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Összefoglaló 

A Világháló elterjedtsége miatt manapság a legtöbb ember számára napi rutinná vált 

az internetezés. Ezt a tevékenységet nem csak PC-n végezhetjük, hanem laptopon, telefonon, 

tableten, vagy akár egy autó számítógépén keresztül is. A nagyméretű felhasználói bázisnak 

és a sok, különböző típusú platformnak köszönhetően a web a rosszindulatú programok 

(malware-ek) egyik elsődleges terjesztőjévé vált. A gyanútlan felhasználó egy nem frissített 

böngészővel akár néhány weblap meglátogatása után is megfertőződhet anélkül, hogy azt 

észrevenné.  

A kártékony weboldalak detektálására a legelterjedtebb módszer a dinamikus elemzés. 

Ezek a módszerek a weboldalt egy izolált, gyakran virtuális környezetben töltik be, és 

vizsgálják, hogy történt-e fájlletöltés, vagy egyéb gyanús változás a számítógépen. A 

probléma az, hogy az ilyen dinamikus elemzés időigényes. A virtuális környezet felállítása és 

a weblapon lévő szkriptek lefuttatása akár néhány percet is igénybe vehet. Ez a transzparens 

használathoz túl lassú, illetve ezzel a módszerrel csak pár ezer oldalt lehet megvizsgálni 

naponta, ami kevés.  

A 2010-es év környékén több cikk jelent meg olyan módszerekről, amelyek egy 

HTML, vagy JavaScript kódról futtatás nélkül, csupán a statikus jellemzők alapján eldöntik, 

hogy kártékony vagy sem, így akár több millió weboldalt lehet elemezni naponta. Az elmúlt 

pár évben azonban jelentősebb kutatási eredmény nem jelent meg a témában és az 

implementációk sem érhetőek el. A munkám célja ezért az, hogy a korábbi eredményekből 

kiindulva egy olyan statikus weboldal szűrőt hozzak létre, amely előszűrőként alkalmazható 

egy alaposabb, de lassabb dinamikus elemző szoftver számára. A megoldásom böngészőbe is 

ágyazható, ebben az esetben figyelmezteti a felhasználót az esetleges veszélyekre. 

Munkám gépi tanulási módszerekre épül, ezért először ártalmatlan és kártékony 

kódokat gyűjtöttem össze, amelyek a tanító adathalmazt adják. Ezt követően a mintákon 

kiszámítottam az egyes statikus jellemzők értékeit és egy osztályozót tanítottam be velük. 

Végül elkészítettem a szűrőt, amely weboldalakat látogat meg, letölti az ott található kódot, 

kiszámítja a statikus paramétereket, majd elvégzi az osztályozást. Az eredmény annak a 

valószínűsége, hogy az oldal kártékony. 
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Abstract 

As the World Wide Web is becoming more widespread, nowadays, surfing on the web 

has become a daily routine for most people. Besides PC, we can use laptops, phones, tablets 

or even a car’s computer to access the internet. Because of the huge user base and the 

diversity of platforms, the web has become the primary technology for distributing malicious 

software (malware). An unsuspicious user with an unpatched browser can be infected by a 

malware without noticing it by merely visiting a few web pages. 

The most common way to detect malicious pages is dynamic analysis. These methods 

load the web pages in isolated environments and search for downloaded files and other 

suspicious activities. The problem with dynamic analysis is that it’s very time-consuming. 

Setting up the virtual environment and running the scripts on the page can take minutes. This 

is too slow for transparent usage and we can only analyse a few thousand pages per day with 

these techniques.  

Around 2010 a number of articles appeared about static analysis. Static analysis tries 

to classify the HTML or JavaScript sources only by their static features, without running 

them, reaching millions of analysed pages per day. But there are no follow-up research results 

within the last few years and the implementations of the previous projects are unavailable. 

Therefore, the goal of my work is to create a static web page filter using the research findings. 

This filter can be a prefilter for a more sophisticated, but slower dynamic analyser tool, or it 

can be integrated in a browser to warn the user about possible threats. 

My work is based on machine learning techniques, so first, I collected benign and 

malicious samples, which provide the training set. Then, I calculated the static features of the 

samples and trained a classifier with them. Finally, I created the filter which crawls web 

pages, computes the features of the pages, and performs the classification. The result is the 

probability that the site is malicious. 
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1 Introduction 

In 2017 around half of the Earth’s population has Internet connection and can connect 

to the Internet daily via any device type, which is almost 4 billion users
1,2

. This number is still 

growing exponentially. One of the most popular applications of the Internet is the World 

Wide Web, invented by Tim Berners-Lee in 1989 and released to the general public in 1991. 

To access any content on the Web, we can use not only personal computers and laptops, but 

also phones, gaming consoles, TVs or even smart cars. Because of the huge user base and the 

variety of platforms used for web browsing, the Web has become the main application for 

spreading malicious software (malware). Furthermore, there is no need for the attacker to 

physically access the victim’s device. Without any technical knowledge or skills, the user can 

be infected without noticing it. A malware can steal personal information and user credentials, 

or it can lock the user out of the system letting them back only if a specified ransom is paid 

(ransomware). The lack of user knowledge, the wide accessibility of the internet and the huge 

impact of an infection result in the overgrowing need for better protection. 

1.1 Distributing Malware 

There are five possible ways of distributing a malware [2][3], via: 

• Email attachments: Sending a malicious URL or a malware as an email attachment 

is easy to perform, but the victim may become suspicious and refuse to download 

the attachment. Even spam detectors will possibly detect these mails, and will warn 

the users. 

• Infected storage devices: The attacker can install a malware from a USB drive, or 

CD if they access the device physically, which usually requires the attacker to be 

trusted by the victim. 

• File sharing protocols (FTP, P2P): It is a popular technique, but most internet users 

don’t use these protocols or programs. 

                                                 

1
 http://www.internetlivestats.com/internet-users/ 

2
 http://www.internetworldstats.com/stats.htm 
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• Malvertising, or malicious advertising: It downloads malware to a victim’s device 

when the victim loads a web page that displays the malicious advertisement. 

• Malicious web pages: The JavaScript code on a page can exploit a browser or a 

plugin vulnerability (e.g., bad memory allocation, buffer overflow) to execute a 

shellcode defined by the attacker. 

During my work, I concentrated on malicious web pages, because one of the most 

common methods to distribute malware is through web pages. Firstly, because of the 

popularity of the Web, and secondly, because an attack does not require many prerequisites, 

only a vulnerable browser. The malicious URL can be sent to the victims via phishing [4] or 

spear phishing e-mails [5], or there are so called watering hole attacks [6], where the victims 

are very likely to visit the malicious page. We will never be able to prevent users from 

visiting malicious pages, so we must detect them.   

1.2 Malicious Web Pages 

Today’s browsers and their plugins are very complex applications. It is inevitable that 

after design, implementation and testing of such software there are some security flaws 

remaining after release. Because thousands of programmers and developers use these systems, 

there are hundreds of flaws and bugs known by the public. For example, according to the 

Common Vulnerabilities and Exposures (CVE) database, there are almost 1000 Internet 

Explorer security vulnerabilities discovered [7]. These vulnerabilities are usually corrected 

immediately in the next release of the affected browser, but there are devices where the 

browsers are not patched (legacy systems, computers in educational or healthcare facilities). If 

a skilful attacker exploits a security flaw, all unpatched browsers are potential victims. But 

even if a browser is updated regularly it is still vulnerable for zero-day exploits. These 

exploits use bugs which are unknown to the public and only known by the attackers. 

The exploits are usually written in script languages which are placed in the HTML 

content of the websites between <script> tags. The common script languages are JavaScript 

and VBScript (Visual Basic Script), but VBScript is only supported by Internet Explorer and 

nowadays JavaScript is more significant, so I only concentrated on the JavaScript language 

(besides HTML). JavaScript can be used for multiple attack types which can be interaction 

based, or automatic. Interaction based attacks can be placing multiple pop-up windows 

(adware, malwartising) so the user needs to close them and if they click on the wrong closing 

button, a file download or redirection will occur. Also, stealing user passwords when entered 
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in a phishing site, or downloading something if the user clicks on a button, for example, are 

interaction based. What I am most interested in is automatic attacks (also called drive-by-

download attacks). Steps of a drive-by-download attack are usually the following [1]: 

1. Victim visits a compromised website with unpatched browser. 

2. The compromised website has an HTML element with a source attribute 

(<iframe>, <embed> etc.). The browser loads the source, which is usually 

another website. 

3. The page redirects to another page which contains the exploitation script. 

4. The browser runs the malicious script, which downloads and runs a malware from 

another server or does whatever the attacker wants. 

1.3 Problem Statement 

There are two techniques to detect malicious web pages, dynamic analysis and static 

analysis.  

Dynamic analysis uses isolated environments, such as sandboxes and virtual 

machines, which are also called high- or low-interaction honeyclients. Their task is to visit 

suspicious web pages with full-featured browsers, load and execute every script on the page 

and analyse what has happened after the execution. To decide whether the page is malicious 

or not, mainly downloaded files, temporary folders and started processes are checked. One of 

the advantages of a dynamic analyser is that it can deal with highly obfuscated JavaScript 

code. To evade detection by a rule-based or regular expression based anti-malware software 

attackers usually obfuscate the code, so the actual exploitation script is hidden under several 

layers of obfuscation. A dynamic analyser by instrumenting a JavaScript engine can 

deobfuscate the code and analyse the hidden part. However, the main problem with this 

technique is the performance. After the execution and analysis - which also requires some 

time - the virtual machines have to be terminated, restored to a checkpoint and started again 

which takes several minutes. For example, an IT security company called Ukatemi 

Technologies
3
 (cofounded my consultant Dr. Levente Buttyan) is able to analyse a few 

thousand URLs, but they receive around a million potentially malicious URLs daily. 

                                                 

3
 http://www.ukatemi.com/ 
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Furthermore, this overhead makes it impossible to use dynamic analysis transparently and 

sensibly in web browsers. 

Static analysis is a much faster but less precise technique. It is based on machine 

learning and tries to classify the web pages by analysing their lexical and syntactical 

parameters (usually called as features). This method does not need an isolated environment or 

a fully functional web browser; it only has to download the resources via HTTP(S) without 

executing the scripts or creating the HTML DOM tree. As a result, it won’t give sophisticated 

results, only the probability of the page being malicious or only the predicted class, but it can 

analyse around 100 times more pages as dynamic analysis. A static analyser can be used as a 

prefilter for a dynamic analyser, or it can be integrated in a browser as a filter to warn the user 

about possible threats. 

There were several publications about static analysis around 2010 (see Section 2 on 

the state of art), but in the last few years no important results were published and there are no 

open source implementations. My goal is to create a static analyser filter based on the 

previous results and findings. 

1.4 Overview of Approach 

In this paragraph, I briefly go through the main steps of my approach, for a more 

detailed discussion, the reader is referred to Section 3 of this document. 

1. First of all, I read and studied research publications available on the internet. These 

publications were written between 2007 and 2012, and since then, no relevant work 

has been presented at major conferences. 

2. As the static analysis is based on machine learning, therefore, I collected benign 

and malicious HTML and JavaScript sources for the training set and the validation 

set. For benign samples, I implemented a web crawler, and crawled popular 

websites. For malicious samples, I used VirusTotal’s
4
 notification and alerting 

system and Ukatemi’s malware database. 

3. Next, I selected the HTML and JavaScript features for the classifier, and extracted 

the features from the training dataset. 

                                                 

4
 https://www.virustotal.com 
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4. I implemented a Naïve Bayesian classifier for the filter and trained it with the 

extracted features. I also trained and evaluated multiple different classifiers using 

the Weka [8] machine learning toolkit. 

5. I validated my Naïve Bayesian classifier with a validation dataset to see the False 

Positive and False Negative Rates. I compared the results to other classifiers in 

Weka. After seeing the results, I also evaluated a Random Forest classifier for the 

filter. 

6. Finally, I have made some performance measurements on the prototype of the filter 

created from three parts, the web crawler, the feature extractor, and the classifier. 

1.5 Main Results 

We focused on the performance and the accuracy of the filter.  

After a test run, the filter was able to analyse around 100.000 URLs in 3 hours, which 

means the filter can analyse almost a million URLs per day, which is very good for using it as 

a prefilter for a dynamic analyser. 

The False Negative Rate of the filter, using my Naïve Bayesian classifier, was around 

20-30% depending on a threshold parameter. Only 3 classifiers from Weka could reach this 

result. The Random Forest was the best classifier with around 98% Precision and 80% Recall, 

therefore, I also evaluated a Random Forest classifier for the filter, which produced the same 

results as the one in Weka. The accuracy of the classifiers was 5% better using JavaScript 

features than using HTML features. 

1.6 Paper Organization 

The rest of the paper is organized as follows. Section 2 Related Work gives some 

information about publications, and research results I used during my work. Section 3 Our 

Approach gives a brief inspection about the theoretical part of my approach to the task, how I 

chose the features, and how the classification works. Section 4 Implementation describes 

every important implementation detail including web crawling and feature extraction. It also 

states the technologies I used. Section 5 Results is about the performance and the quality of 

the filter. Section 6 Future Work describes the possible improvements in the performance and 

the quality. Section 7 concludes, and finally, there are the acknowledgements, the references, 

and the appendix at the end of the paper. 
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2 Related Work 

 This section is about technologies and research findings on which my work is based. 

2.1 Dynamic Analysis 

Nozzle [9][10]: In 2008 Microsoft Research presented an effective technique for 

detecting heap-spraying
5
 attacks only. Through runtime interpretation Nozzle scans heap 

allocated object data to identify valid x86 code sequences, disassembling the code and 

building a control flow graph. To intercept function calls that allocate and free memory, they 

used Detours [11], Microsoft’s software package for re-routing Win32 APIs underneath 

applications. With optimizing detection threshold parameters they were able to produce no 

false positives and no false negatives on their samples. However, because of runtime analysis, 

Nozzle increased execution overhead with 10 − 250% per web site, depending on the 

sensitivity. 

Monkey-Spider [12]: Monkey-Spider is a malicious web site detector system with 

low-interaction honeyclients. Low-interaction honeyclients are not real systems. They emulate 

real systems and services, typically on virtual machines. They use a mail spamtrap to generate 

seeds for the Heritrix web crawler
6
. The web crawler downloads content from the World 

Wide Web. In the next step, they analyse the downloaded content with different anti-virus 

solutions and malware analysis tools like ClamAV
7
, Avast 

8
and CWSandbox

9
. With multiple 

detection software, they were able to produce low True Positive and False Negative Rates, but 

the drawback of their approach is the slow content analysis. Signature-based detection is fast 

but cannot detect new attacks. Behaviour-based scanning in sandboxes is more precise but 

takes a longer amount of time. 

                                                 

5
 In heap-spraying attacks, the attacker attempts to inject code somewhere in the address space of the 

target program, and through a memory corruption exploit, coerce the program to jump to that code. It can be 

done with JavaScript, exploiting a browser vulnerability [9]. 

6 https://webarchive.jira.com/wiki/spaces/Heritrix/overview 

7
 https://www.clamav.net/ 

8
 https://www.avast.com/index 

9
 http://cwsandbox.org/ 
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ITWEF: ITWEF is a low-interaction honeyclient developed and maintained by 

Ukatemi Technologies. It uses around 10-20 virtual machines to visit web pages. The 

operating systems on the virtual machines are Windows 7, Windows 8.1 and Windows 10. 

The virtual machines are using Internet Explorer to visit potentially malicious web pages, 

which are provided by web crawlers: MSICrawler, QutteraCrawler [13] and MRGCrawler. 

After loading the page and executing the JavaScript code, the suspicious processes and 

created and downloaded files are analysed. ITWEF also dumps and saves the network traffic 

from and to the virtual machines and provides the communication in .saz files used by the 

Fiddler network analyser tool
10

. The problem with ITWEF is that it can only analyse a few 

thousand URLs per day, but the crawlers provide around a million URLs. My filter is planned 

to be a prefilter for ITWEF. 

JSAND (and Wepawet) [13]: Cova et al. presented a classifier based on static and 

dynamic features. The system visits web pages with a customized browser (they have 

instrumented Mozilla’s Rhino interpreted to extract dynamic features), which loads the page, 

executes its dynamic content, and records the events used by their anomaly detection system. 

They were able to reduce False Positive and False Negative Rates below 1%. JSAND was 

made available as part of an online service called Wepawet
11

, where users can submit URLs 

and files that are automatically analysed, delivering detailed reports about the type of 

observed attacks and the targeted vulnerabilities. Unfortunately Wepawet has been shut down 

due to maintenance and resource problems, and the creators have recently founded an IT 

security company called Lastline
12

. 

Caffeine Monkey [15]: Ben Feinstein and Daniel Pack from SecureWorks created the 

Caffeine Monkey system. The core of the system is a JavaScript engine based on extensions 

to the open source SpiderMonkey
13

 JavaScript implementation engine from Mozilla. After a 

Heritrix web crawl, each collected JavaScript sample was run through the Caffeine Monkey 

engine. The engine hooks a number of interesting functions, like eval, escape, 

                                                 

10 https://www.telerik.com/fiddler 

11
 http://wepawet.cs.ucsb.edu/ 

12 https://www.lastline.com/ 

13 https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey 
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document.write. The goal of their work was to deobfuscate samples correctly, so they 

didn’t present results about performance or detection rate. 

Zozzle [10][16]: Zozzle is a JavaScript malware detector from Microsoft Research. 

They call their approach “mostly static”, because it is much faster than Nozzle [9] and it is 

based on static features. However, to deal with obfuscation they intercepted calls to the 

Compile function of Internet Explorer’s JavaScript engine located in jscript.dll, which 

is a dynamic approach. This function is invoked when eval is called and whenever a new 

code is included with an <iframe> or <script> tag. Once they had the deobfuscated 

code, they built its Abstract Syntax Tree (AST). They extracted specific features from the 

AST (expressions and variable declarations), but they were only interested in the presence or 

the absence of the feature in the code. They included only those features in the classification 

whose presence was correlated with the categorization of the script (benign or malicious). 

They used a Naïve Bayesian classifier. With around 400 automatically selected features, they 

were able to produce < 1% False Positive Rates, and ~7% False Negative Rates. For the 

majority of files, classification could be performed in under 4�
. 

There are several other dynamic technologies to which the above mentioned 

researches referred. Just to pick a few: HoneyMonkey by Microsoft Research [17], 

SiteAdvisor
14

 by McAfee, MITRE Honeyclient 
15

by MITRE and PhoneyC by Jose Nazario 

[18]. 

To sum up, dynamic analysis always executes the JavaScript code on a page in some 

way. Usually does it on an isolated environment to see the result of the execution, or to 

deobfuscate the code. Executing JavaScript is a time-precision trade-off, it makes the analysis 

slower, but more precise. Although, I created a fully static analyser, the methods and 

techniques used in the dynamic approach were useful, and will be useful in the future of my 

project.  

  

                                                 

14https://home.mcafee.com/root/landingpage.aspx?lpname=get-it-
now&affid=0&cid=170789 

15https://www.mitre.org/research/technology-transfer/technology-

licensing/honeyclient 
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2.2 Static Analysis 

P. Likarish, E. Jung, and I. Jo [19]: Likarish et al. published an approach to detect 

obfuscated malicious JavaScript with handpicked static features. They used the normalized 

frequency of each JavaScript keyword as a feature and they also defined features to describe 

the script’s visual appearance (e.g., number of lines, number of Unicode symbols, average 

string length). They trained multiple classifiers with benign and manually reviewed malicious 

samples. The Naïve Bayesian classifier was the least precise with ~80% Precision
16

, ~66% 

Recall
17

 and ~99% Negative Predictive Power
18

. 

Prophiler [20]: Canali et al. presents a lightweight static filter, called Prophiler. They 

combine HTML-, JavaScript-, and URL-based features (e.g., number of specific tags, or 

keywords) to train multiple classifiers. The filter is fully static; it does not execute the 

JavaScript code to deobfuscate it, and it uses special features to detect obfuscation. They were 

able to discard benign pages easily, False Positive Rates were around 2% with most of the 

classifiers, but the average of the False Negative Rates were around 20 − 30%. They used the 

filter as a prefilter for Wepawet. 

2.3 Difference from Our Approach 

Our approach is similar to the Prophiler and the approach by P. Likarish et. al. and is 

based on them. I created a fully static analyser with web crawling, feature extraction and 

classification. 

To collect benign files I created my own crawler in C#, which is more customizable 

and scalable than to use Heritrix for example. I used this program in the filter too. None of the 

above mentioned approaches used their own crawler, they mainly used Heritrix. I collected 

the malicious files from VirusTotal and Ukatemi’s malware database, which is a different 

source and not used in the other approaches. The features I used are the subset of the features 

used in the previously mentioned static analyzers. For classification I tried the Weka software 

too, but I also implemented my own Naïve Bayesian classifier, and I also used a Random 

Forest implementation for the filter. The complete implementation process is my own solution 

and it contains my own ideas. 

                                                 

16
 The ratio of (malicious scripts classified correctly) / (all scripts classified as malicious). 

17
 The ratio of (malicious scripts classified correctly) / (all malicious scripts). 

18
 The ratio of (benign scripts classified correctly) / (all benign scripts). 
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3 Our Approach 

This section provides a detailed overview on how I used machine learning techniques 

to distinguish between malicious and benign web pages. 

One of the main usages of machine learning is classification. The purpose of 

classification is to divide unseen inputs into previously determined classes. The core of a 

classifier is the model. Creating a classifier requires three phases. The first phase is  feature 

selection. To achieve a high detection rate, those features should be selected which describe 

the difference between the classes the best. The second phase is the training, where the 

classifier creates the model from a provided and labelled dataset (supervised learning). The 

last phase is the evaluation, or detection phase, where the classifier tries to classify previously 

unseen inputs using the model. The evaluation phase usually starts with a validation of the 

classifier. The purpose of the validation is to estimate how well the classifier will perform on 

real-world data, so the classifier is evaluated on previously unseen, but labelled dataset [21].  

3.1 Feature Selection 

Selecting features is the crucial part of the classification. We should find and use those 

features, which describe the difference between a malicious and benign file the best. The 

following features are static features, which can be extracted from the files without running 

them. The extraction process only requires parsers for HTML and JavaScript, but there are 

features which can be extracted only by interpreting the file as a usual text file and analysing 

its raw content. 

The following features are commonly used as HTML and JavaScript features. All of 

them are used by the Prophiler [20], or Zozzle [16], or JSAND [13], or Likarish et al.[19], 

therefore, I also decided to use these features. Creating new features would be interesting if 

we modify the filter to detect an exact type of malware. 

There are three types of features: discrete (the number of artefacts), continuous 

(average, percentage of values), or logical (presence or absence of an artefact) 
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3.1.1 HTML Features 

I used the following 16 HTML features [20]. A chosen feature does not mean that the 

connected tag or attribute is only used for malicious purposes; it means that it can be used, so 

it is important to take into account. 

Discrete features:  

Number of <iframe> tags: Iframe tags can be used to insert contents from another 

website within a web page as if they were part of the current page. In an iframe attack, the 

hacker embeds a malicious iframe code snippet in one’s website page. When anyone visits 

that page, the hidden iframe code secretly downloads and installs a malware [24].  

Number of hidden elements: The hidden attribute can be used, to visibly hide an 

element from the user. It is a common technique to hide a button for example, so the user does 

not recognize it and accidentally clicks on it. 

Number of small elements: Setting width and height attributes of an element very 

small (1-2 pixels) is also a common technique to hide a malicious element. I consider a tag 

small if the area is smaller than or equal to 30 pixels, or one of its sides is shorter than or 

equal to 2 pixels [20]. 

Number of <script> tags: Script tags are to insert inline or to reference other scripts 

which can either be malicious or benign. 

Number of <embed> tags: Embed tags can reference a malicious source in the src 

attribute. It also can be used in a cross-site scripting attack [25].  

Number of <object> tags: Same as embed, but it has an object attribute.  

Number of sources from an external domain: If a benign site is compromised, it is 

usual that the attacker just places an element with a source attribute pointing to the actual 

malicious site on an external domain. 

Number of parsing errors during parsing: I used an HTML parser which always 

parses the given document without exception, but provides a list of errors while parsing (e.g., 

tag is not closed). A benign site is likely to produce fewer errors. 

Number of elements in the wrong place: I checked the places of script, object, embed, 

frame, iframe and form according to the allowed positioning in the HTML 4 DTD [26]. In a 

compromised page it is common to see these elements in strange positions. 
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Number of included URLs: Including multiple URLs can mean that the site is popular, 

and not likely to contain a malicious code. 

Number of characters in the HTML document: The number of characters in the HTML 

files is expected to be smaller in malicious pages, which are not the results of a corruption of a 

web page. These pages are not focusing on the good user experience and just contain what is 

necessary for the attack. 

Continuous features: 

Percentage of JavaScript content: Obfuscated scripts are usually large and contain 

huge strings, which could mean higher percentage. 

Other continuous features: percentage of whitespace in the HTML document. 

Logical features: 

Presence of <meta http-equiv=refresh> tag: This tag can be used to refresh the 

page in a given time, but can also be used as a method of URL redirection [27]. 

Presence of scripts with wrong extension: A referenced JavaScript file in a source tag 

normally has a correct .js extension. A file without an extension or with a wrong extension 

might be malicious. 

Presence of double documents: In the HTML specification it is not allowed for a page 

to contain multiple html, head, body or title tags, but this can be seen in some malicious web 

pages as a side effect [20]. 

The number of characters and the percentage of whitespace features can be calculated 

without parsing the HTML. For the other features, the HTML document has to be parsed. 

3.1.2 JavaScript Features 

I used the following 22 JavaScript features [19][20]. Most of the following features 

require parsing the JavaScript file. After parsing the source, I traversed the nodes of the AST 

provided by the parser to collect the features (for detailed information the reader is referred to 

Section 4.2.2).  

Discrete features: 

Number of eval calls: The most popular way of direct dynamic code evaluation is 

through eval() calls. After deofuscation usually an eval() is called to execute the deobfuscated 

JavaScript code [29][30][32][33]. 
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Number of timer function calls: Using setInterval(), and setTimeout() to periodically 

do something (e.g., refresh the page) can be used for malicious purposes [34]. 

Number of string modification function calls: To deobfuscate multiple layers of 

JavaScript, string modification functions are used to split a long string and to generate a new 

correct JavaScript code [33]. I focused on the following string modification functions: slice(), 

subStr(), substring(), replace(), concat(), charAt(), charCodeAt(), split(). 

Number of navigator properties used: It is common in malicious scripts, to identify the 

browser used by the victim, or to get other information about the victim’s environment to use 

the properties of the navigator object [32]. I focused on the following properties: 

appCodeName, appName, appVersion, cookieEnabled, geolocation, language, onLine, 

platform, product, userAgent. 

Number of DOM modification function calls: JavaScript can modify the HTML 

Document Object Model (DOM
19

) tree in runtime, with DOM modification function, and 

instantiate vulnerable components. It is possible to place new, and delete or modify already 

existing elements, which can be used for malicious purposes [29][32][33]. I searched for the 

following function calls: getElementById(), getElementsByTagName(), 

getElementsByClassName(), createElement(), removeChild(), appendChild(), replaceChild(), 

write, clearAttributes(), insertAdjacentEmlement(), replaceNode(). 

Number of long string: An obfuscated JavaScript usually contains a few long strings 

(even thousands of characters long). These strings are deobfuscated with string operations 

(split,slice), to get the real script [30][32][33]. I call a string long if its length is above a 

certain threshold; I used 40 characters for the threshold [20]. 

Number of long variable or function names: Malicious codes usually have long 

randomly created function and variable names. On the other side, a benign code is not likely 

to contain long names, because it is not easily readable. I call a name long if its length is 

above 20 characters. 

Number of suspicious strings: A code, which contains strings with shell, spray, evil, 

and crypt in them are likely to be malicious. I search for the occurrences of these four words. 

Number of strings containing iframe: Creating an iframe tag dynamically with 

JavaScript is a common method to place malicious references to the HTML code [29]. It can 
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be done like this: document.write(“<iframe src=”malicious 

URL”></iframe>”). 

Number of strings containing suspicious tag names: Besides iframe, other HTML 

elements can be placed while executing a JavaScript code. I test the presence of frame, object, 

embed, and script words as a part of a string in the code. 

Number of Unicode characters: A shellcode can contain multiple Unicode characters. 

A shellcode is a piece of malicious code, which is placed in the browser’s or the plugin’s 

memory, and executed through exploiting a buffer overflow. 

Other discrete features: number of method calls, number of strings, length of the 

script, number of lines, maximum length of strings.  

Continuous features: 

Entropy based features: average entropy of strings, max entropy of strings, entropy of 

script: These features are used to describe the randomness of the strings and the script. If a 

script contains an obfuscated code, it is likely that the entropy will be higher. 

Other continuous features: average string length, average line length and percentage 

of whitespace. 

The number of lines, the length of script, the average string length, the maximum 

length of string, the average line length, and the percentage of whitespace features can be 

calculated without parsing the JavaScript; the others require parsing, and traversing the AST. 

3.2 Training 

The purpose of training is to acquire the characteristics of a dataset, which will be 

referred to as the training set. Every element of the training set contains multiple features and 

the name of the class (a label) in which the actual element belongs. The classifier tries to 

derive a model from the given features and the classes they belong. 

In the context of web pages, the classification of every element of the training set is a 

list of features extracted from the HTML, or JavaScript code of the web page, and a benign, 

or malicious label representing the class of the element. To create a precise classifier, the 

training set has to be correctly labelled manually and also, the features have to be carefully 

chosen to describe the differences between malicious and benign codes (for more information 

see Section 3.2).  
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To train a classifier, the first task is to collect HTML and JavaScript resources which 

are likely to be benign or likely to be malicious. Collecting malicious files and collecting 

benign files requires to different methods. 

Benign training set: The most common method for collecting benign samples is with 

a web crawler. I tried out a few web crawlers and crawler frameworks, like Heritrix – the Web 

Archive’s crawler, Scrapy 
20

– a web crawling framework in Python, but I decided to 

implement my own web crawler in C#. The main reason was that implementing the crawler 

myself, customizing it will be easier (like setting HTTP headers, parsing the HTML or 

JavaScript). Furthermore, I can use the crawler not only for gathering the training set, but also 

in the filter for crawling potentially malicious web sites. I collected 439 URLs of the most 

popular web pages according to Alexa.com
21

, Quanticast
22

, Wikipedia and other sites. These 

URLs provided the benign seed for my crawler. My assumption was that these websites and 

the sites which they reference are not likely to contain malicious code. My implementation 

makes it possible to start multiple crawlers simultaneously; one crawler is responsible for 

crawling one seed URL. The phases of the crawling can be seen in Figure 3.1. For 

implementation details (handling HTTP messages, parsing the HTML) the reader is referred 

to Section 4. 

                                                 

20
 https://scrapy.org/ 

21
 https://www.alexa.com/topsites 

22
 https://www.quantcast.com/top-sites/ 

Figure 3.1. The phases of crawling 
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I focused only on HTML and JavaScript resources and therefore used the following 

algorithm to determine the type and the examining process: 

1. HTTP Content-Type header of the response: I accept 

application/xhtml+xml, text/html and text/plain MIME-types as 

HTML and application/x-javascript, application-javascript 

and text/javascript MIME-Types as JavaScript [23]. 

2. If the Content-Type header is set but not to an accepted MIME-type, then I 

discard that resource (it could be a picture, flash etc.). 

3. If the Content-Type header is empty, I try the following: 

a. If the resource contains an <html> tag, I interpret it as an HTML 

document. 

b. If it does not contain an <html> tag, and the JavaScript parser can 

parse it, I interpret it as a JavaScript file. 

c. Otherwise I discard the resource. 

4. If the resource is HTML, I extract new URLs, and the JavaScript code on the 

page. 

5. I save both the HTML and the JavaScript source. 

 

 To get other URLs from the seed web page, I parsed the 

HTML file. Table 3.1 shows the HTML tags, and the attributes of the 

tags which I focused on to extract resource URLs. After collecting 

every URL from the actual page I filtered the URLs. I discarded those 

URLs which were irrelevant based on their extensions, like .png, 

.css, .swf etc. These filtered URLs provided the new URLs to 

fetch. 

  

HTML 

Tag 
Attribute  

script src 

iframe src 

frame src 

embed src 

object data 

form action 

link href 

a href 

Table 3.1. HTML tags and 
their attributes used to 

gather new URLs. 
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To get the JavaScript code from the HTML file, I examined the <script> tags in it. 

The content of the tag is collected and interpreted as JavaScript if the following conditions 

stay: 

• The tag does not have a language attribute or it has a language attribute and 

it is JavaScript, and 

• The tag does not have a type attribute or it has a type attribute 

 and it is application/javascript, application/ecmascript, 

text/javascript, text/ecmascript [23]. 

All of the inline JavaScript codes of an HTML page are merged together and treated as 

one script file. This was necessary because most features of the individual inline scripts are 

meaningless if the code is a few lines long. Furthermore, the browsers are interpreting the 

JavaScript code of a page as a whole. 

With the above mentioned technique I was able to gather and save the HTML and 

JavaScript files while crawling the seed URL. To remove duplicate files, I matched the SHA-

256 hashes and the actual URLs. 

 I started a web crawling process with the following parameters: 439 seed URLs in a 

file, 2 crawlers working in parallel on a single seed URL each, every crawler downloads at 

least 300 other URLs, every crawler sends max 20 requests simultaneously. The complete 

process took around 12 hours, during which 107464 distinct HTML and 92217 distinct 

JavaScript files were collected and saved (see Table 3.2), which is 5 ����/
��. The crawling 

process was run on a Ubuntu virtual machine on a VMWare ESXi server. It had limited 

resources because of the other virtual machines on the ESXi server. In the future, on a 

stronger environment, the performance can be optimized. The bottleneck of the process is 

fetching the URLs, which can take seconds, so increasing the parallel requests can fasten up 

the process, but the number of threadpool threads should be considered too (see Section 4). 

Malicious training set: Creating a malicious training set is hard to do by crawling the 

web. The problem is to find URLs which are very likely to contain malicious code. There are 

multiple blacklists available on the web like MalwareDomains
23

, but these lists are frequently 

changing because the attackers are also monitoring these blacklist and they usually terminate 
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 www.malwaredomains.com/. 
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the page if it appears on a blacklist. Ukatemi has a VirusTotal licence with which the 

following is possible: we can use VirusTotal’s messaging service by specifying a Yara
24

 rule, 

that is matched by VirusTotal to every freshly uploaded sample. We created a rule, which 

usually matches on JavaScript files (see the exact rule in the Appendix). By also providing an 

email address, VirusTotal sends a message every time someone uploads a file to its server 

which matches the specified Yara rule. We did not provide a rule for HTML files because our 

experience was that it is very likely that the uploader uploads an HTML file which contains a 

malicious JavaScript code rather than only uploading the JavaScript source. The message sent 

by VirusTotal is plain text, but it has a well-defined structure. It contains information about 

the uploaded file like MD5 and SHA-256 hashes, file type and the list of alerts of antivirus 

products triggered by the file. For example, we found in this way Ramnit Trojans, Facelikers, 

FakeJQuery Trojans, LikeJacks, Phishing malwares, Adwares, Iframe Trojans, Redirectors 

and Clicker Trojans. 

During a month’s time, I received around 70000 emails. I wrote a program in C# to 

download and parse the messages. After the parsing, I checked whether the referenced file 

caused any alert on any antivirus. If not, I discarded the message. If yes, I gathered the SHA-

256 value from the message, and I used Ukatemi’s malware database to collect the actual file 

from the hash. They provide a REST service, so if one sends the hash of a file, you receive the 

file if it is in the database. If the file was HTML, I extracted the JavaScript code, like from the 

benign files. From the 70000 messages, most did not contain any alerts, some were duplicates, 

some of them were not JavaScript or HTML (usually ELF or ZIP), and some of them were not 

in the database. In the end I had 1594 HTML and 1784 JavaScript files assumed as malicious 

(see Table 3.2). I only examined the subset of the files and not all, which could cause some 

problems (for more information see Section 6). 

 

 

After collecting the training set, feature extraction comes from the collected samples 

(detailed in Section 4). Finally, the classifier creates the model from the provided training set. 

                                                 

24
 Yara is a popular pattern matching tool used widely by identifying and classifying malware. 

http://yararules.com/ 

 HTML JavaScript 

Benign 107464 92217 

Malicious 1594 1784 

Table 3.2. Number of collected samples 



 24 

The actual method to create the model depends on the classification algorithm described in 

Section 3.1.3. 

3.3 Evaluation 

Validation: To validate a classifier, a validation dataset is used, which is labelled just 

like the training set, but it is not used in the training phase, which means that these values are 

unseen for the classifier. The purpose of the validation is to estimate the real world 

performance of the classifier. To measure the performance and precision of a classifier, the 

confusion matrix (Table 3.3) and other attributes [22] are calculated: 

JavaScript/HTML Labeled as 
Malicious 

Labeled as 
Benign 

Classified as Malicious True positive (TP) 
False positive 

(FP) 
Type I Error 

Classified as Benign 
False negative 

(FN) 
Type II Error 

True negative 
(TN) 

• False Positive Rate (FPR): ��/(�� + ��) The probability of labelling a benign 

script malicious. If high, it causes an overhead for the underlying dynamic analyser.  

• False Negative Rate (FNR): ��/(�� + ��) The probability of labelling a malicious 

script benign. If high, we miss analysing some malicious scripts; also we allow the 

user to visit the web page. 

• True Negative Rate (TNR), Specificity: ��/(�� + ��) The probability of 

classifying a benign script correctly (as benign). Equals 1 − ���. 

• True Positive Rate (TPR), Recall, Sensitivity: ��/(�� + ��) The probability of 

classifying a malicious script correctly (as malicious). Equals 1 − ���. 

• Positive Predictive Value (PPV), Precision: ��/(�� + ��) The probability of the 

correct classification if the classification result is malicious. If high, a maliciously 

labelled script is very likely to be malicious. 

Table 3.3. Confusion matrix for web page classification  
(template source: https://en.wikipedia.org/wiki/Confusion_matrix) 
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• Negative Predictive Value (NPV): ��/(�� + ��) The probability of the correct 

classification if the classification result is benign. If high, a benignly labelled script is 

very likely to be benign. 

• F-measure: The F-measure is the harmonic mean of Precision and Recall. It can be 

calculated with the following formula (3.1): 

����
��� = 2 ∗
"#$%&'&()∗*$%+,,

"#$%&'&()-*$%+,,
  (3.1) 

During my work, I focused mainly on false positive and False Negative Rate. It is 

important to achieve low False Negative Rate, otherwise the classifier will label a malicious 

script benign. If we use the filter as a prefilter, the dynamic analyser will not analyse those 

scripts, and if we integrate it in a browser, the filter will not notify the user about the possible 

threats. Low False Positive Rate can also be necessary, otherwise the false positive samples 

will cause an overhead for the dynamic analyser, and also a user may be annoyed by the usual 

alerts, and will more likely disable the filter. These two parameters are in an inverse 

relationship: we can lower the FNR by increasing the FPR and vice versa. 

I used two different types of validation techniques during my work. For my 

implementation of the Naïve Bayesian classifier and for training the Random Forest, I divided 

the training set to 70%-30%. With the 70% I trained the classifiers, and I validated them with 

the rest. The other method I used is the n-fold cross validation [28]. A trained and validated 

multiple other classifiers with the Weka machine learning tool, which provides cross 

validation. I used the most common 10-fold cross validation, besides 70-30% partitioning. In 

10-fold cross validation, we separate the whole dataset into 10 equal groups. We train the 

classifier with 9/10
th

 of the data and validate it with the remaining 1/10
th

. Finally, we calculate 

the average of the above mentioned parameters. 

Evaluation on real-world data: During the creation of this paper I was not able to 

create exact measurements about the precision of the filter on real world data. To measure the 

detection rate of the filter would require ITWEF to analyse the same URL list twice, with and 

without the filter which is not trivial. Also, optimizing the performance, thread numbers and 

parallel requests are yet to be done. 
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3.4 Classifiers 

Choosing the classifier plays an important part in my work. Choosing a more complex 

and robust classifier can produce lower False Positive and False Negative Rate, however, the 

implementation of the algorithm is much harder. Choosing a simple classifier usually means 

higher FPR and FNR, but the implementation is easier and we can concentrate on the results 

sooner. 

I chose to implement a Naïve Bayesian classifier in the first place, which is one of the 

simpler classifiers. Besides the easy and fast implementation, the related works showed that 

the precision of a Naïve Bayesian classifier can be unexpectedly high, reaching other more 

sophisticated classifiers in quality. Zozzle uses only a Naïve Bayesian classifier and also 

Prophiler and the approach by Likarish et al. presented results with it. 

However, I tried the Weka machine learning platform as well – which implements 

multiple classification algorithms, and provides a user friendly interface to import a feature 

dataset and to run the classification – to analyse the quality of other classifiers and to compare 

it with my implementation. 

After comparing my Naïve Bayesian Classifier, with the classifiers from Weka, the 

results showed that the Random Forest algorithm was the best in Precision, Recall and F-

measure. Therefore, I used and evaluated a Random Forest classifier implementation for the 

filter. 

3.4.1 Naïve Bayesian Classifier 

Bayesian classifiers are statistical classifiers. They can predict the probability that a 

given sample belongs to a particular class. In my case, a sample is a tuple of feature values 

(16 HTML and 22 JavaScript), the classes are malicious and benign. Naive Bayesian 

classifiers assume that the effect of an attribute value on a given class is independent of the 

values of the other attributes. This assumption is called class conditional independence. While 

this assumption is incorrect (e.g. string-based features, entropy-based features, function call-

based features), the classifier yields good results [16][40]. Another assumption is that the 

distribution of each feature in the training dataset is approximately the same as in the real 

world samples. 
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Bayesian classifier is based on Bayes’ theorem. According to the theorem, the 

probability of a sample belonging to a class .&, with �/, �1, … , �) features can be calculated 

with the following formula (3.2): 

�(.&|�/, �1, … , �)) =
"(45)"(67,68,…,69|45)

"(67,68,…,69)
  (3.2) 

The denominator does not depend on class, so only the nominator should be 

calculated. This will give a likelihood value, not an actual probability. The nominator can be 

transformed using the rule of conditional probability (3.3): 

�(.&)�(�/, �1, … , �)|.&) = �(.&) ∏ �(�<|�<=/, … , �/, .&))
<>/  (3.3) 

Then, by applying the independence assumption, we gain the following equation (3.4): 

�(.&) ∏ �(�<|�<=/, … , �/, .&))
<>/ = �(.&) ∏ �(�<|.&))

<>/  (3.4) 

�(.&) ∏ �(�<|.&))
<>/    (3.5) 

We want to calculate (3.5).  

The �(�<|.&) probabilities can be calculated from the training set. There are three 

possibilities regarding the type of the feature: 

I. If the feature is continuous: 

a) The estimated probability density function can be used to calculate the conditional 

probabilities. 

b) The feature values can be transformed to ordinal categories using a binning method. 

II. If the feature is discrete: 

a) The estimated probability density function, or probability mass function can be 

used to calculate the conditional probabilities. 

b) The feature values can be transformed to ordinal categories using a binning method. 

III. If the feature is logical, the categories are already provided. 

I chose to transform every numerical feature into ordinal categories. Some feature’s 

probability density function could be estimated by kernel function. It is a possibility to try in 

the future, but it is not trivial to use. Most of the features could be intuitively split into three 

or two categories (e.g. the presence or absence if iframe, or object tags) after analysing the 
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histograms, but I chose a more common way to bin the values
25

. For every feature, the mean 

and the standard deviation were calculated (using SPSS) and the borders of the bins came 

from the result: ���? − 
@A. A�B��@�C?;  ���?;  ���? + 
@A. A�B��@�C?. So, there were 

only maximum 4 categories for a feature: 

Category I: E <=  ���? − 
@A. A�B��@�C? 

Category II: ���? − 
@A. A�B��@�C? <  E <=  ���? 

Category III: ���? <  E <=  ���? + 
@A. A�B��@�C? 

Category IV: ���? + 
@A. A�B��@�C? <  E 

If the lower boundary (���? − 
@A. A�B��@�C?) was undefined (e.g., negative), I used 

only 3 categories. For logical features I used the true and false bins as is. 

After binning the values I created the frequency tables for each feature, to calculate the 

conditional probabilities (Table 3.4). 

Feature A Labelled as malicious Labelled as benign 

Category I M1 B1 

Category II M2 B2 

Category III M3 B3 

In Table 3.4, M1 is the number of samples labelled as malicious, where the value of 

Feature A falls into Category I. The other values are calculated like M1. To get conditional 

probabilities, the values in the frequency table are divided by the number of all 

maliciously/benignly labelled samples. 

From (3.5) we have just calculated the production part. The a priori probability of a 

class �(.&) could be calculated from the relative frequency of the classes in the training set, 

but this would assume that the frequency of the classes in the training set is the same as the 

probability of a randomly chosen sample being malicious or benign. Therefore, I used the 

assumption that spam filters usually use [41]: There is no a priori reason for any web page to 

be malicious rather than benign. So in my calculations: �(������C�
) = �(F�?�G?) = 0.5, 

so the multiplication with the a priori probabilities can be omitted. 
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 Other common binning (or discretization) methods are equal width interval, and equal frequency 

interval discretization, but neither of them could be used for all features. 

Table 3.4. A frequency table used to calculate conditional probabilities. 
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The classification algorithm for sample H, with feature values �/, �1, … , �) will be as 

follows: 

1. Put every feature value in the correct category of the feature. 

2. Calculate the frequencies from the corresponding cell of frequency table of each 

feature, and divide them with the number of malicious/benign samples in the 

training set. These are the relative frequencies, which by assumption equal the 

conditional probabilities. 

3. Multiply the relative frequencies for both malicious and benign class separately. 

The result is: IJ(������C�
|�/, �1, … , �)), IJ(F�?�G?|�/, �1, … , �)), where LH 

stands for likelihood. 

4. Compare the two numbers; the result is the class whose LH value is higher. We 

can calculate probabilities from likelihoods (3.6). 

�(������C�
|�/, �1, … , �)) =

KL(M+,&%&(N'|67,68,…,69)

KL(M+,&%&(N'|67,68,…,69)-KL(O$)&P)|67,68,…,69)
 (3.6) 

5. With the probabilities, it is possible to modify the detection threshold. The 

classification result is malicious if �(������C�
|�/, �1, … , �)) > @ℎ��
ℎC�A. 

With the threshold it is possible to optimize the false positive and False Negative 

Rate. 

3.4.2 Classifiers in Weka 

Weka is a collection of machine learning algorithms integrated in one tool. The 

algorithms can either be applied directly to a dataset or called from a Java code. I used the 

graphical user interface to import datasets and to run the classification algorithms. I applied 

the following classifiers on the dataset: Bayes Net [35], Naïve Bayes [36], Logistic [37], J48 

[38], Random Forest [39] and Random Tree. The detailed analysis of the classifiers and their 

algorithms was not in the scope of my work or this paper, so I only present the useful 

descriptions and publications about them. 

Weka produced detailed results about the created models, the TP and FP rate and it 

presented the confusion matrices, so it was evident to compare the results. 
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3.4.3 Random Forest 

The Random Forest is an ensemble learning algorithm used for classification and 

regression. An ensemble learning algorithm combines the results of multiple other learning 

algorithms to improve the accuracy. In case of the Random Forest technique, it creates 

multiple Decision Trees (the Forest) and uses the combined results of the Decision Trees for 

classification and regression. Decision Trees are Classification and Regression Trees (CART), 

because they can be used for classification and regression purposes. I used the trees for 

classification [44]. 

The Random Forest algorithm grows the trees as follows [42]: 

• Sample the training set at random, but with replacement. This sample will be the 

training set for growing the tree. 

• If there are M features, a number m<<M is specified. At each node, m features are 

selected at random out of the M and the best split on these m is used to split the node. 

The value of m is held constant during the forest growing. The common methods to 

define m are taking the square root of the number of features, or taking the logarithm. 

• Common methods to define the best split are using giri index, chi-square, information 

gain or reduction in variance. 

• Each tree is grown to the largest extent possible. There is no pruning. But to avoid large 

trees, which can cause overfitting, limiting the depth is necessary. 

• The prediction of the whole forest comes from the predictions of the trees. In case of 

classification, the class with the majority of the votes is used. 

The advantages of using the Random Forest algorithm relevant for my work are the 

following: it can handle both numerical and categorical data; it can handle a large dataset and 

a large number of features; it can give estimates of what variables are important in the 

classification; also, the generated forests can be saved. However, I have very little control of 

what the model does, and creating the model can be time consuming [39][42][44]. 

Optimizing and tuning a Random Forest algorithm for a special purpose is not an 

intuitive and easy task [43], I did not deal with this during my work. It is a possible way for 

the future. 
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4 Implementation 

This section describes the implementation process of the filter. It details the training 

set collection, the feature extraction from the parsed HTML and the JavaScript samples and 

the process of the classification. 

4.1 Programming Environment 

The filter was created in the .NET Core 1.1 Framework
26

, using the C#
27

 programming 

language. We chose C# because it is a high-level language with thorough documentation. It 

has language features, like await-async for asynchronous programming, LINQ for queries 

and anonymous functions, which are useful for web crawling and feature extraction. 

Furthermore, thanks to the .NET Core Framework, we can create cross-platform applications 

with C#. It was necessary for the filter to run on UNIX systems. Although .NET Core was 

announced only a year ago (June-July 2016) [45], the important packages and libraries for my 

work are supported by framework. For a code editor the Visual Studio Code
28

 was the ideal 

choice. 

I worked on a Ubuntu 14.04 virtual machine, which was running on a VMWare ESXi 

Server maintained by Ukatemi. Besides development, I used this computer to store the 

downloaded benign pages and the collected malicious ones. I also used my personal laptop 

with Windows 10 operating system for development, for analyzing the features. 

For version control, I used git
29

, which is integrated in Visual Studio Code. For 

inspecting the extracted features and creating the frequency tables, I used SPSS Statistics
30

 

from IBM and MATLAB
31

 from MathWorks. For running other classification algorithms, I 

used the Weka machine learning tool
32

. 
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 https://www.microsoft.com/net/core#windowscmd 
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 https://docs.microsoft.com/en-us/dotnet/csharp/ 

28
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29
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30
 https://www.ibm.com/analytics/us/en/technology/spss/ 

31
 https://www.mathworks.com/products/matlab.html 

32
 https://www.cs.waikato.ac.nz/ml/weka/ 



 32 

4.2 Training 

For training the classifiers I had the following tasks to do and implement: 

• Gather benign and malicious samples. 

• Extract the previously selected feature values from the collected files to create 

the training set. 

• Train the classifier with the training set. 

I implemented these functionalities as standalone programs, which can be used 

individually and also can be integrated into one filter. 

4.2.1 Collecting HTML and JavaScript samples 

As I described before, it is not trivial to collect malicious files with web crawling. I 

implemented a web crawler in C# to collect benign samples, and I implemented another 

application, which downloaded the messages from VirusTotal through HTTP from my 

mailbox and used the SHA-256 hashes to collect the files from HashDB. 

4.2.1.1 Benign sample collection  

To collect benign files, I implemented the Crawler module as a standalone program, 

which I also used later for crawling potentially malicious web pages. The program runs 

through the following steps: 

I. Initialization: The Crawler module has three command line parameters: the number of 

parallelly started crawlers, the number of parallel requests in one crawler and the minimum 

number of URLs to be fetched per crawler.  The initial seed URLs can be placed in a text 

file in the project root, one URL in one line (e.g., http://facebook.com). I allowed 

commenting URLs with ‘//’ for being more user friendly. For each URL, the program starts 

a separate crawling job, but first, the global HTTP headers are set. For creating and 

handling HTTP requests and replies I used the HttpClient [46] class located in the 

System.Net.Http namespace. I set the following headers and values: 

Referrer: https://www.google.com 

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8 

Accept-Language: en-US,en;q=0.5 
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Accept-Encoding: gzip, deflate 

User-Agent: Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:54.0) Gecko/20100101 

Firefox/54.0 

These are the traditional headers used by Mozilla and Chrome. This way, I can pretend, 

that I am requesting the page from a web browser as a regular unsuspecting user. 

For using gzip and deflate decompressions the AutomaticDecompression property 

of the HttpClient had to be set using HttpClientHandler. To analyse in- and 

outgoing HTTP messages I also set a proxy for the HttpClient to 127.0.0.1:8888 if the 

HTTP debugging application Fiddler
33

 was running on the machine. 

II. Sending HTTP requests: After the initialization, the crawling tasks were started for each 

seed URL (the number of the parallel crawlers was limited by a command line parameter). 

For containing and maintaining the URLs and other information collected from the seed 

URL, I created a Crawler class which represents one Crawler and is responsible for one 

seed URL. Each Crawler maintains a list about the extracted URLs from the html page 

located on the seed URL and the other HTML pages linked or referred from the seed.  

The Crawler sends multiple HTTP GET requests asynchronously to the extracted URLs 

(HttpClient.SendAsync(…)). C# provides asynchronous programming with 

async, and await keywords [47]. After the framework sends a request, it yields the 

control to the calling function which can continue with the program. This mechanism is 

useful for I/O-bound tasks (like HTTP requests), and can increase throughput.  

After any reply arrives without errors, the Crawler processes the response. Technically 

the Task objects returned from the async request function are stored in a list. After 

sending multiple requests, the Crawler waits for any reply to arrive: await 

Task.WhenAny(httpRequestTaskList).  

III. Processing the HTTP response: If the HTTP status code of the result is 200 OK, then it is 

processed as follows. The Mime-Type of the returned resource is determined as detailed in 

                                                 

33
 http://www.telerik.com/fiddler 
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Section 3.2. If the response is HTML or unknown, it is parsed as HTML to collect the 

referenced URLs
34

 and the inline JavaScript code. 

IV. Parsing the HTML and gathering new URLs and inline JavaScript: For parsing HTML 

documents, I used the popular HTMLAgilityPack
35

, which is available through the NuGet
36

 

package manager. This library can parse any text 

(HtmlDocument.LoadHtml(htmlSource)) without throwing exceptions, and it 

provides a list of occurred parsing errors (e.g., EndTagInvalidHere, 

TagNotOpened, TagNotClose). It also allows for querying and navigating through 

the created nodes with XPath, and LINQ. I used both of these technologies. After parsing 

the file, the presence of the html tag is checked. If it is present, then starts the processing 

of the HTML file. 

I iterate through the nodes of the document, and search for specific tags and attributes to 

gather the URLs. The tags and attributes are already mentioned in Section 3.2, Table 3.1. 

The values of an attribute can be easily extracted. After collecting the URLs I normalize 

them: the protocol (http://, https://) and www. are removed. I discard those 

URLs, which starts with mailto:, android-app:, ios-app: etc.,  and also those, 

whose extension is not in a list of accepted extensions: .js, .htm, .html, .xht, 

.php, .asp, .aspx. These are the most common extensions for files which provide 

or generate an HTML or JavaScript file. Also, the URLs, which were already fetched, are 

deleted. 

V. Ending the crawl, saving files: After reaching the specified number of successfully 

fetched URLs the Crawler saves the collected resources with .js, or .html extension 

and exits. A program is waiting for Crawlers to finish their task with Task.WhenAny, 

and starts another crawling with a new seed URL. 

  

                                                 

34
 There is no need for parsing the JavaScript while only collecting the training samples. But later, when 

the Crawler module is integrated with the Feature Extractor module the JavaScript parsing is also started here. 

35
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36
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The files were saved in a hierarchical structure presented in Figure 4.1.  

 

A directory was created for each seed URL (ukatemi.com), and in this, other directories 

were created for every domain referenced directly or indirectly from the seed 

(ukatemi.com, crysys.hu). The log file for the individual crawl (log.txt) and the successfully 

fetched ULRs (uris.txt) by the crawler were placed in the seed URL directory. In every 

domain directory, the downloaded files were stored with the actual URL as their name
37

 

(crysys.hu.html, ukatemi.com.js). The .html and .js extensions were always concatenated to 

the end of each filename to easily distinguish between HTML and JavaScript files any 

time. Later, every file was copied to a single directory and I deleted those, which have the 

same SHA-256 value, or the same name. 

4.2.1.2 Malicious sample collection  

As I mentioned above, malicious samples were collected through VirusTotal and 

Ukatemi’s HashDB. The mails from VirusTotal arrived at my @ukatemi.com email address. 

To manually process around 70.000 emails was practically infeasible, so I wrote a program to 

                                                 

37
 The URLs could not be used as file names, because of special characters, so I used the 

Uri.EscapeDataString() from the framework to create the file name. 

Figure 4.1. The directory structure of the downloaded HTML and JavaScript files. 
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automatically download the emails, check if they were caught by any antivirus products, and 

if they were, query HashDB with the SHA-256 hash, and save the actual malicious file. 

I connected to the mail server through HTTP. I did not use IMAP because .NET Core 

1.1 does not support it (however, it is now supported in the newly released 2.0 version). So I 

logged in to the web page, opened the mails virtually, fetched the html files and extracted the 

actual textual messages. An example for a message can be seen below: 

Link         :   

https://www.virustotal.com/intelligence/search/?query=4a745815202dcaeb8229a

9861c43a05d0e66ee8f1cbd4fcb43983911559e18d8 

[…] 

SHA256       :   

4a745815202dcaeb8229a9861c43a05d0e66ee8f1cbd4fcb43983911559e18d8 

 

Type         : HTML 

[…] 

First country: DE 

 

 

ALYac                         Trojan.Script.503239 

AVG                           JS:Includer-BMA [Trj] 

AVware                        Malware.JS.Generic (JS) 

[…] 

Kaspersky                     Trojan.HTML.Redirector.cv 

[…] 

ZoneAlarm                     Trojan.HTML.Redirector.cv 

 

2F 68 65 61 64 3E 0D 0A 3C 62 6F 64 79 3E 0D 0A   /head>..<body>.. 

[…] 

 

EXIF METADATA 

============= 

[…] 

 

I parsed the mail line by line and searched for specific parameter names like Link, 

SHA256, Type, and stored them in a Map. After the First Country value, I checked whether 

the antivirus alerts were missing or not. If there were any alerts, I used the HashDB’s REST 

service to download the malicious files by their SHA-256 hash value. 

4.2.2 Feature Extraction 

The Feature Extractor module is responsible for extracting the previously listed 

features from the downloaded HTML and JavaScript files. The simplifies class diagram of the 

module is shown in Figure 4.2.  
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The module has two tasks. First, it parses the given file, then it extracts (and saves) the 

features from the parsed file. 

I. Parsing: As the Crawler module identified the types of the downloaded files and saved 

them with proper extensions, the Feature Extractor module knows exactly how to handle 

each file. However, the types of the malicious files were not identified during the 

collection. So, if a file does not have extension, the Feature Extractor module tries to parse 

the file as HTML first, and if the parsed file contains an html tag, then it is handled as an 

HTML file. If it does not contain any html tag, then the file is parsed as JavaScript. The 

JavaScript parser I used throws an Exception if the file cannot be parsed as JavaScript. 

In this case the file is discarded. 

The Parser class represents the abstract base class of the parsers. The JSParser and 

the HTMLParser class inherit from the base class; they are responsible for containing and 

parsing a file. 

I used the same package (HtmlAgilityPack) and the same classes to parse a file as HTML 

as in the Crawler module. 

Figure 4.2. The simplified class diagram of the Feature Extractor module. 
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To parse a file as JavaScript, I used the Esprima.NET
38

 package by Sebastien Ros, which is 

also available through NuGet. The package supports the ECMAScript® 2017 Language 

Specification
39

, on which JavaScript is based. To parse a file and get the Abstract Syntax 

Tree the following few lines are needed: 

Esprima.JavaScriptParse parser = 

     new Esprima.JavaScriptParser(content, options); 

Esprima.Ast.Program program = parser.ParseProgram(); 

If the file cannot be parsed, the library throws a ParserException. 

Waiting for the HTTP responses is the most time consuming; it can take 10-30 seconds. 

However, JavaScript parsing also takes some time. It can take a few hundred milliseconds 

maximum depending on the size of the file. For one file, it is negligible, but parsing 10000-

100000 JavaScript files synchronously on thread can take minutes. Feature extraction is 

even more time consuming (for detailed results the reader is referred to Section 5.). To 

reduce this cost I implemented a custom thread pool. It would be easier to use the standard 

.NET ThreadPool
40

, with Task.Run()
41

, but the HttpClient also uses the 

ThreadPool, which has limited number of threads in it. My CustomThreadPool class is 

based on this implementation: [48]. It creates custom number of worker threads. They wait 

for a Parser in a Queue, which is not parsed the containing file yet. After a new 

Parser arrived, one thread gets it from the queue and starts the parsing. After the parsing 

has finished, the thread puts the Parser to a BlockingCollection, which contains 

the Parsers that are ready for feature extraction. 

II. Feature Extraction: First of all, I created two enumerations for the HTML and JavaScript 

features to reference them easily. Extracting features from the parsed HTML files and 

extracting features from the parser JavaScript files cannot be done in the same way. 

HTML feature extraction: The feature extraction from HTML files is done by 

HTMLFeatureCalculator (see Figure 4.2). First, the Calculator does a 

                                                 

38
 https://github.com/sebastienros/esprima-dotnet. 

39
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40
 https://msdn.microsoft.com/en-us/library/system.threading.threadpool 

(v=vs.110).aspx 

41
 https://msdn.microsoft.com/en-us/library/hh195051(v=vs.110).aspx 
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preprocessing, it runs through every node in the HtmlDocument created by the 

HTMLParser, and collects the following nodes in one Map with the element names as 

keys: script, iframe, frame, embed, object, form, link, a. This 

way, the Calculator runs through the nodes only once and not 7 times. 

The number of <iframe> tags, the number of <script> tags, the number of <embed> 

tags, and the number of <object> tags are the sizes of the Maps. 

The number of hidden elements is extracted using //*[@hidden] XPath query. XPath 

strings can be passed to the document.DocumentNode.SelectNodes(xpath) 

method, where the document is the parsed HTML. 

The number of small elements is extracted using //*[@width<=2 or @height<=2 

or @height*@width<=30] XPath query. 

The number of sources from an external domain feature is impossible to be implemented 

because for the malicious files the source URL of the file is unknown, so it cannot be 

compared to the referenced ULRs in the file. Therefore, I only counted the referenced 

absolute URLs (starting with http:// or https://). Those nodes, which can have a source 

attribute are already collected in a Map. 

The number of included URLs is extracted almost the same way as the previous feature, but 

the relative URLs were counted too. 

The number of parsing errors during parsing is provided by the parsed document in 

document.ParseErrors, which is an IEnumerable<HtmlParseErrorCode>. 

To collect the number of elements in the wrong place I counted the result of the 

/html/head//script|/html/body//iframe|/html/body//frame|/html

/body//embed|/html/body//object|/html/body//form XPath query. 

The number of characters in the HTML document, and the percentage of whitespace in the 

HTML document can be calculated from the unparsed, raw HTML. 

For calculating the percentage of JavaScript content, the JavaScript content is fetched from 

the document, which is mentioned in Section 4.2.1.1. 

The presence of <meta http-equiv=refresh> tag is calculated from the result of the 

//meta[@http-equiv='refresh'] XPath. If it returns null, there are no 

matching nodes. 
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To find the presence of scripts with wrong extension the script tags are checked in the map. 

If the value of their src attribute does not end with .js, then 1 is added to this feature value. 

To get the presence of double documents the number of html, head, body and title tags are 

checked. If the result is more than one in any of the mentioned tags then this feature is true, 

otherwise false. 

For storing the HTML features, the HTMLFeatureContainer class is used. 

JavaScript feature extraction: To calculate the JavaScript features the Abstract Syntax 

Tree (AST) is traversed. The AST is created by the Esprima .NET parser. The 

Esprima.Ast.Program has a root node the Program, which has a Body property 

containing the nodes in the first depth of the AST. The EcmaScript Specification lists the 

possible types of the AST nodes, and also states which nodes can contain which nodes and 

in which property. For example the JavaScript code const num = 42 has the following 

AST in JSON Hiba! A hivatkozási forrás nem található.: 

{ 

    "type": "Program", 

    "body": [ 

        { 

            "type": "VariableDeclaration", 

            "declarations": [ 

                { 

                    "type": "VariableDeclarator", 

                    "id": { 

                        "type": "Identifier", 

                        "name": "answer" 

                    }, 

                    "init": { 

                        "type": "Literal", 

                        "value": 42, 

                        "raw": "42" 

                    } 

                } 

            ], 

            "kind": "const" 

        } 

    ], 

    "sourceType": "script" 

} 

 

I wrote an anonymous function for each possible node type to traverse the tree. The 

functions are stored in a Dictionary<Nodes, Action<INode, List<Nodes>, 

JSFeatureContainer>> type object, where the key is the current node while 
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traversing the tree (Node is an enumeration containing every possible node name, 

provided by the library). The Action represents what should be done on the node to 

continue the traversing steps. The anonymous function has 3 parameters, a node which 

implements the INode interface, a list of the parent nodes in the tree, and the feature 

container for JavaScript features. I implemented a recursive 

preOrderTraverseTree() function, which calls the anonymous functions from the 

Map. The following Action has to be done on a CallExpression type node: 

(node, prevNodeTypes, container) => 

{ 

var n = node as CallExpression; 

container.NumOfMethodcalls++; 

//Expression 

preOrderTraverseTree(n.Callee, prevNodeTypes, container); 

foreach (var i in n.Arguments) 

{ 

//ArgumentListElement 

preOrderTraverseTree 

     (i as INode, prevNodeTypes, container); 

} 

} 

The given node is casted to CallExpression using the as keyword. The number of 

methodcalls feature is incremented, because the CallExpression node represents a 

function call. The node has two properties, which contain other nodes, and they are 

traversed using the function preOrderTraverseTree(). The code of the traversing is 

around 1000 line long because of the number of possible node types. The recursion ends on 

the following nodes: BreakStatement, ContinueStatement, 

DebuggerStatement, EmptyStatement, Identifier, Literal, 

SpreadElement, Super, ThisExpression, UpdateExpression. They do 

not have child nodes. The most important for the features are the Identifiers, and 

Literals. 

The number of method calls feature is increased on every CallExpression node. 

The method call based features: number of eval calls, number of timer function calls, 

number of string modification function calls, number of DOM modification function calls are 

extracted in an Identifier or a Literal node. In JavaScript a method can be called in 

three different ways: using a member expression or a call expression. For example, calling 

eval: 
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• eval(), where the callee of the CallExpression is an Identifier, which 

Name is “eval” 

• this[“eval”](), where this refers to the global object in JavaScript. The 

callee of the CallExpression is a MemberExpression. The 

MemberExpression’s Property value is a Literal (a StringLiteral 

precisely), which StringValue is “eval”. 

• this.eval(), where this refers to the global object in JavaScript. The callee of 

the CallExpression is a MemberExpression. The MemberExpression’s 

Property value is an Identifier, which Name is “eval”. 

For every function name (setTimeout, createElement, split etc.) these possible ways 

are checked in a Literal and an Indentifier node. This way an eval call can 

be hidden with a simple deobfuscation like this[“ev”+”al”](), this is the major 

drawback of static analysis. 

String based features: number of long string, number of suspicious strings, number of 

strings containing iframe, number of strings containing suspicious tag names, number of 

strings, maximum length of strings, average string length are extracted from a Literal node, 

using simple string manipulation functions. 

The number of navigator properties used feature is increased when the actual node is a 

Literal or an Indentifier node and the parent node is a MemberExpression. 

These are the last to possibilities mentioned in the function call based features. 

The number of long variable or function names are increased if the Name of the 

Identifier node is longer than 20 characters and the previous node was 

FunctionDeclaration or VariableDeclaration. 

The number of Unicode characters is calculated with the help of 

Encoding.ASCII.GetByteCount() and Encoding.UTF8.GetByteCount() 

methods. 

The average line length, percentage of whitespace, length of the script, and number of 

lines features are extracted from the raw JavaScript document using simple .NET Core 

Framework functions. 
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Entropy based features: average entropy of strings, max entropy of strings, entropy of 

script are calculated from the found StringLiterals. First, the number of each character 

in the string is calculated. Then, the relative frequencies are calculated. Finally, the entropy is 

the following equation (4.1): 

J(H) = − ∑ T(�)�CG1(T(�)))NM%
% &) U    (4.1) 

where H is the string, � is a character in the string, ?��� is the number of different characters 

in the string. 

The HTML and JavaScript features are saved in two files. The first row of each file is 

a header row, with the name of the features (separated by tabulators). Each following row 

represents a feature set for one source file, also separated by tabulators. I created one 

additional column in the files (IS_MALICIOUS), which is true if the actual sample is 

malicious, otherwise false. This column was useful later for SPSS, and Weka. 

4.2.3 Training and Validation 

After the feature extraction, the set of features was available in two text files, one for 

the JavaScript features and one for the HTML features. Both were extended with the class 

type (IS_MALICOUS) as mentioned above. 

4.2.3.1 Naïve Bayesian Classifier 

I divided the set into 70-30% randomly, and used the 70% as the training set, and the 

30% as the validation set. After the split, the two sets contained the number of HTML and 

JavaScript feature tuples given in Table 3.1. 

I decided to use the SPSS Statistics program to calculate the borders of the bins, and to 

create the frequency tables. I imported the training set and used the Visual Binning 

functionality of the program to transform the values of each type of feature (columns) to their 

bins. I created the cutpoints of bins at mean, mean+std.deviation, mean-

std.deviation. After the binning, I created a Custom Table for each feature, which 

provided the frequency tables. The frequency table of the number of eval calls feature can be 

seen in Table 4.1. 
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IS_MALICIOUS 

False True 

Count Column N % Count Column N % 

NUM_OF_EVALS (Binned) <= 0 59446 92.1% 782 61.5% 

1 - 1 2672 4.1% 291 22.9% 

2+ 2411 3.7% 199 15.6% 

After creating the frequency tables, I created the Classification module in C#. 

The structure of the module can be seen on Figure 4.3. Two classes: 

JavaScriptTrainingSet and HTMLTrainingSet store the frequency tables. 

 

I created dictionaries for discrete, continuous and logical features: 

Dictionary<HTMLFeatureType, Func<bool, (double, double)>> 

Dictionary<HTMLFeatureType, Func<double, (double, double)>> 

Dictionary<HTMLFeatureType, Func<int, (double, double)>> 

The key of the dictionaries is the type of the feature. The possible values are available in the 

HTMLFeatureType, and the JSFeatureType enumerations. The value of the 

dictionaries is an anonymous function. The function has one input parameter; the value of the 

Figure 4.1. Frequency table of the number of eval calls feature. 

Figure 4.3. The structure of the Classifier module. 
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feature (e.g.: true, 4.3, 5). The return value of the function is a ValueTuple containing the 

conditional probabilities of the sample being malicious/benign given the value of the feature.  

For example the function of the number of eval calls feature: 

(value) => 

{ 

if (value <= 0) 

return (59446 / (double) numOfBenign, 782 / (double) 

numOfMalicious); 

else if (value <= 1) 

return (2672 / (double) numOfBenign, 291 / (double) 

numOfMalicious); 

else 

return (2411 / (double) numOfBenign, 199 / (double) 

numOfMalicious); 

} 

Where the numbers in the conditions are the borders of the bins, the numbers after the 

returns are the values in the frequency tables. The numOfBenign and the 

numOfMalicious variables store the number of benign and malicious samples in the 

training set. I imported the values in the frequency table and the borders of the bins manually. 

To validate the classifier, I created the NaiveBayesianClassifier class, which 

receives an HTMLFeatureContainer, or a JSFeatureContainer and returns the 

probability of the sample being malicious. The ClassifyJavaScript and 

ClassifyHTML methods in the class query the conditional probabilities for every feature 

from the TrainingSet and multiply the values (3.4) to get the likelihoods. The last step is 

to normalize the likelihoods to get the actual probabilities (3.6). The return value is a 

probability of the sample being malicious given its feature values. 

I read the validation set line by line from the program, and classified the feature tuples 

using the classifier. Then, I analysed the confusion matrices to get the FPR and FNR. For 

detailed results, the reader is referred to Section 5. 
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4.2.3.2 Random Forest 

After seeing the good accuracy results from the Random Forest algorithm in Weka, I 

decided to try out and evaluate one for the filter in C#. I used a library called SharpLearning
42

, 

which is an open source machine learning library in C#. It does not support .NET Core 1.1, 

only the new 2.0 release, so I upgraded the Classification module to .NET Core 2.0. The filter 

does not use the Random Forest classifier yet, the cause is explained in Section 5. 

The library provides classes for reading feature values from CSV files, creating 

containers for the features, dividing the feature set to 70%-30% groups randomly, creating a 

Random Forest model from the feature set, predicting the classes of a test set, and creating the 

confusion matrix from the predicted and expected classes. 

Using the provided API and example codes [49], I loaded the feature values and used 

the IS_MALICIOUS column as the expected label: 

var parser = new CsvParser(() =>  

new StreamReader("js_all.csv"), ','); 

var targetName = "IS_MALICIOUS"; 

var targets = 

parser.EnumerateRows(targetName).ToF64Vector(); 

var observations = parser.EnumerateRows(c =>  

c != targetName).ToF64Matrix(); 

The observation variable is a matrix containing the feature tuples. The targets 

variable is a list containing the expected class. 

Then, I divided the feature set into 70%-30% partitions: 

var splitter = new RandomTrainingTestIndexSplitter<double> 

(trainingPercentage: 0.7, seed: 24); 

var trainingTestSplit = splitter. 

SplitSet(observations, targets); 

var trainSet = trainingTestSplit.TrainingSet; 

var testSet = trainingTestSplit.TestSet; 

The trainSet contains 70% of the data with the observations and targets. The 

testSet contains the 30% of the data with the observations and targets. 

                                                 

42
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After this, I created the model from the trainSet with the default constructor 

parameters and classified the observations in the testSet: 

var learner =  

new ClassificationRandomForestLearner(trees: 200); 

var model =  

learner.Learn(trainSet.Observations, trainSet.Targets); 

var predictions = model.Predict(testSet.Observations); 

Finally, I created the confusion matrix from the predicted and expected classes and 

compared the results to the Naïve Bayes implementation and to the classifiers from Weka. 

4.3 The Filter 

This section describes the differences and changes between the modules of the filter 

and the modules implemented for the training. There were only small modifications in the 

modules; the main functionality and responsibility of the modules are already stated. The 

overall structure of the filter can be seen in Figure 4.4. I combined the Crawler, the 

Feature Extractor and the Classifier modules. The input parameters of the filter 

are the suspicious URL sources, the maximum parallel crawlers and the maximum parallel 

HTTP requests per crawler. 

 

Figure 4.4. The structure of the filter. 
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The procedure of the classification is as follows: 

1. The Program initializes the Crawlers. 

2. Each Crawler sends HTTP requests to the specified URLs. 

3. The Crawler receives an HTTP reply and parses the received JavaScript files too, not 

only the HTMLs. 

4. After the parsing, the feature extraction from the parsed files is started immediately 

using the Feature Extraction module. 

5. After the feature extraction the classification is started using the Classification 

module. The module returns the probability of the analysed file being malicious in case 

of Naïve Bayes. In case of Random Forest, it returns the predicted class. 

6. The Crawler sends other requests or returns. Then, another Crawler is started. 

I have done performance measurements, which were promising. For further 

information, the reader is referred to Section 5. 

4.4 Logging 

I implemented thorough logging for every module with the log4net
43

 library available 

through NuGet. The format of a log message is the following: 

%date [%thread] %level %logger - %message%newline 

For example: 

2017-07-25 12:06:21,262 [Worker 1] INFO http://ukatemi 

.com - Trying to parse http://ukatemi.com/assets/js/jquery. 

scrollTo-1.4.2-min.js as JavaScript on custom ThreadPool. 

Logging is inevitable for a complex application like mine. 

                                                 

43 https://logging.apache.org/log4net/ 
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5 Results 

5.1 Comparing features 

I analysed the features in SPSS and Matlab and compared the distributions and 

frequency tables of benign and malicious feature values to find out which features can 

distinguish between the classes the most. 

Every HTML feature was seemingly able to differentiate between the classes but the 

most dominant features were the following: the number of parsing errors, the number of 

embeds, the number of objects and the presence of double document were those, whose values 

in malicious files were significantly higher than in benign files. The frequency table of these 4 

features can be seen in Table 5.1, where the labels next to the feature names represent the bins 

and their borders (except in the presence of double document feature, where those are the 

logical values). 

 Benign Malicious 

Number of parsing 

errors 

<= 0 73441 97.5% 547 49.4% 

1 - 5 1307 1.7% 405 36.6% 

6+ 613 0.8% 155 14.0% 

Number of objects 
<= 0 74441 98.8% 967 87.4% 

1+ 920 1.2% 140 12.6% 

Number of embeds 
<= 0 75155 99.7% 994 89.8% 

1+ 206 0.3% 113 10.2% 

Presence of double 
document 

False 69248 91.9% 726 65.6% 

True 6113 8.1% 381 34.4% 

The number of small elements was the feature which was higher in benign files than in 

malicious files and produced the highest difference (Table 5.2). 

 Benign Malicious 

Number of small 

elements 

<= 0 56140 74.5% 997 90.1% 

1+ 19221 25.5% 110 9.9% 

Table 5.1. The frequency table of the 4 dominant HTML features. 

Table 5.2. The frequency table of the number of small elements feature, 
which was higher in benign files. 
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In case of JavaScript features, the most dominant ones were the method call based 

ones like the number of timer function calls, the number of DOM modification function calls, 

the number  of string modification function calls and the number of eval function calls. The 

frequency table of these features can be seen in Table 5.3. 

 Benign Malicious 

Number of timer function 
calls 

<= 2 49519 76.7% 999 78.5% 

3 - 9 10406 16.1% 73 5.7% 

10+ 4604 7.1% 200 15.7% 

Number of DOM 
modification function 

calls 

<= 15 48649 75.4% 925 72.7% 

16 - 91 15032 23.3% 153 12.0% 

92+ 848 1.3% 194 15.3% 

Number of string 
modification function 

calls 

<= 15 54490 84.4% 999 78.5% 

16 - 70 7031 10.9% 68 5.3% 

71+ 3008 4.7% 205 16.1% 

Number of eval function 
calls 

<= 0 59446 92.1% 782 61.5% 

1 - 1 2672 4.1% 291 22.9% 

2+ 2411 3.7% 199 15.6% 

At first glance, the values of JavaScript features in malicious files differ more from the 

values in benign files than the values of HTML features. This was confirmed by the accuracy 

of the classifiers classifying HTML and JavaScript files. 

5.2 Accuracy 

The Naïve Bayesian classifier, which I implemented, returns the probability of a 

feature tuple being malicious. In order to use this, I define a threshold parameter, and if the 

probability is higher than the threshold, then we say that the sample is malicious, otherwise 

benign. By modifying the threshold parameter from 0 to 1, the confusion matrix [22] of the 

classifier can be created. The ROC curve is a graph, where the x axis represents the False 

Positive Rate, the y axis represents the False Negative Rate. The points on the curve are the 

FPR and FNR values using different threshold parameters. The curve can help to customize 

the classifier for different tasks. The ROC curve for the HTML and JavaScript features can be 

seen in Figure 5.1 and Figure 5.2. I labelled five points on the curve specifying the threshold 

value (t) and the FPR and FNR values. 

Table 5.3. The frequency table of the most dominant JavaScript features. 
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The curves were created from classifying the validation set (30% of all the collected 

samples). The ROC curves show that the classification is more accurate using JavaScript 

features. The FPR and FNR values for a specific threshold are 4-5% lower when classifying 

JavaScript. Also, as we want to lower the FNR (because we do not want to miss many 

malicious files and it is acceptable to classify some benign files as malicious) the FPR rate 
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Figure 5.1. The ROC curve using the JavaScript features. 

Figure 5.2. The ROC curve using the HTML features. 
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will increase. However, when using 0.2 as a threshold value, we discard more than half of the 

benign files, which will increase the throughput of a dynamic analyser. 

I created the confusion matrices for the 0.2 threshold and calculated the parameters 

listed in Section 3.3, the matrices can be seen in Table 5.4 and Table 5.5. The tables are 

created after classifying the validation set. It is clear that using these static features the 

Precision of the classifier is very low, but we did not expect higher Precision and the FNR to 

be low is the important criterion. Also, these tables show that the JavaScript features 

distinguish better between malicious and benign files than HTML features. 

HTML 
Labeled 

Malicious 
Labeled 
Benign 

 

Classified malicious 

True 
positive 

False 
positive 

Precision, Positive 

Predictive Value 

(TP/(TP+FP)) 

381 14188 2.62% 

Classified Benign 

False 
negative 

True 
negative 

Negative 

Predictive Value 

(TN/(FN+TN)) 

106 18097 99.42% 

 

Recall, 

Sensitivity 

(TP/(TP+FN)) 

Specifivity 

(TN/(TN+FP)) 
FPR = 43.95% 

FNR = 21.77% 

 
78.23% 56.05% 

Table 5.4. The confusion matrix using 0.2 threshold and classifying the HTML 
validation set. 

    

JavaScript 
Labeled 

Malicious 
Labeled 
Benign 

 

Classified malicious 

True 
positive 

False 
positive 

Positive Predictive 

Value 

(TP/(TP+FP)) 

433 11909 3.51% 

Classified Benign 

False 
negative 

True 
negative 

Negative 

Predictive Value 

(TN/(FN+TN)) 

79 15779 99.50% 

 

Sensitivity 

(TP/(TP+FN)) 

Specifivity 

(TN/(TN+FP)) 
FPR = 43.01% 

FNR = 15.43% 

 
84.57% 56.99% 

Table 5.5. The confusion matrix using 0.2 threshold and classifying the JavaScript 
validation set. 
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After analysing my implementation, I compared it to other classifiers. I used the Weka 

machine learning tool to train and validate other classifiers. I tried two methods to train and 

validate the classifiers. One of them was 10-fold cross validation, the other one was the 70-

30% partitioning, which I used to train and validate my Naïve Bayesian classifier. The results 

of the two methods were almost the same, the rates only differed maximum +/- 2-3%. I 

present the results of the 70-30% partitioning. I tried out the following classifiers: Bayes Net, 

Decision Table, Logistic, J48, Random Forest, Random Tree, Naïve Bayes (3 types, using 

normal distribution estimation, using kernel function to estimate distribution and using 

discretization/binning). In the following tables I used 0.5 as the threshold of my classifier, 

because this way the comparison with the other Bayesian classifiers is more precise. 

Figure 5.3 shows the False Negative Rate of each classifier in case of HTML samples, 

my classifier is the 1
st
 from the right. The figure shows that my classifier was the 4

th
 best 

comparing to others, the Random Tree, the Random Forest and the J48 classifiers produced 

the lowest FNRs. By setting the threshold to 0.2 my classifier produces 21.77% FNR. The 

normal distribution based, and the kernel function based Naïve Bayesian classifiers perform 

poor, so it was a good choice not to estimate the distributions of the feature values. In case of 

Precision, the Random Forest achieved the maximum: 97.63%. Combining Precision and 

Recall (1-FNR) to get F-measure, the Random Forest was the best, reaching 84.40%. My 

classifier performed poor in Precision as mentioned before, but we focused on FNR. 

Figure 5.3. The False Negative Rates of the classifiers using HTML features. 
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Figure 5.3. The False Negative Rate of the classifiers used using HTML features. 
Using t=0.5 for my Naïve Bayes. 
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Figure 5.4 shows the FNR of the classifiers using JavaScript features, my classifier is 

the 1
st
 from the right. The FNR rates were 4.8% lower using JavaScript features than using 

HTML features. The results were the same as using HTML features. The other Bayesian 

classifiers performed poor, the Random Forest, Random Tree and J48 classifiers were the 

best, and mine were the 4
th

. In case of JavaScript features the Random Forest produced the 

highest Precision (99.80%) and the highest F-measure (90.33%). 

 

 

 

 

 

 

 

 

 

 

We can draw two main conclusions from the accuracy results. The first one is that my 

implementation has a good FNR compared to others and modifying the threshold it can 

produce lower FNR than the other classifiers, this is good for our task. However, taking 

Precision and F-measure into account my classifier was poor, using a Random Tree, or 

Random Forest classifier is a possible way for the future. The second one is that using the 

selected features the Random Forest, the Random Tree and the J48 performed very well both 

in Precision and Recall. 

After analysing the result, I trained and evaluated a Random Forest algorithm in C#. 

The Naïve Bayesian Classifier has configurable FNR, but to reach 10% FNR the FPR rate 

will increase to 50% percent, which means that we can only halve the benign pages passed to 

the dynamic analyser. Assuming that malicious pages are rare, this means that we could only 
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Figure 5.4. The False Negative Rate of the classifiers using JavaScript features. Using 
t=0.5 for my Naïve Bayes. 
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double the throughput of the dynamic analyser. Lower than 1% FPR would be the best, which 

would mean that we could increase the throughput around 100 times. 

The Random Forest provided promising results. The FNR, FPR, Precision, Recall and 

F-measure rates compared to the best 4 classifiers in Weka and compared to my Naïve Bayes 

implementation (with 0.2 threshold) can be seen in Table 5.6 and Table 5.7 . 

HTML Features FPR FNR Precision Recall F-measure 

Decision Table 0.03% 42.34% 96.60% 57.66% 72.21% 

J48 0.09% 29.05% 91.57% 70.95% 79.95% 

Random Forest 0.02% 25.68% 97.63% 74.32% 84.40% 

Random Tree 0.32% 21.85% 76.94% 78.15% 77.54% 

My Naïve Bayes 43.95% 21.77% 2.62% 78.23% 5.06% 

My Random Forest 0.02% 29.32% 98.48% 70.68% 82.29% 

Table 5.6. The FPR, FNR, Precision, Recall and F-measure values of the best classifiers from 
Weka, and the Naïve Bayes (with t=0.2) and Random Forest classifier used in the filter using 

HTML features.  
 

JavaScript Features FPR FNR Precision Recall F-measure 

Decision Table 0.00% 37.94% 99.72% 62.06% 76.50% 

J48 0.18% 23.05% 89.67% 76.95% 82.82% 

Random Forest 0.00% 17.50% 99.80% 82.50% 90.33% 

Random Tree 0.48% 17.91% 77.82% 82.09% 79.90% 

My Naïve Bayes 43.01% 15.43% 3.51% 84.57% 6.74% 

My Random Forest 0.01% 23.17% 99.49% 76.83% 86.70% 

Table 5.7. The FPR, FNR, Precision, Recall and F-measure values of the best classifiers from 
Weka, and the Naïve Bayes (with t=0.2) and Random Forest classifier used in the filter using 

JavaScript features. 

The Random Forest implementation in C# reached the best classifiers in accuracy, 

with around 0.01% FPR and 25% FNR. 

The current configuration of the filter uses my Naïve Bayes implementation with 0.2 

threshold, because the most important aim is not to miss many malicious pages, but more than 

half of the benign pages are discarded. The Random Forest algorithm was evaluated with the 

provided default parameters (e.g.: 100 trees, 2000 maximum tree depth, 0.00001 minimum 

information gain before a split is made). We need further optimization to create the best 

model and to lower the FNR before using the Random Forest as the classifier of the filter. 
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5.3 Performance 

Besides the low False Positive Rate, the other requirement for the filter was to be able 

to analyse more than 10.000 or even more than 100.000 URLs per day. I started the filter to 

analyse around 100.000 URLs. The test performance run was carried out on a virtual machine 

with 2 CPU cores. I used my seed URL list containing around 400 URLs to run a scan, and I 

set the filter to analyse at least 300 URLs per seed. I started 10 crawlers simultaneously; each 

of them sent 20 HTTP requests parallelly. It took 188 minutes to classify 118889 files. This 

means around 95ms per URL, and 909500 URL per day. During the analysis, each crawler 

spent around 50-60% of their time sending, waiting for and processing requests, 30-40% of 

the time with feature extraction and 10% of the time parsing the files. The time consumed by 

classification is negligible; it took only a few milliseconds per crawler (either with Naïve 

Bayes or Random Forest). These results make it possible to use the filter to classify a million 

URLs per day and pass the potentially malicious ones to a dynamic analyser. 
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6 Future Work 

I believe that much remains to be done in my work. In this section I am going to list 

the possible future improvements I have thought of. 

6.1 Improving Throughput 

The performance results clearly showed that the most time consuming tasks are: 

waiting for HTTP replies, extracting features and parsing the files. Increasing and optimizing 

the requests sent simultaneously can increase the throughput. Also, the custom ThreadPool 

I used for feature extraction can be implemented in the filter too. 

6.2 Filtering the Training Set 

As I have mentioned before, I did not manually analyse the samples of the benign and 

the malicious training and validation set.  

Benign samples: With around 100.000 HTML and JavaScript benign samples, the 

manual analysis is infeasible, but it is not needed. It is a good assumption that crawling the 

most popular web sites will not result malicious samples. Also, to remove duplicate files, 

matching the URLs, and the SHA-256 hashes is also considered enough. 

Malicious samples: The malicious set is more problematic. I only identified the 

samples with their SHA-256 hash value, so it is possible that there are similar samples. 

Hashing files which only differ in a whitespace at the end, or a string containing a timestamp 

will result in completely different hash values. Also, since I collected samples only in 2 

months’ time (2017 August - September) it is possible that the result set contains similar 

attack types and exploits, so the classifier only learned those types. By manually analysing the 

malicious set and collecting other samples, the precision of the classifier could be increased. 

6.3 Modifying Features  

Selecting those features, which describes best the differences between malicious and 

benign files is important. In the future there are three possible ways to make improvements 

with the features: 
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• Removing those features, which values are very similar in malicious and 

benign files, based in their distributions and other statistical properties. 

• Selecting and implementing more sophisticated features like: number of event 

attachments, shellcode presence probability or presences of deobfuscation 

routines [16]. 

• Besides analysing the JavaScript and the HTML source checking the URL or 

the whois
44

 information of the host of the examined web page can also be 

interesting [20]. 

6.4 Training Other Classifier 

Naïve Bayesian Classifier was a good choice at first, for creating a prototype, because 

it is easy to understand, train and implement and it is also one of the fastest classifiers. The 

False Negative Rate was good compared to other classifiers. However, the precision of a 

Naïve Bayesian Classifier is quite poor compared to other, more sophisticated classifiers like 

J48, Random Forest and Random Tree. This was clearly seen in the results of the Weka tool, 

and from the related works. With other classification methods the filter could produce lower 

false positives, lower false negatives and better precision. Optimizing the Random Forest 

algorithm and substituting the Naïve Bayesian Classifier with it is a possible way. 

                                                 

44 https://en.wikipedia.org/wiki/WHOIS 
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7 Conculsions 

As the web-based malware distribution spreads, there is a need for fast and precise 

malware detection. The state of the art malware detection technique is to use a dynamic 

analyser, which loads the page and executes the JavaScript code. This is usually done on 

isolated virtual machines. The problem with dynamic analysers is that they are slow and they 

cannot check hundred thousand URLs per day. Our aim was to create a static analyser, which 

classifies a page only using its lexical and syntactical parameters, without any execution. This 

analyser can be used as a filter for a dynamic analyser, or a filter used in web browsers. 

Our approach is based on previous research results. We collected benign files using a 

web crawler, which we implemented. We gathered malicious files, using VirusTotal’s 

notification service and Ukatemi’s malware database. We defined 16 HTML and 22 

JavaScript features, and extracted them from the collected samples, which provided the 

training set. After the extraction, we implemented a Naïve Bayesian Classifier, trained it and 

validated it.  

The two main requirements from the filter were high throughput, and low False 

Negative Rate. The filter contains three modules. The first one is a web crawler, which 

downloads and parses the given URLs. The second one is responsible for extracting features 

from the parsed JavaScript and HTML files. The third module is the Naïve Bayesian classifier 

used for classifying the downloaded files using the extracted features. All three modules were 

implemented by me. 

The results were promising. The filter was able to analyse around a million URLs per 

day. We also tried and compared our classifier to others using the Weka machine learning 

tool. Our classifier was able to achieve around 15-30% False Negative Rate, which was 

similar to the previous results. JavaScript features produced better results than HTML 

features. There were three classifiers, Random Tree, Random Forest and J48, which 

outperformed our implementation and produced more than 80% Precision and Recall. This 

means that using static features it is possible to classify HTML and JavaScript files 

accurately. Seeing the results, I also integrated a Random Tree classifier with the filter, which 

achieved 99% Precision and 20-25% FNR, but we need further optimization to substitute the 

Naïve Bayesian Classifier. 
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There are multiple ways to develop and optimize the filter. Using another classifier, 

rather than Naïve Bayes is a possible way. Also, modifying the feature set can help to lower 

the False Positive Rate and to increase the Precision. 
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Appendix 

The Yara rule used for gathering malicious HTML and JavaScript files from VirusTotal: 

rule js:js { 

 

strings: 

 

$php="<?" 

$mz="MZ" 

$pk="PK" 

$c1="function" 

$c2="this." 

$c3="()" 

$c4="var" 

 

condition: 

(not $mz at 0) and (not $pk at 0) and (3 of ($c*)) and not 

$php 

 

} 


