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Abstract 

Machine and deep learning allow computers to solve complex tasks; object 

detection, speech synthesis, or time series prediction are good examples. Technological 

advancement allows these models to be available on multiple devices. Meanwhile, 

smartphones have become part of our everyday life. Combining machine learning and 

mobile devices can open new opportunities that help us in our everyday lives. 

Although the range of possibilities is broad, the on-device inference is still rarely 

used. It can raise problems, such as lower availability, Internet dependency, increased 

network traffic, or personal data release. This report aimed to demonstrate how to create 

a machine learning-based system capable of providing solutions to these problems - 

running in real-time, independently, on-device. 

I chose stolen vehicle detection as a domain area because it involves numerous 

tasks (vehicle and license plate detection, optical character recognition) to solve. Using 

an ordinary smartphone, even as a dashcam, a driver can continuously monitor the traffic 

and report alerts automatically while driving. Although similar pre-installed camera 

systems already exist, they typically run on stationary devices. The chosen task is not just 

one of the first such applications in the smartphone market; it can be easily generalized 

to other domains. 

The steps necessary for composing the model, such as dataset creation, model 

building, training, and tweaking, are described in detail. Besides, I explain the Android 

client and the server app broadly to give a complete picture of what is needed to bring 

such a system to life. 
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Kivonat 

A gépi tanulás segítségével komplex feladatok számítógépes megoldására nyílik 

lehetőségünk; objektumdetektálás, beszédszintézis, vagy idősor előrejelzés is lehetséges. 

A technológia fejlődése lehetővé teszi, hogy ennek a tudományágnak a vívmányai egyre 

több eszközön megjelenjenek. Ezzel párhuzamosan a mobiltelefonok mindennapi életünk 

részévé váltak. A gépi tanulás és a mobil eszközök ötvözése új lehetőségeket nyithat, 

melyek kisegítenek minket mindennapjainkban. 

Habár a lehetőségek tárháza széles, az eszközön történő futtatás még igen ritka. 

Ez olyan problémákat okozhat, mint az alacsony rendelkezésre állás, az internettől való 

függés, megnövekedő hálózati forgalom, vagy a személyes adatok védelmének kérdése. 

Ennek a dolgozatnak a célja, hogy demonstrálja, hogyan készülhet egy olyan rendszer a 

gépi tanulás segítségével, ami ezen problémákat kiküszöböli – valós időben, függetlenül 

futva hétköznapi eszközökön. 

Azért a lopott járművek felismerését választottam, mert ez számos megoldandó 

részfeladatot foglal magába (jármű- és rendszámtábla detektálás, karakterfelismerés). 

Egy átlagos okostelefont fedélzeti kameraként használva egy autós folyamatosan nézheti 

a forgalmat és automatikusan bejelentést tehet, akár vezetés közben is. Habár hasonló 

telepített kamerarendszerek már léteznek, ezek jellemzően helyhez kötött eszközökön 

futnak. A választott feladat nem csak az egyik első ilyen alkalmazás az okostelefonok 

piacán, könnyen általánosítható és alkalmazható más problémakörökben is. 

Az algoritmus készítéséhez szükséges lépéseket, úgymint az adatok előkészítését, 

a modell kialakítását, tanítását és finomhangolását részletekbe menően bemutatom. 

Továbbá az Android kliens és a szerveroldali alkalmazás is röviden ismertetésre kerül, 

hogy képet kapjon az Olvasó, mi minden szükséges egy ilyen rendszer életre keltéséhez. 
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1. Introduction 

Nowadays, smart devices are an integral part of our everyday lives. The number 

of gadgets around us is growing, as are the demands towards them. Thanks to continuous 

advances in technology, these demands can be better served. Mobile phones have become 

such a part of our daily lives that more than 3.5 billion users now have such a device. 

 

Figure 1: Growth of smartphone users worldwide. Source: [1]  

Meanwhile, with machine learning, we can solve increasingly complex tasks by 

computers; object detection and emotion recognition, speech synthesis, time series 

prediction, even automated planning are possible. These are complex tasks that would be 

very time-consuming to program “by hand”.  

Technological advances help to deploy ML-based algorithms on more and more 

devices. By combining the two, we can provide solutions to traditionally hard-to-

implement tasks accessible from anyone’s pocket. 

I aim to create an end-to-end stolen vehicle detection system. I chose this domain 

area because it involves numerous tasks (vehicle and license plate detection, optical 

character recognition) to solve. Using an ordinary smartphone, even as a dashcam, a 

driver can continuously monitor the traffic and report alerts automatically while driving. 

Although similar pre-installed camera systems already exist, they typically run on 

stationary devices. The chosen task is not just one of the first such applications in the 

smartphone market; it can be easily generalized to other domains. 
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The structure of the report is as follows: 

• In section 2, the system- and module level specification is described. 

• Section 3 contains the presentation of the technologies used during this 

work. 

• Section 4 is about stolen vehicle detection; data preparation and the model 

construction steps are presented. Besides, theoretical insights are also 

provided. 

• Section 5 contains the Android and server applications’ introduction with 

the most critical design decisions and implementation details. 

• Section 6 provides a summary of the work done, where further 

development possibilities are also covered, as well as the knowledge and 

experience gained during this work. 
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2. Specification 

In this section, the specification of the whole system and each subpart of it are 

described. 

2.1 System requirements 

The main goals are to detect, report, and track stolen vehicles anywhere by 

portable devices. Thus, it is possible to monitor arbitrary places without the need for pre-

installed stationary devices.  

Object detection is challenging to algorithmize, so it is worth turning to the toolkit 

of machine learning. Since detection should run in real-time, the detector needs to run on-

device. Although it would be possible to run the model on a server and communicate with 

it, this would have the following disadvantages: 

• Sending images over the network is resource-intensive and would increase 

data traffic. 

• The server may be unavailable or respond slowly due to its load. 

• An Internet connection with the necessary bandwidth may not always be 

available to the user. 

Therefore, I decided to choose the solution of on-device inference. This puts the 

extra computational effort on the client system in exchange for eliminating the problems 

listed above. 

2.2 Architecture 

The system is planned to be based on a client-server architecture. The clients are 

smartphone applications that can detect vehicles independently. The server stores report 

information (coordinates, messages, timestamps) and provides a REST API for clients to 

report or query. 
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Figure 2: High-level system architecture 

2.3 Front end 

The client application’s two main functionalities are sending reports and viewing 

them.  

To report a suspicious vehicle, the user needs to automatically receive an alert 

generated when a stolen vehicle appears on an image. The image source can be the 

camera’s live feed or a loaded picture stored on the device. When an alert appears, the 

user can individually check them (as there can be multiple findings) and add to the 

recognitions queue (which persists its content and sends them to the server) or delete. To 

create a valid recognition, two more things are needed: timestamp and coordinates. In the 

case of live detection, the timestamp is the UTC system time, and the coordinates come 

from the GPS position of the device. When a loaded image produces an alert, timestamp 

and coordinates come from the image EXIF metadata. When inspecting a pending alert 

or a non-delivered recognition, the user can append additional text to his/her finding or 

discard it but cannot modify its picture/timestamp/coordinates to minimize the potential 

for abuse. 

An interactive map allows users to see the status of reports. It displays valid 

recognitions on the map, and each recognition details can be seen by clicking on it. 

In addition to the main functionalities, Figure 3 represents the general use-cases. 
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Figure 3: Application use case 

2.4 Back end 

The server application provides the API for the clients and manages users. The 

API can retrieve the list of stolen vehicles, list of recent recognitions with location, and 

is also able to receive new reports. 

The data source of stolen vehicles is the Hungarian Police website, from where 

the data is extracted via web scraping. 

Because some of the data stored on the server include user accounts, and some 

contain license plate and location data for suspicious vehicles, sophisticated authorization 

management and authentication are required to prevent sensitive data leakage. 

The API can only be used by authorized users whose permissions can be changed 

by administrators anytime. It is crucial that the data stored on the server can be restored 

in case of an error and that changes to the data and unexpected events can be reviewed 

afterward. 
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3. Technologies 

This section presents the technologies used to build the detector pipeline and 

create Android and server applications. 

3.1 Deep learning 

I mainly used the Python programming language[1] in deep learning-related tasks. 

Python is an interpreted, dynamically typed, high-level language with an object-oriented 

approach. 

Numerous libraries offer a deep learning repertoire - some of them have built-in 

object detection capabilities, like FAIR’s Detectron, TorchVision, or TensorFlow’s 

Object Detection API. In the following, I only describe the technologies I used during 

this work. The choice was driven primarily by the desire for Android interoperability, 

which is currently not widely supported by other tools than the selected ones. 

3.1.1 TensorFlow 

TensorFlow is an open-source machine learning platform developed by Google 

Brains. It provides rich Python and C APIs and works well with the popular Keras neural 

network library. TF also works well with the Colaboratory environment where 

GPU/TPU-based works are easy to build without local resources. 

TensorFlow uses Google’s protobuf[8] format to store models. In this case, a 

.proto file defines a scheme, and Protocol Buffers generates the content. It is a denser 

format than XML or JSON, and it supports fast serialization, prevents scheme-violations, 

and guarantees type-safety[10]. In turn, protobuf files are not as human-readable as 

opposed to JSON or XML. 

In September 2019, TensorFlow 2.0 has been released with Eager mode, which 

broke up with the former “define-and-run” [6] scheme (where a network is statically 

defined and fixed, and then the user periodically feeds it with batches of training data). 

Eager uses a “define-by-run” approach[7], where operations are immediately evaluated 

without building graphs. 
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3.1.2 TF Lite 

TFLite is a lightweight, speed, or storage optimized format aimed at deploying 

models on smartphones and IoT devices. Trained TensorFlow models can be transformed 

into this format with the TFLite converter (standalone TFLite files cannot be trained).  

TensorFlow Lite uses the Flat Buffer[9] format. It is similar to TensorFlow’s 

protobuf; the main difference is that Flat Buffers do not require deserializing the entire 

content (coupled with per-object memory allocation) before accessing an item in it. 

Therefore, these files consume significantly less memory than protobufs[10]. On the other 

hand, Flat Buffer encoding is more complicated than in JSON/protobuf formats – 

therefore, TensorFlow does not use it. It is also the reason why TFLite models cannot be 

trained. 

During TFLite conversion, it can be selected whether it is required to minimize 

model size further (above protobuf -> Flat Buffer conversion) with a slight model 

accuracy trade-off or not. These are the quantization options used to achieve further 

performance gains (2-3x faster inference, 2-4x smaller networks). I used full integer 

quantization[11] in which all the model maths are int8 based calculations instead of the 

original float32. 

3.1.3 TensorFlow Object Detection API 

Object Detection API[12] is an open-source framework built on top of 

TensorFlow to solve complex computer vision tasks, like object detection or semantic 

segmentation.  

The library provides a Model Zoo in which pre-trained models are available. The 

API supports one-staged meta architectures like SSDs and CenterNets as well as two-

staged R-CNN variants. However, other types like Facebook AI’s YOLO architecture is 

missing (which is similar to Google’s SSD – probably they prefer their in-house solution). 

As there are many parameters to tweak during model creation, the API has 

introduced a configuration language in which it is possible to fine-tune the training 

pipeline – e.g., data source, pre-processing steps, optimization algorithms, input/output 

directories. Possible configuration parameters are described in the corresponding proto 

files. Configuration handles custom components (like a new backbone CNN to use) as 

well.  
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During this work, support for TF2 has arrived, making it possible to use Keras 

models in detector architectures. While migrating the project to the new API version, it 

was possible to compare the two types of TensorFlow as well. The library has actively 

evolved in the past months, and although reliability issues often arise, rapid 

implementations of the latest research (e.g., FPN, CenterNet) helped me understanding 

novel concepts. 

3.1.4 TensorBoard 

The TensorBoard component provides a useful visualization tool where users see 

a dashboard of model performance and training/evaluation details. It can also display the 

current images fed to the network, the model’s answer to it, and many more. I used this 

tool to monitor the training/evaluation processes. 

3.2 Application development 

I primarily used the Kotlin programming language[3] in both the Android client 

and the backend. Kotlin is a relatively new, statically typed, cross-platform language with 

type inference. In addition to the object-oriented approach, it also contains functional 

programming tools. 

3.2.1 Android 

Android provides an extensive application development ecosystem. I mainly used 

the AndroidX namespace elements, which replaces the previous Support Library since 

Android 9.0. It is part of Android Jetpack, a collection of components for which the 

platform promises long-term support. Of these libraries, the application extensively uses 

the CameraX API to manage device cameras. The ViewModel component acts as a 

moderator between the user interface and business logic in the architecture. The app 

contains a relational database implemented by the Room Persistence Library, which 

provides an abstraction layer over SQLite to allow for more robust database access. 

I used a pre-trained ML Kit OCR model running on-device to read license plate 

texts on image snippets. To boost user experience, I decided to use a text-to-speech engine 

provided by the operating system to read aloud alerts (useful if a user wants notifications 

while driving or wants to hear how to use the application). 
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Material Design defines guidelines for building the interface to maximize user 

experience. On Android, Material elements supported by the platform can be accessed 

through a library. The application uses its concepts, styles, icons, fonts, and UI elements 

(e.g., Floating Action Button, Snackbar). 

3.2.2 Server 

I used Ktor[4] for the back end. It is an open-source, asynchronous framework for 

creating microservices and web applications. JSON data handling was implemented with 

the help of Gson. Testing the server API was mainly conducted by Postman, and for web 

scraping, I used ParseHub. 

3.3 Environment 

The environment in which I concluded training was Google Colaboratory Pro. It 

is a cloud-based Jupyter notebook service with resources on demand. I was using an 

Nvidia Tesla V100 SXM2[5] GPU with 16 GB memory. I synchronized it with a Google 

Drive account from where the prepared dataset is available and where model checkpoints 

and output files are stored. The Android application was developed with Android Studio. 
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4. Stolen vehicle detection 

In this section, I discuss the work done related to object detection. In addition to 

the model development phases, I also describe the related research. Since deep learning 

requires a greater theoretical background, I assume knowledge of its general principles 

(backpropagation, convolutional neural networks) for reasons of length. I describe the 

theoretical background related to object detection in detail. 

Before starting the task, it is worth clarifying what the exact requirement is. The 

main goal is to detect stolen vehicles on input images. This problem can be broken down 

into two subtasks: object detection and optical character recognition. Related subtasks are 

also required, such as resizing images. Since this is easy to algorithmize, this will not be 

the task of the model. In general, a machine learning development process is time-

consuming, so it should only be used if it is firmly justified.  

Object detection is a difficult task to algorithmize, so it is worth turning to the 

toolkit of ML. Although there are popular machine learning solutions, like HOG-Linear 

SVM based detectors[13], deep learning-based object detection has been a research 

hotspot in recent years due to its powerful learning ability[14]. Therefore, I chose this 

option to create a model with. 

In this part, I describe the process of making the detector in detail. Since the 

application uses a pre-trained Optical Character Recognition model, I will not go into 

OCRs’ details. 

4.1 Data preparation 

The following section describes collecting, preparing, analyzing, transforming, 

building, and validating the database needed to train the detector. 

4.1.1 Requirements 

An essential aspect of obtaining the data was to cover as many images as possible 

with labeled license plates. The assumption was that thousands of images were needed to 

ensure proper data diversity. The aim was to get not only license plate annotations but 

vehicle annotations as well. The reason behind this was that I wanted to leave open the 
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possibility to classify license recognitions based on whether they took place within a 

vehicle object or not. 

4.1.2 Sources 

There were not any standalone off the shelf datasets meeting these requirements. 

The research was conducted mainly on Kaggle and with the Google Dataset Search 

engine. The most promising sets had a few hundred labels, so I changed the approach. 

I examined the COCO[15] (Common Objects in Context) and the OID[16] (Open 

Images) datasets. These are famously large sets containing 123,287 and roughly 2 million 

detection images. My assumption was that if at least one of them contains license plate 

annotations, the number of these labels would be enough. Of these, OID contained a 

vehicle registration plate class. As the dataset is huge, I used a Python toolkit to download 

all the 6,867 images containing these items. I also downloaded all the detection 

annotations in separate CSV files (OID train, validation, test). The total size of all files 

was 2.352 GB. 

4.1.3 Pre-processing 

The application is not limited to detect only stolen cars. It is necessary because 

the stolen vehicle database does not just contain cars, nor does the police data source. As 

a vehicle class was also needed, I decided to build it the following way. 

All the annotations of the downloaded images were kept. OID has a hierarchical 

class structure from which I chose nine classes representing the new vehicle class (car, 

airplane, helicopter, boat, motorcycle, bus, taxi, truck, ambulance). The original OID 

vehicle class was discarded as it contained objects challenging to place in other subclasses 

like surfboards, wheelchairs. To keep the number of the resulting classes equal, a few less 

essential classes were also discarded (like aerial vehicle or snowmobile). 
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Figure 4: Selected classes from the original OID branch. License plate, vehicle 

4.1.4 Analysis 

To analyze the downloaded content, a Power BI report was created. It uses CSV 

files as data sources. The raw dataset contains 6867 images with 28,102 bounding boxes, 

which is roughly four annotations per image. There are 9934 vehicle registration plate 

annotations, which is one-third of all the boxes. The report revealed that the average 

image size is 1005x753 pixels. While most images have a size of 1024 by 768, some 

exemptions do occur. As the model input is constantly resized, this is not important to 

examine more thoroughly. 

Figure 5 shows that unless more images in which license plates are presented, 

there are more vehicle boxes. The pie chart on the left shows class multiplicities compared 

to each other, while the column chart on the right is not intended to compare the values 

relative to each other but to the maximum number of images. 
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Figure 5: Multiplicity of class boxes and the number of images in which the class is presented 

The average bounding box dimensions for license plates can be found in Figure 

6. They occupy an average of 10% of both the X and Y axes, which means the detector 

should have wider anchor boxes of this size. It confirms that the data looks like it should. 

 

Figure 6: Mean and average bounding boxes of License plates 
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OID has a separate train, validation, and test set. In the data, it turned out they 

differ in bounding box position distributions, and there is also a slight difference in the 

average box numbers per image (4.09 vs. 3.33). As the average license plate is also bigger 

in the validation set, it may be misleading about the model’s real performance. The issue 

was first indicated when I was comparing the average boxes. A closer look at the 

symptom confirmed that some outliers did not cause it - the reason was the difference in 

the distribution of the box sizes across the subsets. 

 

Figure 7: Mean and average bounding boxes of train and validation sets 

4.1.5 Transformation 

To fix this problem, data aggregation and partition have been applied. First, all 

the images and annotations have been aggregated then saved to tfrecords[17]. It is a binary 

format that stores images and their custom labels together. This format’s main advantage 

is that it can be fed rapidly to a model that is not negligible if the dataset has thousands 

of instances. First, I selected the fields to be serialized, and then an encoder Python script 

was created. Detail contents of such a record are shown below: 
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features { 
  feature { 
    key: "image/encoded" 
    value { 
      bytes_list { 
        value: binary encoded image 
      } 
    } 
  } 
  feature { 
    key: "image/height" 
    value { 
      int64_list { 
        value: 769 
      } 
    } 
  } 
… 
  feature { 
    key: "image/object/bbox/xmax" 
    value { 
      float_list { 
        value: 0.800000011920929 
        value: 0.3006249964237213 
      } 
    } 
  } 
  feature { 
    key: "image/object/class/text" 
    value { 
      bytes_list { 
        value: "Vehicle" 
        value: "Vehicle registration plate" 
      } 
    } 
  } 
… 
} 

The dataset has been evenly sharded between 14 files using the Euclidean division 

(𝑛%14). While generating tfrecord batches, I also created the corresponding CSV files to 

analyze later. A validation and a test batch have been selected, and all the other files 

became part of the training set.  

This way, the problem discussed above has been resolved. Figure 8 shows the 

average bounding boxes of test (12 batches), validation (1 batch), and train (1 batch) sets. 

They are almost identical. 
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Figure 8: Average bounding boxes after redistributing train, validation, and test sets 

4.1.6 Evaluation 

The final dataset has 5,793 (84%) training, 537 (7.8%) validation, and 537 (7.8%) 

test images. It has a 23,739 (84%) training, 2,200 (7,8%) validation, and 2163 (7,7%) test 

bounding box distribution. There are general dataset division guidelines (like the 70-20-

10 recommendation), which I deviated from. In my opinion, the validation and test sets 

are already sufficiently representative after reshuffling them in the order of thousands; 

therefore, I tried to maximize the size of the train set. 

I created a tfrecord viewer script to inspect whether it is possible to decode images 

and annotations. I found that the data files were restorable. Here are some samples from 

each subset decoded from batch files. 

 

Figure 9: Training samples with bounding boxes (vehicle registration plate, vehicle) 
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Figure 10: Validation (1st row) and test (2nd row) samples with boxes (vehicle reg. plate, vehicle) 

It is important to note that there are some inconsistencies in the dataset (Figure 

11). It turned out that some images were incompletely annotated where: 

• Clearly visible license plates are not annotated (top left). 

• Vehicle annotations are entirely missing (top right).  

One more thing to spot: as a few original OID classes were discarded to keep the 

new vehicle class close to the multiplicity of vehicle registration plates, some types of 

boxes (like vans) were dropped (bottom row). In part, this is the reason for some of the 

missing boxes. 

 

Figure 11: Inconsistently missing labels (top row), no vehicle boxes around vans (bottom row) 
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These are good examples that while the dataset may be appropriate for the task, it 

has its flaws. Since balancing classes relative to each other is a priority not to mislead the 

model, I have not made any further changes. Having the dataset prepared, the next step is 

developing the algorithm. 

4.2 Deep Learning algorithm 

In the following, I present the preliminary steps of model creation (choosing 

appropriate metrics), architecture selection, training and fine-tuning, and then post-

production (quantization, wrapping). 

4.2.1 Evaluation metrics 

Choosing the right metrics is crucial to evaluate a model in a manner appropriate 

to the task. If we solely concentrate on detector loss for object detection, we simply miss 

out on details like how well the model localizes (Where is the object?) or how well it 

classifies (Is it a vehicle?). They may suggest different things about the network - broadly 

speaking, classification depends primarily on the backbone, while detection is mainly the 

task of the last convolutional layers in an SSD architecture. 

4.2.1.1 Concepts 

Some concepts appear for most protocols, which I briefly describe below[22]. 

Abbreviations: 𝑇𝑝- true positive, 𝑇𝑛- true negative, 𝐹𝑝- false positive, 𝐹𝑛- false negative. 

• 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑝

𝑇𝑝 + 𝐹𝑝
  How many of the predictions are actually true? 

• 𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑝

𝑇𝑝 + 𝐹𝑛
  How many of the ground truth items were hit? 

• 𝐼𝑜𝑈 (𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑣𝑒𝑟 𝑈𝑛𝑖𝑜𝑛) =
𝑎𝑟𝑒𝑎 𝑜𝑓 𝑜𝑣𝑒𝑟𝑙𝑎𝑝

𝑎𝑟𝑒𝑎 𝑜𝑓 𝑢𝑛𝑖𝑜𝑛
 It is used to measure 

how much the prediction overlaps with the ground truth. Sometimes, there 

is a predefined IoU threshold (often 0.5) under which a prediction is 

interpreted as incorrect (𝐹𝑝), but above as correct (𝑇𝑝). 
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Figure 12: Illustration of IoU 

•  𝐴𝑃 (𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛) = ∫ 𝑝(𝑟)𝑑𝑟
1

0
 The area under the precision-

recall curve. The next example demonstrates how to calculate it. Let the 

following be the result of some evaluations: 

 

Figure 13: Sample detection results plotted in a tabular and graphical form 

For example, calculations of line #4 in the table: Precision is the 

proportion of 𝑇𝑝s so far (3/4 = 0.75), Recall is the proportion of 𝑇𝑝s out 

of the possible positives (3/3 = 1.0). Recall continually increases as we 

go down the prediction ranking. However, precision can follow a zig-zag 

pattern (decreases with 𝐹𝑝s and increases with 𝑇𝑝s). Average precision is 



 25 

the area under the precision-recall curve. As precision and recall values 

are always between 0 and 1, AP falls within this boundary too. 

• 𝐼𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑒𝑑 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
1

𝑛
∑ 𝐴𝑃𝑛𝑛 ∊(0.0 … 1.0)  It divides the 

recall value from 0 to 1.0 into n points. It is common to smooth out the 

zig-zag pattern (at each recall level, replacing each precision value with 

the highest precision found to the right of that recall level[23]). 

 

Figure 14: Transformed precision values: original, smoothed 

Interpolated AP is calculated based on the area below the smoothed 

values. It is the basic idea behind the mAP variants. 

• 𝑚𝐴𝑃 (𝑚𝑒𝑎𝑛 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛): there are numerous types of mAP. In 

COCO, a 101-point interpolated AP is used, which is the average over 10 

IoU levels starting from 0.5 to 0.95 with a step size of 0.05. Hereafter, I 

refer to the COCO implementation by this name. 

4.2.1.2 Protocols 

There is no consensus about the evaluation metrics of the object detection 

problem. World-famous competitions such as PASCAL VOC[18], COCO[19], or Google 

Open Images Challenge have their ways to measure performance[21]: 

• PASCAL VOC[18] has introduced mAP for evaluating the quality of 

detectors with an 11-point interpolated AP definition. 

• COCO detection metrics[19] are similar but have additional measures 

such as mAP at different IoU thresholds from 0.5 to 0.95. There are also 

precision/recall statistics for small (area < 322), medium (322 < area < 

962), and large (area > 962) objects. 
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• Open Images V2 detection metrics[20] are focused on average precision 

for each class and among all classes, but there are no metrics for objects 

grouped by their size. OID classes are organized in a hierarchy (e.g., car 

groups several specific classes like limousine or van). If a model claims 

that a van is a car, it is not punished as drastically as if it had claimed it 

was a cat. 

4.2.1.3 Choice 

I choose the COCO evaluation protocol mainly because it measures performance 

on different sized objects. As discussed earlier, the vehicle registration plates are 

relatively small on the images, so I wanted to see how different sizes affect performance. 

In my opinion, OID would not have been suitable for this task because I would have lost 

size-specific indicators, but I would not have won with the class-level metrics because 

there are only two classes (one of which is a custom one). 

4.2.2 Workflow 

Different data subsets have different roles during the development process. The 

main idea is to train models on the training set (with most images) and validate them on 

the validation set. When the best model is selected based on its validation performance, 

it is tested against a not seen before test set to spot if over-fitting occurs – which is the 

case when the model performs noticeably weaker on the new set. Sometimes, this type of 

overfitting happens as we select the best model based on the validation set – and it easily 

remains unnoticed if we do not apply this technique. So, I use the outlined workflow with 

the different subsets. 
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Figure 15: Applied workflow with different subsets[24] 

Training is concluded with Python/Jupyter environment in a Colaboratory 

instance. After installing and testing external dependencies, the described steps are 

applied each time training is about to start. 

4.2.2.1 Model preparation 

I download base models from TensorFlow’s model zoo with or without pre-

trained weights for a fresh start. To continue a previous training, I import saved models 

from Google Drive. 

4.2.2.2 Dataset download 

The tfrecords are also stored in a zip file on Google Drive. As it stores data on a 

different server to the Jupyter instance machine, I download and extract the dataset too 

(thus, there is no need for network communication during training). Then, it is needed to 

define the paths to the training, validation, and test batches. 

4.2.2.3 Pipeline 

To start with, if a pre-trained model has been loaded, its weights and 

configurations are used for restoration. 

During pre-processing steps, it is defined how many possible input classes exist. 

In my pipeline, I chose to encode the background as a class, too (with zero label, to encode 

non-object image parts as negative examples). Fixed shape input image resizing has been 

applied to input images as the dataset has pictures with various resolutions, but the 

detector expects a static input shape which corresponds to the backbone network’s input. 

Anchor box generator properties are provided here, which I experimented with.  
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In the architecture part, the backbone network and the box predictor are 

configured separately (in the case of one-staged architectures, too). I changed the 

classifier and its convolutional hyperparameters (e.g., activation function, regularization, 

batch normalization). Box predictor properties (like convolutional kernel size or 

depthwise convolution, batch normalization, weight initializer, activation function) have 

been tuned similarly. 

It is an exciting topic of what kind of loss functions to use in an object detection 

problem. I use Focal loss[26] for classification and Huber loss[25] for localization. It is 

worth mentioning that I started with sigmoid classification loss and online hard example 

mining (with three negative object samples per 1 positive) in a way like the original 

detector architectures. However, after researching the topic, I learned about Focal loss 

and RetinaNet[27], using a different approach eliminating foreground-background class 

imbalance (by down-weighting the loss assigned to well-classified items and by 

preventing easy negatives from overwhelming the detector during training[27]). Since 

Focal loss takes care of it, hard example mining is not necessary. Huber loss is used for 

localization because it handles outliers outside a delta value quite well. Both loss 

functions are included in the calculation of my model’s total loss with the same weights. 

Post-processing properties, like how many images are allowed on the network’s 

output, are essential questions to be decided. Since there are relatively many cars and 

license plates on a street scene, I maximized the network output in 100 simultaneously 

detectable objects (although in the database, a sample image has four objects on average 

– but it was shown that many of them are incompletely annotated). 

Training properties, like batch size, number of steps, variable freezing, 

optimization algorithm, and the corresponding subsets’ path, are defined in the last part 

of the pipeline. During training, I use three data augmentation techniques (horizontal flip, 

crop and padding, brightness adjustment) to prevent overfitting. Padding can be 

interpreted as an out zooming process that reduces bounding box sizes, thus helping one-

stage detectors, which are generally poor in localizing small objects. This decision was 

inspired by the procedure described in the original SSD[33] paper. An image and its box 

coordinates are always augmented with the same transformation. 
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Figure 16: Augmented image samples during training 

During the evaluation, augmentation is not used to measure performance 

objectively and ensure that the results are independent of random transformations. 

4.2.2.4 Prerequisites 

Before training, one last inspection is applied to verify that configuration is correct 

and everything is ready. A TensorBoard instance is also started pointing to the log 

directory of training. 

4.2.2.5 Training and evaluation 

Training is usually a long process. Primarily, it can be followed on TensorBoard, 

which shows a dashboard of the running task. The running Jupyter cell also logs live loss 

value per hundred steps. At certain specified intervals, training is interrupted, and 

evaluation is done. On these occasions, model checkpoints are also saved to make the 

model states restorable (for early stopping or state preservation in case of  a failure). 

After the training process, a standalone evaluation can be executed to verify the 

results and display the COCO protocol metrics. 
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4.2.2.6 Export model 

After the work is finished, the model can be saved in three different ways: 

• First, all the training files and checkpoints are zipped and saved to Google 

Drive. 

• Second, only the latest (or the selected) checkpoint is preserved, and 

detailed log files are discarded (only metrics are retained like loss; model 

outputs for specific images are dropped) and saved to Drive. 

• The third option is to convert the model to TFLite and save it. 

 

A training iteration includes the steps discussed above. Figure 17 shows the 

simplified, high-level diagram of this process: 

 

Figure 17: Steps needed to train and deploy a model 

After defining the applied workflow, it is time to dig into detector architectures. 

4.2.3 Architecture 

Generally, there are two types of deep learning-based detector architectures: two-

staged (e.g., R-CNN) and one-staged (like CenterNet, YOLO, SSD) variants. I briefly 

describe both types in the following. 
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4.2.3.1 Two-staged detectors 

Until the mid-2010s, complex ensemble machines were the best performing 

models in object detection. In 2014, Region-based Convolutional Neural Network[28] (R-

CNN) was introduced for detection and segmentation tasks. Its main idea was to use a 

region proposal for generating category-independent proposals, then feeding them to a 

feature extractor CNN. In this arrangement, there is a third module, which is a set of class-

specific linear SVNs. In this architecture, the separate modules must be trained 

independently. 

In 2015, Fast R-CNN[29] had been introduced. It uses VGG-16 as a feature 

extractor and made it possible to train the whole system in one piece. The main 

architectural difference to the previous version is that it feeds an input image directly to 

the CNN to generate a convolutional feature map. From that, proposals are identified by 

an RoI (Region of Interest, max-pooling) layer, which is fed to dense layers outputting 

coordinates. There is also a softmax layer from the RoI feature vector, which predicts the 

class of the proposed region. Fast R-CNN is considerably faster than its predecessor 

because, for 100 region proposals, there is no need to feed all of them independently to 

the CNN – RoIs from the same image share computation and memory. 

The latest variant, Faster R-CNN[30], consists of two parts: a fully convolutional 

RPN (Region Proposal Network) and a Fast R-CNN detector using the output of the 

former. The two networks might share a common set of convolutional layers. RPN is a 

small network working in a sliding-window fashion, which predicts the regions unlike R-

CNN or Fast R-CNN, where a selective search algorithm is used for this purpose (which 

is slower). 

 

Figure 18: Faster R-CNN architecture. Source: [30] 
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4.2.3.2 One-staged detectors 

You Only Look Once[32] (YOLO) has been introduced in May 2016. It is a unified 

architecture with a single network containing 24 convolutional layers followed by two 

fully connected ones. The convolutional layers extract features from images, while the 

dense layers predict coordinates and probabilities. The input image is divided into an 

𝑁 × 𝑁 grid in which a cell is responsible for predicting boxes in its area (one box has five 

values: 𝑋𝑚𝑖𝑛 , 𝑌𝑚𝑖𝑛, 𝑤𝑖𝑑𝑡ℎ, ℎ𝑒𝑖𝑔ℎ𝑡, 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒). A cell outputs 𝐵 boxes and their 

confidence values for every 𝐶 classes, so the output shape is 𝑁 × 𝑁 × ((𝐵 ∗ 5) + 𝐶). In 

general, this architecture tends to make more localization mistakes (mainly struggles with 

small objects, which is partly related to loss functions discussed earlier) but is fast and 

less likely to predict false positives on the background (compared to two-staged 

detectors). YOLO has various variants (v4 is the latest so far). 

 

Figure 19: YOLO architecture. Source: [33] 

Single Shot MultiBox Detector[33] (SSD) is similar to YOLO. In the first part of 

the architecture, there is an image classification CNN (originally VGG-16) called the base 

network. After that, multiple convolutional layers are implementing a detector structure 

for multi-scale object localization. These layers progressively decrease in size towards 

the end of the architecture, allowing detections at multiple scales (unlike YOLO, which 

initially operates on a single scale feature map). SSD uses a set of default bounding boxes 

for each feature map cells on each feature maps. 

 

Figure 20: SSD architecture. Source: [33] 
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CenterNet[34] has been released in 2019, and it uses a different approach 

compared to other architectures presented so far. It is based on the keypoint-based 

CornerNet network and uses triplets to localize objects. It first generates two coordinates 

(𝑋𝑌𝑚𝑖𝑛, 𝑋𝑌𝑚𝑎𝑥) localizing a proposal, then takes its geometric center as the third point. 

Then, it is inspected whether the center key point’s region is predicted as the same class 

as the whole bounding box. This way, not just the box borders but its central region’s 

visual patterns are also analyzed, providing a more robust approach to reduce false 

positives. 

 

Figure 21: CenterNet architecture. Source: [34] 

4.2.3.3 Selection 

Generally, a two-staged detector takes a classifier and evaluates it in different 

locations. These are slower architectures because of the separate steps but performing 

better with various sized objects. TensorFlow Object Detection API currently supports 

Faster R-CNN from these variants. Although its inference speed is comparable to one-

staged architectures, TFLite conversion is not working – therefore, I turned to one-staged 

systems. From them, SSDs and CenterNets are supported (YOLO is missing and is not 

likely to be added at all). Although CenterNets look promising (similar benchmark speed 

and similar COCO mAP to SSDs), again, the conversion is not yet implemented. For these 

reasons, I chose SSD, but I noted that CenterNet would be a viable option, and it may be 

worth examining in the future. 

4.2.4 Optimization 

In this part, I compare the models via summarizing their results in tables. Since 

multiple values were measured, I only display mAPs. All the metrics (training duration, 

AP, loss) of the results can be viewed in a comprehensive table in Appendix D. 

Once the architecture was selected, I started training the models. In the beginning, 

to save time, pre-trained weights were used (only on the same COCO 2017 data set). I 
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kept the same settings of the networks as they were pre-trained. Cosine decay learning 

rate was applied in each case to prevent too optimistic gradient change at the beginning 

(started from 1/40 of the base learning rate, trained like this for 1/20 of time, then 

increased it). 

Since training a detector is time-consuming, I drew conclusions based on the 

actual results and the learning curve’s nature after three epochs (one epoch is when the 

entire dataset is passed forward and backward through the network once), which is 16,000 

images. Applying early stopping (training finishes when model performance permanently 

stagnates/falls back) would be the best solution. However, in this case, less training 

iteration would have been possible because, at the end of the flattened learning curve, 

there is a minimal improvement over a long period of time. 

4.2.4.1 Backbone 

Since the detector is planned to run on smartphones, the priority was to choose a 

relatively small and fast model. To start with, I tried 3 different options: ResNet50, 

MobileNet v2 (with 320x320 input), and EfficientDet D0. 

ResNet[35] (Residual Network) was the winner of the ImageNet 2015 challenge. 

It has introduced skip connections with its residual units. Skip connections are helpful 

because while training, the input signal can make its way across the network, so even if 

deeper layers have not quite started learning (their output is close to zero), the network 

can progress. I used a smaller version of the original model with 50 layers. 

MobileNets[36] are special models optimized for mobile/IoT inference. They are 

relatively small and fast, but their accuracy by no means among the best. V2 uses linear 

bottlenecks and inverted residuals. According to the MobileNet designers, bottlenecks 

store all the necessary information, and between them, expansion layers serve for 

extraction with non-linearities. Thus, bottlenecks are linear layers to prevent non-

linearities from destroying the original information. The other novel idea was that as 

bottlenecks store the information, shortcuts are needed directly between them. I started 

with the smallest version of this network (320x320 input), which provides outstanding 

performance due to its use of depthwise separable convolution. 

EfficentDet[37] has been introduced in July 2020 by Google Brain and is currently 

the benchmark on COCO (55.1 AP). It is a neural network family, especially for object 

detection. Its paper has introduced the bi-directional feature pyramid network, which 
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learns to weigh input features with different resolutions before fusing them. I started with 

the smallest version of this network (512x512 input), which is relatively fast despite its 

size. 

I started with the smallest variants of all the three networks introduced above. 

Results can be found in Figure 22. 

 

Figure 22: Comparison of the smallest models of each type 

I found this comparison problematic as the performance was suspiciously 

proportional to the input size of the models. It is also important to note that ResNet50 was 

trained with batch size eight because I had insufficient memory to train it with 16-sized 

batches. To fix these issues, I switched to EfficientDet D1 and MobileNet v2 640, and the 

same batch /step values have been applied. 

 

Figure 23: Comparison of different types with the same input 

This comparison shows more balanced results. Unless ResNet50 is by far the 

largest model, its performance is not outstanding. In fact, EfficientDet seems to 

outperform it. MobileNet has modest results; however, it is not far from the benchmark.  

As inference speed and model size are critical aspects, ResNet may not be 

considered. Even though EfficientDet is four times larger than MobileNet, the former runs 

in 54 ms according to TensorFlow’s benchmark, while the latter runs in 39 ms (I measured 

similar inference times). As their mAP performance is relatively close, I decided to 

experiment further with both networks before committing to one. 
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4.2.4.2 Batch size 

Batch size is the number of samples propagated through the network at once. 

Bigger batches allow computational speedups but reduce the ability to generalize. On the 

other hand, if a model is trained with too small batch sizes (perhaps caused by too sample-

specific gradient updates), performance decreases. There is an ideal range of batch sizes 

affected by model parameters and the current dataset. 

I trained both networks with different batch sizes. The maximum size I could use 

was 8 in the case of EfficientDet and 24 for MobileNet. When training with batch size 1, 

I reduced the learning rate by order of magnitude (from 0.08 to 0.008) to avoid divergence 

caused by too large gradient updates. 

 

Figure 24: Training results with different batch sizes 

Based on the results, batch sizes 4 and 8 were the most ideal. Both types of 

networks produced the most accurate outputs trained with batch size 8. At larger sizes, a 

decline is observed, especially on detecting small objects. Observing the other extreme at 

batch size 1, gradient update per every single image seems to confuse the network and 

reduce its performance. Since the same trend can be observed between the two models 

(MobileNet lags by 2-3% mAP in every configuration), I decided to use EfficientDet D1 

for the rest with batch size 8. 

4.2.4.3 Optimization algorithm and learning rate 

Optimization algorithms[40] are used to update network parameters (such as 

weights) to minimize model loss while training. The most popular method is Stochastic 

Gradient Descent and its mini-batch variant. This algorithm is relatively easy and 

powerful, but it usually results in slow convergence. To overcome this issue, Momentum 

optimization is usually applied, which introduces and updates the velocity of gradients 
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instead of their specific value. There are different optimizers, such as methods using an 

adaptive learning rate, such as RMSprop or Adam. 

I tried the Adam, Momentum, and the RMSprop variants. Initially, I used the same 

learning rate (8 × 10−2) in all three cases. However, Adam and RMSprop training 

indicators showed signs of divergence, so I changed their values to the default learning 

rate (2 × 10−3) based on TensorFlow’s optimizer definition. It seems that Momentum’s 

recommended optimum is roughly an order of magnitude larger than what is ideal for the 

other two. 

 

Figure 25: Comparison of different optimization algorithms 

The last two rows show typical cases of too high learning rates. With values closer 

to their optimums, algorithms could be compared more realistically. 

Adam and Momentum produced very similar results, while RMSprop could not 

perform at their level. However, before concluding, the nature of the learning curves is 

also worth analyzing to see which algorithm has started to converge and which is still 

improving. 

   

Figure 26: Total loss trends of RMSprop (left), Momentum (middle), and Adam (right) 

What can be seen from here is that RMSprop not only lags behind but already 

converges strongly and just slightly improves after 14,000 steps. On the other hand, 

Momentum and Adam still strongly improve. Of the two, Adam oscillates more, which 

may sign a too high learning rate. However, the unbroken improvement after 20,000 steps 
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(and the fact that I use decay learning rate, but oscillation does not  decrease) rather 

suggests that this is more of a behavior due to the algorithm’s nature, which needs further 

investigation. Another thing to spot: although Adam performs better in almost everything, 

Momentum has a significant edge in detecting small objects. 

Therefore, I executed another 20,000 steps with the last two algorithms, and I also 

tried Adam with an order of magnitude lower learning rate (2 × 10−4). After this 

iteration, each case surpassed the optimum and started to overfit. It seems that Momentum 

has the edge: it has improved until reaching 0.393 mAP, while the best of Adam is 0.391, 

before stagnating around 0.387. The latter could not improve with the lower learning rate 

either, resulting in 0.38 mAP. Thus, the final model to take is the one trained with 

Momentum. 

 

Figure 27: Comparison of the best results of Momentum and Adam (all three cases indicate the  

best performing models before overfitting) 

4.2.5 Post-processing 

After the final model was created, it was time for quantization, TFLite conversion, 

and to generate its auxiliary structures. 

4.2.5.1 TFlite conversion and quantization 

During the conversion, it was necessary to note that not all TensorFlow operations 

are implemented in TFLite. To avoid conversion problems, I checked the compatibility 

table to see whether the operations in the model (e.g., activation function, depthwise 

convolution) could be converted. The TFLite file created at the end of the process can be 

run on Android devices using an interpreter. 
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Figure 28: The TFLite conversion process. Source: [38] 

4.2.5.2 Input and output data formats 

The detector expects 640 × 640 sized RGB images to work with. The input is 

channels_last encoded (order of indices: height, width, red, green, blue). The value of one 

channel of a pixel is encoded in 8 bits (1 byte). On all the three RGB channels, the values 

are interpreted as 8-bit integer numbers, which must be between 0 and 255. 
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Figure 29: An illustration of the expected input 

The model outputs a HashMap containing four arrays mapped to the indices 0-3. 

Arrays 0, 1, and 2 describe 100 detected objects, with one element in each array 

corresponding to each object. There are always 100 detections. A brief description of the 

arrays is as follows: 

• Detection boxes: Multidimensional float32 tensor of shape [1, 

num_boxes, 4] with box locations. Floating-point values are between 0 

and 1, the inner arrays representing bounding boxes in the form [top, left, 

bottom, right]. 

• Detection classes: A float32 tensor of shape [1, num_boxes] with class 

indices, each indicating the index of a class label from the labels file. 

• Detection scores: A float32 tensor of shape [1, num_boxes] with class 

scores. Values between 0 and 1 representing the probability of the detected 

class. 

• Number of boxes: float32 tensor of size 1 containing the number of 

detected boxes. 

4.2.5.3 Auxiliary structures 

It is also necessary to use an auxiliary structure to interpret the output of the 

detector. To do this, I created a file called labelmap.txt that contains the names of the 

output classes line by line (including the background class). 
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The model is accompanied by a file called model_info.txt. It contains general 

information about the network, such as the definition and interpretation of the input and 

output data formats required for use. 

4.3 Summary 

This section dealt with data preparation, presentation of the theoretical 

background, architecture selection, training and fine-tuning, and then the detector’s post-

production. 

A total of 184 hours of training (with 23 different configurations) took place. The 

detailed results of the final model can be observed in Figure 30. Compared to the first 

initial training from this network family (on EfficientDet D0), 8% gain has been reached 

in COCO mAP and 10% gain in mAP for small objects. The final detector’s size is 35.38 

MB, its quantized counterpart is 11.191 MB. 

 

Figure 30: COCO evaluation results of the selected model 

After the detector has been created, the next step is to present the system in which 

it operates. 
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5. System overview 

In this section, the complete system is overviewed. I explain the main design 

decisions, and some of the more exciting implementation details are also covered. 

5.1 Android application 

The client application’s main task is to detect stolen vehicles, then report them 

using location and time data. It is possible to run an evaluation on loaded images as well 

as on the live image feed. The user constantly sees exactly what has been recognized. 

Stolen vehicle and user data are stored in a local SQLite database, which is synchronized 

in the background with the API. Camera operations include front/back camera switching, 

image saving, tap to focus, and pinch to zoom. In the following, I present the Android 

application’s architecture and the stolen vehicle recognition pipeline. 

   

Figure 31: Live inference (left), recognition details (middle), map of detected vehicles (right) 

During development, attention has been paid to the user experience. As UX is 

outside of the scope of this writing, it is not presented in detail. More pictures of the 

application can be found in Appendix A. 
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5.1.1 Architecture 

I used the Model View ViewModel (MVVM) UI design pattern. It is an event-

driven model, invented by Microsoft to take advantage of data binding capabilities. In 

MVVM, the View contains UI descriptive code often in a declarative (XML, XAML, 

HTML) form, and the connection to the ViewModel is realized with explicit data binding. 

Therefore, there are fewer classic coding tasks in Views, and the business logic 

components can be easily separated. 

 

Figure 32: MVVM components with their relations 

There are sub-layers in the model level of the application. I explain their hierarchy 

through the steps of reporting a single recognition item. Suppose a new stolen vehicle 

was detected on the live camera feed, and the user selected to report it. In this case, the 

user sees a RecognitionActivity, which has a ViewModel storing its UI related state. The 

recognition item gets stored in a list wrapped in a LiveData object (which is observable 

from the Activity). When the user clicks on the send button, the related data is transmitted 

to the RepositoryService in the model layer. Inside this service, there is the 

RecognitionRepository. It hides further data operations (database handling, API 

communication) from the outside. When it receives a new recognition, it transforms it 

into a format stored in the Recognition table and then persists it with RecognitionDAO 

(data access object) to the database. After that, it calls ApiService to send recognition to 

the server. When the success response arrives from the API, RecognitionRepository 

updates the corresponding item in the database. Until the operation is not successful, the 

user sees that the recognition is pending. Pending items can be deleted or re-sent at any 

time. 
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Figure 33: Recognition reporting steps through different architectural layers 

Beyond recognition, the application stores several other information in its local 

relational database (list of stolen vehicles, account information, metadata). For further 

insight, the data model schema diagram has been added to Appendix B. 

5.1.2 Stolen vehicle recognition pipeline 

To allow the user to interact with the application, the pipeline calculations run in 

the background. First, the input image must be in the appropriate format. Any picture with 

its dimensions (provided by device camera or loaded from storage) is converted to have 

an 𝑛 × 𝑛 size. It is followed by resizing the image to the detector’s input (640 × 640). 

Finally, a byte buffer conversion occurs, which is the expected data format to feed the 

TFLite model with. 
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Figure 34: Image pre-processing steps 

Once the desired input is generated, evaluation can follow. The byte buffer is first 

applied to the input, and here the model fixedly outputs the 100 most possible detections. 

Objects below a minimum certainty threshold are discarded (this value can be set in the 

application). The detector’s output contains the predicted classes of detected things, their 

certainty values, and their enclosing bounding boxes’ coordinates. The resulting items 

form a list. Suppose one of the elements denotes a license plate. In that case, the associated 

image snippet’s location is cropped from the original image to pass through a text 

recognition model to obtain the license plate text. Slices are cut out from the original 

picture because license plates are typically small, and the original image retains 

information better due to its higher resolution. 

Once license plate texts are available, plotting begins. Initially, a transparent 

image is created of the same size as the image on the device’s screen. Bounding boxes 

are drawn with their information (class name, probability) on that image. The license plate 

texts are checked before drawing to see if they belong to stolen vehicles. If so, the 

bounding box is drawn in red, and an alert button appears on the screen. If not, it is drawn 

like other boxes. Once this mask image is created, placing it on the original image allows 

the user to see where and what objects were detected and recognized. 
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Figure 35: Stolen vehicle recognition steps 

I tested the pipeline runtime on a Samsung Galaxy S10 smartphone. The average 

processing time for the different steps is as follows: 

• Image pre-processing: 9 ms (Android code) 

• Detector inference: 123 ms (quantized TFLite model, runs on mobile 

GPU) 

• Cut image snippet: 3 ms (Android code) 

• OCR text recognition: 181 ms (MLKit model) 

• Create a mask image with bounding boxes: 8 ms (Android code) 

In total, the pipeline averagely runs in 324 ms. It means that three images are 

processed within a second so that it can work properly, even with a live image feed.  

However, the runtime can vary depending on how many license plate sub-images 

are fed to the text recognizer. It appears that the OCR is the bottleneck in the pipeline, as 

it is the slowest element in the case of numerous license plates (they are fed separately). 

Creating a custom text recognizer is room for improvement in the future. Another option 

is to mask the time of the pipeline calculation from the user by applying an object tracking 

algorithm between two calculations. 
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All in all, there is room for improvement with the previously presented options. 

In turn, with the current configuration, the application still works as intended and can 

already recognize stolen vehicles even through a live camera feed. 

5.2 Server application 

The server application provides the API for the clients and manages registered 

users. It has a stateless REST API, so a user needs to authenticate itself every time 

querying the server. 

5.2.1 Architecture 

The server has a three-layered architecture. Because it is responsible for API 

service and data storage, it does not have a separate View layer (only a simple HTML UI 

is available). 

Instead of the UI layer, there is the communication layer through which the API 

service can be accessed. Because it is a separate layer, it is more loosely coupled with 

other layers, reducing the chances of leaking information from other parts. User 

authentication is done with Http basic authentication. 

In the business logic layer, the Authenticator module checks requests and does not 

allow them to be executed when the required permissions are missing. The Interactor 

contains the main business logic. 

The data access layer contains the DAO classes responsible for handling their 

tables and providing a unified interface for retrieving/writing data. 
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Figure 36: Server structure diagram 

5.2.2 Database 

Since I decided to use a self-created database for performance reasons, I briefly 

describe its main guidelines. It is a NoSQL variant with an in-memory approach. The 

tables store information in an object-oriented manner (instead of relational data). The 

table contents are in JSON format (like in the case of MongoDB). To encode/decode 

JSON files, the server uses the Gson library. 

There are tables of stolen vehicles, current reports, and user accounts. To these 

contents, there are history files (write only) as well. They store all items using a timestamp 

and a version number to support recovery and traceability. History tables are not stored 

in memory, and when a data table is updated, its corresponding history is automatically 

updated. There is a meta content storing size and timestamp information of the previous 

tables. Lastly, there is an Event table that records system logs (also write-only). The data 

model schema diagram can be found in Appendix D. 

When accessing data, the database serves it from memory, making API responses 

fast because there is no need to wait for table I/O operations. The memory content is 

synchronized with the corresponding table in the background. It is a viable solution as a 

very large amount of data is never stored on the server (images are not uploaded). To 

validate this, I examined one item from the largest JSON object type (Report), which is 

precisely 173 bytes. Multiplied by 1 million, it turns out that the server needs 173 MB 
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memory, which is acceptable. It is a severe overestimation, though, as the stolen vehicles 

list obtained by web scraping typically has a few thousand items. That is the maximum 

number of records that the in-memory database ever has (if every stolen vehicle has been 

detected at once). As history content is only stored persistently, extensive API usage does 

not saturate the memory either. 

5.2.3 API 

The API is divided into five parts: Vehicles, Reports, Report history, Self, and 

Users. These names are also the corresponding API call prefixes. All parts have similar 

actions and a unified calling convention. All actions are subject to specific permission, 

which is evaluated every time before serving. There is also a status page describing the 

API. Figure 37 & 38 show the two most common server and client communication types. 

 

Figure 37: Client updates via the API 
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Figure 38: Client reports a vehicle 

5.2.4 Permission management 

As the nature of the stored data (location and timestamp of stolen vehicles) could 

potentially allow abuses, there is strict role-based permission management in the system. 

Users with specific roles are eligible to execute various operations. 

There are ADMINISTRATOR, API_REGISTER, SELF_MODIFY, API_GET, 

and API_SEND permissions.  

• API_GET lets an authorized account to download reports. 

• API_SEND makes it possible to send recognitions to the server. 

• SELF_MODIFY is needed to prevent blacklisted users from deleting 

themselves and re-register. 

• An ADMINISTRATOR user can modify the server and any user’s 

permissions at any time. If someone’s behavior is suspicious, an Admin 

can revoke permissions, delete a user, or deactivate and blacklist it. An 

ADMINISTRATOR can register a new user with specific permissions. 

• The default/guest user in the client application is an account with only an 

API_REGISTER role. This way, it is possible for newcomers to register 

their new accounts. If someone tries to use the application without signing 

in is, in fact, utilizes this user. As its only API permission is registration, 
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although someone can detect vehicles on-device, he/she cannot report 

them or see the actual reports. This API_REGISTER role prevents anyone 

outside the Android app from registering. The default user can create a 

new account with SELF_MODIFY, API_GET, and API_SEND 

permissions. 

 

This section gave a brief overview of the complete system. During testing, the 

functionalities were validated first on the application level (the client on Android phones, 

the server with Postman), followed by integration testing (aimed to test client and server 

communication). I used Samsung Galaxy S10 and Samsung Galaxy J6 smartphones, and 

a Pixel 3XL emulated device to test the application. Runtime values reflect the results 

measured on the S10 phone. The stolen vehicle was mocked (our car’s license plate was 

used for this purpose). 

 

Figure 39: Testing detection on a loaded image on-device 



 52 

6. Summary 

This project is aimed to create a system that recognizes stolen vehicles anywhere 

and in real-time by ordinary smartphones. It has been achieved with the help of deep 

learning. I have collected the required dataset, built, and optimized an object detector. 

After that, I have created an Android application extensively using smartphone features 

(camera handling, database creation, handling media files, internet communication, GPU 

capabilities). Finally, I have built a server application providing the necessary API for 

mobile clients to handle accounts and find and report suspicious vehicles. Since I had not 

dealt with object detection before, this project was an excellent opportunity to catch up. 

I learned a lot while working on this task. To understand object detection, I needed 

to learn the theoretical background, and I liked that a novel idea could be tried out in 

practice right away. It was interesting to see how open the community is in the field of 

machine learning. I think the attitude of developers/researchers to share their results with 

each other contributes significantly to the current development momentum. I have had 

previous experience with the Android platform. During this project, I enjoyed gaining 

insight into the system’s more resonant operation (memory management, performance 

aspects). 

The resulting system could be further developed in numerous ways. Training a 

custom text recognizer and implementing object tracking would speed up the recognizer 

pipeline. In the detector case, even other combinations could have been tried (e.g., bigger 

batch size using other hardware resources). I would also develop the server application 

further to scale well for many user requests. 

Overall, I enjoyed working on this project. I feel like I have managed to 

accomplish the pre-set goals and showcase the Android platform and deep learning 

frameworks’ potential through a novel, community-based, stolen vehicle detection 

system. 
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Appendix 

Appendix A 

   

A loaded image (left), list of recognitions with sent and pending items (middle), vehicle information 

on the map (right) 

 

List of recognitions (landscape device orientation) 
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Menu (left), settings screen (middle), login screen (right) 

   

About content (left), live feed without stolen cars (middle), exit screen (right) 
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Appendix B 

 

Android application database schema 

Appendix C 

 

Server data model schema 
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Appendix D 

 

Summary of all training configurations with results 
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Appendix E 

The source code of the whole project (detector training, Android application, 

server application) can be found in the following repository: 

https://github.com/arpadfodor/StolenVehicleDetector 

https://github.com/arpadfodor/StolenVehicleDetector

