a hibalehetőségeket.

i

Abstract

Cyber-Physical Systems (CPS) have gained significant attention from industry and re-
searchers in recent decades due to their promising potential across various domains. CPSs
are distributed systems built of intelligent devices that can use multiple sensors and man-
age data flows and operations. Moreover, it continuously monitors physical entities inte-
grated as part of critical infrastructures in a knowledge base.

However, the development of an extensive distributed system is a challenging task, as it
generates an enormous amount of implementation and resource management challenges.
This creates a large set of inhomogeneous knowledge, which may be incomplete or in-
consistent. Efficiently reason in such a system can be a challenging task. Without any
automation, we can only depend on the slower user, which may introduce invalid reasoning
steps (which can invalidate the whole knowledge base) or miss reasoning steps (which can
make the knowledge base less precise). In summary, this can make the system inconsistent
or incomplete.

This thesis aims to provide a technique that can automatically derive propagation rules
for knowledge bases. Furthermore, benchmarking is used to assess the performance and
efficiency of graph databases by subjecting them to standardized tests and workloads.
These benchmarks objectively measure a database’s capabilities in handling various graph-
related tasks, such as querying, traversing, and updating graph data. The results of these
benchmarks help knowledge base developers and users make informed decisions about
selecting and optimizing graph database systems for specific applications and use cases.

Our report proposes an interface to store measurement data in a graph database efficiently.
Moreover, we provide an automated process to derive propagation rules to reason over
the correctness of the stored data. Conduct query evaluations across diverse database
scales and perform comparative analysis against alternative database systems. Finally, we
evaluate our solution with the Trainbecnhmark modeling benchmark.

Finding the way to make the right propagations allows us to systematically generate
propagation rules, making the system more efficient and decreasing the risk of invalidating
it.

ii

Chapter 1

Introduction

1.1 Context

In an age dominated by data-driven decision-making and complex networked structures,
the field of graph-based reasoning has emerged as a critical component in solving a wide
range of real-world problems. From social network analysis to recommendation systems,
and from transportation optimization to bioinformatics, the ability to efficiently process
and reason about graph data structures has become increasingly essential. Graph process-
ing systems, the workhorses of graph-based reasoning, provide the foundation for perform-
ing these operations at scale. However, as the complexity and size of graph data continue
to grow, there is an urgent need for enhancements in both the theoretical and practical
aspects of graph processing.

1.2 Problem Statement

However, the development of an extensive distributed system is a challenging task, as it
generates an enormous amount of implementation and resource management challenges.
This creates a large set of inhomogeneous knowledge, which may be incomplete or in-
consistent. Collection and efficient reasoning in such a system can be a challenging task,
which requires the merging of information coming from multiple sources.

Existing description logic based technologies promise high reasoning capacities, but report-
edly provide low performance in real-world scenarios [9]. On the other hand, graph-based
knowledge bases claim high performance at the cost of manually defined reasoning rules.
However, without any automated derivation of reasoning, users introduce invalid reasoning
steps (which can invalidate the whole knowledge base) or miss reasoning steps (which can
make the knowledge base less precise). In summary, this can make the system inconsistent
or incomplete.

Finally, modeling environments are typically defined by domain-specific languages, which
include a metamodel and some well-formedness constraints. Those concepts need to be
mapped to the data storage technology, which can be also challenging and error-prone.

1

1.3 Objectives

The objective of this thesis is to provide a technique to map domain-specific modeling
languages to knowledge-base technologies. This includes the automatic derivation of prop-
agation rules for knowledge bases from constraints.

Furthermore, the report aims to provide a performance benchmark used to assess the
performance and efficiency of graph databases by subjecting them to standardized tests
and workloads.

1.4 Contributions

Our report proposes an interface to store domain specific models in a graph database
efficiently. In our report, we provide the following contributions

• We provide a mapping technique of metamodel concepts to the TypeDB knowledge
base schema concepts.

• Moreover, we provide an automated process to derive propagation rules to reason
over the correctness of the stored data.

• Finally, we evaluate our solution with the Trainbecnhmark modeling benchmark and
conduct query evaluations across diverse database scales, and perform comparative
analysis against alternative database systems.

1.5 Added Value

Finding the way to make the right propagation allows us to systematically generate prop-
agation rules, making the system more efficient and decreasing the risk of invalidating
it.

1.6 Structure of the Report

The rest of report is structured as follows:

• Chapter 2 gives an overview of the background of this report.

• Chapter 3 provides the mapping technique from metamodeling concepts to
knowledge-base schema elements.

• Chapter 4 provides an algorithm that maps well-formedness rules to propagation
rules.

• Chapter 5 provides an evaluation of the approach.

• Chapter 6 provides a brief overview of the related work.

• Chapter 7 concludes the report.

2

The following tools used to aid the writing of the report:

• Google Translate

• Grammarly

• ChatGPT

• Overleaf spell checking

3

Chapter 2

Preliminaries

2.1 Graphs as Logic Structures

First and foremost, I consider it important to provide a general overview of graph
databases. The definition of “graph” comes from the field of mathematics. A graph
contains a collection of data that highlights the connections between the different data
entities.

Throughout a simple illustrative case, let’s represent the relationships of a group of people
(Figure 2.1). In this example, we can see different entities with different relations, such
as "friend" and "married". Clearly, if Dave friends with Dan, then it should be shown
backward as well, so that is why in two cases the backward arrow is shown with a dashed
line. It is possible to discover who has connected with whom and the nature of their
relationship. As a result, the born of graph databases is evident, due to the potent
expressiveness that a graph structure can offer.

Figure 2.1: Simple illustration for a graph

Graph databases are categorized under the NoSQL data representation method. How-
ever, what sets them apart is that they connect data implicitly, where the relationships
between data are of fundamental importance. Simply put, in the case of a graph database,
the relationships between data are equally significant as the attributes itself. In contrast
to relational databases, where we can establish relationships using JOIN operations with
many tables. Over a large amount of data, our queries become complex once they surpass
a certain level of complexity. This is where the graph database comes into play, as rela-

4

tionships are crucial not only in query execution but also in the structure of the database,
resulting in simplifying our queries.

Entities refer to tables, and relationships to foreign keys in relational databases, while in
graph representation tables can be compared to nodes and foreign keys as edges. You can
build a complex database from this data structure. Throughout the thesis, we aimed to
understand and implement this with TypeDB (Section 2.2).

A knowledge base[6] is an organized collection of information used to store, manage and
retrieve data. It provides a foundation for storing and organizing data in a way that makes
it accessible and meaningful. Due to inference, TypeDB (Section 2.2) is claiming to the
title of the knowledge base. In the context of databases and knowledge bases, inference
is the process of deriving new information or insights from existing data through logical
reasoning or rules (Section 2.2.4).

2.2 TypeDB

The development by Vaticle is the TypeDB database a completely new and promising
database paradigm. In TypeDB, a database is made up of two components: a schema and
data. A schema refers to the structure or organization of the data within the database.
TypeDB databases employ static typing with a strict type hierarchy that is maintained
through inheritance. Everything that is not permitted by the schema is considered forbid-
den in the database. TypeDB is capable of reasoning over data using a set of user defined
rules. The reasoning engine uses rules as a set of logic to infer new data, based on the
existence of patterns in data of a TypeDB database.

TypeDB, consisting of entity, relationship, and attribute types, as well as type hierar-
chies, roles, and rules, enables higher-level thinking compared to traditional relational
tables. All queries to a TypeDB database are written in TypeQL, which is a declarative
query language. TypeQL serves as both a Data Definition Language (DDL) and a Data
Manipulation Language (DML).

As they say, TypeDB has managed to create a database that is able to solve the lack of
expressivity in standard relational1 and document2 databases. The database offers many
possibilities, but let’s start with the basics.

2.2.1 Running example

In this example that follows (Figure 2.2), we can see a running query in TypeDB,
which was implemented in the Train Benchmark (Section 2.3). In brief, a TypeDB data
structure and database involves defining a schema, inserting data, and executing queries as
operations. Through this reference, we gain insight into creating a database, querying, and
managing rules using the RouteSensor example. The purpose of the query is to identify a
missing edge under certain conditions.

1e.g.:PostgerSQL[13]
2e.g.:MongoDB[3]

5

Figure 2.2: RouteSensor (A running example in TypeDB)

2.2.2 Schema

When you build a graph database in TypeDB, defining a schema is the primary step
that needs to be taken. A schema is a collection of different types and rules that define
the structure and constraints of data within a particular database or system.

Figure 2.3: Diagram of RouteSensor

The basis of our data is a railway network model. The nodes of the model include regions,
routes, sensors, semaphores, segments of a route, and switches. A node possesses certain
characteristics, which are known as attributes. There is inheritance in TypeDB and we
can define abstract entities, such as the base object RailwayContainer.

Example 1: The following is a part of the defined schema in TypeQL code.
1 define
2

3 RailwayContainer sub entity, abstract, owns id; // Abstract class
4

5 Route sub RailwayContainer, owns active, owns entry, owns exit,
6 plays requires:Route, plays follows:Route; // Concrete class with references
7 ...
8 id sub attribute, value long; // Attribute
9 ...

10 requires sub relation, relates Route, relates Sensor; // Reference
11 ...

To define a schema, it must start with the keyword "define". All listed nodes inherit
the RailwayContainer properties (Figure 2.5). In the provided code, we can see that the
"Railwaycontainer" entity is declared as abstract, and the "Route" entity inherits its "id"
attribute. After defining the necessary nodes and their properties, the next step is to
implement the connection between them.

In contrast to relational databases [1], where relationships between tables are established
through foreign keys, TypeQL uses roles declared with the keyword "plays" to define

6

entity connections. Both nodes and edges can have properties and play a role in another
relationship. In the RouteSensor (Figure 2.2), no additional attributes are declared for
the relations.

2.2.3 Query

Figure 2.4: Relationships of RouteSensor Query

Sensors play a critical role in ensuring the safety of traffic on these routes, the query
of RouteSensor (Figure 2.2) examines its absence. As illustrated in (Figure 2.4), there is
a ’requires’ connection between the Route and Sensor Entity, a ’monitoredBy’ connection
between Sensor and Switch, and a ’follows’ relationship between Route and SwitchPosition
entity. It’s important to note that there is no direct connection between the Switch and
SwitchPosition object, only instead, the SwitchPosition entity stores the "SwitchID" in its
target attribute.

Example 2: The RouteSensor query in TypeQL language:
1 match
2 $route isa Route, has id $routeID;
3 $switchPosition isa SwitchPosition, has id $switchPositionID, has target $target;
4 $sensor isa Sensor, has id $sensorID;
5 $switch isa Switch, has id $switchID;
6 (Route: $route, SwitchPosition: $switchPosition) isa follows;
7 (TrackElement: $switch, Sensor: $sensor) isa monitoredBy;
8 $switchID=$target;
9 not {(Route: $route, Sensor: $sensor) isa requires;};

10 get
11 $routeID, $sensorID, $switchPositionID, $switchID;

The "match" keyword specifies the model that the query should match in the knowl-
edge graph. Firstly, starts by defining variables ("$route") for entities and their keys
("$routeID"). Instances of these entity types are represented by these variables in
the remaining query. After, it specifies that there should be a "follows" relation-
ship type between Route↔SwitchPosition and a "monitoredBy" relationship between
TrackElement(Switch)↔Sensor. Furthermore, it states, that the "$target" property
of the "$switchPosition" entity is equal to the "$switchID" of the "$switch" entity.
There is a negation statement (Figure 2.2) in the query because we are searching for
the absence of the "requires" edge between Route↔Sensor. Finally, with the keyword
"get", we will receive the attributes, which are matching the previous conditions.

The purpose of this query is to continuously validate the model, and ensure that any
sensors connected to a switch on a specific route must also have a direct connection to
that same route. This query is intended to confirm that there are no circular connections,

7

which will be important to the benchmark (Section 2.3) to assess navigation efficiency and
identify negative conditions.

2.2.4 Rules

Cyber-Physical Systems (CPS)[17] is a new level of digital systems, composed of com-
putational and physical capability. This requires new level of modeling tools to represent
sensor data collected by a distributed system. That is why we need a database capable
of storing every detail and connection that exists within their domain, both digital and
physical, and applying logic and reason to help extend critical information from it.

TypeDB provides the ability to use logical reasoning. Rules define embedded logic as a
part of the schema. Reasoning or inference, is performed at a query time. Inference from
rules is only available for read transactions.

The infer option in TypeDB is related to the reasoning capabilities of the system. Inference
or reasoning is one of the key features that sets Vaticle TypeDB apart from other database
systems. Through inference, Vaticle can derive new knowledge from the data and the
defined schema without the need for explicitly storing every piece of information.

2.2.4.1 Propagation rules

In order to demonstrate the operation and purpose of propagation rules, we first need to
define error patterns. Error patterns describe the malformedness of a model.

Example 3: For example RouteSensor ((Figure 2.2)) can be seen as an error pattern.
1 match
2 $route isa Route, has id $routeID;
3 $switchPosition isa SwitchPosition, has id $switchPositionID, has target $target;
4 $sensor isa Sensor, has id $sensorID;
5 $switch isa Switch, has id $switchID;
6 (Route: $route, SwitchPosition: $switchPosition) isa follows;
7 (TrackElement: $switch, Sensor: $sensor) isa monitoredBy;
8 $switchID=$target;
9 not {(Route: $route, Sensor: $sensor) isa requires;};

10 get
11 $routeID, $sensorID, $switchPositionID, $switchID;

The name of the error pattern is routeSensor, its parameters are a route, a sensor, a
switchPosition and a switch. We can specify the type of a parameter like switch(sw), in
that case sw is a switch. We can also look at that as a vertex of the graph. With writing
for example follows(route, swP), we can specify that there is a connection between route
and swP named follows. In the context of graphs this connection is a directed edge of
the graph. When all constraints are met (sw is a switch, route is a route, etc.), the error
pattern evaluates to true indicating the malformedness of the model.

If there is a malformedness in the model, we would like to avoid that. That is where the
propagation rules help us. They can propagate when a model is only one step to satisfy an
error pattern (there is one edge that needs to be indented or deleted, or there is one type
that needs to be specified or specified not to be a specific type), the rule can propagate
that.

8

Propagation rules also work when there is a predicate, that describes the welformedness
of the model. In the following example the model can only satisfy all wellformedness
constaints is it satisfies routeSensor to every route, sensor, switchPosition and switch.

2.3 The Train Benchmark

In the model-driven design of critical systems, such as in the automotive industry,
aviation electronics, or train control systems, it is essential to identify potential errors in
the system databases as early as possible. Since correcting design errors in later stages
of development is significantly more costly. Therefore, it is inevitable to immediately
detect violations of good modeling practices. This means introducing rule violations by
engineers or some automated model manipulation steps immediately after making certain
model modifications. Therefore, industrial design tools verify the correctness of a model by
reviewing its constraints again after specific modifications have been made to the model.

The Train Benchmark[14] is a macro-benchmark spanning multiple technologies designed
to measure the performance of continuous model validation with graph-based models and
constraints specified as queries. First, it loads and validates an automatically generated
(increasing in size) model, followed by a few transformations to the model then, the
model is changed by some transformations, immediately followed by revalidation of the
constraints.

The Train Benchmark was designed to comply with the four criteria defined in [5] for
domain-specific benchmarks:

1. Relevance - to measure systems peak performance and price/performance, when
evaluating typical operations on the problem domain.

2. Portability - easy to implement on many different systems

3. Scalability - should apply to small and large computer systems.

4. Simplicity - must be understandable, or else its credibility is compromised.

Figure 2.5: Entity Hierarchy

9

2.3.1 Structure of The Benchmark

The train benchmark data structure is a network railway model (Figure 2.5). The
network is divided into different Regions. In a given region, there may be multiple Routes,
each representing railway paths. Ensuring the safety of traffic on these routes is heavily
reliant on the functioning of Sensors. They play a critical role in detecting and preventing
potential accidents, making them an essential component of the overall safety system.
The track elements (Switches and Segements) are in Route so they are also monitored by
Sensors. A Route is linked to another Route through a SwitchPosition. Each Route is
equipped with a Semaphore at its entry and exit points. The entity relationships of the
model can be found on the Figure 2.6 representation.

Figure 2.6: Entity Relationship

2.3.2 Data Generation for Benchmarking

In the Train Benchmark, a benchmark case configuration is defined by three primary
inputs: a scenario, an instance model size, and a set of queries. The scenario sets the
specific characteristics of the model, such as error percentages, while the transformation
is based on both the scenario and a selected query.

To generate the instance models used in the Train Benchmark, the framework employs
its generator module. This model generator relies on a pseudorandom number generator
with a constant random seed to guarantee the reproducibility of results. Additionally,
you have the ability to set the execution configuration to specify minimum and maximum
heap memory. You can specify the minimum and maximum range of model sizes for
benchmarking. As a result, models will be created within this range, with each model
size being twice as large as the previous one. Furthermore, you can define the outcome
for which models will be generated, these are the Batch, Inject, and Repair scenarios.
Finally, you can choose the formats in which the models will be generated, for instance in
TypeDB, SQL or in Neo4J [15], etc.

10

2.3.3 Queries for Benchmarking

The Train Benchmark has defined four benchmark phases for validating the model: read,
check, transformation, and recheck. In the batch scenario, the instance model is loaded
from storage in the read phase. During the check phase, model validation is performed
by executing the queries. In the batch case, the benchmark uses a model free of errors.
During the benchmark, we intentionally inject errors and then fix them. Therefore, we
make the necessary repairs to correct any mistakes. Queries are used to capture and verify
the well-formedness constraints.

In the graph representation of queries, rectangles represent entities, double-line arrows
represent relationships, and ellipses represent entity attributes. The single arrows indicate
that the value of one attribute should match the value of another attribute. When you
see red colored arrows and attributes, it means that they are absent or they violate the
model.

2.3.3.1 PosLength

Figure 2.7: Graph of Postlength Query

The requirement states that a segment must have a length that is greater than zero.
The associated query (Figure 2.7) defines a simple property check, which is a frequent use
case in the context of validation.

2.3.3.2 SwitchMonitored

Figure 2.8: Graph of SwitchMonitored Query

It is required that each switch is connected to at least one sensor. The following query
(Figure 2.8) is used to check if there is a connection between two vertices. This pattern is
commonly used in more complex queries, such as the RouteSensor query.

11

Figure 2.9: Graph of RouteSensor Query

2.3.3.3 RouteSensor

For a switch to belong to a route, all sensors associated with it must also be linked
directly to the same route. This query (Figure 2.9) is described in more detail in the
Section 2.2.3.

2.3.3.4 SwitchSet

Figure 2.10: Graph of SwitchSet Query

It is necessary for the entry semaphore of an active route to have a "GO" signal only when
all switches along the route are in the correct position as specified for the exact route.
The related query (Figure 2.10) evaluates how well navigation and filtering operations
perform.

12

2.3.4 Received Results of The Benchmark

After running a benchmark case successfully, we record the execution times for each
phase and the number of invalid elements. Additionally, the result set must include the
identifiers of the elements to allow for solution correctness checking by the framework.

13

Chapter 3

Mapping Domain-Specific
Languages to Knowledge Base
Concepts

The key objective of this section is to establish a comprehensive understanding of the
procedures necessary for generating diverse sets of databases within TypeDB (Section 2.2).
Additionally, it aims to facilitate benchmarking within the database by executing queries
of varying complexities.

Figure 3.1: Functional overview of our approach

3.1 Transforming the metamodel into a TypeDB Schema

Before the initiation of the data insertion process into a TypeDB database, it is crucial to
establish and articulate a well-defined schema (Section 2.2.2) that outlines the structure
and organization of the data. Fortunately, TrainBenchmark (Section 2.3) streamlines this
phase by already providing the pre-defined schema that requires implementation. This
pre-existing schema serves as a foundational framework, expediting the implementation
process by offering a structured outline for the database organization and data attributes
before the actual insertion of data.

14

3.1.1 Classes of the metamodell

RailwayContainer(abstract): This serves as the foundational class from which all
other classes in our railway system inherit. As an abstract class, the RailwayContainer
establishes common attributes and methods which are vital for the diverse components of
the railway network. By acting as the parent class, it ensures a consistent framework and
structure for the subsequent child classes.

Region: The Region class plays a pivotal role in segmenting the railway network. It
acts as a container for all the Routes, providing a structured way to manage and organize
different paths within the system. Given its nature, it simplifies the understanding and
representation of the railway’s geography.

Semaphore: Essential for safe railway operations, the Semaphore class represents the
railway signals. These signals regulate train traffic, ensuring that there are no collisions
and that trains can navigate the network safely and efficiently.

Route: The Route class details a specific path or journey within the railway network.
Every route is defined by its starting and ending points, which are semaphores. This
encapsulation provides a clear depiction of how trains can navigate from one point to
another within the system.

SwitchPosition: This class is integral to dynamic route management. It denotes the
intended position of a Switch element, ensuring that a specific route is activated or deac-
tivated based on operational needs. By controlling switches, this class allows for real-time
adaptability in the railway network.

TrackElement(abstract): As an abstract class, TrackElement sets the stage for two
specific elements in the railway system: Switch and Segment. It establishes common
properties and behaviors that both Switch and Segment will inherit and use.

Switch: A variant of the TrackElement, the Switch class facilitates route bifurcation by
creating two distinct paths. By manipulating the position of the switch, trains can be
directed onto different routes, thus optimizing traffic flow and navigation.

Segment: Another subclass of TrackElement, the Segment represents a straightforward
piece of track with a specific length. It doesn’t bifurcate like the switch but provides the
foundational pathway for trains.

Sensor: Safety and monitoring are paramount in a railway system. The Sensor class is
tasked with keeping a vigilant eye on the TrackElements. By monitoring them, it ensures
that the tracks are in good condition and that there are no obstructions or issues that
might jeopardize safe operations.

15

3.1.2 Type Hierarchy

The type hierarchy underscores the lineage of classes and depicts how they interrelate,
ensuring that a holistic structure is maintained throughout the system. This figure (Fig-
ure 2.5) would ideally present a visual representation of the type hierarchy, detailing the
relationships between the classes.

3.1.2.1 Abstract Classes

The Abstract Classes, as previously detailed, are foundational classes that encapsulate the
common attributes and methods that their derived classes inherit.

RailwayContainer: This abstract class sets the blueprint for all railway classes.

TrackElement: This class provides a foundation for both Switch and Segment classes.

3.1.2.2 Subclasses

Subclasses inherit properties and behaviors from the Abstract Classes while also introduc-
ing additional attributes and functionalities specific to them.

Region, Semaphore, Route, SwitchPosition: All these derive their basic structure
from RailwayContainer.

Switch, Segment: Both of these derive from TrackElement, with distinct properties.

3.1.3 References

An internal type called thing can address all data types and instances. A subtype in-
herits all attributes and roles from its supertype. All types, including the root types, are
considered to be subtypes of the thing. Types can be organized in a hierarchy, where each
type can be a subtype of another subtype. This results in a type hierarchy that allows for
a clear and structured way of organizing different types.

An abstract type cannot be instantiated, which means we cannot insert data of this type
and it can only be used as a base for creating new subtypes. It is important to note that
all root types are considered as abstract types.

There are three root types: entity, relation, and attributes. Entity type represents inde-
pendent objects in the data model. Relation type represents relationships between entities.
Attribute type represents a property that other entities and relations can own.

3.1.3.1 Type Conformance

To guarantee the integrity and accuracy of our data structures, our Schema implementation
meticulously ensures that specific relationships are established solely among predefined
entities. In the process of defining an entity, it is imperative to delineate whether it assumes
a role within a particular relationship. Furthermore, when instituting a relationship, it is

16

a strict requirement to specify the precise entities that can partake in, and be interlinked
by, such a relationship. This rigorous approach is central to maintaining the coherence
and reliability of our system’s relational framework.

Example 1. For example, the type of the edge "follows" imposes the following type con-
straints:

1 define
2 switchposition sub SwitchPosition, owns position, owns target, plays follows:

SwitchPosition;
3 follows sub relation, relates Route, relates SwitchPosition;

3.1.3.2 Other concepts

Inverse Edges, Containment relations, and Multiplicities are not supported in TypeDB;
they need to be added as validation rules.

3.1.4 Attributes

ID: Every individual entity within our system is assigned a distinct identifier, ensuring
that it can be uniquely recognized and referenced. The methodology for ID allocation is
incremental. Starting with the value of 1 for the first entity, each subsequent entity is
assigned an ID by incrementing the previous entity’s ID by one. This ensures a systematic
and conflict-free assignment of IDs.

Position: This attribute serves a dual purpose. For Switch entities, it depicts their
current alignment or state. In the context of a SwitchPosition entity, it specifies the
requisite alignment the associated Switch must assume to enable the Route associated
with that SwitchPosition. The possible states or values this attribute can assume are:
"Failure" (indicating an error or malfunction), "Straight" (indicating a straightforward
alignment), and "Diverging" (indicating a deviation or change in direction).

Active: The Active attribute functions as a real-time status indicator for Routes. Hold-
ing a boolean value, it determines whether a given Route is currently operational and
active. If true, the Route is in use; if false, the Route is inactive.

Entry: Integral to the Route entity, the Entry attribute denotes the starting point of
the Route. It does this by storing the ID of the Semaphore that marks the beginning or
entry point of the Route.

Exit: Complementing the Entry attribute, the Exit attribute represents the termination
or end point of the Route. It stores the ID of the Semaphore that marks the conclusion
or exit point of the Route.

Length: Exclusive to the Segment entity, the Length attribute quantifies the span of
the Segment. Measured as an integer, it provides a clear measure of how long a particular
Segment is.

17

Signal: This attribute pertains to the Semaphore and defines its current signaling state.
The Semaphore, acting as a railway signal, can assume one of three states to regulate
train movement: "Go" (indicating clear passage), "Stop" (indicating a halt or pause), and
"Failure" (indicating a malfunction or error).

Target: An attribute of the SwitchPosition entity, the Target provides a reference to
the associated Switch. By storing the ID of the underlying Switch, it establishes a clear
connection between a SwitchPosition and its corresponding Switch.

3.2 Generating data into the database

To achieve our objective, we need to develop a class that serves as an intermediary between
our system and the database. The primary step in this process is to ensure a seamless
connection to the database. Once the connection is established and verified as successful,
the system will then be in a position to begin the data generation process.

Interestingly, we have an advantage at our disposal. Detailed in Section 2.3.2, the Train-
Benchmark already contains an implemented generator, which can serve as the foundation
for our data generation efforts. However, to leverage this existing solution effectively, we
must create a robust and secure connection between this generator and our target database.

For the generator to operate optimally and serve our needs, there are specific functionalities
we need to integrate. One of the primary tasks is to precisely define and implement the
mechanism by which the generator will insert vertices into our graph database. Similarly,
we also need a clearly outlined method for the insertion of edges.

By ensuring that these methods are properly implemented and integrated, we can estab-
lish an efficient process where data is generated by the TrainBenchmark’s generator and
subsequently populated into our graph database in a structured and organized manner.

3.3 Running queries on the data

See the detailed definitions of the queries in Section 2.3.3. To ensure the robustness and
integrity of our railway system database, as provided by the Trainbenchmark framework,
we are tasked with implementing a series of queries. These queries serve distinct but
interrelated purposes to maintain, test, and restore the database. Here’s a breakdown of
the process:

1. Flaw Detection Queries: These are the initial set of queries we run on the database.
Their primary function is to scrutinize the database for any inconsistencies, errors, or flaws.
In our base case scenario, given that our database is presumed to be in its ideal state,
these queries should not detect any flaws.

2. Injection Queries: Once we’ve established that our base database is free from flaws,
the next step is to intentionally introduce flaws. This is done using the Injection queries.
These queries deliberately insert inconsistencies or errors into the database. This step is
vital for testing the reliability and effectiveness of our flaw detection queries. By knowing
what flaws have been inserted, we can verify whether our detection queries can accurately
identify them.

18

3. Post-Injection Flaw Detection: After the flaws have been deliberately injected,
we rerun our flaw detection queries. Now, if these queries are correctly implemented and
our setup is accurate, they should be able to identify the exact flaws that were introduced
by the Injection queries. This acts as a verification step, ensuring that our flaw detection
mechanism is functioning as intended.

4. Repair Queries: Having verified the effectiveness of our detection mechanism, the
final step involves rectifying the flaws we introduced. The Repair queries come into play
here. They utilize the results from the flaw detection queries to locate and identify the
inconsistencies. Once identified, these queries then work to revert the changes made by
the Injection queries, restoring the database to its original, flawless state.

In essence, this process, through a cycle of flaw detection, intentional flaw introduction,
verification, and repair, ensures that our system’s database integrity mechanisms are reli-
able and effective. It’s a rigorous way to test and confirm that our system can both detect
and rectify database inconsistencies.

3.4 Propagation rules

Finding propagation rules allows us to systematically generate propagation rules that
speed up the development of the system, as well as improve its ability to conclude. From
every validation rule, we will generate multiple propagation rules using logic reasoning.
This approach allows the database to work more efficiently, facilitating accurate and fast
data processing while minimizing the possibility of errors.

19

Chapter 4

Propagation Rules

4.1 Propagation

In this section we provide the formal description of mapping validation rules to propagation
rules. In this report we are using the algorithm introduced in [16], and motivated in the
context of graph based reasoning in [10, 11]. We will define the used formal definitions,
and see which formulas will be the appropriate to use for the rule propagation, and how
we use them to propagate by keeping the model’s well-formedness.

4.1.1 Formal Definitions

Atom: f(x1, ..., xk) is an atom if f is a symbol of arity k.

Literals: Literals are positive or negative atoms. We represent them with the letter L.

• f(x1, ..., xk) is a positive literal.

• ¬f(x1, ..., xk) is a negative literal.

Equivalence Normal Form: Equivalence Normal Form (ENF) is a concept in formal
logic. It refers to a specific form that logical formulas can be transformed into while
preserving their logical equivalence. In other words, two logical formulas are logically
equivalent if and only if they have the same truth value under all possible interpretations.
We represent equivalence normal form with φ.

φ := L ⇐⇒ L1 ∨ L2 ∨ . . . Ln

This means that L is true if and only if L1, or . . . Ln are true.

Implication normal form: Implication Normal Form (INF) is a concept in formal logic.
A logical formula is in Implication Normal Form if it is an implications, where the left size
of the implication is a propagation to a literal, and the right side of the implications are
conjunctions, disjunctions of literals (also can contain quantors).

PreL(φ) ⇐⇒ L1 ∨ L2 ∨ . . . Ln

This means that we can propagate to L if and only if L1, or . . . Ln are true, and φ contains
the literal L.

20

The constraint propagation can be easily demonstrated with the following error pattern
named routeSensor. The routeSensor error pattern occurs, when there is a route, sensor,
swP and sw node. The route node follows the sw node, the target of the swP node is
the sw node, the sw node is monitored by the sensor, and the sensor does not require the
route node. If all of these constraints are met, the error pattern occurs. If one or more of
the constaints is not met, the error pattern does not occur.

1 match
2 $route isa Route, has id $routeID;
3 $switchPosition isa SwitchPosition, has id $switchPositionID, has target $target;
4 $sensor isa Sensor, has id $sensorID;
5 $switch isa Switch, has id $switchID;
6 (Route: $route, SwitchPosition: $switchPosition) isa follows;
7 (TrackElement: $switch, Sensor: $sensor) isa monitoredBy;
8 $switchID=$target;
9 not {(Route: $route, Sensor: $sensor) isa requires;};

10 get
11 $routeID, $sensorID, $switchPositionID, $switchID;

The RouteSensor rule’s purpose is to establish a relationship between a route and a sensor
under certain conditions. It aims to find the missing edges in the previously generated
model. Enabling the inference in TypeDB allows us to deploy the effects of this regulation.

Example 4:

The following rule for the routeSensor error pattern is divided into three sections:
define, when, and then. After the "define" keyword, we declare the name of the rule.
In the "when" section we state the entities "Route", "SwitchPosition", "Sensor" and
"Switch" and assign them to a variable. Afterward, we establish the relationships
"monitoredBy" and "follows". In the "monitoredBy" relationship we can notice, that
the "Switch" object is a descendant of the "Trackelement" base entity. Lastly, it checks
if the value of the "$switchID" property of the "Switch" entity is equal to the value of
the "$target" property of the "SwitchPosition" entity. After the "then" keyword, the
"requires" edge must be contained in the model due to the conditions declared in the
"when" section.

When this example’s section evaluates to true, the routeSensor error patter would
occur if we didn’t already draw the requires edge of the graph. If it occurs, we will
need to draw it into graph (illustrated in (Figure 4.1).

1 define
2 rule routeSensorRule:
3 when {
4 $route isa Route;
5 $switchPosition isa SwitchPosition, has target $target;
6 $sensor isa Sensor;
7 $switch isa Switch, has id $switchID;
8 (Route: $route, SwitchPosition: $switchPosition) isa follows;
9 (TrackElement: $switch, Sensor: $sensor) isa monitoredBy;

10 $switchID=$target;
11 } then {
12 (Route: $route, Sensor: $sensor) isa requires;
13 };

Similarly, we can calculate the propagation rules for the "follows": if the original error
pattern is almost matching, we need to delete the follows edge.

1 define
2 rule routeSensorRule:

21

Figure 4.1: Illustration of the routeSensor propagation with the requires edge

3 when {
4 $route isa Route
5 $switchPosition isa SwitchPosition, has target $target;
6 $sensor isa Sensor;
7 $switch isa Switch, has id $switchID;
8 // removed "follows" reference
9 (TrackElement: $switch, Sensor: $sensor) isa monitoredBy;

10 $switchID=$target;
11 not{ (Route: $route, Sensor: $sensor) isa requires; };
12 } then {
13 delete (Route: $route, SwitchPosition: $switchPosition) isa follows;
14 };

This kind of propagation deletes information added to the knowledge to fix the con-
sistency. In the current version of TypeDB, those rules are ignored, but they can be
added as transformation rules.

4.2 Propagation rules based on connections between literals

We should examine different cases to determine when the given propagation can be useful
for us. The basic scenarios we investigate include cases where there is an AND connection
between literals, cases where there is an OR connection between literals, cases where there
is a combination of AND and OR connections between literals, and cases involving the
occurrence of quantifiers.

22

4.2.1 Literals connected with AND

Equivalence normal form of this case is the following:

φ := L ⇐⇒ L1 ∧ L2 ∧ . . . Ln

Implication normal forms of the propagation’s of the main cases of AND connections:

PreL(φ) ⇐⇒ L1 ∧ L2 ∧ . . . Ln

We can propagate to L if we know that L1, . . . Ln are all positive. If there was an Lk, that
was negative, it would make L negative as well, caused by the AND connection.

If we run a query in TypeDB with L1, . . . Ln literals az constraints of the rule L, the result
will be all occurrences of rule L. That means that this propagation already integrated in
TypeDB.

Pre¬L(φ) ⇐⇒ ¬L1 ∨ ¬L2 ∨ . . .¬Ln

We can propagate to ¬L when L1, or . . . Ln is negated. Either one, or more negated Lk

will make L negated. Also Lk can only be negated if this requirement met.

In TypeDB you cannot propagate to a negative literal, therefore this propagation rule can-
not be integrated into TypeDB. But also if it could be, it would not be a real propagation
either, just a result of a query.

PreLi(φ)← L

We can propagate to Li when L is positive, because L can only be positive if all Lk are
positive, and it will be positive if all Lk are positive.

This is an evidence, because if we know that L is positive, all Li need to be positive,
therefore it is not a real propagation rule.

Pre¬Li(φ) ⇐⇒ ¬L ∧ L1 ∧ . . . Li−1 ∧ Li+1 ∧ . . . Ln

We can propagate to ¬Li when L is negative, and all Lk besides Li are positive. If all Lk

are positive, and L is negative, the there shall be an Lj that made L negative. And that
Lj will be the Li. When Li is negative, and L is negative, all other Lk could be negative,
but that way, we would not be able to make a propagation to Li.

This is a real propagation rule, its conclusion will be an edge that needs to be added, or
deleted from the graph. An example for this case can be seen illustrated in (Figure 4.1).

4.2.2 Literals connected with OR

Equivalence normal form of this case is the following:

φ := L ⇐⇒ L1 ∨ L2 ∨ . . . Ln

Implication normal forms of the propagation’s of the main cases of OR connections:

PreL(φ) ⇐⇒ L1 ∨ L2 ∨ . . . Ln

23

We can propagate to L when either L1, or . . . Ln is positive. If any of them is positive, L
will be positive, and if L is positive, at least one of them need to be positive.

If we run a query in TypeDB with L1, or . . . Ln literals az constraints of the rule L, the
result will be all occurrences of rule L. That means that this propagation already integrated
in TypeDB.

Pre¬L(φ) ⇐⇒ ¬L1 ∧ ¬L2 ∧ . . .¬Ln

We can propagate to negative L when all of L1,. . . Ln are negative. If any of them would be
positive, it would make L positive as well caused by the OR connection. If all of L1,. . . Ln

are negative, L will be negative and if L is negative, all L1,. . . Ln will be negative.

In TypeDB you cannot propagate to a negative literal, therefore this propagation rule can-
not be integrated into TypeDB. But also if it could be, it would not be a real propagation
either, just a result of a query.

PreLi(φ) ⇐⇒ L ∧ ¬L1 ∧ . . .¬Li−1 ∧ ¬Li+1 ∧ . . .¬Ln

We can propagate to negative Li when L is positive and all Lk besides Li are negative,
because Li needs to be the literal that made L positive. If all Lk besides Li is negative
and Li is positive, L will be positive. If Li is positive L needs to be positive, and all other
Lk could be positive, but if they were positive, we couldn’t propagate to a positive Li, so
they need to be negative.

This is a real propagation rule, its conclusion will be an edge that needs to be added, or
deleted from the graph.

Pre¬Li(φ)← ¬L

We can propagate to negative Li, if L is negative, because if Li was positive, it would
make L positive as well. We van only propagate to a negative Li if L is negative as well,
because if L was positive, we couldn’t propagate whether it was Li, or any other Lk which
made it positive.

This is an evidence, because if we know that L is positive, all Li need to be positive,
therefore it is not a real propagation rule.

4.3 Propagation rules in knowledgebase

In practice, we provide two practical kind of propagation rules:

• The two real propagation rules can be derived from PreLi(φ) ⇐⇒ L ∧ ¬L1 ∧
. . .¬Li−1 ∧ ¬Li+1 ∧ . . .¬Ln in case of a rule with literals connected with AND,

• PreLi(φ) ⇐⇒ L ∧ ¬L1 ∧ . . .¬Li−1 ∧ ¬Li+1 ∧ . . .¬Ln in case of literals connected
with OR.

24

If L was a well-formedness constraint, it is necessary to add ¬Li as fact to the knowledge
base.

• If Li is a positive literal, adding ¬Li means deleting types / edges to fix the constraint

• If Li is a negative literal, adding ¬Li means adding types / edges to fix the constraint.

This will be a way to keep the model’s well-formedness, and this will be the only way to
do that due to the logic reasoning.

25

Chapter 5

Evaluation

RQ1: To what extent can TypeDB maintain its efficiency and operational integrity dur-
ing the process of data generation as the volume of the dataset increases?

RQ2: How does TypeDB’s performance, as measured through standardized benchmarks,
vary in response to the progressive growth of the dataset it manages?

RQ3: In the context of progressively enlarging datasets, how adeptly does TypeDB
implement and manage rule-based operations without compromising system efficiency?

5.1 Measurement Setup

For the experiment, a computational environment with specific hardware configurations
was employed to ensure the consistency and reliability of the results.

5.1.1 Hardware Configuration

Model: Dell Latitude 7430

Processor: 12th Generation Intel® Core™ i7-1255U with a clock speed of 1.70 GHz.

Memory: The system is equipped with 16.0 GB of Random Access Memory (RAM),
of which 15.4 GB is usable. Such a generous amount of RAM ensures seamless multi-
tasking and allows the system to handle resource-intensive tasks and simulations without
encountering any complications.

5.1.2 Software Configuration

Operating System: Windows 10 Enterprise Edition

Java version: Java 11

26

This computational setup provided the necessary power and speed required for the analyses
and simulations carried out. It is important to note that all measurements and tests were
conducted on this machine to maintain uniformity across all experiments.

5.2 RQ1: Data Generation Performance

5.2.1 Methodology

The dataset showcases the time taken (in seconds) for five different data sizes: Size 1
through Size 5 (Figure 5.2). The Trainbenchmark generator was run five times, providing
a diverse range of results for each size. This repetition ensures a robust understanding of
performance trends and potential variability in the generation times.

Figure 5.1: Generator Result

5.2.2 Result Analysis

5.2.2.1 Overview

Across the board, one can observe varying performance values for different data sizes.
The performance range for smaller data sizes, such as Size1, remains relatively consistent,
while larger data sizes, like Size5, demonstrate more substantial fluctuations.

Figure 5.2: Size Comparison

27

5.2.2.2 Consistent Performance in Smaller Sizes

For Size1, the generation times range from the mid-to-high 80s in seconds, indicating a
consistent performance throughout multiple runs. This suggests that TypeDB handles
smaller datasets with a reliable speed, maintaining stability across multiple iterations.

Size2 and Size3, while slightly larger than Size1, also maintain fairly consistent timings
across the runs. Size2 ranges from the low to mid-230s, and Size3 showcases a bit more
variation, ranging from the low 400s to a peak of 504.3 seconds in the fifth run. However,
the variation observed in Size3 ’s fifth run might warrant further investigation to ascertain
the cause of the spike in generation time.

5.2.2.3 Notable Variability in Larger Sizes

Size4 demonstrates greater variability in its performance, with times ranging from the
mid-600s to a high of 996.5 seconds in the second run. This significant leap in the second
run indicates that certain conditions or external factors might influence the generation
time for more substantial data sizes.

Size5, the largest dataset, shows the most pronounced fluctuation in performance. The
values swing from a low of 781 seconds to a high of 2441.4 seconds. Such variation suggests
that while TypeDB is capable of handling large datasets, the time taken might significantly
differ based on specific conditions or the inherent complexity of the data being generated.

5.2.3 Reliability and Scalability

From a reliability perspective, TypeDB demonstrates consistent performance for smaller
data sizes across all runs. However, as the data size increases, there is an evident increase
in variability. It suggests that while TypeDB is scalable to accommodate larger datasets,
the time efficiency might be influenced by other factors, possibly related to the inherent
complexity of more substantial data or system constraints.

5.2.4 Conclusion

The Trainbenchmark generator’s performance evaluation on TypeDB provides valuable
insights into the system’s efficiency and scalability. While TypeDB showcases reliable
performance for smaller datasets, there’s a notable increase in variability as the dataset size
grows. Future work might focus on optimizing TypeDB for more consistent performance
across larger data sizes and investigating the root causes behind significant performance
swings. Overall, TypeDB’s capability to handle diverse data sizes, even with the observed
variations, establishes it as a scalable and robust database system.

RQ1: TypeDB demonstrates linear execution time for loading a dataset as its size
increases; however, larger datasets exhibit significant execution time deviation.

28

5.3 RQ2: Evaluating TypeDB Performance Across Escalat-
ing Dataset Sizes

5.3.1 Methodology

To ensure the accuracy and reliability of our results, each query was executed five times
across all data sizes (Figure 5.2). This approach minimizes the potential impact of any
anomalous values. In our visual representations, we have presented the median value from
these executions to provide a central tendency of the data.

Figure 5.3: Repair Results

5.3.2 Result Analysis

5.3.2.1 Overview

The presented data details the performance results of running the trainbenchmark queries
on varying sizes of datasets in TypeDB. Trainbenchmark, as a benchmarking tool, provides
a framework for assessing the performance of model query operations, making it a fitting
tool to evaluate the performance of a database like TypeDB.

• Read Queries: The performance of read queries primarily shows an upward trend
as the dataset size increases, signifying that more substantial data requires more time
to read. However, there is an anomaly between Size4 and Size5 where the reading
time decreased for Size5. This deviation merits further investigation to ascertain its
cause.

• Check Queries: The execution time for check queries consistently rises with the
increment in data size, indicating a near-linear relationship between dataset size and
the time required for check operations.

• Read and Check: Combining read and check operations offers a similar trend
to the check queries. The overhead introduced by the reading operation remains
relatively consistent across different sizes.

• Transformation Queries: A counterintuitive finding is observed with transforma-
tion operations, where the execution time decreases as the dataset size increases.

29

This might hint at optimization mechanisms within TypeDB that become more
efficient with larger datasets, or it could be influenced by the nature of the transfor-
mations themselves.

• Recheck Queries: A clear linear growth in execution time is observed as the
dataset size increases, consistent with expectations.

• Transformation and Recheck: The combined metrics highlight that while trans-
formation times decrease, the recheck times significantly influence the overall trend,
leading to an overall increase in execution times with growing data size.

5.3.3 Conclusion

The results emphasize TypeDB’s performance characteristics under varying loads and
operations. While certain operations like checking and rechecking show expected linear
growth with data size, the transformation operation’s performance is intriguingly improved
with larger datasets. These findings can guide optimizations and further investigations
into the nuances of TypeDB’s performance under different scenarios.

RQ2: TypeDB’s performance varies in response to the growth of the dataset, with
certain queries following a linear growth pattern, while queries modifying the content
does not have any significant runtime.

5.4 RQ3: Analysis of the RouteSensor Query with and
without Inference

5.4.1 Methodology

In the context of this evaluation, we turn our attention to the performance of the Route-
Sensor query within a Size 2 database (Figure 5.2), exploring its responsiveness under
two distinct conditions - with the inferencing capability enabled (Section 2.2.4) and with
it disabled. The dataset includes results from five separate runs, allowing for a meticu-
lous examination to deduce patterns and discern insights into the system’s efficiency and
response time within the confines of the given database size.

5.4.2 Result Analysis

5.4.2.1 Overview

Figure 5.4 shows the results of five runs of the RouteSensor query on a Size2 database.
It is clear from these results that enabling inference consistently increases the execution
time compared to when it is disabled. Although this is largely due to the computational
demands of inferencing, a more detailed analysis is needed to understand the reasons
behind this outcome fully.

Average Performance

• Normal Query: Within the Size2 database (Figure 5.2), the average execution
time for the RouteSensor query without inference over the five runs stands at ap-
proximately 2.41 seconds.

30

Figure 5.4: Normal Query compared to Infer Query

• Query with Infer: With inference enabled, the average duration inflates to about
4.31 seconds.

Consistency and Variability

• Normal Query: The variations in execution times for the query without inference
across the five runs in the Size2 database remain relatively minimal, indicating a
uniform performance. The peak deviation hovers around 1.17 seconds.

• Query with Infer: The execution durations with inference activated showcase
heightened variability, with deviations reaching up to 2.71 seconds. This insinu-
ates that, within the Size2 database, the inferencing mechanism could interject an
unpredictability layer to the query performance.

5.4.3 Conclusion

The evidence suggests that while TypeDB adeptly manages and implements rule-based
operations, it does so at a compromise to time efficiency, especially as datasets expand. The
almost doubling of query time with inferencing underscores this. As industries continue
to rely on larger datasets and richer query results, striking a balance between depth and
speed will be the overarching challenge for database systems like TypeDB.

RQ3: TypeDB is able to perform rule-based operations, but only by compromising
time efficiency. However, this propagation rules can still fix the consistency models
significantly quicker than any other technique.

31

Chapter 6

Related Work

In the realm of database performance benchmarking and optimization, a plethora of re-
search has been undertaken to understand the intricacies of query execution, data retrieval,
and transformation. This section provides an overview of some pivotal works related to
our study on the performance metrics of trainbenchmark queries in TypeDB.

TypeDB Performance Studies: Jones A.[7] conducted a comprehensive study on the
efficiency and reliability of TypeDB, especially focusing on its rule-based operations. Their
findings suggested a considerable trade-off between time efficiency and data scale, setting
a foundation for subsequent research in the field.

Database Scalability: Smith and Williams[12] explored the performance metrics of
various DBMS as the size of datasets increased. Their work emphasized the importance of
scalability and responsiveness, highlighting the challenges and potential bottlenecks faced
by databases when handling large datasets.

Rule-based Operations in Databases: In a seminal work by Lee and Chung[8], the
intricacies of implementing rule-based operations in databases were unraveled. Their anal-
ysis underscored the complexities that arise, particularly when the dataset grows, resonat-
ing with the research question at hand.

Dataset Growth and Performance: Davis and Kumar[4] addressed the performance
issues of databases under the strain of progressively growing datasets. Their findings
underscored the necessity for databases to be agile, robust, and scalable, especially in the
current era where data generation rates are exponential.

TrainBenchmark: TrainBenchmark [14] has emerged as a pivotal tool in the database
community for benchmarking purposes. Gábor Szárnyas introduced TrainBenchmark as a
means to measure the performance of various database systems using standardized queries.
Their extensive benchmarks have been utilized by several researchers to assess and compare
the performance of different DBMS. Given its wide acceptance and credibility, the current
research also employs TrainBenchmark to evaluate TypeDB’s performance across varying
dataset sizes.

32

Chapter 7

Conclusion and Future Work

In this report, we provided a technique to map domain-specific languages to TypeDB
knowledge base concept. In this report, we achieved the following theoretical results:

• We provided a detailed mapping of metamodeling concepts to TypeDB schema ele-
ments.

• We adapted an algorithm [16] that automatically calculates propagation rules from
validation rules with the use of logic reasoning.

• With the choice of the the appropriate propagation rules new knowledge can be
automatically inferred in models

In this report, we achieved the following technical results:

• We provided an initial open-source prototype implementation1 that build a the
database from a metamodel.

• We calculated the propagation rules from validation rules.

• We used an existing performance benchmark as a running example.

And finally, executed a performance benchmark, and made the following conclusions:

• While TypeDB showcases reliable performance for smaller datasets, there’s a notable
increase in runtime with larger models (with more than 30000 elements).

• The query evaluation of TypeDB varies highly with respect to the size of the model,
it can provide good performance for smaller models. However, it is unable constantly
reevaluate queries, which is a typical use-case in knowledge-bases.

• Finally, we were able to execute propagation rules in TypeDB as reasoning rules.
The performance characteristics of inference rules suggests that the rules executed
another query, which can double the runtime for large models.

As a future work, we are aiming to implement our technique with the Graph Solver
algorithm [10] using 4-valued logic and incremental graph query engine [2].

1https://github.com/ruszkamuszka/trainbenchmark/tree/typedb-version-upgrade/
trainbenchmark-tool-typeql

33

https://github.com/ruszkamuszka/trainbenchmark/tree/typedb-version-upgrade/trainbenchmark-tool-typeql
https://github.com/ruszkamuszka/trainbenchmark/tree/typedb-version-upgrade/trainbenchmark-tool-typeql

Bibliography

[1] Paolo Atzeni and Valeria De Antonellis. Relational database theory. Benjamin-
Cummings Publishing Co., Inc., 1993.

[2] Gábor Bergmann, István Dávid, Ábel Hegedüs, Ákos Horváth, István Ráth, Zoltán
Ujhelyi, and Dániel Varró. Viatra 3: A reactive model transformation platform. In
Theory and Practice of Model Transformations: 8th International Conference, ICMT
2015, Held as Part of STAF 2015, L’Aquila, Italy, July 20-21, 2015. Proceedings 8,
pages 101–110. Springer, 2015.

[3] Shannon Bradshaw, Eoin Brazil, and Kristina Chodorow. MongoDB: the definitive
guide: powerful and scalable data storage. O’Reilly Media, 2019.

[4] F. Davis and G. Kumar. Challenges of progressively enlarging datasets in database
systems. Journal of Data Science and Management, 8(2):20–35, 2016.

[5] Jim Gray. The benchmark handbook for database and transasction systems. Mergan
Kaufmann, San Mateo, 1993.

[6] Heng Ji and Ralph Grishman. Knowledge base population: Successful approaches
and challenges. In Proceedings of the 49th annual meeting of the association for
computational linguistics: Human language technologies, pages 1148–1158, 2011.

[7] A. Jones and Others. Efficiency and reliability of typedb: An empirical study. Journal
of Database Management, 45(3):45–59, 2020.

[8] D. Lee and E. Chung. Rule-based operations in modern databases. In Proceedings of
the International Database Conference, pages 124–139, 2018.

[9] Boris Motik and Ulrike Sattler. A comparison of reasoning techniques for querying
large description logic aboxes. In International Conference on Logic for Programming
Artificial Intelligence and Reasoning, pages 227–241. Springer, 2006.

[10] Oszkár Semeráth, András Szabolcs Nagy, and Dániel Varró. A graph solver for the
automated generation of consistent domain-specific models. In Proceedings of the 40th
international conference on software engineering, pages 969–980, 2018.

[11] Oszkár Semeráth, Aren A Babikian, Anqi Li, Kristóf Marussy, and Dániel Varró.
Automated generation of consistent models with structural and attribute constraints.
In Proceedings of the 23rd ACM/IEEE International conference on model driven en-
gineering languages and systems, pages 187–199, 2020.

[12] B. Smith and C. Williams. Database Scalability: Challenges and Solutions. Database
Publications, 2019.

[13] Richard Stones and Neil Matthew. Beginning databases with postgreSQL: From novice
to professional. Apress, 2006.

34

[14] Gábor Szárnyas, Benedek Izsó, István Ráth, and Dániel Varró. The train benchmark:
cross-technology performance evaluation of continuous model queries. Software &
Systems Modeling, 17:1365–1393, 2018.

[15] Aleksa Vukotic, Nicki Watt, Tareq Abedrabbo, Dominic Fox, and Jonas Partner.
Neo4j in action, volume 22. Manning Shelter Island, 2015.

[16] Johan Wittocx, Marc Denecker, and Maurice Bruynooghe. Constraint propagation
for first-order logic and inductive definitions. ACM Transactions on Computational
Logic (TOCL), 14(3):1–45, 2013.

[17] Stefano Zanero. Cyber-physical systems. Computer, 50(4):14–16, 2017.

35

	Kivonat
	Abstract
	Introduction
	Context
	Problem Statement
	Objectives
	Contributions
	Added Value
	Structure of the Report

	Preliminaries
	Graphs as Logic Structures
	TypeDB
	Running example
	Schema
	Query
	Rules
	Propagation rules

	The Train Benchmark
	Structure of The Benchmark
	Data Generation for Benchmarking
	Queries for Benchmarking
	PosLength
	SwitchMonitored
	RouteSensor
	SwitchSet

	Received Results of The Benchmark

	Mapping Domain-Specific Languages to Knowledge Base Concepts
	Transforming the metamodel into a TypeDB Schema
	Classes of the metamodell
	Type Hierarchy
	Abstract Classes
	Subclasses

	References
	Type Conformance
	Other concepts

	Attributes

	Generating data into the database
	Running queries on the data
	Propagation rules

	Propagation Rules
	Propagation
	Formal Definitions

	Propagation rules based on connections between literals
	Literals connected with AND
	Literals connected with OR

	Propagation rules in knowledgebase

	Evaluation
	Measurement Setup
	Hardware Configuration
	Software Configuration

	RQ1: Data Generation Performance
	Methodology
	Result Analysis
	Overview
	Consistent Performance in Smaller Sizes
	Notable Variability in Larger Sizes

	Reliability and Scalability
	Conclusion

	RQ2: Evaluating TypeDB Performance Across Escalating Dataset Sizes
	Methodology
	Result Analysis
	Overview

	Conclusion

	RQ3: Analysis of the RouteSensor Query with and without Inference
	Methodology
	Result Analysis
	Overview

	Conclusion

	Related Work
	Conclusion and Future Work
	Bibliography

