

Budapest University of Technology and Economics
Faculty of Electrical Engineering and Informatics

Department of Networked Systems and Services

Laboratory of Cryptography and System Security

Kristof Tamas

Detection of Malicious Web Pages With
Static Analysis

SUPERVISOR

Dr. Levente Buttyan

BUDAPEST, 2017

Table of contents

Összefoglaló ... 4

Abstract ... 5

1 Introduction ... 6

1.1 Distributing Malware ... 6

1.2 Malicious Web Pages ... 7

1.3 Problem Statement ... 8

1.4 Overview of Approach ... 9

1.5 Main Results ... 10

1.6 Paper Organization ... 10

2 Related Work ... 11

2.1 Dynamic Analysis .. 11

2.2 Static Analysis .. 14

2.3 Difference from Our Approach .. 14

3 Our Approach .. 15

3.1 Feature Selection .. 15

3.1.1 HTML Features ... 16

3.1.2 JavaScript Features .. 17

3.2 Training .. 19

3.3 Evaluation ... 24

3.4 Classifiers ... 26

3.4.1 Naïve Bayesian Classifier ... 26

3.4.2 Classifiers in Weka.. 29

3.4.3 Random Forest .. 30

4 Implementation .. 31

4.1 Programming Environment .. 31

4.2 Training .. 32

4.2.1 Collecting HTML and JavaScript samples.. 32

4.2.2 Feature Extraction ... 36

4.2.3 Training and Validation .. 43

4.3 The Filter .. 47

4.4 Logging .. 48

5 Results .. 49

5.1 Comparing features .. 49

5.2 Accuracy ... 50

5.3 Performance ... 56

6 Future Work .. 57

6.1 Improving Throughput ... 57

6.2 Filtering the Training Set ... 57

6.3 Modifying Features .. 57

6.4 Training Other Classifier .. 58

7 Conculsions .. 59

Acknowledgements ... 61

References ... 62

Appendix ... 66

Összefoglaló

A Világháló elterjedtsége miatt manapság a legtöbb ember számára napi rutinná vált

az internetezés. Ezt a tevékenységet nem csak PC-n végezhetjük, hanem laptopon, telefonon,

tableten, vagy akár egy autó számítógépén keresztül is. A nagyméretű felhasználói bázisnak

és a sok, különböző típusú platformnak köszönhetően a web a rosszindulatú programok

(malware-ek) egyik elsődleges terjesztőjévé vált. A gyanútlan felhasználó egy nem frissített

böngészővel akár néhány weblap meglátogatása után is megfertőződhet anélkül, hogy azt

észrevenné.

A kártékony weboldalak detektálására a legelterjedtebb módszer a dinamikus elemzés.

Ezek a módszerek a weboldalt egy izolált, gyakran virtuális környezetben töltik be, és

vizsgálják, hogy történt-e fájlletöltés, vagy egyéb gyanús változás a számítógépen. A

probléma az, hogy az ilyen dinamikus elemzés időigényes. A virtuális környezet felállítása és

a weblapon lévő szkriptek lefuttatása akár néhány percet is igénybe vehet. Ez a transzparens

használathoz túl lassú, illetve ezzel a módszerrel csak pár ezer oldalt lehet megvizsgálni

naponta, ami kevés.

A 2010-es év környékén több cikk jelent meg olyan módszerekről, amelyek egy

HTML, vagy JavaScript kódról futtatás nélkül, csupán a statikus jellemzők alapján eldöntik,

hogy kártékony vagy sem, így akár több millió weboldalt lehet elemezni naponta. Az elmúlt

pár évben azonban jelentősebb kutatási eredmény nem jelent meg a témában és az

implementációk sem érhetőek el. A munkám célja ezért az, hogy a korábbi eredményekből

kiindulva egy olyan statikus weboldal szűrőt hozzak létre, amely előszűrőként alkalmazható

egy alaposabb, de lassabb dinamikus elemző szoftver számára. A megoldásom böngészőbe is

ágyazható, ebben az esetben figyelmezteti a felhasználót az esetleges veszélyekre.

Munkám gépi tanulási módszerekre épül, ezért először ártalmatlan és kártékony

kódokat gyűjtöttem össze, amelyek a tanító adathalmazt adják. Ezt követően a mintákon

kiszámítottam az egyes statikus jellemzők értékeit és egy osztályozót tanítottam be velük.

Végül elkészítettem a szűrőt, amely weboldalakat látogat meg, letölti az ott található kódot,

kiszámítja a statikus paramétereket, majd elvégzi az osztályozást. Az eredmény annak a

valószínűsége, hogy az oldal kártékony.

 5

Abstract

As the World Wide Web is becoming more widespread, nowadays, surfing on the web

has become a daily routine for most people. Besides PC, we can use laptops, phones, tablets

or even a car’s computer to access the internet. Because of the huge user base and the

diversity of platforms, the web has become the primary technology for distributing malicious

software (malware). An unsuspicious user with an unpatched browser can be infected by a

malware without noticing it by merely visiting a few web pages.

The most common way to detect malicious pages is dynamic analysis. These methods

load the web pages in isolated environments and search for downloaded files and other

suspicious activities. The problem with dynamic analysis is that it’s very time-consuming.

Setting up the virtual environment and running the scripts on the page can take minutes. This

is too slow for transparent usage and we can only analyse a few thousand pages per day with

these techniques.

Around 2010 a number of articles appeared about static analysis. Static analysis tries

to classify the HTML or JavaScript sources only by their static features, without running

them, reaching millions of analysed pages per day. But there are no follow-up research results

within the last few years and the implementations of the previous projects are unavailable.

Therefore, the goal of my work is to create a static web page filter using the research findings.

This filter can be a prefilter for a more sophisticated, but slower dynamic analyser tool, or it

can be integrated in a browser to warn the user about possible threats.

My work is based on machine learning techniques, so first, I collected benign and

malicious samples, which provide the training set. Then, I calculated the static features of the

samples and trained a classifier with them. Finally, I created the filter which crawls web

pages, computes the features of the pages, and performs the classification. The result is the

probability that the site is malicious.

 6

1 Introduction

In 2017 around half of the Earth’s population has Internet connection and can connect

to the Internet daily via any device type, which is almost 4 billion users
1,2

. This number is still

growing exponentially. One of the most popular applications of the Internet is the World

Wide Web, invented by Tim Berners-Lee in 1989 and released to the general public in 1991.

To access any content on the Web, we can use not only personal computers and laptops, but

also phones, gaming consoles, TVs or even smart cars. Because of the huge user base and the

variety of platforms used for web browsing, the Web has become the main application for

spreading malicious software (malware). Furthermore, there is no need for the attacker to

physically access the victim’s device. Without any technical knowledge or skills, the user can

be infected without noticing it. A malware can steal personal information and user credentials,

or it can lock the user out of the system letting them back only if a specified ransom is paid

(ransomware). The lack of user knowledge, the wide accessibility of the internet and the huge

impact of an infection result in the overgrowing need for better protection.

1.1 Distributing Malware

There are five possible ways of distributing a malware [2][3], via:

• Email attachments: Sending a malicious URL or a malware as an email attachment

is easy to perform, but the victim may become suspicious and refuse to download

the attachment. Even spam detectors will possibly detect these mails, and will warn

the users.

• Infected storage devices: The attacker can install a malware from a USB drive, or

CD if they access the device physically, which usually requires the attacker to be

trusted by the victim.

• File sharing protocols (FTP, P2P): It is a popular technique, but most internet users

don’t use these protocols or programs.

1
 http://www.internetlivestats.com/internet-users/

2
 http://www.internetworldstats.com/stats.htm

 7

• Malvertising, or malicious advertising: It downloads malware to a victim’s device

when the victim loads a web page that displays the malicious advertisement.

• Malicious web pages: The JavaScript code on a page can exploit a browser or a

plugin vulnerability (e.g., bad memory allocation, buffer overflow) to execute a

shellcode defined by the attacker.

During my work, I concentrated on malicious web pages, because one of the most

common methods to distribute malware is through web pages. Firstly, because of the

popularity of the Web, and secondly, because an attack does not require many prerequisites,

only a vulnerable browser. The malicious URL can be sent to the victims via phishing [4] or

spear phishing e-mails [5], or there are so called watering hole attacks [6], where the victims

are very likely to visit the malicious page. We will never be able to prevent users from

visiting malicious pages, so we must detect them.

1.2 Malicious Web Pages

Today’s browsers and their plugins are very complex applications. It is inevitable that

after design, implementation and testing of such software there are some security flaws

remaining after release. Because thousands of programmers and developers use these systems,

there are hundreds of flaws and bugs known by the public. For example, according to the

Common Vulnerabilities and Exposures (CVE) database, there are almost 1000 Internet

Explorer security vulnerabilities discovered [7]. These vulnerabilities are usually corrected

immediately in the next release of the affected browser, but there are devices where the

browsers are not patched (legacy systems, computers in educational or healthcare facilities). If

a skilful attacker exploits a security flaw, all unpatched browsers are potential victims. But

even if a browser is updated regularly it is still vulnerable for zero-day exploits. These

exploits use bugs which are unknown to the public and only known by the attackers.

The exploits are usually written in script languages which are placed in the HTML

content of the websites between <script> tags. The common script languages are JavaScript

and VBScript (Visual Basic Script), but VBScript is only supported by Internet Explorer and

nowadays JavaScript is more significant, so I only concentrated on the JavaScript language

(besides HTML). JavaScript can be used for multiple attack types which can be interaction

based, or automatic. Interaction based attacks can be placing multiple pop-up windows

(adware, malwartising) so the user needs to close them and if they click on the wrong closing

button, a file download or redirection will occur. Also, stealing user passwords when entered

 8

in a phishing site, or downloading something if the user clicks on a button, for example, are

interaction based. What I am most interested in is automatic attacks (also called drive-by-

download attacks). Steps of a drive-by-download attack are usually the following [1]:

1. Victim visits a compromised website with unpatched browser.

2. The compromised website has an HTML element with a source attribute

(<iframe>, <embed> etc.). The browser loads the source, which is usually

another website.

3. The page redirects to another page which contains the exploitation script.

4. The browser runs the malicious script, which downloads and runs a malware from

another server or does whatever the attacker wants.

1.3 Problem Statement

There are two techniques to detect malicious web pages, dynamic analysis and static

analysis.

Dynamic analysis uses isolated environments, such as sandboxes and virtual

machines, which are also called high- or low-interaction honeyclients. Their task is to visit

suspicious web pages with full-featured browsers, load and execute every script on the page

and analyse what has happened after the execution. To decide whether the page is malicious

or not, mainly downloaded files, temporary folders and started processes are checked. One of

the advantages of a dynamic analyser is that it can deal with highly obfuscated JavaScript

code. To evade detection by a rule-based or regular expression based anti-malware software

attackers usually obfuscate the code, so the actual exploitation script is hidden under several

layers of obfuscation. A dynamic analyser by instrumenting a JavaScript engine can

deobfuscate the code and analyse the hidden part. However, the main problem with this

technique is the performance. After the execution and analysis - which also requires some

time - the virtual machines have to be terminated, restored to a checkpoint and started again

which takes several minutes. For example, an IT security company called Ukatemi

Technologies
3
 (cofounded my consultant Dr. Levente Buttyan) is able to analyse a few

thousand URLs, but they receive around a million potentially malicious URLs daily.

3
 http://www.ukatemi.com/

 9

Furthermore, this overhead makes it impossible to use dynamic analysis transparently and

sensibly in web browsers.

Static analysis is a much faster but less precise technique. It is based on machine

learning and tries to classify the web pages by analysing their lexical and syntactical

parameters (usually called as features). This method does not need an isolated environment or

a fully functional web browser; it only has to download the resources via HTTP(S) without

executing the scripts or creating the HTML DOM tree. As a result, it won’t give sophisticated

results, only the probability of the page being malicious or only the predicted class, but it can

analyse around 100 times more pages as dynamic analysis. A static analyser can be used as a

prefilter for a dynamic analyser, or it can be integrated in a browser as a filter to warn the user

about possible threats.

There were several publications about static analysis around 2010 (see Section 2 on

the state of art), but in the last few years no important results were published and there are no

open source implementations. My goal is to create a static analyser filter based on the

previous results and findings.

1.4 Overview of Approach

In this paragraph, I briefly go through the main steps of my approach, for a more

detailed discussion, the reader is referred to Section 3 of this document.

1. First of all, I read and studied research publications available on the internet. These

publications were written between 2007 and 2012, and since then, no relevant work

has been presented at major conferences.

2. As the static analysis is based on machine learning, therefore, I collected benign

and malicious HTML and JavaScript sources for the training set and the validation

set. For benign samples, I implemented a web crawler, and crawled popular

websites. For malicious samples, I used VirusTotal’s
4
 notification and alerting

system and Ukatemi’s malware database.

3. Next, I selected the HTML and JavaScript features for the classifier, and extracted

the features from the training dataset.

4
 https://www.virustotal.com

 10

4. I implemented a Naïve Bayesian classifier for the filter and trained it with the

extracted features. I also trained and evaluated multiple different classifiers using

the Weka [8] machine learning toolkit.

5. I validated my Naïve Bayesian classifier with a validation dataset to see the False

Positive and False Negative Rates. I compared the results to other classifiers in

Weka. After seeing the results, I also evaluated a Random Forest classifier for the

filter.

6. Finally, I have made some performance measurements on the prototype of the filter

created from three parts, the web crawler, the feature extractor, and the classifier.

1.5 Main Results

We focused on the performance and the accuracy of the filter.

After a test run, the filter was able to analyse around 100.000 URLs in 3 hours, which

means the filter can analyse almost a million URLs per day, which is very good for using it as

a prefilter for a dynamic analyser.

The False Negative Rate of the filter, using my Naïve Bayesian classifier, was around

20-30% depending on a threshold parameter. Only 3 classifiers from Weka could reach this

result. The Random Forest was the best classifier with around 98% Precision and 80% Recall,

therefore, I also evaluated a Random Forest classifier for the filter, which produced the same

results as the one in Weka. The accuracy of the classifiers was 5% better using JavaScript

features than using HTML features.

1.6 Paper Organization

The rest of the paper is organized as follows. Section 2 Related Work gives some

information about publications, and research results I used during my work. Section 3 Our

Approach gives a brief inspection about the theoretical part of my approach to the task, how I

chose the features, and how the classification works. Section 4 Implementation describes

every important implementation detail including web crawling and feature extraction. It also

states the technologies I used. Section 5 Results is about the performance and the quality of

the filter. Section 6 Future Work describes the possible improvements in the performance and

the quality. Section 7 concludes, and finally, there are the acknowledgements, the references,

and the appendix at the end of the paper.

 11

2 Related Work

 This section is about technologies and research findings on which my work is based.

2.1 Dynamic Analysis

Nozzle [9][10]: In 2008 Microsoft Research presented an effective technique for

detecting heap-spraying
5
 attacks only. Through runtime interpretation Nozzle scans heap

allocated object data to identify valid x86 code sequences, disassembling the code and

building a control flow graph. To intercept function calls that allocate and free memory, they

used Detours [11], Microsoft’s software package for re-routing Win32 APIs underneath

applications. With optimizing detection threshold parameters they were able to produce no

false positives and no false negatives on their samples. However, because of runtime analysis,

Nozzle increased execution overhead with 10 − 250% per web site, depending on the

sensitivity.

Monkey-Spider [12]: Monkey-Spider is a malicious web site detector system with

low-interaction honeyclients. Low-interaction honeyclients are not real systems. They emulate

real systems and services, typically on virtual machines. They use a mail spamtrap to generate

seeds for the Heritrix web crawler
6
. The web crawler downloads content from the World

Wide Web. In the next step, they analyse the downloaded content with different anti-virus

solutions and malware analysis tools like ClamAV
7
, Avast

8
and CWSandbox

9
. With multiple

detection software, they were able to produce low True Positive and False Negative Rates, but

the drawback of their approach is the slow content analysis. Signature-based detection is fast

but cannot detect new attacks. Behaviour-based scanning in sandboxes is more precise but

takes a longer amount of time.

5
 In heap-spraying attacks, the attacker attempts to inject code somewhere in the address space of the

target program, and through a memory corruption exploit, coerce the program to jump to that code. It can be

done with JavaScript, exploiting a browser vulnerability [9].

6 https://webarchive.jira.com/wiki/spaces/Heritrix/overview

7
 https://www.clamav.net/

8
 https://www.avast.com/index

9
 http://cwsandbox.org/

 12

ITWEF: ITWEF is a low-interaction honeyclient developed and maintained by

Ukatemi Technologies. It uses around 10-20 virtual machines to visit web pages. The

operating systems on the virtual machines are Windows 7, Windows 8.1 and Windows 10.

The virtual machines are using Internet Explorer to visit potentially malicious web pages,

which are provided by web crawlers: MSICrawler, QutteraCrawler [13] and MRGCrawler.

After loading the page and executing the JavaScript code, the suspicious processes and

created and downloaded files are analysed. ITWEF also dumps and saves the network traffic

from and to the virtual machines and provides the communication in .saz files used by the

Fiddler network analyser tool
10

. The problem with ITWEF is that it can only analyse a few

thousand URLs per day, but the crawlers provide around a million URLs. My filter is planned

to be a prefilter for ITWEF.

JSAND (and Wepawet) [13]: Cova et al. presented a classifier based on static and

dynamic features. The system visits web pages with a customized browser (they have

instrumented Mozilla’s Rhino interpreted to extract dynamic features), which loads the page,

executes its dynamic content, and records the events used by their anomaly detection system.

They were able to reduce False Positive and False Negative Rates below 1%. JSAND was

made available as part of an online service called Wepawet
11

, where users can submit URLs

and files that are automatically analysed, delivering detailed reports about the type of

observed attacks and the targeted vulnerabilities. Unfortunately Wepawet has been shut down

due to maintenance and resource problems, and the creators have recently founded an IT

security company called Lastline
12

.

Caffeine Monkey [15]: Ben Feinstein and Daniel Pack from SecureWorks created the

Caffeine Monkey system. The core of the system is a JavaScript engine based on extensions

to the open source SpiderMonkey
13

 JavaScript implementation engine from Mozilla. After a

Heritrix web crawl, each collected JavaScript sample was run through the Caffeine Monkey

engine. The engine hooks a number of interesting functions, like eval, escape,

10 https://www.telerik.com/fiddler

11
 http://wepawet.cs.ucsb.edu/

12 https://www.lastline.com/

13 https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey

 13

document.write. The goal of their work was to deobfuscate samples correctly, so they

didn’t present results about performance or detection rate.

Zozzle [10][16]: Zozzle is a JavaScript malware detector from Microsoft Research.

They call their approach “mostly static”, because it is much faster than Nozzle [9] and it is

based on static features. However, to deal with obfuscation they intercepted calls to the

Compile function of Internet Explorer’s JavaScript engine located in jscript.dll, which

is a dynamic approach. This function is invoked when eval is called and whenever a new

code is included with an <iframe> or <script> tag. Once they had the deobfuscated

code, they built its Abstract Syntax Tree (AST). They extracted specific features from the

AST (expressions and variable declarations), but they were only interested in the presence or

the absence of the feature in the code. They included only those features in the classification

whose presence was correlated with the categorization of the script (benign or malicious).

They used a Naïve Bayesian classifier. With around 400 automatically selected features, they

were able to produce < 1% False Positive Rates, and ~7% False Negative Rates. For the

majority of files, classification could be performed in under 4�
.

There are several other dynamic technologies to which the above mentioned

researches referred. Just to pick a few: HoneyMonkey by Microsoft Research [17],

SiteAdvisor
14

 by McAfee, MITRE Honeyclient
15

by MITRE and PhoneyC by Jose Nazario

[18].

To sum up, dynamic analysis always executes the JavaScript code on a page in some

way. Usually does it on an isolated environment to see the result of the execution, or to

deobfuscate the code. Executing JavaScript is a time-precision trade-off, it makes the analysis

slower, but more precise. Although, I created a fully static analyser, the methods and

techniques used in the dynamic approach were useful, and will be useful in the future of my

project.

14https://home.mcafee.com/root/landingpage.aspx?lpname=get-it-
now&affid=0&cid=170789

15https://www.mitre.org/research/technology-transfer/technology-

licensing/honeyclient

 14

2.2 Static Analysis

P. Likarish, E. Jung, and I. Jo [19]: Likarish et al. published an approach to detect

obfuscated malicious JavaScript with handpicked static features. They used the normalized

frequency of each JavaScript keyword as a feature and they also defined features to describe

the script’s visual appearance (e.g., number of lines, number of Unicode symbols, average

string length). They trained multiple classifiers with benign and manually reviewed malicious

samples. The Naïve Bayesian classifier was the least precise with ~80% Precision
16

, ~66%

Recall
17

 and ~99% Negative Predictive Power
18

.

Prophiler [20]: Canali et al. presents a lightweight static filter, called Prophiler. They

combine HTML-, JavaScript-, and URL-based features (e.g., number of specific tags, or

keywords) to train multiple classifiers. The filter is fully static; it does not execute the

JavaScript code to deobfuscate it, and it uses special features to detect obfuscation. They were

able to discard benign pages easily, False Positive Rates were around 2% with most of the

classifiers, but the average of the False Negative Rates were around 20 − 30%. They used the

filter as a prefilter for Wepawet.

2.3 Difference from Our Approach

Our approach is similar to the Prophiler and the approach by P. Likarish et. al. and is

based on them. I created a fully static analyser with web crawling, feature extraction and

classification.

To collect benign files I created my own crawler in C#, which is more customizable

and scalable than to use Heritrix for example. I used this program in the filter too. None of the

above mentioned approaches used their own crawler, they mainly used Heritrix. I collected

the malicious files from VirusTotal and Ukatemi’s malware database, which is a different

source and not used in the other approaches. The features I used are the subset of the features

used in the previously mentioned static analyzers. For classification I tried the Weka software

too, but I also implemented my own Naïve Bayesian classifier, and I also used a Random

Forest implementation for the filter. The complete implementation process is my own solution

and it contains my own ideas.

16
 The ratio of (malicious scripts classified correctly) / (all scripts classified as malicious).

17
 The ratio of (malicious scripts classified correctly) / (all malicious scripts).

18
 The ratio of (benign scripts classified correctly) / (all benign scripts).

 15

3 Our Approach

This section provides a detailed overview on how I used machine learning techniques

to distinguish between malicious and benign web pages.

One of the main usages of machine learning is classification. The purpose of

classification is to divide unseen inputs into previously determined classes. The core of a

classifier is the model. Creating a classifier requires three phases. The first phase is feature

selection. To achieve a high detection rate, those features should be selected which describe

the difference between the classes the best. The second phase is the training, where the

classifier creates the model from a provided and labelled dataset (supervised learning). The

last phase is the evaluation, or detection phase, where the classifier tries to classify previously

unseen inputs using the model. The evaluation phase usually starts with a validation of the

classifier. The purpose of the validation is to estimate how well the classifier will perform on

real-world data, so the classifier is evaluated on previously unseen, but labelled dataset [21].

3.1 Feature Selection

Selecting features is the crucial part of the classification. We should find and use those

features, which describe the difference between a malicious and benign file the best. The

following features are static features, which can be extracted from the files without running

them. The extraction process only requires parsers for HTML and JavaScript, but there are

features which can be extracted only by interpreting the file as a usual text file and analysing

its raw content.

The following features are commonly used as HTML and JavaScript features. All of

them are used by the Prophiler [20], or Zozzle [16], or JSAND [13], or Likarish et al.[19],

therefore, I also decided to use these features. Creating new features would be interesting if

we modify the filter to detect an exact type of malware.

There are three types of features: discrete (the number of artefacts), continuous

(average, percentage of values), or logical (presence or absence of an artefact)

 16

3.1.1 HTML Features

I used the following 16 HTML features [20]. A chosen feature does not mean that the

connected tag or attribute is only used for malicious purposes; it means that it can be used, so

it is important to take into account.

Discrete features:

Number of <iframe> tags: Iframe tags can be used to insert contents from another

website within a web page as if they were part of the current page. In an iframe attack, the

hacker embeds a malicious iframe code snippet in one’s website page. When anyone visits

that page, the hidden iframe code secretly downloads and installs a malware [24].

Number of hidden elements: The hidden attribute can be used, to visibly hide an

element from the user. It is a common technique to hide a button for example, so the user does

not recognize it and accidentally clicks on it.

Number of small elements: Setting width and height attributes of an element very

small (1-2 pixels) is also a common technique to hide a malicious element. I consider a tag

small if the area is smaller than or equal to 30 pixels, or one of its sides is shorter than or

equal to 2 pixels [20].

Number of <script> tags: Script tags are to insert inline or to reference other scripts

which can either be malicious or benign.

Number of <embed> tags: Embed tags can reference a malicious source in the src

attribute. It also can be used in a cross-site scripting attack [25].

Number of <object> tags: Same as embed, but it has an object attribute.

Number of sources from an external domain: If a benign site is compromised, it is

usual that the attacker just places an element with a source attribute pointing to the actual

malicious site on an external domain.

Number of parsing errors during parsing: I used an HTML parser which always

parses the given document without exception, but provides a list of errors while parsing (e.g.,

tag is not closed). A benign site is likely to produce fewer errors.

Number of elements in the wrong place: I checked the places of script, object, embed,

frame, iframe and form according to the allowed positioning in the HTML 4 DTD [26]. In a

compromised page it is common to see these elements in strange positions.

 17

Number of included URLs: Including multiple URLs can mean that the site is popular,

and not likely to contain a malicious code.

Number of characters in the HTML document: The number of characters in the HTML

files is expected to be smaller in malicious pages, which are not the results of a corruption of a

web page. These pages are not focusing on the good user experience and just contain what is

necessary for the attack.

Continuous features:

Percentage of JavaScript content: Obfuscated scripts are usually large and contain

huge strings, which could mean higher percentage.

Other continuous features: percentage of whitespace in the HTML document.

Logical features:

Presence of <meta http-equiv=refresh> tag: This tag can be used to refresh the

page in a given time, but can also be used as a method of URL redirection [27].

Presence of scripts with wrong extension: A referenced JavaScript file in a source tag

normally has a correct .js extension. A file without an extension or with a wrong extension

might be malicious.

Presence of double documents: In the HTML specification it is not allowed for a page

to contain multiple html, head, body or title tags, but this can be seen in some malicious web

pages as a side effect [20].

The number of characters and the percentage of whitespace features can be calculated

without parsing the HTML. For the other features, the HTML document has to be parsed.

3.1.2 JavaScript Features

I used the following 22 JavaScript features [19][20]. Most of the following features

require parsing the JavaScript file. After parsing the source, I traversed the nodes of the AST

provided by the parser to collect the features (for detailed information the reader is referred to

Section 4.2.2).

Discrete features:

Number of eval calls: The most popular way of direct dynamic code evaluation is

through eval() calls. After deofuscation usually an eval() is called to execute the deobfuscated

JavaScript code [29][30][32][33].

 18

Number of timer function calls: Using setInterval(), and setTimeout() to periodically

do something (e.g., refresh the page) can be used for malicious purposes [34].

Number of string modification function calls: To deobfuscate multiple layers of

JavaScript, string modification functions are used to split a long string and to generate a new

correct JavaScript code [33]. I focused on the following string modification functions: slice(),

subStr(), substring(), replace(), concat(), charAt(), charCodeAt(), split().

Number of navigator properties used: It is common in malicious scripts, to identify the

browser used by the victim, or to get other information about the victim’s environment to use

the properties of the navigator object [32]. I focused on the following properties:

appCodeName, appName, appVersion, cookieEnabled, geolocation, language, onLine,

platform, product, userAgent.

Number of DOM modification function calls: JavaScript can modify the HTML

Document Object Model (DOM
19

) tree in runtime, with DOM modification function, and

instantiate vulnerable components. It is possible to place new, and delete or modify already

existing elements, which can be used for malicious purposes [29][32][33]. I searched for the

following function calls: getElementById(), getElementsByTagName(),

getElementsByClassName(), createElement(), removeChild(), appendChild(), replaceChild(),

write, clearAttributes(), insertAdjacentEmlement(), replaceNode().

Number of long string: An obfuscated JavaScript usually contains a few long strings

(even thousands of characters long). These strings are deobfuscated with string operations

(split,slice), to get the real script [30][32][33]. I call a string long if its length is above a

certain threshold; I used 40 characters for the threshold [20].

Number of long variable or function names: Malicious codes usually have long

randomly created function and variable names. On the other side, a benign code is not likely

to contain long names, because it is not easily readable. I call a name long if its length is

above 20 characters.

Number of suspicious strings: A code, which contains strings with shell, spray, evil,

and crypt in them are likely to be malicious. I search for the occurrences of these four words.

Number of strings containing iframe: Creating an iframe tag dynamically with

JavaScript is a common method to place malicious references to the HTML code [29]. It can

19
 https://www.w3schools.com/js/js_htmldom.asp

 19

be done like this: document.write(“<iframe src=”malicious

URL”></iframe>”).

Number of strings containing suspicious tag names: Besides iframe, other HTML

elements can be placed while executing a JavaScript code. I test the presence of frame, object,

embed, and script words as a part of a string in the code.

Number of Unicode characters: A shellcode can contain multiple Unicode characters.

A shellcode is a piece of malicious code, which is placed in the browser’s or the plugin’s

memory, and executed through exploiting a buffer overflow.

Other discrete features: number of method calls, number of strings, length of the

script, number of lines, maximum length of strings.

Continuous features:

Entropy based features: average entropy of strings, max entropy of strings, entropy of

script: These features are used to describe the randomness of the strings and the script. If a

script contains an obfuscated code, it is likely that the entropy will be higher.

Other continuous features: average string length, average line length and percentage

of whitespace.

The number of lines, the length of script, the average string length, the maximum

length of string, the average line length, and the percentage of whitespace features can be

calculated without parsing the JavaScript; the others require parsing, and traversing the AST.

3.2 Training

The purpose of training is to acquire the characteristics of a dataset, which will be

referred to as the training set. Every element of the training set contains multiple features and

the name of the class (a label) in which the actual element belongs. The classifier tries to

derive a model from the given features and the classes they belong.

In the context of web pages, the classification of every element of the training set is a

list of features extracted from the HTML, or JavaScript code of the web page, and a benign,

or malicious label representing the class of the element. To create a precise classifier, the

training set has to be correctly labelled manually and also, the features have to be carefully

chosen to describe the differences between malicious and benign codes (for more information

see Section 3.2).

 20

To train a classifier, the first task is to collect HTML and JavaScript resources which

are likely to be benign or likely to be malicious. Collecting malicious files and collecting

benign files requires to different methods.

Benign training set: The most common method for collecting benign samples is with

a web crawler. I tried out a few web crawlers and crawler frameworks, like Heritrix – the Web

Archive’s crawler, Scrapy
20

– a web crawling framework in Python, but I decided to

implement my own web crawler in C#. The main reason was that implementing the crawler

myself, customizing it will be easier (like setting HTTP headers, parsing the HTML or

JavaScript). Furthermore, I can use the crawler not only for gathering the training set, but also

in the filter for crawling potentially malicious web sites. I collected 439 URLs of the most

popular web pages according to Alexa.com
21

, Quanticast
22

, Wikipedia and other sites. These

URLs provided the benign seed for my crawler. My assumption was that these websites and

the sites which they reference are not likely to contain malicious code. My implementation

makes it possible to start multiple crawlers simultaneously; one crawler is responsible for

crawling one seed URL. The phases of the crawling can be seen in Figure 3.1. For

implementation details (handling HTTP messages, parsing the HTML) the reader is referred

to Section 4.

20
 https://scrapy.org/

21
 https://www.alexa.com/topsites

22
 https://www.quantcast.com/top-sites/

Figure 3.1. The phases of crawling

 21

I focused only on HTML and JavaScript resources and therefore used the following

algorithm to determine the type and the examining process:

1. HTTP Content-Type header of the response: I accept

application/xhtml+xml, text/html and text/plain MIME-types as

HTML and application/x-javascript, application-javascript

and text/javascript MIME-Types as JavaScript [23].

2. If the Content-Type header is set but not to an accepted MIME-type, then I

discard that resource (it could be a picture, flash etc.).

3. If the Content-Type header is empty, I try the following:

a. If the resource contains an <html> tag, I interpret it as an HTML

document.

b. If it does not contain an <html> tag, and the JavaScript parser can

parse it, I interpret it as a JavaScript file.

c. Otherwise I discard the resource.

4. If the resource is HTML, I extract new URLs, and the JavaScript code on the

page.

5. I save both the HTML and the JavaScript source.

 To get other URLs from the seed web page, I parsed the

HTML file. Table 3.1 shows the HTML tags, and the attributes of the

tags which I focused on to extract resource URLs. After collecting

every URL from the actual page I filtered the URLs. I discarded those

URLs which were irrelevant based on their extensions, like .png,

.css, .swf etc. These filtered URLs provided the new URLs to

fetch.

HTML

Tag
Attribute

script src

iframe src

frame src

embed src

object data

form action

link href

a href

Table 3.1. HTML tags and
their attributes used to

gather new URLs.

 22

To get the JavaScript code from the HTML file, I examined the <script> tags in it.

The content of the tag is collected and interpreted as JavaScript if the following conditions

stay:

• The tag does not have a language attribute or it has a language attribute and

it is JavaScript, and

• The tag does not have a type attribute or it has a type attribute

 and it is application/javascript, application/ecmascript,

text/javascript, text/ecmascript [23].

All of the inline JavaScript codes of an HTML page are merged together and treated as

one script file. This was necessary because most features of the individual inline scripts are

meaningless if the code is a few lines long. Furthermore, the browsers are interpreting the

JavaScript code of a page as a whole.

With the above mentioned technique I was able to gather and save the HTML and

JavaScript files while crawling the seed URL. To remove duplicate files, I matched the SHA-

256 hashes and the actual URLs.

 I started a web crawling process with the following parameters: 439 seed URLs in a

file, 2 crawlers working in parallel on a single seed URL each, every crawler downloads at

least 300 other URLs, every crawler sends max 20 requests simultaneously. The complete

process took around 12 hours, during which 107464 distinct HTML and 92217 distinct

JavaScript files were collected and saved (see Table 3.2), which is 5 ����/
��. The crawling

process was run on a Ubuntu virtual machine on a VMWare ESXi server. It had limited

resources because of the other virtual machines on the ESXi server. In the future, on a

stronger environment, the performance can be optimized. The bottleneck of the process is

fetching the URLs, which can take seconds, so increasing the parallel requests can fasten up

the process, but the number of threadpool threads should be considered too (see Section 4).

Malicious training set: Creating a malicious training set is hard to do by crawling the

web. The problem is to find URLs which are very likely to contain malicious code. There are

multiple blacklists available on the web like MalwareDomains
23

, but these lists are frequently

changing because the attackers are also monitoring these blacklist and they usually terminate

23
 www.malwaredomains.com/.

 23

the page if it appears on a blacklist. Ukatemi has a VirusTotal licence with which the

following is possible: we can use VirusTotal’s messaging service by specifying a Yara
24

 rule,

that is matched by VirusTotal to every freshly uploaded sample. We created a rule, which

usually matches on JavaScript files (see the exact rule in the Appendix). By also providing an

email address, VirusTotal sends a message every time someone uploads a file to its server

which matches the specified Yara rule. We did not provide a rule for HTML files because our

experience was that it is very likely that the uploader uploads an HTML file which contains a

malicious JavaScript code rather than only uploading the JavaScript source. The message sent

by VirusTotal is plain text, but it has a well-defined structure. It contains information about

the uploaded file like MD5 and SHA-256 hashes, file type and the list of alerts of antivirus

products triggered by the file. For example, we found in this way Ramnit Trojans, Facelikers,

FakeJQuery Trojans, LikeJacks, Phishing malwares, Adwares, Iframe Trojans, Redirectors

and Clicker Trojans.

During a month’s time, I received around 70000 emails. I wrote a program in C# to

download and parse the messages. After the parsing, I checked whether the referenced file

caused any alert on any antivirus. If not, I discarded the message. If yes, I gathered the SHA-

256 value from the message, and I used Ukatemi’s malware database to collect the actual file

from the hash. They provide a REST service, so if one sends the hash of a file, you receive the

file if it is in the database. If the file was HTML, I extracted the JavaScript code, like from the

benign files. From the 70000 messages, most did not contain any alerts, some were duplicates,

some of them were not JavaScript or HTML (usually ELF or ZIP), and some of them were not

in the database. In the end I had 1594 HTML and 1784 JavaScript files assumed as malicious

(see Table 3.2). I only examined the subset of the files and not all, which could cause some

problems (for more information see Section 6).

After collecting the training set, feature extraction comes from the collected samples

(detailed in Section 4). Finally, the classifier creates the model from the provided training set.

24
 Yara is a popular pattern matching tool used widely by identifying and classifying malware.

http://yararules.com/

 HTML JavaScript

Benign 107464 92217

Malicious 1594 1784

Table 3.2. Number of collected samples

 24

The actual method to create the model depends on the classification algorithm described in

Section 3.1.3.

3.3 Evaluation

Validation: To validate a classifier, a validation dataset is used, which is labelled just

like the training set, but it is not used in the training phase, which means that these values are

unseen for the classifier. The purpose of the validation is to estimate the real world

performance of the classifier. To measure the performance and precision of a classifier, the

confusion matrix (Table 3.3) and other attributes [22] are calculated:

JavaScript/HTML Labeled as
Malicious

Labeled as
Benign

Classified as Malicious True positive (TP)
False positive

(FP)
Type I Error

Classified as Benign
False negative

(FN)
Type II Error

True negative
(TN)

• False Positive Rate (FPR): ��/(�� + ��) The probability of labelling a benign

script malicious. If high, it causes an overhead for the underlying dynamic analyser.

• False Negative Rate (FNR): ��/(�� + ��) The probability of labelling a malicious

script benign. If high, we miss analysing some malicious scripts; also we allow the

user to visit the web page.

• True Negative Rate (TNR), Specificity: ��/(�� + ��) The probability of

classifying a benign script correctly (as benign). Equals 1 − ���.

• True Positive Rate (TPR), Recall, Sensitivity: ��/(�� + ��) The probability of

classifying a malicious script correctly (as malicious). Equals 1 − ���.

• Positive Predictive Value (PPV), Precision: ��/(�� + ��) The probability of the

correct classification if the classification result is malicious. If high, a maliciously

labelled script is very likely to be malicious.

Table 3.3. Confusion matrix for web page classification
(template source: https://en.wikipedia.org/wiki/Confusion_matrix)

 25

• Negative Predictive Value (NPV): ��/(�� + ��) The probability of the correct

classification if the classification result is benign. If high, a benignly labelled script is

very likely to be benign.

• F-measure: The F-measure is the harmonic mean of Precision and Recall. It can be

calculated with the following formula (3.1):

����
��� = 2 ∗
"#$%&'&()∗*$%+,,

"#$%&'&()-*$%+,,
 (3.1)

During my work, I focused mainly on false positive and False Negative Rate. It is

important to achieve low False Negative Rate, otherwise the classifier will label a malicious

script benign. If we use the filter as a prefilter, the dynamic analyser will not analyse those

scripts, and if we integrate it in a browser, the filter will not notify the user about the possible

threats. Low False Positive Rate can also be necessary, otherwise the false positive samples

will cause an overhead for the dynamic analyser, and also a user may be annoyed by the usual

alerts, and will more likely disable the filter. These two parameters are in an inverse

relationship: we can lower the FNR by increasing the FPR and vice versa.

I used two different types of validation techniques during my work. For my

implementation of the Naïve Bayesian classifier and for training the Random Forest, I divided

the training set to 70%-30%. With the 70% I trained the classifiers, and I validated them with

the rest. The other method I used is the n-fold cross validation [28]. A trained and validated

multiple other classifiers with the Weka machine learning tool, which provides cross

validation. I used the most common 10-fold cross validation, besides 70-30% partitioning. In

10-fold cross validation, we separate the whole dataset into 10 equal groups. We train the

classifier with 9/10
th

 of the data and validate it with the remaining 1/10
th

. Finally, we calculate

the average of the above mentioned parameters.

Evaluation on real-world data: During the creation of this paper I was not able to

create exact measurements about the precision of the filter on real world data. To measure the

detection rate of the filter would require ITWEF to analyse the same URL list twice, with and

without the filter which is not trivial. Also, optimizing the performance, thread numbers and

parallel requests are yet to be done.

 26

3.4 Classifiers

Choosing the classifier plays an important part in my work. Choosing a more complex

and robust classifier can produce lower False Positive and False Negative Rate, however, the

implementation of the algorithm is much harder. Choosing a simple classifier usually means

higher FPR and FNR, but the implementation is easier and we can concentrate on the results

sooner.

I chose to implement a Naïve Bayesian classifier in the first place, which is one of the

simpler classifiers. Besides the easy and fast implementation, the related works showed that

the precision of a Naïve Bayesian classifier can be unexpectedly high, reaching other more

sophisticated classifiers in quality. Zozzle uses only a Naïve Bayesian classifier and also

Prophiler and the approach by Likarish et al. presented results with it.

However, I tried the Weka machine learning platform as well – which implements

multiple classification algorithms, and provides a user friendly interface to import a feature

dataset and to run the classification – to analyse the quality of other classifiers and to compare

it with my implementation.

After comparing my Naïve Bayesian Classifier, with the classifiers from Weka, the

results showed that the Random Forest algorithm was the best in Precision, Recall and F-

measure. Therefore, I used and evaluated a Random Forest classifier implementation for the

filter.

3.4.1 Naïve Bayesian Classifier

Bayesian classifiers are statistical classifiers. They can predict the probability that a

given sample belongs to a particular class. In my case, a sample is a tuple of feature values

(16 HTML and 22 JavaScript), the classes are malicious and benign. Naive Bayesian

classifiers assume that the effect of an attribute value on a given class is independent of the

values of the other attributes. This assumption is called class conditional independence. While

this assumption is incorrect (e.g. string-based features, entropy-based features, function call-

based features), the classifier yields good results [16][40]. Another assumption is that the

distribution of each feature in the training dataset is approximately the same as in the real

world samples.

 27

Bayesian classifier is based on Bayes’ theorem. According to the theorem, the

probability of a sample belonging to a class .&, with �/, �1, … , �) features can be calculated

with the following formula (3.2):

�(.&|�/, �1, … , �)) =
"(45)"(67,68,…,69|45)

"(67,68,…,69)
 (3.2)

The denominator does not depend on class, so only the nominator should be

calculated. This will give a likelihood value, not an actual probability. The nominator can be

transformed using the rule of conditional probability (3.3):

�(.&)�(�/, �1, … , �)|.&) = �(.&) ∏ �(�<|�<=/, … , �/, .&))
<>/ (3.3)

Then, by applying the independence assumption, we gain the following equation (3.4):

�(.&) ∏ �(�<|�<=/, … , �/, .&))
<>/ = �(.&) ∏ �(�<|.&))

<>/ (3.4)

�(.&) ∏ �(�<|.&))
<>/ (3.5)

We want to calculate (3.5).

The �(�<|.&) probabilities can be calculated from the training set. There are three

possibilities regarding the type of the feature:

I. If the feature is continuous:

a) The estimated probability density function can be used to calculate the conditional

probabilities.

b) The feature values can be transformed to ordinal categories using a binning method.

II. If the feature is discrete:

a) The estimated probability density function, or probability mass function can be

used to calculate the conditional probabilities.

b) The feature values can be transformed to ordinal categories using a binning method.

III. If the feature is logical, the categories are already provided.

I chose to transform every numerical feature into ordinal categories. Some feature’s

probability density function could be estimated by kernel function. It is a possibility to try in

the future, but it is not trivial to use. Most of the features could be intuitively split into three

or two categories (e.g. the presence or absence if iframe, or object tags) after analysing the

 28

histograms, but I chose a more common way to bin the values
25

. For every feature, the mean

and the standard deviation were calculated (using SPSS) and the borders of the bins came

from the result: ���? −
@A. A�B��@�C?; ���?; ���? +
@A. A�B��@�C?. So, there were

only maximum 4 categories for a feature:

Category I: E <= ���? −
@A. A�B��@�C?

Category II: ���? −
@A. A�B��@�C? < E <= ���?

Category III: ���? < E <= ���? +
@A. A�B��@�C?

Category IV: ���? +
@A. A�B��@�C? < E

If the lower boundary (���? −
@A. A�B��@�C?) was undefined (e.g., negative), I used

only 3 categories. For logical features I used the true and false bins as is.

After binning the values I created the frequency tables for each feature, to calculate the

conditional probabilities (Table 3.4).

Feature A Labelled as malicious Labelled as benign

Category I M1 B1

Category II M2 B2

Category III M3 B3

In Table 3.4, M1 is the number of samples labelled as malicious, where the value of

Feature A falls into Category I. The other values are calculated like M1. To get conditional

probabilities, the values in the frequency table are divided by the number of all

maliciously/benignly labelled samples.

From (3.5) we have just calculated the production part. The a priori probability of a

class �(.&) could be calculated from the relative frequency of the classes in the training set,

but this would assume that the frequency of the classes in the training set is the same as the

probability of a randomly chosen sample being malicious or benign. Therefore, I used the

assumption that spam filters usually use [41]: There is no a priori reason for any web page to

be malicious rather than benign. So in my calculations: �(������C�
) = �(F�?�G?) = 0.5,

so the multiplication with the a priori probabilities can be omitted.

25
 Other common binning (or discretization) methods are equal width interval, and equal frequency

interval discretization, but neither of them could be used for all features.

Table 3.4. A frequency table used to calculate conditional probabilities.

 29

The classification algorithm for sample H, with feature values �/, �1, … , �) will be as

follows:

1. Put every feature value in the correct category of the feature.

2. Calculate the frequencies from the corresponding cell of frequency table of each

feature, and divide them with the number of malicious/benign samples in the

training set. These are the relative frequencies, which by assumption equal the

conditional probabilities.

3. Multiply the relative frequencies for both malicious and benign class separately.

The result is: IJ(������C�
|�/, �1, … , �)), IJ(F�?�G?|�/, �1, … , �)), where LH

stands for likelihood.

4. Compare the two numbers; the result is the class whose LH value is higher. We

can calculate probabilities from likelihoods (3.6).

�(������C�
|�/, �1, … , �)) =

KL(M+,&%&(N'|67,68,…,69)

KL(M+,&%&(N'|67,68,…,69)-KL(O$)&P)|67,68,…,69)
 (3.6)

5. With the probabilities, it is possible to modify the detection threshold. The

classification result is malicious if �(������C�
|�/, �1, … , �)) > @ℎ��
ℎC�A.

With the threshold it is possible to optimize the false positive and False Negative

Rate.

3.4.2 Classifiers in Weka

Weka is a collection of machine learning algorithms integrated in one tool. The

algorithms can either be applied directly to a dataset or called from a Java code. I used the

graphical user interface to import datasets and to run the classification algorithms. I applied

the following classifiers on the dataset: Bayes Net [35], Naïve Bayes [36], Logistic [37], J48

[38], Random Forest [39] and Random Tree. The detailed analysis of the classifiers and their

algorithms was not in the scope of my work or this paper, so I only present the useful

descriptions and publications about them.

Weka produced detailed results about the created models, the TP and FP rate and it

presented the confusion matrices, so it was evident to compare the results.

 30

3.4.3 Random Forest

The Random Forest is an ensemble learning algorithm used for classification and

regression. An ensemble learning algorithm combines the results of multiple other learning

algorithms to improve the accuracy. In case of the Random Forest technique, it creates

multiple Decision Trees (the Forest) and uses the combined results of the Decision Trees for

classification and regression. Decision Trees are Classification and Regression Trees (CART),

because they can be used for classification and regression purposes. I used the trees for

classification [44].

The Random Forest algorithm grows the trees as follows [42]:

• Sample the training set at random, but with replacement. This sample will be the

training set for growing the tree.

• If there are M features, a number m<<M is specified. At each node, m features are

selected at random out of the M and the best split on these m is used to split the node.

The value of m is held constant during the forest growing. The common methods to

define m are taking the square root of the number of features, or taking the logarithm.

• Common methods to define the best split are using giri index, chi-square, information

gain or reduction in variance.

• Each tree is grown to the largest extent possible. There is no pruning. But to avoid large

trees, which can cause overfitting, limiting the depth is necessary.

• The prediction of the whole forest comes from the predictions of the trees. In case of

classification, the class with the majority of the votes is used.

The advantages of using the Random Forest algorithm relevant for my work are the

following: it can handle both numerical and categorical data; it can handle a large dataset and

a large number of features; it can give estimates of what variables are important in the

classification; also, the generated forests can be saved. However, I have very little control of

what the model does, and creating the model can be time consuming [39][42][44].

Optimizing and tuning a Random Forest algorithm for a special purpose is not an

intuitive and easy task [43], I did not deal with this during my work. It is a possible way for

the future.

 31

4 Implementation

This section describes the implementation process of the filter. It details the training

set collection, the feature extraction from the parsed HTML and the JavaScript samples and

the process of the classification.

4.1 Programming Environment

The filter was created in the .NET Core 1.1 Framework
26

, using the C#
27

 programming

language. We chose C# because it is a high-level language with thorough documentation. It

has language features, like await-async for asynchronous programming, LINQ for queries

and anonymous functions, which are useful for web crawling and feature extraction.

Furthermore, thanks to the .NET Core Framework, we can create cross-platform applications

with C#. It was necessary for the filter to run on UNIX systems. Although .NET Core was

announced only a year ago (June-July 2016) [45], the important packages and libraries for my

work are supported by framework. For a code editor the Visual Studio Code
28

 was the ideal

choice.

I worked on a Ubuntu 14.04 virtual machine, which was running on a VMWare ESXi

Server maintained by Ukatemi. Besides development, I used this computer to store the

downloaded benign pages and the collected malicious ones. I also used my personal laptop

with Windows 10 operating system for development, for analyzing the features.

For version control, I used git
29

, which is integrated in Visual Studio Code. For

inspecting the extracted features and creating the frequency tables, I used SPSS Statistics
30

from IBM and MATLAB
31

 from MathWorks. For running other classification algorithms, I

used the Weka machine learning tool
32

.

26
 https://www.microsoft.com/net/core#windowscmd

27
 https://docs.microsoft.com/en-us/dotnet/csharp/

28
 https://code.visualstudio.com/

29
 https://git-scm.com/

30
 https://www.ibm.com/analytics/us/en/technology/spss/

31
 https://www.mathworks.com/products/matlab.html

32
 https://www.cs.waikato.ac.nz/ml/weka/

 32

4.2 Training

For training the classifiers I had the following tasks to do and implement:

• Gather benign and malicious samples.

• Extract the previously selected feature values from the collected files to create

the training set.

• Train the classifier with the training set.

I implemented these functionalities as standalone programs, which can be used

individually and also can be integrated into one filter.

4.2.1 Collecting HTML and JavaScript samples

As I described before, it is not trivial to collect malicious files with web crawling. I

implemented a web crawler in C# to collect benign samples, and I implemented another

application, which downloaded the messages from VirusTotal through HTTP from my

mailbox and used the SHA-256 hashes to collect the files from HashDB.

4.2.1.1 Benign sample collection

To collect benign files, I implemented the Crawler module as a standalone program,

which I also used later for crawling potentially malicious web pages. The program runs

through the following steps:

I. Initialization: The Crawler module has three command line parameters: the number of

parallelly started crawlers, the number of parallel requests in one crawler and the minimum

number of URLs to be fetched per crawler. The initial seed URLs can be placed in a text

file in the project root, one URL in one line (e.g., http://facebook.com). I allowed

commenting URLs with ‘//’ for being more user friendly. For each URL, the program starts

a separate crawling job, but first, the global HTTP headers are set. For creating and

handling HTTP requests and replies I used the HttpClient [46] class located in the

System.Net.Http namespace. I set the following headers and values:

Referrer: https://www.google.com

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Accept-Language: en-US,en;q=0.5

 33

Accept-Encoding: gzip, deflate

User-Agent: Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:54.0) Gecko/20100101

Firefox/54.0

These are the traditional headers used by Mozilla and Chrome. This way, I can pretend,

that I am requesting the page from a web browser as a regular unsuspecting user.

For using gzip and deflate decompressions the AutomaticDecompression property

of the HttpClient had to be set using HttpClientHandler. To analyse in- and

outgoing HTTP messages I also set a proxy for the HttpClient to 127.0.0.1:8888 if the

HTTP debugging application Fiddler
33

 was running on the machine.

II. Sending HTTP requests: After the initialization, the crawling tasks were started for each

seed URL (the number of the parallel crawlers was limited by a command line parameter).

For containing and maintaining the URLs and other information collected from the seed

URL, I created a Crawler class which represents one Crawler and is responsible for one

seed URL. Each Crawler maintains a list about the extracted URLs from the html page

located on the seed URL and the other HTML pages linked or referred from the seed.

The Crawler sends multiple HTTP GET requests asynchronously to the extracted URLs

(HttpClient.SendAsync(…)). C# provides asynchronous programming with

async, and await keywords [47]. After the framework sends a request, it yields the

control to the calling function which can continue with the program. This mechanism is

useful for I/O-bound tasks (like HTTP requests), and can increase throughput.

After any reply arrives without errors, the Crawler processes the response. Technically

the Task objects returned from the async request function are stored in a list. After

sending multiple requests, the Crawler waits for any reply to arrive: await

Task.WhenAny(httpRequestTaskList).

III. Processing the HTTP response: If the HTTP status code of the result is 200 OK, then it is

processed as follows. The Mime-Type of the returned resource is determined as detailed in

33
 http://www.telerik.com/fiddler

 34

Section 3.2. If the response is HTML or unknown, it is parsed as HTML to collect the

referenced URLs
34

 and the inline JavaScript code.

IV. Parsing the HTML and gathering new URLs and inline JavaScript: For parsing HTML

documents, I used the popular HTMLAgilityPack
35

, which is available through the NuGet
36

package manager. This library can parse any text

(HtmlDocument.LoadHtml(htmlSource)) without throwing exceptions, and it

provides a list of occurred parsing errors (e.g., EndTagInvalidHere,

TagNotOpened, TagNotClose). It also allows for querying and navigating through

the created nodes with XPath, and LINQ. I used both of these technologies. After parsing

the file, the presence of the html tag is checked. If it is present, then starts the processing

of the HTML file.

I iterate through the nodes of the document, and search for specific tags and attributes to

gather the URLs. The tags and attributes are already mentioned in Section 3.2, Table 3.1.

The values of an attribute can be easily extracted. After collecting the URLs I normalize

them: the protocol (http://, https://) and www. are removed. I discard those

URLs, which starts with mailto:, android-app:, ios-app: etc., and also those,

whose extension is not in a list of accepted extensions: .js, .htm, .html, .xht,

.php, .asp, .aspx. These are the most common extensions for files which provide

or generate an HTML or JavaScript file. Also, the URLs, which were already fetched, are

deleted.

V. Ending the crawl, saving files: After reaching the specified number of successfully

fetched URLs the Crawler saves the collected resources with .js, or .html extension

and exits. A program is waiting for Crawlers to finish their task with Task.WhenAny,

and starts another crawling with a new seed URL.

34
 There is no need for parsing the JavaScript while only collecting the training samples. But later, when

the Crawler module is integrated with the Feature Extractor module the JavaScript parsing is also started here.

35
 http://html-agility-pack.net/?z=codeplex

36
 https://www.nuget.org/

 35

The files were saved in a hierarchical structure presented in Figure 4.1.

A directory was created for each seed URL (ukatemi.com), and in this, other directories

were created for every domain referenced directly or indirectly from the seed

(ukatemi.com, crysys.hu). The log file for the individual crawl (log.txt) and the successfully

fetched ULRs (uris.txt) by the crawler were placed in the seed URL directory. In every

domain directory, the downloaded files were stored with the actual URL as their name
37

(crysys.hu.html, ukatemi.com.js). The .html and .js extensions were always concatenated to

the end of each filename to easily distinguish between HTML and JavaScript files any

time. Later, every file was copied to a single directory and I deleted those, which have the

same SHA-256 value, or the same name.

4.2.1.2 Malicious sample collection

As I mentioned above, malicious samples were collected through VirusTotal and

Ukatemi’s HashDB. The mails from VirusTotal arrived at my @ukatemi.com email address.

To manually process around 70.000 emails was practically infeasible, so I wrote a program to

37
 The URLs could not be used as file names, because of special characters, so I used the

Uri.EscapeDataString() from the framework to create the file name.

Figure 4.1. The directory structure of the downloaded HTML and JavaScript files.

 36

automatically download the emails, check if they were caught by any antivirus products, and

if they were, query HashDB with the SHA-256 hash, and save the actual malicious file.

I connected to the mail server through HTTP. I did not use IMAP because .NET Core

1.1 does not support it (however, it is now supported in the newly released 2.0 version). So I

logged in to the web page, opened the mails virtually, fetched the html files and extracted the

actual textual messages. An example for a message can be seen below:

Link :

https://www.virustotal.com/intelligence/search/?query=4a745815202dcaeb8229a

9861c43a05d0e66ee8f1cbd4fcb43983911559e18d8

[…]

SHA256 :

4a745815202dcaeb8229a9861c43a05d0e66ee8f1cbd4fcb43983911559e18d8

Type : HTML

[…]

First country: DE

ALYac Trojan.Script.503239

AVG JS:Includer-BMA [Trj]

AVware Malware.JS.Generic (JS)

[…]

Kaspersky Trojan.HTML.Redirector.cv

[…]

ZoneAlarm Trojan.HTML.Redirector.cv

2F 68 65 61 64 3E 0D 0A 3C 62 6F 64 79 3E 0D 0A /head>..<body>..

[…]

EXIF METADATA

=============

[…]

I parsed the mail line by line and searched for specific parameter names like Link,

SHA256, Type, and stored them in a Map. After the First Country value, I checked whether

the antivirus alerts were missing or not. If there were any alerts, I used the HashDB’s REST

service to download the malicious files by their SHA-256 hash value.

4.2.2 Feature Extraction

The Feature Extractor module is responsible for extracting the previously listed

features from the downloaded HTML and JavaScript files. The simplifies class diagram of the

module is shown in Figure 4.2.

 37

The module has two tasks. First, it parses the given file, then it extracts (and saves) the

features from the parsed file.

I. Parsing: As the Crawler module identified the types of the downloaded files and saved

them with proper extensions, the Feature Extractor module knows exactly how to handle

each file. However, the types of the malicious files were not identified during the

collection. So, if a file does not have extension, the Feature Extractor module tries to parse

the file as HTML first, and if the parsed file contains an html tag, then it is handled as an

HTML file. If it does not contain any html tag, then the file is parsed as JavaScript. The

JavaScript parser I used throws an Exception if the file cannot be parsed as JavaScript.

In this case the file is discarded.

The Parser class represents the abstract base class of the parsers. The JSParser and

the HTMLParser class inherit from the base class; they are responsible for containing and

parsing a file.

I used the same package (HtmlAgilityPack) and the same classes to parse a file as HTML

as in the Crawler module.

Figure 4.2. The simplified class diagram of the Feature Extractor module.

 38

To parse a file as JavaScript, I used the Esprima.NET
38

 package by Sebastien Ros, which is

also available through NuGet. The package supports the ECMAScript® 2017 Language

Specification
39

, on which JavaScript is based. To parse a file and get the Abstract Syntax

Tree the following few lines are needed:

Esprima.JavaScriptParse parser =

 new Esprima.JavaScriptParser(content, options);

Esprima.Ast.Program program = parser.ParseProgram();

If the file cannot be parsed, the library throws a ParserException.

Waiting for the HTTP responses is the most time consuming; it can take 10-30 seconds.

However, JavaScript parsing also takes some time. It can take a few hundred milliseconds

maximum depending on the size of the file. For one file, it is negligible, but parsing 10000-

100000 JavaScript files synchronously on thread can take minutes. Feature extraction is

even more time consuming (for detailed results the reader is referred to Section 5.). To

reduce this cost I implemented a custom thread pool. It would be easier to use the standard

.NET ThreadPool
40

, with Task.Run()
41

, but the HttpClient also uses the

ThreadPool, which has limited number of threads in it. My CustomThreadPool class is

based on this implementation: [48]. It creates custom number of worker threads. They wait

for a Parser in a Queue, which is not parsed the containing file yet. After a new

Parser arrived, one thread gets it from the queue and starts the parsing. After the parsing

has finished, the thread puts the Parser to a BlockingCollection, which contains

the Parsers that are ready for feature extraction.

II. Feature Extraction: First of all, I created two enumerations for the HTML and JavaScript

features to reference them easily. Extracting features from the parsed HTML files and

extracting features from the parser JavaScript files cannot be done in the same way.

HTML feature extraction: The feature extraction from HTML files is done by

HTMLFeatureCalculator (see Figure 4.2). First, the Calculator does a

38
 https://github.com/sebastienros/esprima-dotnet.

39
 http://www.ecma-international.org/publications/standards/Ecma-262.htm

40
 https://msdn.microsoft.com/en-us/library/system.threading.threadpool

(v=vs.110).aspx

41
 https://msdn.microsoft.com/en-us/library/hh195051(v=vs.110).aspx

 39

preprocessing, it runs through every node in the HtmlDocument created by the

HTMLParser, and collects the following nodes in one Map with the element names as

keys: script, iframe, frame, embed, object, form, link, a. This

way, the Calculator runs through the nodes only once and not 7 times.

The number of <iframe> tags, the number of <script> tags, the number of <embed>

tags, and the number of <object> tags are the sizes of the Maps.

The number of hidden elements is extracted using //*[@hidden] XPath query. XPath

strings can be passed to the document.DocumentNode.SelectNodes(xpath)

method, where the document is the parsed HTML.

The number of small elements is extracted using //*[@width<=2 or @height<=2

or @height*@width<=30] XPath query.

The number of sources from an external domain feature is impossible to be implemented

because for the malicious files the source URL of the file is unknown, so it cannot be

compared to the referenced ULRs in the file. Therefore, I only counted the referenced

absolute URLs (starting with http:// or https://). Those nodes, which can have a source

attribute are already collected in a Map.

The number of included URLs is extracted almost the same way as the previous feature, but

the relative URLs were counted too.

The number of parsing errors during parsing is provided by the parsed document in

document.ParseErrors, which is an IEnumerable<HtmlParseErrorCode>.

To collect the number of elements in the wrong place I counted the result of the

/html/head//script|/html/body//iframe|/html/body//frame|/html

/body//embed|/html/body//object|/html/body//form XPath query.

The number of characters in the HTML document, and the percentage of whitespace in the

HTML document can be calculated from the unparsed, raw HTML.

For calculating the percentage of JavaScript content, the JavaScript content is fetched from

the document, which is mentioned in Section 4.2.1.1.

The presence of <meta http-equiv=refresh> tag is calculated from the result of the

//meta[@http-equiv='refresh'] XPath. If it returns null, there are no

matching nodes.

 40

To find the presence of scripts with wrong extension the script tags are checked in the map.

If the value of their src attribute does not end with .js, then 1 is added to this feature value.

To get the presence of double documents the number of html, head, body and title tags are

checked. If the result is more than one in any of the mentioned tags then this feature is true,

otherwise false.

For storing the HTML features, the HTMLFeatureContainer class is used.

JavaScript feature extraction: To calculate the JavaScript features the Abstract Syntax

Tree (AST) is traversed. The AST is created by the Esprima .NET parser. The

Esprima.Ast.Program has a root node the Program, which has a Body property

containing the nodes in the first depth of the AST. The EcmaScript Specification lists the

possible types of the AST nodes, and also states which nodes can contain which nodes and

in which property. For example the JavaScript code const num = 42 has the following

AST in JSON Hiba! A hivatkozási forrás nem található.:

{

 "type": "Program",

 "body": [

 {

 "type": "VariableDeclaration",

 "declarations": [

 {

 "type": "VariableDeclarator",

 "id": {

 "type": "Identifier",

 "name": "answer"

 },

 "init": {

 "type": "Literal",

 "value": 42,

 "raw": "42"

 }

 }

],

 "kind": "const"

 }

],

 "sourceType": "script"

}

I wrote an anonymous function for each possible node type to traverse the tree. The

functions are stored in a Dictionary<Nodes, Action<INode, List<Nodes>,

JSFeatureContainer>> type object, where the key is the current node while

 41

traversing the tree (Node is an enumeration containing every possible node name,

provided by the library). The Action represents what should be done on the node to

continue the traversing steps. The anonymous function has 3 parameters, a node which

implements the INode interface, a list of the parent nodes in the tree, and the feature

container for JavaScript features. I implemented a recursive

preOrderTraverseTree() function, which calls the anonymous functions from the

Map. The following Action has to be done on a CallExpression type node:

(node, prevNodeTypes, container) =>

{

var n = node as CallExpression;

container.NumOfMethodcalls++;

//Expression

preOrderTraverseTree(n.Callee, prevNodeTypes, container);

foreach (var i in n.Arguments)

{

//ArgumentListElement

preOrderTraverseTree

 (i as INode, prevNodeTypes, container);

}

}

The given node is casted to CallExpression using the as keyword. The number of

methodcalls feature is incremented, because the CallExpression node represents a

function call. The node has two properties, which contain other nodes, and they are

traversed using the function preOrderTraverseTree(). The code of the traversing is

around 1000 line long because of the number of possible node types. The recursion ends on

the following nodes: BreakStatement, ContinueStatement,

DebuggerStatement, EmptyStatement, Identifier, Literal,

SpreadElement, Super, ThisExpression, UpdateExpression. They do

not have child nodes. The most important for the features are the Identifiers, and

Literals.

The number of method calls feature is increased on every CallExpression node.

The method call based features: number of eval calls, number of timer function calls,

number of string modification function calls, number of DOM modification function calls are

extracted in an Identifier or a Literal node. In JavaScript a method can be called in

three different ways: using a member expression or a call expression. For example, calling

eval:

 42

• eval(), where the callee of the CallExpression is an Identifier, which

Name is “eval”

• this[“eval”](), where this refers to the global object in JavaScript. The

callee of the CallExpression is a MemberExpression. The

MemberExpression’s Property value is a Literal (a StringLiteral

precisely), which StringValue is “eval”.

• this.eval(), where this refers to the global object in JavaScript. The callee of

the CallExpression is a MemberExpression. The MemberExpression’s

Property value is an Identifier, which Name is “eval”.

For every function name (setTimeout, createElement, split etc.) these possible ways

are checked in a Literal and an Indentifier node. This way an eval call can

be hidden with a simple deobfuscation like this[“ev”+”al”](), this is the major

drawback of static analysis.

String based features: number of long string, number of suspicious strings, number of

strings containing iframe, number of strings containing suspicious tag names, number of

strings, maximum length of strings, average string length are extracted from a Literal node,

using simple string manipulation functions.

The number of navigator properties used feature is increased when the actual node is a

Literal or an Indentifier node and the parent node is a MemberExpression.

These are the last to possibilities mentioned in the function call based features.

The number of long variable or function names are increased if the Name of the

Identifier node is longer than 20 characters and the previous node was

FunctionDeclaration or VariableDeclaration.

The number of Unicode characters is calculated with the help of

Encoding.ASCII.GetByteCount() and Encoding.UTF8.GetByteCount()

methods.

The average line length, percentage of whitespace, length of the script, and number of

lines features are extracted from the raw JavaScript document using simple .NET Core

Framework functions.

 43

Entropy based features: average entropy of strings, max entropy of strings, entropy of

script are calculated from the found StringLiterals. First, the number of each character

in the string is calculated. Then, the relative frequencies are calculated. Finally, the entropy is

the following equation (4.1):

J(H) = − ∑ T(�)�CG1(T(�)))NM%
% &) U (4.1)

where H is the string, � is a character in the string, ?��� is the number of different characters

in the string.

The HTML and JavaScript features are saved in two files. The first row of each file is

a header row, with the name of the features (separated by tabulators). Each following row

represents a feature set for one source file, also separated by tabulators. I created one

additional column in the files (IS_MALICIOUS), which is true if the actual sample is

malicious, otherwise false. This column was useful later for SPSS, and Weka.

4.2.3 Training and Validation

After the feature extraction, the set of features was available in two text files, one for

the JavaScript features and one for the HTML features. Both were extended with the class

type (IS_MALICOUS) as mentioned above.

4.2.3.1 Naïve Bayesian Classifier

I divided the set into 70-30% randomly, and used the 70% as the training set, and the

30% as the validation set. After the split, the two sets contained the number of HTML and

JavaScript feature tuples given in Table 3.1.

I decided to use the SPSS Statistics program to calculate the borders of the bins, and to

create the frequency tables. I imported the training set and used the Visual Binning

functionality of the program to transform the values of each type of feature (columns) to their

bins. I created the cutpoints of bins at mean, mean+std.deviation, mean-

std.deviation. After the binning, I created a Custom Table for each feature, which

provided the frequency tables. The frequency table of the number of eval calls feature can be

seen in Table 4.1.

 44

IS_MALICIOUS

False True

Count Column N % Count Column N %

NUM_OF_EVALS (Binned) <= 0 59446 92.1% 782 61.5%

1 - 1 2672 4.1% 291 22.9%

2+ 2411 3.7% 199 15.6%

After creating the frequency tables, I created the Classification module in C#.

The structure of the module can be seen on Figure 4.3. Two classes:

JavaScriptTrainingSet and HTMLTrainingSet store the frequency tables.

I created dictionaries for discrete, continuous and logical features:

Dictionary<HTMLFeatureType, Func<bool, (double, double)>>

Dictionary<HTMLFeatureType, Func<double, (double, double)>>

Dictionary<HTMLFeatureType, Func<int, (double, double)>>

The key of the dictionaries is the type of the feature. The possible values are available in the

HTMLFeatureType, and the JSFeatureType enumerations. The value of the

dictionaries is an anonymous function. The function has one input parameter; the value of the

Figure 4.1. Frequency table of the number of eval calls feature.

Figure 4.3. The structure of the Classifier module.

 45

feature (e.g.: true, 4.3, 5). The return value of the function is a ValueTuple containing the

conditional probabilities of the sample being malicious/benign given the value of the feature.

For example the function of the number of eval calls feature:

(value) =>

{

if (value <= 0)

return (59446 / (double) numOfBenign, 782 / (double)

numOfMalicious);

else if (value <= 1)

return (2672 / (double) numOfBenign, 291 / (double)

numOfMalicious);

else

return (2411 / (double) numOfBenign, 199 / (double)

numOfMalicious);

}

Where the numbers in the conditions are the borders of the bins, the numbers after the

returns are the values in the frequency tables. The numOfBenign and the

numOfMalicious variables store the number of benign and malicious samples in the

training set. I imported the values in the frequency table and the borders of the bins manually.

To validate the classifier, I created the NaiveBayesianClassifier class, which

receives an HTMLFeatureContainer, or a JSFeatureContainer and returns the

probability of the sample being malicious. The ClassifyJavaScript and

ClassifyHTML methods in the class query the conditional probabilities for every feature

from the TrainingSet and multiply the values (3.4) to get the likelihoods. The last step is

to normalize the likelihoods to get the actual probabilities (3.6). The return value is a

probability of the sample being malicious given its feature values.

I read the validation set line by line from the program, and classified the feature tuples

using the classifier. Then, I analysed the confusion matrices to get the FPR and FNR. For

detailed results, the reader is referred to Section 5.

 46

4.2.3.2 Random Forest

After seeing the good accuracy results from the Random Forest algorithm in Weka, I

decided to try out and evaluate one for the filter in C#. I used a library called SharpLearning
42

,

which is an open source machine learning library in C#. It does not support .NET Core 1.1,

only the new 2.0 release, so I upgraded the Classification module to .NET Core 2.0. The filter

does not use the Random Forest classifier yet, the cause is explained in Section 5.

The library provides classes for reading feature values from CSV files, creating

containers for the features, dividing the feature set to 70%-30% groups randomly, creating a

Random Forest model from the feature set, predicting the classes of a test set, and creating the

confusion matrix from the predicted and expected classes.

Using the provided API and example codes [49], I loaded the feature values and used

the IS_MALICIOUS column as the expected label:

var parser = new CsvParser(() =>

new StreamReader("js_all.csv"), ',');

var targetName = "IS_MALICIOUS";

var targets =

parser.EnumerateRows(targetName).ToF64Vector();

var observations = parser.EnumerateRows(c =>

c != targetName).ToF64Matrix();

The observation variable is a matrix containing the feature tuples. The targets

variable is a list containing the expected class.

Then, I divided the feature set into 70%-30% partitions:

var splitter = new RandomTrainingTestIndexSplitter<double>

(trainingPercentage: 0.7, seed: 24);

var trainingTestSplit = splitter.

SplitSet(observations, targets);

var trainSet = trainingTestSplit.TrainingSet;

var testSet = trainingTestSplit.TestSet;

The trainSet contains 70% of the data with the observations and targets. The

testSet contains the 30% of the data with the observations and targets.

42
 https://github.com/mdabros/SharpLearning

 47

After this, I created the model from the trainSet with the default constructor

parameters and classified the observations in the testSet:

var learner =

new ClassificationRandomForestLearner(trees: 200);

var model =

learner.Learn(trainSet.Observations, trainSet.Targets);

var predictions = model.Predict(testSet.Observations);

Finally, I created the confusion matrix from the predicted and expected classes and

compared the results to the Naïve Bayes implementation and to the classifiers from Weka.

4.3 The Filter

This section describes the differences and changes between the modules of the filter

and the modules implemented for the training. There were only small modifications in the

modules; the main functionality and responsibility of the modules are already stated. The

overall structure of the filter can be seen in Figure 4.4. I combined the Crawler, the

Feature Extractor and the Classifier modules. The input parameters of the filter

are the suspicious URL sources, the maximum parallel crawlers and the maximum parallel

HTTP requests per crawler.

Figure 4.4. The structure of the filter.

 48

The procedure of the classification is as follows:

1. The Program initializes the Crawlers.

2. Each Crawler sends HTTP requests to the specified URLs.

3. The Crawler receives an HTTP reply and parses the received JavaScript files too, not

only the HTMLs.

4. After the parsing, the feature extraction from the parsed files is started immediately

using the Feature Extraction module.

5. After the feature extraction the classification is started using the Classification

module. The module returns the probability of the analysed file being malicious in case

of Naïve Bayes. In case of Random Forest, it returns the predicted class.

6. The Crawler sends other requests or returns. Then, another Crawler is started.

I have done performance measurements, which were promising. For further

information, the reader is referred to Section 5.

4.4 Logging

I implemented thorough logging for every module with the log4net
43

 library available

through NuGet. The format of a log message is the following:

%date [%thread] %level %logger - %message%newline

For example:

2017-07-25 12:06:21,262 [Worker 1] INFO http://ukatemi

.com - Trying to parse http://ukatemi.com/assets/js/jquery.

scrollTo-1.4.2-min.js as JavaScript on custom ThreadPool.

Logging is inevitable for a complex application like mine.

43 https://logging.apache.org/log4net/

 49

5 Results

5.1 Comparing features

I analysed the features in SPSS and Matlab and compared the distributions and

frequency tables of benign and malicious feature values to find out which features can

distinguish between the classes the most.

Every HTML feature was seemingly able to differentiate between the classes but the

most dominant features were the following: the number of parsing errors, the number of

embeds, the number of objects and the presence of double document were those, whose values

in malicious files were significantly higher than in benign files. The frequency table of these 4

features can be seen in Table 5.1, where the labels next to the feature names represent the bins

and their borders (except in the presence of double document feature, where those are the

logical values).

 Benign Malicious

Number of parsing

errors

<= 0 73441 97.5% 547 49.4%

1 - 5 1307 1.7% 405 36.6%

6+ 613 0.8% 155 14.0%

Number of objects
<= 0 74441 98.8% 967 87.4%

1+ 920 1.2% 140 12.6%

Number of embeds
<= 0 75155 99.7% 994 89.8%

1+ 206 0.3% 113 10.2%

Presence of double
document

False 69248 91.9% 726 65.6%

True 6113 8.1% 381 34.4%

The number of small elements was the feature which was higher in benign files than in

malicious files and produced the highest difference (Table 5.2).

 Benign Malicious

Number of small

elements

<= 0 56140 74.5% 997 90.1%

1+ 19221 25.5% 110 9.9%

Table 5.1. The frequency table of the 4 dominant HTML features.

Table 5.2. The frequency table of the number of small elements feature,
which was higher in benign files.

 50

In case of JavaScript features, the most dominant ones were the method call based

ones like the number of timer function calls, the number of DOM modification function calls,

the number of string modification function calls and the number of eval function calls. The

frequency table of these features can be seen in Table 5.3.

 Benign Malicious

Number of timer function
calls

<= 2 49519 76.7% 999 78.5%

3 - 9 10406 16.1% 73 5.7%

10+ 4604 7.1% 200 15.7%

Number of DOM
modification function

calls

<= 15 48649 75.4% 925 72.7%

16 - 91 15032 23.3% 153 12.0%

92+ 848 1.3% 194 15.3%

Number of string
modification function

calls

<= 15 54490 84.4% 999 78.5%

16 - 70 7031 10.9% 68 5.3%

71+ 3008 4.7% 205 16.1%

Number of eval function
calls

<= 0 59446 92.1% 782 61.5%

1 - 1 2672 4.1% 291 22.9%

2+ 2411 3.7% 199 15.6%

At first glance, the values of JavaScript features in malicious files differ more from the

values in benign files than the values of HTML features. This was confirmed by the accuracy

of the classifiers classifying HTML and JavaScript files.

5.2 Accuracy

The Naïve Bayesian classifier, which I implemented, returns the probability of a

feature tuple being malicious. In order to use this, I define a threshold parameter, and if the

probability is higher than the threshold, then we say that the sample is malicious, otherwise

benign. By modifying the threshold parameter from 0 to 1, the confusion matrix [22] of the

classifier can be created. The ROC curve is a graph, where the x axis represents the False

Positive Rate, the y axis represents the False Negative Rate. The points on the curve are the

FPR and FNR values using different threshold parameters. The curve can help to customize

the classifier for different tasks. The ROC curve for the HTML and JavaScript features can be

seen in Figure 5.1 and Figure 5.2. I labelled five points on the curve specifying the threshold

value (t) and the FPR and FNR values.

Table 5.3. The frequency table of the most dominant JavaScript features.

 51

The curves were created from classifying the validation set (30% of all the collected

samples). The ROC curves show that the classification is more accurate using JavaScript

features. The FPR and FNR values for a specific threshold are 4-5% lower when classifying

JavaScript. Also, as we want to lower the FNR (because we do not want to miss many

malicious files and it is acceptable to classify some benign files as malicious) the FPR rate

t = 0.05

FPR = 74.28%

FNR = 5.13%

t = 0.2

FPR = 43.95%

FNR = 21.77%

t = 0.5

FPR = 12.80%

FNR = 36.76%

t = 0.6

FPR = 8.75%

FNR = 46.41%

t = 0.95

FPR = 0.92%,

FNR = 56.88%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

F
a

ls
e

 N
e

g
a

ti
v

e
 R

a
te

False Positive Rate

ROC Curve - HTML

t = 0.05

FPR = 74.25%

FNR = 2.73%

t = 0.2

FPR = 43.01%

FNR = 15.43%t = 0.5

FPR = 11.84%

FNR = 32.03%

t = 0.6

FPR = 7.65%

FNR = 44.34%

t = 0.95

FPR = 2.51%

FNR = 63.09%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

F
a

ls
e

 N
e

g
a

ti
v

e
 R

a
te

False Positive Rate

ROC Curve - JavaScript

Figure 5.1. The ROC curve using the JavaScript features.

Figure 5.2. The ROC curve using the HTML features.

 52

will increase. However, when using 0.2 as a threshold value, we discard more than half of the

benign files, which will increase the throughput of a dynamic analyser.

I created the confusion matrices for the 0.2 threshold and calculated the parameters

listed in Section 3.3, the matrices can be seen in Table 5.4 and Table 5.5. The tables are

created after classifying the validation set. It is clear that using these static features the

Precision of the classifier is very low, but we did not expect higher Precision and the FNR to

be low is the important criterion. Also, these tables show that the JavaScript features

distinguish better between malicious and benign files than HTML features.

HTML
Labeled

Malicious
Labeled
Benign

Classified malicious

True
positive

False
positive

Precision, Positive

Predictive Value

(TP/(TP+FP))

381 14188 2.62%

Classified Benign

False
negative

True
negative

Negative

Predictive Value

(TN/(FN+TN))

106 18097 99.42%

Recall,

Sensitivity

(TP/(TP+FN))

Specifivity

(TN/(TN+FP))
FPR = 43.95%

FNR = 21.77%

78.23% 56.05%

Table 5.4. The confusion matrix using 0.2 threshold and classifying the HTML
validation set.

JavaScript
Labeled

Malicious
Labeled
Benign

Classified malicious

True
positive

False
positive

Positive Predictive

Value

(TP/(TP+FP))

433 11909 3.51%

Classified Benign

False
negative

True
negative

Negative

Predictive Value

(TN/(FN+TN))

79 15779 99.50%

Sensitivity

(TP/(TP+FN))

Specifivity

(TN/(TN+FP))
FPR = 43.01%

FNR = 15.43%

84.57% 56.99%

Table 5.5. The confusion matrix using 0.2 threshold and classifying the JavaScript
validation set.

 53

After analysing my implementation, I compared it to other classifiers. I used the Weka

machine learning tool to train and validate other classifiers. I tried two methods to train and

validate the classifiers. One of them was 10-fold cross validation, the other one was the 70-

30% partitioning, which I used to train and validate my Naïve Bayesian classifier. The results

of the two methods were almost the same, the rates only differed maximum +/- 2-3%. I

present the results of the 70-30% partitioning. I tried out the following classifiers: Bayes Net,

Decision Table, Logistic, J48, Random Forest, Random Tree, Naïve Bayes (3 types, using

normal distribution estimation, using kernel function to estimate distribution and using

discretization/binning). In the following tables I used 0.5 as the threshold of my classifier,

because this way the comparison with the other Bayesian classifiers is more precise.

Figure 5.3 shows the False Negative Rate of each classifier in case of HTML samples,

my classifier is the 1
st
 from the right. The figure shows that my classifier was the 4

th
 best

comparing to others, the Random Tree, the Random Forest and the J48 classifiers produced

the lowest FNRs. By setting the threshold to 0.2 my classifier produces 21.77% FNR. The

normal distribution based, and the kernel function based Naïve Bayesian classifiers perform

poor, so it was a good choice not to estimate the distributions of the feature values. In case of

Precision, the Random Forest achieved the maximum: 97.63%. Combining Precision and

Recall (1-FNR) to get F-measure, the Random Forest was the best, reaching 84.40%. My

classifier performed poor in Precision as mentioned before, but we focused on FNR.

Figure 5.3. The False Negative Rates of the classifiers using HTML features.

52.25%

42.34%

29.05%

88.29%

25.68%

21.85%

85.59% 88.51%

52.25%

36.76%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

FNR - HTML

Figure 5.3. The False Negative Rate of the classifiers used using HTML features.
Using t=0.5 for my Naïve Bayes.

 54

Figure 5.4 shows the FNR of the classifiers using JavaScript features, my classifier is

the 1
st
 from the right. The FNR rates were 4.8% lower using JavaScript features than using

HTML features. The results were the same as using HTML features. The other Bayesian

classifiers performed poor, the Random Forest, Random Tree and J48 classifiers were the

best, and mine were the 4
th

. In case of JavaScript features the Random Forest produced the

highest Precision (99.80%) and the highest F-measure (90.33%).

We can draw two main conclusions from the accuracy results. The first one is that my

implementation has a good FNR compared to others and modifying the threshold it can

produce lower FNR than the other classifiers, this is good for our task. However, taking

Precision and F-measure into account my classifier was poor, using a Random Tree, or

Random Forest classifier is a possible way for the future. The second one is that using the

selected features the Random Forest, the Random Tree and the J48 performed very well both

in Precision and Recall.

After analysing the result, I trained and evaluated a Random Forest algorithm in C#.

The Naïve Bayesian Classifier has configurable FNR, but to reach 10% FNR the FPR rate

will increase to 50% percent, which means that we can only halve the benign pages passed to

the dynamic analyser. Assuming that malicious pages are rare, this means that we could only

46.28%

37.94%

23.05%

87.77%

17.50% 17.91%

82.62% 82.80%

46.28%

32.03%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

FNR - JavaScript

Figure 5.4. The False Negative Rate of the classifiers using JavaScript features. Using
t=0.5 for my Naïve Bayes.

 55

double the throughput of the dynamic analyser. Lower than 1% FPR would be the best, which

would mean that we could increase the throughput around 100 times.

The Random Forest provided promising results. The FNR, FPR, Precision, Recall and

F-measure rates compared to the best 4 classifiers in Weka and compared to my Naïve Bayes

implementation (with 0.2 threshold) can be seen in Table 5.6 and Table 5.7 .

HTML Features FPR FNR Precision Recall F-measure

Decision Table 0.03% 42.34% 96.60% 57.66% 72.21%

J48 0.09% 29.05% 91.57% 70.95% 79.95%

Random Forest 0.02% 25.68% 97.63% 74.32% 84.40%

Random Tree 0.32% 21.85% 76.94% 78.15% 77.54%

My Naïve Bayes 43.95% 21.77% 2.62% 78.23% 5.06%

My Random Forest 0.02% 29.32% 98.48% 70.68% 82.29%

Table 5.6. The FPR, FNR, Precision, Recall and F-measure values of the best classifiers from
Weka, and the Naïve Bayes (with t=0.2) and Random Forest classifier used in the filter using

HTML features.

JavaScript Features FPR FNR Precision Recall F-measure

Decision Table 0.00% 37.94% 99.72% 62.06% 76.50%

J48 0.18% 23.05% 89.67% 76.95% 82.82%

Random Forest 0.00% 17.50% 99.80% 82.50% 90.33%

Random Tree 0.48% 17.91% 77.82% 82.09% 79.90%

My Naïve Bayes 43.01% 15.43% 3.51% 84.57% 6.74%

My Random Forest 0.01% 23.17% 99.49% 76.83% 86.70%

Table 5.7. The FPR, FNR, Precision, Recall and F-measure values of the best classifiers from
Weka, and the Naïve Bayes (with t=0.2) and Random Forest classifier used in the filter using

JavaScript features.

The Random Forest implementation in C# reached the best classifiers in accuracy,

with around 0.01% FPR and 25% FNR.

The current configuration of the filter uses my Naïve Bayes implementation with 0.2

threshold, because the most important aim is not to miss many malicious pages, but more than

half of the benign pages are discarded. The Random Forest algorithm was evaluated with the

provided default parameters (e.g.: 100 trees, 2000 maximum tree depth, 0.00001 minimum

information gain before a split is made). We need further optimization to create the best

model and to lower the FNR before using the Random Forest as the classifier of the filter.

 56

5.3 Performance

Besides the low False Positive Rate, the other requirement for the filter was to be able

to analyse more than 10.000 or even more than 100.000 URLs per day. I started the filter to

analyse around 100.000 URLs. The test performance run was carried out on a virtual machine

with 2 CPU cores. I used my seed URL list containing around 400 URLs to run a scan, and I

set the filter to analyse at least 300 URLs per seed. I started 10 crawlers simultaneously; each

of them sent 20 HTTP requests parallelly. It took 188 minutes to classify 118889 files. This

means around 95ms per URL, and 909500 URL per day. During the analysis, each crawler

spent around 50-60% of their time sending, waiting for and processing requests, 30-40% of

the time with feature extraction and 10% of the time parsing the files. The time consumed by

classification is negligible; it took only a few milliseconds per crawler (either with Naïve

Bayes or Random Forest). These results make it possible to use the filter to classify a million

URLs per day and pass the potentially malicious ones to a dynamic analyser.

 57

6 Future Work

I believe that much remains to be done in my work. In this section I am going to list

the possible future improvements I have thought of.

6.1 Improving Throughput

The performance results clearly showed that the most time consuming tasks are:

waiting for HTTP replies, extracting features and parsing the files. Increasing and optimizing

the requests sent simultaneously can increase the throughput. Also, the custom ThreadPool

I used for feature extraction can be implemented in the filter too.

6.2 Filtering the Training Set

As I have mentioned before, I did not manually analyse the samples of the benign and

the malicious training and validation set.

Benign samples: With around 100.000 HTML and JavaScript benign samples, the

manual analysis is infeasible, but it is not needed. It is a good assumption that crawling the

most popular web sites will not result malicious samples. Also, to remove duplicate files,

matching the URLs, and the SHA-256 hashes is also considered enough.

Malicious samples: The malicious set is more problematic. I only identified the

samples with their SHA-256 hash value, so it is possible that there are similar samples.

Hashing files which only differ in a whitespace at the end, or a string containing a timestamp

will result in completely different hash values. Also, since I collected samples only in 2

months’ time (2017 August - September) it is possible that the result set contains similar

attack types and exploits, so the classifier only learned those types. By manually analysing the

malicious set and collecting other samples, the precision of the classifier could be increased.

6.3 Modifying Features

Selecting those features, which describes best the differences between malicious and

benign files is important. In the future there are three possible ways to make improvements

with the features:

 58

• Removing those features, which values are very similar in malicious and

benign files, based in their distributions and other statistical properties.

• Selecting and implementing more sophisticated features like: number of event

attachments, shellcode presence probability or presences of deobfuscation

routines [16].

• Besides analysing the JavaScript and the HTML source checking the URL or

the whois
44

 information of the host of the examined web page can also be

interesting [20].

6.4 Training Other Classifier

Naïve Bayesian Classifier was a good choice at first, for creating a prototype, because

it is easy to understand, train and implement and it is also one of the fastest classifiers. The

False Negative Rate was good compared to other classifiers. However, the precision of a

Naïve Bayesian Classifier is quite poor compared to other, more sophisticated classifiers like

J48, Random Forest and Random Tree. This was clearly seen in the results of the Weka tool,

and from the related works. With other classification methods the filter could produce lower

false positives, lower false negatives and better precision. Optimizing the Random Forest

algorithm and substituting the Naïve Bayesian Classifier with it is a possible way.

44 https://en.wikipedia.org/wiki/WHOIS

 59

7 Conculsions

As the web-based malware distribution spreads, there is a need for fast and precise

malware detection. The state of the art malware detection technique is to use a dynamic

analyser, which loads the page and executes the JavaScript code. This is usually done on

isolated virtual machines. The problem with dynamic analysers is that they are slow and they

cannot check hundred thousand URLs per day. Our aim was to create a static analyser, which

classifies a page only using its lexical and syntactical parameters, without any execution. This

analyser can be used as a filter for a dynamic analyser, or a filter used in web browsers.

Our approach is based on previous research results. We collected benign files using a

web crawler, which we implemented. We gathered malicious files, using VirusTotal’s

notification service and Ukatemi’s malware database. We defined 16 HTML and 22

JavaScript features, and extracted them from the collected samples, which provided the

training set. After the extraction, we implemented a Naïve Bayesian Classifier, trained it and

validated it.

The two main requirements from the filter were high throughput, and low False

Negative Rate. The filter contains three modules. The first one is a web crawler, which

downloads and parses the given URLs. The second one is responsible for extracting features

from the parsed JavaScript and HTML files. The third module is the Naïve Bayesian classifier

used for classifying the downloaded files using the extracted features. All three modules were

implemented by me.

The results were promising. The filter was able to analyse around a million URLs per

day. We also tried and compared our classifier to others using the Weka machine learning

tool. Our classifier was able to achieve around 15-30% False Negative Rate, which was

similar to the previous results. JavaScript features produced better results than HTML

features. There were three classifiers, Random Tree, Random Forest and J48, which

outperformed our implementation and produced more than 80% Precision and Recall. This

means that using static features it is possible to classify HTML and JavaScript files

accurately. Seeing the results, I also integrated a Random Tree classifier with the filter, which

achieved 99% Precision and 20-25% FNR, but we need further optimization to substitute the

Naïve Bayesian Classifier.

 60

There are multiple ways to develop and optimize the filter. Using another classifier,

rather than Naïve Bayes is a possible way. Also, modifying the feature set can help to lower

the False Positive Rate and to increase the Precision.

 61

Acknowledgements

First of all, I would like to thank my supervisor Dr. Levente Buttyan. He convinced

me to work on this paper and submit it to the Scientific Students' Conference. Not only was he

always available for discussion, but he also proposed improvements, which helped to increase

the quality of this document.

I also thank Dr. Boldizsar Bencsath and Oliver Daniel Guba from Ukatemi

Technologies and BME for helping me out when I encountered technical difficulties.

And last but not least I am grateful to my family. They supported me and respected

my decision of spending long hours working on this paper.

 62

References

All provided pages were visited between August and October 2017.

[1] Microsoft Secure Blog, What you should know about drive-by-download attacks,
https://blogs.microsoft.com/microsoftsecure/2011/12/08/what-you-should-

know-about-drive-by-download-attacks-part-1/, 2011.

[2] SecureMac, Five Malware Distribution Methods and How to Protect Against Them,
https://www.securemac.com/checklist/five-malware-distribution-methods-

protect, 2017.

[3] University of Delaware, How is malware distributed? http://sites.udel.edu/infosec

news/2015/05/18/how-is-malware-distributed/, 2015.

[4] Zero Hacks, What is phishing? | How to create phishing page | Facebook example,

https://www.7xter.com/2016/08/phishing.html, 2017.

[5] Kaspersky Lab, What is Spear Phishing? – Definition,

https://usa.kaspersky.com/resource-center/definitions/spear-phishing.

[6] Cyber Security Community, Watering Hole Attack - A Sophisticated Alternate to Spear

Phishing Attack, https://securitycommunity.tcs.com/infosecsoapbox/articles/
2017/02/06/watering-hole-attack-sophisticated-alternate-spear-phishing-

attack, 2017.

[7] CVE Details - The ultimate security vulnerability datasource, http://www.cvedetails.

com/product/9900/Microsoft-Internet-Explorer.html?vendor_id=26.

[8] Weka 3: Data Mining Software in Java, https://www.cs.waikato.ac.nz/ml/weka/

[9] P. Ratanaworabhan, B. Livshits and B. Zorn, Nozzle: A Defense Against Heap-spraying

Code Injection Attacks, https://www.microsoft.com/en-us/research/wp-content/

uploads/2016/02/tr-2008-176.pdf, 2008.

[10] Microsoft Research, Detection of JavaScript-based Malware,
https://www.microsoft.com/en-us/research/project/detection-of-

javascript-based-malware/, 2008.

[11] Microsoft Research, Detours: Binary Interception of Win32 Functions

https://www.microsoft.com/en-us/research/project/detours/, 1999.

[12] A. Ikinci, T. Holz and F. Freiling, Monkey-Spider: Detecting Malicious Websites with

Low-Interaction Honeyclients, http://www.dihe.de/docs/docs/monkey-spider-

Sicherheit08.pdf, 2008.

[13] Quttera Crawler, CLI-based URL scanner for Windows, http://quttera.blogspot

.hu/2013/03/cli-based-url-scanner-for-windows.html, 2013.

 63

[14] M. Cova, C. Kruegel and G. Vigna, Detection and Analysis of Drive-by-Download Attack

and Malicious JavaScript Code, https://seclab.cs.ucsb.edu/media/uploads

/papers/www10_jsand.pdf, 2011.

[15] B. Feinstein and D. Peck, Caffeine Monkey: Automated Collection , Detection and Analysis

of Malicious JavaScript, https://www.blackhat.com/presentations/bh-usa-07/

Feinstein _and_Peck/Whitepaper/bh-usa-07-feinstein_and_peck-WP.pdf, 2007.

[16] C. Curtsinger, B. Livshits, B. Zorn and C. Seifert, Zoozle: Low-overhead Mostly Static

JavaScript Malware Detection, https://www.microsoft.com/en-us/research/wp-

content/uploads/2016/02/tr-1-11-11.pdf, 2010.

[17] Microsoft Research, Automated Web Patrol with Strider HoneyMonkeys: Finding Web

Sites That Exploit Browser Vulnerabilities, https://www.microsoft.com/en-us/

research/wp-content/uploads/2016/02/tr-2005-72.pdf, 2005.

[18] J. Nazario, PhoneyC: A Virtual Client Honeypot, https://www.usenix.org/legacy

/event/leet09/tech/full_papers/nazario/nazario.pdf, 2009.

[19] P. Likarish, E. Jung and I. Jo, Obfuscated Malicious Javascript Detection using

Classification Techniques, https://www.researchgate.net/profile/Peter_Likarish
/publication/224110475_Obfuscated_malicious_JavaScript_detection_using_c

lassification_techniques/links/0c96052311027562ed000000.pdf, 2009.

[20] D. Canali, M. Cova, G. Vigna and C. Kruegel: Prophiler: A fast filter for the large-scale

detection of malicious web pages, https://hal.archives-ouvertes.fr/file/index/
docid/727271/filename/www2011_Prophiler_a_fast_filter_for_the_large_scal

e_detection_of_malicious_web_pages.pdf, 2011.

[21] D. Klein: Introduction to Classification: Likelihoods, Margins, Features, and Kernels,

2007, https://people.eecs.berkeley.edu/~klein/papers/classification-

tutorial-naacl2007.pdf, 2007.

[22] D. M W Powers, Evaluation: From Precision, Recall and F-Factorto ROC, Informedness,

Markedness & Correlation, http://www.flinders.edu.au/science_enginee
ring/fms/School-CSEM/publications/tech_reps-research_artfcts/TRRA_

2007.pdf, 2007.

[23] IANA, MIME-types, https://www.iana.org/assignments/media-types/media-

types.xhtml.

[24] How2Lab, Iframe Hacking, http://www.how2lab.com/internet/security

/iframe-hacking.php.

[25] OWASP, XSS Filter Evasion Cheat-Sheet, https://www.owasp.org/index

.php/XSS_Filter_Evasion_Cheat_Sheet.

[26] W3C Consortium, HTML 4 Document Type Definition,
https://www.w3.org/TR/html401/sgml/dtd.html.

[27] W3Schools, HTML <meta> http-equiv Attribute,

https://www.w3schools.com/TAGs/att_meta_http_equiv.asp.

 64

[28] J. Schneider, Cross Validation,

https://www.cs.cmu.edu/~schneide/tut5/node42.html.

[29] Sucuri Blog, Analysing a Malicious iFrame – Following the Eval Trail,
https://blog.sucuri.net/2014/05/analyzing-a-malicious-iframe-following-

the-eval-trail.html, 2014.

[30] Kahu Security, Javascript Deobfuscation Tools Redux, http://www.kahusecurity.

com/2014/javascript-deobfuscation-tools-redux/, 2014.

[31] ECMA International, ECMAScript® 2017 Language Specification (ECMA-262, 8th

edition, June 2017), https://www.ecma-international.org/ecma-262/8.0/

index.html#sec-ecmascript-language-expressions.

[32] Panda Security, Deobfuscating malicious code layer by layer,
https://www.pandasecurity.com/mediacenter/malware/deobfuscating-

malicious-code-layer-by-layer/, 2011.

[33] NetScope Inc., Manually Deobfuscating Strings Obfuscated in Malicious JavaScript Code,
https://www.netskope.com/blog/manually-deobfuscating-strings-obfuscated-

malicious-javascript-code/, 2016.

[34] W. Alcorn, C. Frichot, M. Orru, The Browser Hacker's Handbook, page 111,
https://books.google.hu/books?id=lXr0AgAAQBAJ&pg=PA110&source=gbs_toc_r&

cad=3#v=onepage&q&f=false, 2014.

[35] R. R. Bouckaert, Bayesian networks in Weka, Technical Report 14/2004,

https://www.cs.waikato.ac.nz/~remco/weka.bn.pdf, 2004.

[36] G. H. John, P. Langley, Estimating Continuous Distributions in Bayesian Classifiers,

http://web.cs.iastate.edu/~honavar/bayes-continuous.pdf, 1995.

[37] S. le Cessie, J. C. van Houwelingen, Ridge Estimators in Logistic Regression, http://www

.inf.unibz.it/dis/teaching/DWDM/project2010/LogisticRegression.pdf, 1992.

[38] R. Quinlan, C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, San

Mateo, CA. 1993.

[39] L. Breiman, Random Forests, https://www.stat.berkeley.edu/~breiman/random

forest2001.pdf, 2001.

[40] K. Ming Leung, Naive Bayesian Classifier, http://cis.poly.edu/~mleung/FRE7851/

f07/naiveBayesianClassifier.pdf, 2007.

[41] Jun-Kai Yi, Yang-Ping Zhang, Xiang-Hui Zhao, Spam Recognition Based on Bayesian

Classification, http://dpi-proceedings.com/index.php/dtcse/article/viewFile

/5707/5325, 2016.

[42] L. Breiman, A. Cutler, Random Forests,
https://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm

 65

[43] SharpLearning, Hyperparameter Tuning,
https://github.com/mdabros/SharpLearning/wiki/Hyperparameter-Tuning

[44] Wikipedia, Random forest, https://en.wikipedia.org/wiki/Random_forest

[45] R. Lander, Announcing .NET Core 1.0, https://blogs.msdn.microsoft.com/dotnet/

2016/06/27/announcing-net-core-1-0/, 2016

[46] MSDN Library, HttpClient Class, https://msdn.microsoft.com/en-us/library/

system.net.http.httpclient(v=vs.118).aspx.

[47] Microsoft Docs, Asynchronous Programming, https://docs.microsoft.com/en-

us/dotnet/csharp/async.

[48] StackOverFlow, Code for a simple thread pool in C#,
https://stackoverflow.com/questions/435668/code-for-a-simple-thread-

pool-in-c-sharp/436552#436552, 2013

[49] SharpLearning, Introduction to SharpLearning,
https://github.com/mdabros/SharpLearning/wiki/introduction-to-

SharpLearning

 66

Appendix

The Yara rule used for gathering malicious HTML and JavaScript files from VirusTotal:

rule js:js {

strings:

$php="<?"

$mz="MZ"

$pk="PK"

$c1="function"

$c2="this."

$c3="()"

$c4="var"

condition:

(not $mz at 0) and (not $pk at 0) and (3 of ($c*)) and not

$php

}

