: s gans [
MUEGYETEM

17 8 2
Budapest University of Technology and Economics

Faculty of Electrical Engineering and Informatics
Department of Measurement and Information Systems

ZKP-based Audit for Blockchain Systems
Managing Central Bank Digital Currency

Scientific Student Competition Report

Author:

Bertalan Zoltan Péter

Supervisor:
Dr. Imre Kocsis

2021-10-29

Acknowledgement

The research was supported within the framework of the Cooperation Agreement between
the National Bank of Hungary and BME.

Abstract

Implementing a Central Bank Digital Currency (CBDC) has been a subject of research by major central banks
around the world for years, and several prototypes have already been created in the process. Should a central
bank allow handling of CBDC on a ledger which is not controlled by them, they may wish to specify certain
conformance requirements, which are expected to be similar to those that exist for transactions performed
in today’s digital currencies. A key element of these requirements is to ensure that transactions only occur
between parties whose identities have been confirmed.

A possible model to verify conformance in such a system is where the supervisory authority conducts
audits on the transactions regularly, or whenever CBDC is removed from or transferred to the external ledger.
However, modern distributed ledger systems may include information sensitive to the organizations and
persons using the ledger. The central bank does not necessarily wish to access such information themselves, as
the subject of the audit is usually the cash flow aspect of monetary traffic (in a nutshell, who gained access to
the money in the process).

Zero-Knowledge Proof (ZKP) Systems — which have matured over the last years not only in the theoretical,
but also in the technical sense — have the ability to prove the conformance of computations to certain criteria
or the knowledge of information adhering to criteria, without revealing any more information in the process
other than the computational ability or possession of the knowledge itself. In my work, I define a ZKP proof
scheme which allows the operator of a ledger to prove the consistency of the ledger and show that transactions
were only conducted between parties authorized by the central bank — all this without revealing details about
the transactions (such as the exact participants, the direction of the transfer, or the transferred value). I design
a prototype for this scheme in the context of a system where the issuance and management of a CBDC is
done on a dedicated ledger and where digital currency can be created on consortial blockchain networks of
organizations in exchange for bonding the respective amount of actual CBDC. Arbitrary transactions may be
carried out with the digital currency on the external blockchain, and users may convert money covered by
their balance back to CBDC on demand.

The defined scheme is not only applicable in the context of CBDC: it has other potential applications in
the area of inter-enterprise cooperation.

Kivonat

A vilag meghatirozd jegybankijai évek 6ta vizsgaljik a digitalis jegybankpénz (CBDC) bevezetésének lehetSségeit,
és szamos prototipust létrehoztak mar ennek megvaldsitasira. Amennyiben a jegybank lehetévé teszi a CBDC
egy, nem a jegybank dltal feliigyelt f6konyvon vald kezelését, igényt tarthat bizonyos megfeleldségi kényszerek
el8irasira, melyek varhatéan hasonléak lesznek a digitalis pénzzel végzett tranzakcidkkal ma is timasztott
kovetelményekhez. Ezek kulcsfontossigu eleme, hogy nagy értékl tranzakcidk csak megfelel6 identitas-
ellenbrzésen dtesett felek kozott torténhessenek.

Ha a jegybankpénz kezelését egy, nem jegybank dltal karbantartott f8kdnyv végzi, akkor a megfeleldség
ellendrzésének egy lehetséges modellje, ha a f6kdnyvon végzett tranzakciokat a feliigyeleti szerv id6rél idére —
vagy akkor, amikor a f6konyvrdl digitalis jegybankpénz ki- illetve oda atvezetésre keriil — auditalja. A modern
elosztott f8konyvi rendszerek azonban olyan informdcidkat is tartalmaznak, melyek a f6konyvet hasznild
szervezetek, illetve személyek szimdra érzékeny természetiiek, és amelyekhez — amennyiben ez lehetséges — a
feliigyeleti szerv sem kivin hozzaférni. Az audit targyét dltaldban a forgalomnak csak a pénzmozgis aspektusa
képezi.

A miéra mér nem csak elméleti, hanem miiszaki értelemben is éretté valt tuddsmentes bizonyitasok (ZKP-k)
lehetSséget teremtenek arra, hogy olyan médon bizonyitsuk szimitdsok egy adott szempontrendszer szerinti
megfeleléségét, illetve valamilyen kévetelményeket teljesit§ informacié ismeretét, hogy minddssze a szamitasi
képességet vagy tudast bizonyitjuk, ennél tbb informdciét azonban nem fediink fel. Dolgozatomban megadok
egy olyan ZKP bizonyitisi sémat, ami lehetdvé teszi azt, hogy egy f6konyv karbantartéja ugy igazolja azt, hogy
a jegyzett tranzakciokban résztvevd felek a jegybank dltal jovihagyottak és hogy a f8konyv maga konzisztens,
hogy ekézben nem fedi fel az egyes tranzakciok konkrétumait (mint a résztvevé felek, a pénzmozgis irdnya,
értéke). A sémadra olyan rendszer kontextusiaban adok prototipust, ahol a CBDC kibocsitdsa és kezelése
elsdsorban egy dedikalt f6kdnyvon torténik, és amelyrdl jegybankpénz-lekstés ellenében villalatok konzorcialis
blokklinc halézatira lehet a CBDC-nek megfeleld digitalis pénzt kibocstani. A konzorcialis haldzaton
tetszSleges tranzakciok végezhetdk a lekotott pénzzel, majd az egyes felhaszndlok egyenlegiiknek megfeleléen
kezdeményezhetik a digitalis pénz visszavezetését, azaz jegybankpénzzé valé visszavaltasit.

A megadott séma nem csak CBDC témakérben alkalmazhatd: egyéb potencidlis alkalmazasai is vannak a
vallalatkdzi egylittmiikddés tertiletén.

Contents

1 Introduction
2 Central Bank Digital Currencies
2.1 Benefitsand drawbacks L.
2.2 Possible CBDCmodels
23 BridgedCBDC.
3 Zero-Knowledge Proofs (ZKPs)
3.1 Introductionto ZKPs
3.2 Definitions and basic properties
3.3 Themanytypesof ZKPs
3.4 Practical Implementations L L.
4 A Blockchain Audit Model for Bridged CBDC
4.1 Blockchain Model
4.2 Requirement formalization L.
43 AuditModel
5 A ZKP-based Audit Protocol
5.1 Privacy Concerns During Audits
5.2 A complete audit protocol oo oL
6 Zilch Prototype
6.1 Challenges and Limitations
6.2 Operationo i it
7 Conclusion and Further Work
Acronyms
Appendices

A Complete Source Code Listings

26
26
27

29
30
31

33

34

37

38

List of Figures

2.1
2.2

3.1
3.2
3.3

4.1
4.2
4.3
4.4
4.5

6.1

Potential CBDC architectures (Auer and Bshme, 2020) 5
CBDCbridging e 7
A simple example of an Arithmetic Circuit Lo Lo 13
Overview of the interaction of a Zilch Prover and Verifier (Mouris and Tsoutsos, 2021) . . . 17
The compilation process of Zilch (Mouris and Tsoutsos, 2021) 17
The block sequence of the blockchain model 20
Visualization of block headers and bodies in the blockchain model 20
Informal activity diagram of an interactive audit L. 24
Audit model with a CB-controlled blockchainnode 25
Audit model without a CB-controlled blockchainnode 25
Evaluation results: number of timesteps required plotted against input size 32

List of Tables

3.1
3.2
3.3

4.1

Comparison of some ZKP systems (Mouris and Tsoutsos, 2021) 14
Operators available in Zerojava (Mouris and Tsoutsos, 2021) 16
Built-in functions available in Zerojava (Mouris and Tsoutsos, 2021) 16
Formalized requirements L e 23

1 Introduction

Central Banks around the world are actively researching the possibilities of implementing their own Central
Bank Digital Currency, with some institutions already testing prototypes and pilots, and others only in the
research phase. Considering the popularity and success of cryptocurrencies and blockchains equipped with
various smart contracts, we can safely to assume that once a production-grade CBDC emerges, there is soon
going to be a real demand to make it usable on these blockchain networks, as the CBDC system most likely
will not allow the installation of arbitrary smart contracts, if it supports any sort of programmability at all.
There is already a solution known in the cryptocurrency world for the integration of a platform not capable of
smart contract handling and another that is capable, in the form of platform bridging. Bridging could also be
implemented to integrate CBDCs with consortial blockchain platforms.

However, such bridged CBDC would still be legal tender, and the CB would require obligatory audits on
how the CBDC is used, to ensure, for example, that it does not get into the hands of disallowed clients or
that no illegal activities are performed with it, such as participants orchestrating pyramid schemes. These
audits may be ad-hoc, periodic, or both, and would most likely involve analyzing the blockchain’s ledger in
some sense.

Unfortunately, the straightforward arrangement of perusing the ledger contents is not a viable option, since
the information in the ledger may be highly confidential, and access to the ledger would leak this information
to the bank, who is coincidentally also not interested in these data.

In my work, I establish a simplified blockchain model and present a complete audit model and protocol
which harnesses the power of Zero-Knowledge Proofs, a relatively new but already heavily utilized area
of cryptography in digital currency ecosystems. While executing the protocol, the consortium proves the
conformity of the blockchain state to five elementary criteria but with no need to reveal sensitive information.
I have implemented this protocol as a prototype in Zerojava, a subset of the Java programming language
that the Zilch ZKP framework can process (after a compilation step). Due to certain complications with the
academic-grade framework, I was not able to fully implement a necessary primitive (the KEccak-256 hash
function) in Zerojava, which would have significantly increased the complexity of the computations. This
component is by no means an indispensable part of the protocol however, since it is already designed for a
theoretical, simplified blockchain architecture. I evaluated my implementation with a ‘mocked’ hash function,
to get promising results: linear protocol execution time in the number of blocks (each containing a fixed
number of two transactions) on an imaginary blockchain on which the audit was performed.

This paper is organized as follows: Chapter 2 gives a more in-depth explanation and review of CBDC
today, with special attention to the bridging and auditability aspects. Then, Chapter 3 introduces a fascinating
mathematical tool, the Zero-Knowledge Proof, which powers the heart of my audit protocol design. I go over
the several types of proof systems, building up the concepts needed to understand zk-STARKSs which Zilch
internally uses. An example of a concrete, full implementation of a ZKP system, Zilch itself, is also overviewed
at the end of this chapter.

The second part of the paper is the product of my practical work: in Chapter 4, I present a thorough
formalization of my simplified blockchain model and subsequently define the audit model using these
formalizations. From the model and the five constraints, I describe a complete audit algorithm and protocol in
Chapter 5. Then, in Chapter 6, the prototype Zilch implementation of the protocol is examined. Finally, I
conclude my results in Chapter 7 and write about the next steps and potential improvements of my solutions.

2 Central Bank Digital Currencies

Central Bank Digital Currency (CBDC) is a topic of avid research in today’s financial technology sector. CBDC
is a form of digital fiat money issued by Central Banks (CBs), just like physical banknotes that have existed for
hundreds of years. Such instruments have been theorized and conceptually developed for decades, but it has
only been in the recent years — and probably at least partially motivated by the success of cryptocurrencies —
that CBs have begun to treat the introduction of production CBDCs as a mid- or short-term possibility. An
ideal scenario retains the favourable properties of cash (such as anonymity and liquidity) while allowing for
new potential features made possible by the digitalized nature of the instrument.

While the concept of CBDC is not new, the technology is still very much in a developing stage, and
even the most mature systems have not been launched in a production setting. Around the world, most
nations are merely doing research; some have come up with proof of concept implementations. Only a few
implementations have reached a ‘pilot’ stage, for example, Project Jasper in Canada or e-CNY in China (Opare
and Kim, 2020; Sun, 2021).

The following sections explore the pros and cons of CBDC, followed by a brief overview of the possible
applications and the underlying technology. My work is closely related to the auditability aspect of digital
currency and means to be applicable to future CBDC systems.

2.1 Benefits and drawbacks

Benefits One of the most apparent benefits of a CBDC is efficiency, especially in terms of transaction speed.
Today’s bank transactions are already fast, but a CBDC is capable of instantaneous transfers. Since the need
for financial intermediaries is eliminated, transfers can take place directly from peer to peer, in real-time,
with no processing or queueing required. The receiving party could immediately confirm payment. This also
allows for reduced transaction costs, as payments are simpler and need fewer ‘hops’. Additionally, since the
processes are automated and fully digitalized, bank holidays no longer affect processing time (Koumbarakis
and Dobrauz-Saldapenna, 2019).

Digitalized currency allows for useful new features. For example, so-called ‘hash-locked’ transactions
allow a sending party to (provably) lock funds for a recipient with a secret key that only the sender knows.
The receiver can verify the amount of locked funds but may not gain access to them unless they can provide
the secret key set by the sender. The lock is a payment promise, which is completed as soon as the receiver
performs the service requested by the sender (eg a certain product is shipped). Regular CB currency does not
provide a simple, safe and efficient framework for such operations.

Another interesting aspect is the traceability of money by authorities. The digital nature of CBDC allows
for sophisticated methods to track money. While traditional paper-based banknotes do have identifiers such
as serial numbers, no one can tell where a given banknote is at any given time. One can consider this a
great advantage of cash: it offers a high level of privacy regarding what an individual spends their money on.
Depending on the design, a CBDC may not be untraceable, which can be seen as a privacy downgrade coming
from cash, but also as an upgrade which might allow authorities to fight illegal activities more efficiently.

Risks and drawbacks For the average user, the simplest potential problem may appear to be fact that digital
systems rely on electricity and the correct operation of networking services. In the event of a power outage, it
is not possible to perform transactions or access one’s CBDC balance, unlike traditional cash, which is available
24/7 and does not depend on practically anything (Koumbarakis and Dobrauz-Saldapenna, 2019).

2.2 Possible CBDC models

CBDC is similar to other forms of digital money in the sense that it must maintain a ledger of transactions or at
least a registry of current account balances. How this ledger is accessed, structured, and maintained is a design
choice. Figure 2.1 shows three possible retail CBDC architectures, as seen in a paper by Auer and Bhme
(2020). In an indirect CBDC architecture, users do not directly claim CBDC through the CB but rather
through intermediaries, denoted CBDC Banks in the figure. In a direct setup, there are no intermediaries
involved. Finally, a bybrid arrangement is also possible, where intermediaries are involved in the process, but
the legal claim of CBDC is still directly on the CB. In this case, intermediaries perform KYC-management
and handle retail payments.

CBDC bank X
Central bank
°
% ma
£4
/ — ®,
- CBDC bank Y
V‘\
N — W

Central bank

CBDC-PSP X

@ PO
L)
e —

&I
el rum——

CBDC-PSP Y

«—— Legal claim Communications during payment: -« Real-time < > Deferred

A Person (if account-based) or pseudonym (if token-based) ﬂ Merchant

Figure 2.1. Potential CBDC architectures (Auer and Bshme, 2020)

2.2.1 Blockchains in CBDC systems

A blockchain is essentially a data structure consisting of a linked list of blocks that contain records. Each
block (except for the first one, called a genesis block) has the cryptographic hash value of the previous block:
this mechanism links blocks together. The chain is append-only: blocks are only added and never removed.
Usually, the actual records for each block are stored separately in block bodies, and block headers only contain
some reference to them (usually a Merkle-tree root).

These simple criteria define a structure suitable for securely storing information, such as financial ledgers.
Security in this context refers to the fact that the history of the ledger cannot be changed — should one
attempt to modify something in an existing block, the hashes become outdated.

Typically, blockchains are used as distributed databases, where each node on a peer-to-peer network
maintains its own chain and the chains are kept in sync using some protocol. The protocol is referred to as a
consensus protocol because it also defines how the system should handle nodes claiming a different state of the
ledger. Basically, the majority of nodes claiming the same ledger state win.

I should mention that blockchains are one realization of a concept known as Distributed Ledger Technology
(DLT), which is an umbrella term for systems where a digital ledger (ie a list of transactions) is maintained in

a distributed manner. While there are other implementations, most of DLTs are blockchains. All blockchains
are considered DLT, but not all DLT implementations rely on blockchains. In common terminology, we use
the term DLT to describe non-cryptocurrency related systems, but for the purposes of this document, I will
always mean a blockchain by DLT.

An essential property of blockchains is that ledger history can never be altered by design, a property
ensured by the consensus protocol. This is especially important in cryptocurrencies, where the nodes are not
necessarily trusted by one another, but the properties and protocols of the system make sure that malicious
activity (ie an alteration of ledger history) can only be successful if the majority of nodes go rogue.

Cryptocurrencies widely use blockchains, but CBDC implementations will likely call for a centralized
ledger solution, not a distributed one. That said, blockchain systems are still relevant in the context of CBDC
when we consider the possibility of ‘transferring’ CBDC to an external blockchain network where it may be
used similarly to cryptocurrencies — a concept introduced in the next section.

2.3 Bridged CBDC

By itself, CBDC provides nothing more than a ledger capable of recording transactions, which is basically
observed as a payment service by end-users. It does not automatically make the programmability of digital
money possible, which would mean being able to regulate the terms of CBDC usage or of the various processes
which can be performed on CBDC (including payments, deposits, etc) by defining programs usually referred
to as smart contracts.

Regardless of the chosen architecture, proposed and researched CBDC designs do not allow for smart
contracts to be freely installed to the system, contrary to common practice when it comes to cryptocurrencies,
where smart contracts are ubiquitous. There is a long-standing and robust demand for smart contracts capable
of handling legal tender (ie CBDC). Hence it is safe to assume that after a CBDC is launched, there will soon
be a need to make it possible to use the currency on platforms (blockchains) that support smart contracts.
This integration will have to go deeper than simply using the CBDC service as a payment leg.

There already exist adopted integration schemes for platforms not supporting smart contracts and platforms
that do support them, called bridging. Bridging two blockchain networks involves providing a mechanism that
locks or destroys some units' (usually coins or tokens) on one chain and then creates corresponding units
of the same value on the other chain. The effect of this procedure is that some funds are made unavailable
on the source side, and new funds appear on the destination side. The destruction of units is often called
‘burning’ and the creation ‘minting’. In the simplest of implementations, this is done by wrapping coins and a
bijective mapping of the unit on the source side to the unit on the destionation side. After bridging to the
receiving blockchain (also called a side chain), the newly created assets can be freely used. This conversion is
bidirectional: when one decides to get the original units belonging to the bridged ones back, the inverse of the
bridging process occurs: units are destroyed on the side chain, and the original (backing) units are relinquished
to the user.

The available bridging technology today is rather diverse: there are centralized solutions such as Hyperledger
Cactus, which have been designed primarily to support intercompany ledger integration, but there are also
decentralized implementations, like Chainlink.

Such technology could also facilitate the introduction of liquid CBDC to consortial blockchain networks
(which also potentially support smart contracts) through bridging. Figure 2.2 shows a simple architectural
overview of a setup where a consortial blockchain is attached as a side chain to the CB through an intermediary
service. In practical implementations, the side-chain could be an Ethereum network powered by Hyperledger
Fabric for example.

I refer to the monetary assets used within a blockchain by the term ‘unit’. Practically, units may be coins, tokens, or really anything
on the blockchain.

e - -
.
7/

S E
1
i ledger
\

N .

Central Bank

Figure 2.2. CBDC bridging

It is important to note that the bank is not necessarily interested in the internal structure of this network
and its participants. Once CBDC ‘leaves’ the ledger and appears as units on the consortial network, it becomes
currency handled however digital currency is handled on the consortial network. In practice, however, the
central bank probably does define particular constraints and requirements regarding to the transactions on the
consortial blockchain with the bridged CBDC units.

2.3.1 Auditability and accountability of bridged CBDC

In a real-life scenario, the usage of bridged CBDC units will most likely not be unregulated to prevent fraud.
The Central Bank could define and enforce rules regarding transactions with bridged CBDC ranging from
simple constraints requiring all parties to be whitelisted (or non-blacklisted) to more complex ones, like ones
disallowing playing pyramid schemes, for example.

The problem is that transactions on these consortial networks may be confidential. The number and
frequency of transactions, the sending and receiving parties and the transferred amount itself can all leak
sensitive information about the operation of the organization, which they probably want to keep secret from
the bank. On the other hand, the bank is also not interested in these data: all it wants is to ensure that the
criteria for transactions with bridged CBDC are met, nothing more.

The question is: can the CB enforce these requirements and conduct periodic or on-demand audits
without gaining access to sensitive information in the process? In this paper, I focus on an audit model and
protocol based on cryptographical primitive called a Zero-Knowledge Proof, introduced in the next chapter.
This essentially allows the bank to verify — or, from another perspective, the consortium to prove — that the
requirements are satisfied without seeing into any of the transactions, or even their number.

3 Zero-Knowledge Proofs (ZKPs)

Zero-Knowledge Proofs (ZKPs) are cryptographical constructions that allow a Prover to prove the truth of a
statement to a Verifier in such a way that no information is revealed in the process other than whether the
statement is true. Even though the notion of ZKPs has been known since 1989, this area of mathematics and
cryptography is still very new, actively researched, and not too well known by most.

3.1 Introduction to ZKPs

The classic textbook example for this concept is Ali Baba’s cave. The story takes place in a ring-shaped cave
with a single entrance and a magic door at the opposite side that can only be opened by a secret word. Two
characters, Peggy and Victor enter the cave. Peggy knows the secret word to open the door and wishes to
prove this to Victor. However, she does not want to share the secret with Victor, only to prove to him that
she knows it.

There is a way for Peggy to prove knowledge of the secret to Victor in zero-knowledge: ie without revealing
the secret itself. The protocol to accomplish this is as follows: Victor stays outside the cave, and Peggy enters.
She may choose whether to walk the circular path in a clockwise or counter-clockwise direction, ie starting
on the left or the right. A few moments later, Victor also enters the cave. Oblivious to whichever path Peggy
may have taken, he calls out a direction from where he wants to see Peggy come back. If Peggy knows the
secret, she can always meet Victor coming from the direction he requested: either by turning back or opening
the magic door and going the other way around.

One iteration of this protocol allows Peggy to fool Victor with a 50 % chance: if she happens to choose
the same way at first as the one Victor decides, she can return to the entrance without actually having to cross
the door. Therefore the protocol is repeated several times. With each iteration, the chances of Peggy lying and
not knowing the secret are halved. When repeated enough times, Victor can be assured that Peggy indeed
knows the secret. After ten executions of this protocol, for example, there is statistically only a minuscule
2710 =0.0009 % chance that Peggy is cheating.

This tale is an example of an Interactive Zero-Knowledge Protocol (IZKP). The two parties — Peggy being
the Prover and Victor the Verifier — engage in an interactive exchange of messages during which the Verifier
can ascertain that the Prover indeed possesses the knowledge they claim.

Several other types of Zero-Knowledge Proof systems exist, which are summarized in the following
sections.

3.2 Definitions and basic properties

The concept of Zero-Knowledge Proofs originates from The Knowledge Complexity of Interactive Proof
Systems by Goldwasser et al. (1989). In their paper, one of the first steps is the introduction of interactive
Turing Machines: these are Turing Machines equipped with five tapes:

* aread-only input tape

* a work tape (for processing)

* arandom tape (an infinite source of randomness)

* a read-only communication tape (the other TM’s write-only communication tape)

* a write-only communication tape (the other TM’s read-only communication tape).

Two of these TMs make the participants of an interactive protocol, where the two machines engage in a
turn-based communication sequence. Interactive Proof Systems are defined as interactive protocols with some
additional constraints on the probability of the machines halting and accepting.

Then, zero-knowledge interactive protocols are defined based on computational indistinguishability: in essence,
the TM playing the role of the Verifier cannot distinguish the distribution of data on all of its tapes compared
to what it could compute solely from its input tape. In other words, the Verifier does not learn new information
during the protocol other than the proof itself.

ZKPs have a few basic but essential properties, and it is only pertinent that I introduce these as the
definitions of the following few terms. A ZKP system must satisfy all of the following three properties (Mohr,
2007).

Definition 3.1: completeness

For all true statements being proven, there exists a proof that the Verifier will accept.

Definition 3.2: soundness

For all false statements attempted to be proven, there does not exist any proof that the Verifier would
accept.

Definition 3.3: zero-knowledge

The defining property of zero-knowledge proof systems: the Verifier does not learn any additional
information from the proof or the protocol other than the fact that the statement is indeed true.

Strictly speaking, completeness and soundness are properties of interactive proof systems. The third,
zero-knowledge property, is what makes an interactive proof system an interactive ZKP system.

We now define some additional notions related to ZKP systems, which will be referred to later in this
chapter (Mouris and Tsoutsos, 2021).

Definition 3.4: universal Turing Machine

A Universal Turing Machine (UTM) is a TM that is able to simulate an arbitrary Turing Machine for
computation.

Definition 3.5: transparency

A proof system is transparent if it does not require a trusted setup; ie there is no need for a trusted
entity to distribute keys in a setup phase.

Definition 3.6: post-quantum resilient ZKP system

A ZKP system where the cryptographic primitives used are not susceptible to attacks by quantum
computers.

3.2.1 ZKPs for NP problems

Let us begin with a quick revision of two fundamental complexity classes. The standard definition of the
complexity class P is that it is the set of problems that can be solved by a deterministic TM in polynomial time.
The class NP denotes the set of problems that can be solved by a nondeterministic TM in polynomial time.

Intuitively, P C NP. Whether P ~ NP remains unknown, but most assume P # NP.
Remember, we have defined IZKPs in terms of communicating TMs. Turing Machines in general normally
accept or reject languages. It turns out that for every language L € NP, there exists a IZKPs for L.

Theorem 3.1: Every NP language has an ZKP (Goldreich et al., 1991)

VL € NP : 3 Zero-Knowledge Proof system

The proof of this theorem is out of scope for this paper, but it should be added that what Goldreich et al.
show is that using a bit-commitment scheme, a ZKP system can be constructed for all languages in NP.

3.3 The many types of ZKPs

Over the the past few decades, there was tremendous progress in ZKP related research, which led to the
definitions of newer and newer types of proof and argument systems. This I gives an overview of the most
prominent steps building up to the framework that I used to implement a prototype of the audit protocol I
designed.

3.3.1 Interactive Zero-Knowledge Protocol systems

This subsection is merely included for completeness, as we have already introduced the definition of IZKPs,
and have even seen the textbook example of Ali Baba’s magical cave: a simple interactive Zero-Knowledge
protocol.

A more concrete and recognized example of an IZKP is the Feige—Fiat—Shamir identification scheme, a
relatively simple algorithm where a Prover proves the knowledge of some secret to a Verifier without exposing
the secret itself. This particular protocol relies on modular arithmetic. The protocol can be seen on Protocol 3.1.

3.3.2 Non-Interactive Zero-Knowledge Proof systems

So far, we have only discussed ZK protocols where proving happens synchronously, ie the Prover and the
Verifier must interact with each other at the same time for the Prover to convince the Verifier. This is clearly
somewhat of a limitation: it may not be convenient or even possible for both parties to be present. One might
want a self-contained solution, like a little ‘box’ that the Prover hands over to the Verifier. Everything is
contained within the box that is needed for the Verifier to be convinced; the Verifier stays in zero-knowledge,
of course. Not only does the Verifier not require the presence of the Prover, they are also free to open the box
at any time of their choosing.

Manuel et al. explain this new problem as a story of two mathematicians. One of them travels around the
world, and whenever they discover the proof to a new theorem, they would like to share this discovery with
their friend Zero-Knowledge. The mathematicians cannot communicate synchronously, but the traveller can
send postcards to his friend.

Provided the Prover and Verifier agree on a short shared randomness (a string) beforehand, such non-
interactive proofs are possible. For some problems (such as 3SAT), the shared string is not even necessary.

NIZKPs are used by some privacy-focused cryptocurrencies, for example Zerocoin, which will be briefly
examined in Chapter 5.

10

Protocol 3.1: Feige-Fiat-Shamir Identification Scheme (Feige et al., 1988)

P proves to V' that they know a secret value S without letting V' learn the value.

Setup Let & be a function that returns +1 or —1, with an even distribution, like a coin flip.
Let n be a value known by both parties (distributed by a third party): a Blum integer, ie n = p X ¢
where p and ¢ are both primes of the form 4t + 3 (¢ € Z).

1. P chooses S1,55,...,S, € Zy,
2. Vi € k : P chooses I, .= &S, 2 (mod n)
3. P publishes I1, I, ..., I}

Prover-Verifier protocol

[P] [v]
pick random R
X = 6R? (mod n)

random boolean array by, b, . .., b

Y =R H S; (mod n)

bj true

P verify X = +£Y? H I; (modn) o

bj true

3.3.3 Proofs and arguments of knowledge

At this point, the terminology starts to become a little confusing and not wholly standardized’ What we
have been discussing are Zero-Knowledge Proofs. There is another concept, called a zero-knowledge proof of
knowledge, which refers to a protocol not only allowing the Prover to prove that a statement is true but also
that they know a witness to the truthfulness of the statement.

Finally, there are also zero-knowledge arguments of knowledge, which are different from proofs of
knowledge, because an argument may not even be true — but the invalid proofs (of these invalid statements)
are computationally infeasible to find (Thaler, 2021).

We must introduce these concepts because currently, systems and protocols relying on zero-knowledge
constructions do not use (N)IZKPs, but instead build on zk-SNARKs, zk-STARKSs, etc — which will soon be
introduced —, and these are all arguments of knowledge (hence the -ARK ending).

3.3.4 Succinct arguments of knowledge

Succinctness refers to the property that communication complexity and verifier time are polylogarithmic in
computation size. Succinct arguments and proofs are preferred due to their efficiency (Bootle et al., 2020).

At the time of writing this paper, the available, lately published literature always strives for succinctness of
proofs or arguments of knowledge.

1One can sometimes find arguments of knowledge and proofs of knowledge used interchangeably in literature.

11

Zero-Knowledge Succinct Non-interactive ARguments of Knowledge Putting together all of the concepts
introduced above, we finally arrive at zk-SNARKs. In recent years, there has been a lot of progress in the
research of zk-SNARKSs, leading to the birth of the first efficient protocol: Pinocchio. A few years later, Groth16
came along which, generates smaller proofs compared to Pinocchio (commonly referred to as [PHGR13]).
These are already proving systems used in software (Parno et al., 2013; Groth, 2016).

Zero-Knowledge Succinct Transparent ARguments of Knowledge zk-STARKSs are alternatives to zk-
SNARKs which, most importantly, eliminate the need for a trusted setup and can be verified exponentially
faster than zk-SNARKSs (Ben-Sasson et al., 2018).

LegoSNARK LegoSNARK is a recent work that provides a framework to integrate the several specialized
proof gadgets available, realizing that from an application perspective, several types of computations may be
required, calling for different proof gadgets. There exist more universal solutions, but they come at the cost
of performance. LegoSNARK provides a solution to the interoperability problems of these so-called proof
gadgets (basically a zk-SNARKSs reusable as a building block), as well as a ‘lifting tool’ that can upgrade or
convert existing zk-SNARKs to CP-SNARKs, which are commit-and-prove versions that can then be linked
using the LegoSNARK framework (Campanelli et al., 2019).

This technology can be considered state of the art at the time of writing this article. The offerings of
LegoSNARK could perhaps be used to create a better, more efficient implementation of the audit protocol in
Chapter 5.

3.3.5 Computations on von Neumann architectures as ZKPs

As we will see in Section 3.4, ZKPs usually operate on Arithmetic Circuits, which are rather inconvenient to
work with. For implementing the audit algorithm outlined in Chapter 5 directly as a ZK protocol, a universal
description language is required. Thankfully, it is possible to generate NIZKPs for arbitrary computations
done on a von Neumann architecture, as shown by Ben-Sasson et al., by converting the program to ACs.

Hence, it was sufficient to implement the algorithm in a programming language that has a compiler or a
framework available to facilitate the conversion. My choice was Zilch, a ZKP framework that we will examine
later in this chapter.

3.3.6 ZKPs for set membership

Proving set membership is a crucial component when designing zero-knowledge based bridged CBDC audit
protocols. As I have mentioned in Chapter 2, a simple requirement to verify during an audit is that all parties
who ever took part in any transactions are allowed (2). This quickly leads to one looking into set membership
proofs. To keep the identities of the transacting parties secret, we would also like to make these proofs
zero-knowledge

At the early stages of my research, I concentrated on this ‘whitelistedness’ requirement only and therefore
thought that the required protocol would exclusively rely on a simple Zero-Knowledge Proof of set membership.
Later I realized that the satisfaction of several other requirements must also be proven, and thus, a specialized
ZKP such as one for set membership is not enough, but rather, a generic, universal description language is
required. Nonetheless, I include some of my findings regarding ZKPs of set membership, mainly because part
of the audit protocol could, in theory, utilize these constructions.

Proof of set membership The formal statement of the problem is proving € S (set S may be public)
without exposing the value of . For example, let = be a client of a bank and S be the set of the citizens of the
imaginary country of Berryland. Employing ZKP, the bank can to prove « € S to a regulatory body without
exposing the identity of its client.

12

1 22 r3 T4

Figure 3.1. A simple example of an Arithmetic Circuit

One way to efficiently prove set membership is by using accumulators. We define the system as an
(Acce, Prove, Verify) triple, where

* A + Acc(S) accumulates the elements of set S into a short value A;
* 1 < Prove(S,) generates a set membership proof 7 of z € S}

* Verify(A,z,) verifies proof 7, in the knowledge of A.

Two concrete realizations of such systems are Merkle-trees and RSA-based accumulators. In a binary
Merkle-tree, the collision-resistant hash values of set elements form the leaves and each intermediary node is
the hash of the concatenation of its children. This way, the tree’s root acts as an accumulator: it is a short
value that contains information about the entire tree, ie the entire set. To produce proof 7, we need to collect
all the sibling nodes’ values encountered when traversing the tree from the leaf until the root.

Giving a proof that is zero-knowledge is a bit more involved and will not be included in this paper, but
we can show that it is certainly possible if we recall Theorem 3.1 and consider that x € S is clearly an NP
statement: given x, we can, of course check, in polynomial time, that x is an element of the otherwise public
set S. Zcash, a privacy-protecting cryptocurrency built over Zerocash (which is also mentioned in Chapter 5)
actually employs such set membership proofs (Benarroch et al., 2019).

3.4 Practical Implementations

The computational model of most ZKP systems uses Arithmetic Circuits (ACs) to express instructions (Mouris
and Tsoutsos, 2021). Arithmetic circuits are defined as DAGs over a field and a set of variables. Figure 3.1
shows an example of an AC that expresses (x1 X z2) X (2 + x3) X (x3 + T4).

Another way to understand these expressions is to select the desired result value (say 100 for the last
example) and treat the tree as a constraint. Values z; must have such values that the expression evaluates to
100.

Theoretically, all computations can be expressed by ACs. Given these circuits, the subject of proof of the
ZKP in the protocol becomes ‘T know the values for all z; inputs and an output result value r which satisfy
this AC.” In our simple example, this means that the Prover knows x1, x2, =3, ©4, and a value r such that
(x1 X 22) X (x2 + x3) X (x3 + x4) = r holds. For example, 1 = 24 = 1, 23 = 23 = 4, and r = 100
satisfies.

The Prover commits to a configuration of values (all inputs and the output), which can be thought of
as putting the individual values into solid boxes, which the Verifier cannot see through. The commitment
function has to be additively and multiplicatively homomorphic. Formally, if the commitment function is ¢, the
following must hold:

13

x4y =cz)+cly)
X

(y)

This means that showing the equality of the commitment corresponding to the left hand side of the
polynomial statement and the commitment of the right-hand side can be considered proof that the one
supplying these commitments indeed knows values that satisfy the equation.

What I have described above is not an accurate explanation of ZKPs on ACs; in reality, the process is more
complicated and often involves an interactive protocol between the Prover and the Verifier. However, actual
protocols do rely on commitments. Complete background on ZKPs of ACs is not in the scope of this paper,
but it is important to note that ACs are the low-level constructions that most ZKPs systems use.

x xy=c(r)

As one might imagine, describing complicated programs as ACs is quite inconvenient and error-prone.
Thankfully, some ZKP systems allow developers to write higher-level code, which is then compiled to ACs
under the hood later. For these systems, the step-by-step process of getting to a proof protocol from lines of
code is very similar to Figure 3.3, but does not necessarily involve the intermediate steps of converting to an
assembly language or a set of execution traces. Internally, source code is translated into Arithmetic Circuits,
which can then be turned into actual proofs.

Many systems, such as PLONK, Hyrax, or even the better known Bulletproofs, do not provide this feature
and require users to define ACs manually. Some systems allow for higher-level procedural languages, such
as Pinocchio or Buffet. ZoKrates is another better-known framework that allows specifying programs in a
declarative way. However, none of these implementations allow for universal programming (Mouris and
Tsoutsos, 2021).

For example, ZoKrates provides a _Javascript-like language, with a for loop construction, but with compile-
time bounds. It is impossible to write a loop that is executed n times, where n depends on the input to the
program.”

For reference, see Table 3.1 for a tabular comparison of some ZKP systems that I have considered. The
table has been created by selectively including rows and columns from the comparison table of Mouris and
Tsoutsos (2021).

ZKP system protocol universal post-quantum resilient ease of programming”
PLONK zk-SNARK o O =00
Hyrax zk-SNARK o O all
Pinocchio zk-SNARK O O =[]
Buffet zk-SNARK O O =[]
ZoKrates zk-SNARK O O mm(]
Bulletproofi zk-ShNARK® () O =00
Zilch zk-STARK o o =ull

“m00: ACs; =m0 : procedural; =mll: OO
b Bulletproofs is not considered a zk-SNARK because it is not succinct (it has linear verification time); Sh stands for short instead of
succinct.

Table 3.1. Comparison of some ZKP systems (Mouris and Tsoutsos, 2021)

To implement a prototype for the audit model introduced in Chapter 4, I have used a lesser-known ZKP

2This is actually because ZoKrates for loops are actually just syntactic sugar for statements repeated a fixed number of times.

14

system that is truly universal and which comes with a compiler able to generate assembler-like instructions

from a Java-like language: Zilch.

3.4.1 Zilch

Zilch is a very recent (2021) ZKP framework designed by Mouris and Tsoutsos. In comparison to other ZKP
systems, Zilch is fully transparent, universal, post-quantum resilient and comes with a compiler for a language
that is a subset of Java and allows for not only procedural but even object-oriented programming (Mouris and
Tsoutsos, 2021).

Since this is the ZKP system that enabled me to prototype the audit protocol outlined in Chapter 5, I
elaborate on its design and capabilities as the closure of this chapter.

Zerojava

One of the strongest arguments in favour of Zilch is its front-end programming language, named Zerojava. As
the name suggests, the syntax and abilities of this language can be compared to that of Java. For example, the
following control-flow keywords are recognized:

e if, else for conditional branches
* while for loops (of dynamic length)
Additionally, Zerojava supports OO programming and thus recognizes

e class Foo { public int foo(int x) { ... } } asa class with a method foo that takes a
single integer parameter X;

* Foo F; F = new Foo(); as an instantiation of the class;

e int x; x = F.foo(42); as a method call.
Theoretically, even single inheritance is possible, but I have not used this feature in my implementations.
Zerojava supports the following types:

* int: a signed integer (whose size is determined by what parameters Zilch was compiled with)
* int[]: an array of ints

— a.length can be used to get the length of array a

— indexable by ints; ega[0]] is the first array element

* boolean: a boolean type, like in Java

According to the documentation, the operators in Table 3.2 are supported. Finally, there are a few built-in
functions that implement Prover functionality, read input and facilitate debugging, which are listed in Table 3.3.

In the Zilch Prototype chapter, we will see some examples of Zerojava code. For now, it is enough to note
that Zerojava supports a variety of operators and keywords known from imperative languages, which makes it
very convenient to use.

Under the hood, the Zerojava compiler uses the JavaCC library to parse the input code, then converts
it to zMIPS instructions in a number of steps: first, to an intermediate format called Spiglez, then another
intermediate format called Kanga, and from that to the actual zMIPS code that can be executed by the Zilch
engine (Mouris and Tsoutsos, 2021).

15

operator(s) meaning

= assignment

+, =, %,/ addition, subtraction, multiplication, and division
+=, -=, %=, /= assigning versions of +, -, %, and /

%, %= modulo operator and its assigning version

-+, —— unary increment and decrement operators

& |, ~ bitwise AND, OR, and XOR operators

&=, | =, A= assigning versions of &, |, and ~

<<, >> binary shift left and right

=<<, =>> assigning binary shift left and right

1,88, || logical negation (unary), AND, and OR operators

==, !=,¢,<=,>,>= common relational operators

Table 3.2. Operators available in Zerojava (Mouris and Tsoutsos, 2021)

function signature(s) description

Prover.answer(int) reply with an answer as a Prover

int PublicTape.read(), read a value from the public and private
int PrivateTape.read() input tapes

int PublicTape.seek(int n), read the n-th value from the public and
int PrivateTape.seekR(int n) private input tapes

Table 3.3. Built-in functions available in Zerojava (Mouris and Tsoutsos, 2021)

16

Design

In the computational model of Zilch, the Prover is a TM equipped with a private and a public read-only
input tape. This is where input data can be supplied, and the PrivateTape.* and PublicTape.* Zerojava
functions can be used to read from the tapes sequentially. During execution, the tapes’ contents are read from
simple text files, one value per line.

Instead of using ACs directly, Zilch executes instructions by an abstract MIPS-architecture processor.
It has its own instruction set called zAMIPS, which is similar to the original MIPS instruction set, with
the addition of some special instructions such as PUBREAD or SECREAD, which read from the public and
private input tapes, respectively, or ANSWER, which answers with a value in a register as a Prover and halts the
machine.

public tape

private tape

protocol

Prover Verifier

Figure 3.2. Overview of the interaction of a Zilch Prover and Verifier (Mouris and Tsoutsos, 2021)

step reg mem

1 R 1 protocol

—> ACs | 7T |e—~——~——~——~—>Verifier

Proof

Zerojava zMIPS
Traces

Figure 3.3. The compilation process of Zilch (Mouris and Tsoutsos, 2021)

Given zMIPS instructions and a (potentially empty) private and public input tape, Zilch runs both a Prover
and a Verifier entity to execute an IZKP, during which the satisfaction constraints defined by the zMIPS code
is proven (or disproven) (Mouris and Tsoutsos, 2021).

Implementation

Zilch consists of a front-end and a back-end component. The front-end is basically the Zerojava language and
the provided compiler, which can produce zMIPS code from Zerojava source. The back-end is what is able to
execute the ZKP protocols.

Given the zMIPS instructions of a computation, Zilch creates a transcript, which represents an execution
trace (in other words, a sequence of states) of the program. The transcript is encoded in a table, where each
row stands for the execution of an instruction, and the columns are for the values of the registers (of the
abstract zMIPS processor). In addition to these execution traces, a set of polynomials are also generated,
which encode what (memory) constraints must be satisfied at each execution step. Having the transcript and
the constraints, Zilch employs the zk-STARK protocol, during which the Prover convinces the Verifier that
the transcript is indeed the result of an execution of the computation (the zMIPS code, which is known by

17

both parties) and of the constraints’ integrity. The above description is simplified since this paper does not
deal with the low-level details of how ZKPs work. I feel that it is pertinent to point out that the Zilch system
relies on zk-STARKSs, using an external library (Mouris and Tsoutsos, 2021).

Performance

The framework is implemented in native C++ code. According to the measurements of the authors (which
were performed in a much more powerful environment then the measurements in this work), the prover
execution time of Zilch is higher than in other ZKP frameworks, due to the fact that Zilch is not programmed
by ACs. In general, Prover and Verifier execution time is O(T'polylogT’) where T is the number of instructions.
Communication between the two parties causes some additional overhead (Mouris and Tsoutsos, 2021).

In my experience during prototyping, in a suboptimal environment (with one processor core and ~5 GB
memory), a more involved Zilch program with several loops and function calls can take long minutes to
execute.

18

4 A Blockchain Audit Model for
Bridged CBDC

I define the audit model in two steps. First, I introduce the model of a simplified blockchain with mathematical
formalizations. Based on this model, I then define the audit requirements formally.

4.1 Blockchain Model

To rigorously define an audit model, we first need to establish what we mean by the blockchain to which
CBDC is bridged. Real-life implementations can be complicated: block headers can contain a lot of metadata,
such as nonces and timestamps, and transactions themselves may include additional information such as
gas-related values or any arbitrary data embedded in the transaction. Things get even harder to handle when
we consider smart contracts.

I simplify this model and define a minimal blockchain and transaction model, with only the most essential
and easy to understand elements of actual implementations. I then formalize this construction and express
what we mathematically must prove during an audit.

4.1.1 Notation and terminology

In the following mathematical expressions, I will rely on the following operators, functions, and notation:
* z =y means ‘let x by equal to ¥’ (an assignment)
* Hash is an arbitrary collision-resistant hash function

* 4 is the concatenation operator (meaning: concatenate the numerical (binary) representations of the
values on either side)

* |S| denotes the number of elements in the set .S
* The creation of the blockchain is referred to as genesis, which involves choosing some parameters
explained in Figure 4.1.2
4.1.2 Blockchain

The blockchain is an infinitely growing sequence of blocks, where each block consists of a block header
(denoted by B) and a block body (denoted by T'). The header contains data that makes this construction a
blockchain, and the body is simply a sequence of transactions organized as a Merkle-tree which belong to the
block. Figure 4.1 is a visual representation of a segment of the block sequence. Let us allow indexing of block
headers and bodies in the following way:

* B, := the header of the i-th block on the chain (ie the block at height 7)

* T, := the transactions of the i-th block on the chain (ie the body of B;)

19

Thus, the entire blockchain 9B at a given height (ie block count) h can be expressed as a sequence of
ordered pairs of B; and Tj:

B = ((Bo,To),- -, (Bn, Th))

—3 B By ——

~

b

By, | —» Bs

T 15 T3 T

Figure 4.1. The block sequence of the blockchain model

Blocks

Each block consists of a header and a body. The header is an ordered pair of the hash of the header of the
previous block (prev) and the root of the Merkle-tree that contains all the transactions in the block (root).
The body is basically the sequence of transactions stored in a Merkle-tree, whose root is root. Figure 4.2
illustrates the individual block headers and bodies. There is one special block, called the genesis block, which
is the first block in the blockchain. Since no blocks precede this block, its prev value is nil. Below I formally
define exactly what all of these variables mean:

* B := (prev,root) (a block header)
* Hash(B = (prev,root)) := Hash(prev) 4 Hash(root)
* prev := the hash of the previous block’s header, ie prev; := Hash(B;_1)

* root: the root of the Merkle-tree containing the elements in the respective block body T’

T

root

B AN

prev root %’ - Hash(#1) Hash(tz)

(a) Structure of a block header B

t1 to

(b) Structure of a block body 7"

Figure 4.2. Visualization of block headers and bodies in the blockchain model

I denote the set of all blocks in the blockchain B by Bey.

20

Transactions

Transactions (denoted by t) are ordered triples formed by their source s, their receiver 7 and the amount a of
funds transferred.

e t:=(s,10)
* s := transaction source (an arbitrary identifier)
* 7 = transaction destination/receiver (an arbitrary identifier)

* g = amount transferred from s to d, a € N (a natural number)

To further simplify the model, let us assume that each block contains exactly two transactions:

V(B,T) eB:T= (tl,tg)
V(B = (root,prev), T = (t1,t2)) € B : root = Hash (Hash(¢1) + Hash(tz))

The total set of transactions in a blockchain B — denoted by Ty — are understood as the sequence of all
transactions in all blocks starting from the genesis block:

Ty ={teT:(B,T) e B}

I also define S(t), R(t), and A(t) to denote the sender, receiver, and amount of a transaction ¢ respectively.

S:T — A with S(t)
R : T — A with R(t) = the receiver r of transaction t = (s, 7, a)
A: T — A with A(

the sender s of transaction t = (s, 7, a)

t) = the amount a involved in transaction t = (s, 7, a)

Accounts

Accounts are abstract objects with only one property: their identifier (usually an integer). They represent the
sources and targets of transactions. I assume that the number of accounts in the system is predetermined and
fixed. There is always at least one account, called the genesis account, with identifier 0. In a sensible system,
there must be at least one additional account; otherwise, the only transactions allowed are the genesis account
looping funds back to itself.

Every account has its own balance, which is a non-negative integer. When the blockchain is created, the
genesis account’s balance becomes the total balance in the blockchain. In other words, there is a fixed amount
of units (‘money’) in the system at all times.

Strictly speaking, the balance is not a property of an account or even the blockchain since it can be derived
for any account from the genesis account’s initial balance and the transactions that took place since genesis.

I denote the set of all accounts in a blockchain B by Ag.

Genesis

Genesis refers to the creation of a blockchain. The following parameters are involved when creating a blockchain

B:
* a total balance $3

¢ the final set of accounts Ay

21

4.2 Requirement formalization

In this section, we define the requirements blockchain state is expected to conform to, first in plain English,
then using the formalizations introduced in the previous section. This will make it possible to describe the
audit protocol algorithmically in Chapter 5.

4.2.1 Plain text requirements

Given my simple model, I have collected five simple requirements which must be verifiable in an audit. We
want to ensure that for all transactions in any given block...

(1) the sender has sufficient balance to spend;
(2) the receiver is allowed to receive funds (ie is whitelisted);

(3) the balance of the receiver after the transaction equals their balance before the transaction plus the
transferred funds;

(4) the balance of the sender after the transaction equals their balance before the transaction minus the
transferred funds;

(5) the hash of the block header (found in the next block’s header) is indeed the hash of the block’s header
concatenated with the root of the Merkle-tree that contains the transactions in the block.

All of these requirements (with perhaps the exception of (2)), are very elementary and should always be
satisfied by a blockchain’s state. The addition of (2) aims to represent a constraint beyond basic blockchain
consistency that a CB may wish to enforce in a bridged CBDC scenario.

4.2.2 Formalized requirements

Let t; denote the jth transaction in the ith block B; (in our simplified model, j € {1,2}). For better
understanding, here are the first few blocks of the blockchain, formalized.

By = (nil,ro)
: 79 = Hash (Hash(j{) + Hash(j3))
B; = (Hash(By), r1)
: Hash(By) = Hash (nil 4 Hash(ry)) , 71 = Hash (Hash(j;) + Hash(j}))
By = (Hash(By),72)
: Hash(B;) = Hash (Hash(By) 4 Hash(ry)) , 7o = Hash (Hash(j;) + Hash(j3))

B; = (Hash(Bi_l),ri) 1>0
: Hash(B;_1) = Hash (Hash(B;_») 4 Hash(r;_1)) ,7; = Hash (Hash(j}) 4 Hash(j3))

Now I also define a function B which we can later use to formalize requirements involving account balances.

B:AxT— Nwith B(u,t]) = the balance of account u affer transaction t.

The balance can be expressed formally:

22

+A(Et) :RE)=u
B(u,t5) = B (u,P(t})) + —A(t) :S(t)=u

0 : otherwise

P(t) is the transaction immediately before ¢:

. tt 1 >1
P(t) = { o

i-1 . .
t'y : otherwise

where N is the (constant) number of transactions in each block (defined to be constantly 2 for simplicty).

In this recursive definition, u’s balance after) equals their balance before t’; with the checked transaction’s
amount added or subtracted (or ignored), depending on the role of u in the transaction. I should also mention
that Vu € A\ {0} : B(u, nil) = 0.

Let us eliminate the recursion for better usability in the implementation phase:

B(u,t;i):z_: A - > AW

n=0 \teT,:R(t)=u teT,:S(t)=u
J J
+ Y[R, = u] Alt,) — Y _IS(t,) = u] A(t,)
n=1 n=1

1 :Pistrue
where [P] is an lverson-bracket expression, ie [P] = .
0 : otherwise

Now we can finally formalize the requirements in Table 4.1.

requirement formalization

(1) vt € T: B (s, P(th)) > a

2) Vt! € T: S(t)) € WhiteList WhiteList C A

3) Vi) € T: B(r,t}) = B (s, P(t})) +a

(4) Vi, € T: B(s,t}) = B (s, P(t})) —a

(5) VB; = (prev;,root;), B;—1 = (prev,_1,root;_1),i >0 € B

: prev; = Hash(B;_1) = Hash(prev;_1 # root;_1)

Table 4.1. Formalized requirements

4.3 Audit Model

The CB may order an audit at regular intervals, triggered by a CBDC bridging event in either direction, or at
any other time. Audits can be performed with no need for human interaction, fully automatically.

When requested to perform an audit, one of the nodes on the consortial networks marks the current
blockchain state. The subject of the audit is going to be the marked state.

23

From this point, there are two possibilities, depending on whether audits are designed to be interactive.
In the case of an interactive protocol, the node engages in a synchronous exchange of messages with the
CB, during which the satisfaction of the requirements by the marked blockchain state is proven. For a
non-interactive protocol, the only difference is that there is no message exchange: the node is expected to
respond to the CB with some audit data within a time frame, and these data are sufficient for the CB to be
convinced of the satisfaction of the requirements. For example, disregarding our aims for the protocol to
be zero-knowledge for a moment, the node could simply send the serialized blockchain data at the time of
marking to the CB, which can then simply verify it itself. What we really seek though is some way for the
blockchain state to be kept secret by the consortium, but retaining the ability to prove the requirements’
satisfaction. The audit flow is visualized in Figure 4.3.

CB consortium

Request audit

Mark block-
chain state

Engage in protocol |-+« -uueeeeersss > Engage in protocol

Handle results

Figure 4.3. Informal activity diagram of an interactive audit

4.3.1 Commitment to the blockchain

One problem left to solve is how the state which is the subject of the audit is committed to the real blockchain
state. Otherwise, the node on the consortial network could prove the correctness of an arbitrary state that has
nothing to do with what has actually happened on the blockchain.

CB-controlled node

One simple solution to the commitment problem is for the CB to require their own blockchain node on the
consortial network. This of course partially defeats the need for the kind of audit outlined in this paper. The
CB’s node could execute whatever audit logic the CB wants, then report back to the bank on a secure channel.

24

The problem is that this method, again, provides no privacy. The CB sees everything that happens on the
blockchain of the consortium.

There is one way to improve on this solution: the CB could maintain a so-called lightweight or header
node, which does not have access to block bodies (e transactions), only headers. In our model described in
Section 4.1, the header only contains the cryptographic hash value of the previous block’s header and the
root of the Merkle-tree which stores the transactions in the block, which is also a hash value. Thus, no
information is leaked by the block headers themselves, except for their number, but this shortcoming can be
mitigated by allowing for variable-length blocks.

In such a setup, an export of the marked state would be committed to the blockchain state in the sense
that it contains the hashes of all blocks (except perhaps the last one), which are also recomputable for each
block from the transactions.

Figure 4.4 shows a schematic diagram for this version.

A collect audit datd

Audit Node

Figure 4.4. Audit model with a CB-controlled blockchain node

Without a CB blockchain node

Actually, if the marked state is committed to the blockchain, there is no need for the CB to maintain a node on
the consortial network. Assuming the CB has knowledge of the genesis block’s hash value, since the audited
data contains all the block header hashes (which can be recalculated for verification), it should be possible to
trace back the entire blockchain history to the genesis block. This version is illustrated in Figure 4.5.

. oco!
qudit Pro

S I o B o B g I o B o B

LI I] LI]

Figure 4.5. Audit model without a CB-controlled blockchain node

25

5 A ZKP-based Audit Protocol

In the following chapter, we briefly explore what privacy concerns must be considered with regards to audits,
and how some cryptocurrencies provide solutions to these problems. In the second half of the chapter, we
proceed to define an audit protocol in pseudocode, which will have to be implemented within a ZKP framework.

5.1 Privacy Concerns During Audits

As we briefly discussed in Subsection 2.3.1, a ‘classic’ audit (eg. where a representative of the CB is given access
to the ledger contents and can directly verify that they conform to the requirements) may not be appealing for
the consortia or companies with side chains due to privacy reasons. It leaks potentially confidential information
to the CB, while even they do not want to access that information.

5.1.1 Privacy on Blockchain Networks

Blockchain technology capable of providing pseudonymous or anonymous accounts can more-or-less protect
the identity of individual users, but normally, the transactions themselves are transparent. Everybody can see
entries such as (u1, uz20,200) (see the formalization introduced in Section 4.1) in the ledger.

In public networks such as Bitcoin, users (accounts) are identified by the public part of an asymmetric key
pair, which results in the pseudonymous nature of Bitcoin addresses. One client may generate several identities
by generating key pairs.

Experience indicates that pseudonimity is not sufficient to fully protect the privacy of users. A common
solution to the problem is the usage of Bitcoin laundries, which are aptly named after how they mix bitcoins
into a pool from whence they can be spent without allowing for tracing the spent coins back to their original
owner. The concept is quite simple: one sends bitcoins to the laundry, they get ‘clean’ coins back, which are
disconnected from the user. However, laundries, being third-party services operating over Bitcoin, require
trust, since there is no guarantee a laundry will actually transfer the deserved ‘clean’ coins to the users who
sent their bitcoins into the laundry.

There are extensions to Bitcoin which aim to improve on the privacy aspect and make Bitcoin more like
cash, such as Zerocoin and Zerocash. Both operate over the Bitcoin network and employ various cryptographic
technologies, including ZKPs to make coins untraceable. The operation of Zerocoin is briefly explained in
the next subsection (without striving for accuracy), to give the reader an idea of how privacy-preserving
cryptocurrencies can be implemented. In my research, I have studied these technologies in an effort to then
understand the extensions to these systems which enable for audits.

Zerocoin is able to hide transaction sources. Zerocash also addresses the problem of hiding the amount in
the transactions as well as hiding other metadata which Zerocoin does not handle, and introduces the notion
of Decentralized Anonymous Payment schemes (DAPs) (Ben-sasson et al., 2014).

Given that we seek privacy-preserving audit possibilities on blockchain networks (which just happen
to handle bridged CBDC), it is only natural to look into existing concepts in the blockchain world. The
problems handled by these solutions are different, however: they aim to ensure auditability on a blockchain
network where there are privacy-preserving measures in place, such as Zerocash. Naganuma et al. (2017) for
example define a protocol to allow authorities to still trace zerocoins by embedding additional information in
the transactions (the core idea is to add audit information encrypted by the public key of an auditor).

Initially, it seemed that the auditability problems of bridged CBDC would require similar solutions, but
in the end, I used a different approach: the blockchain is arbitrary in terms of privacy features, but the audit
protocol ensures that the proving of the satisfaction of the requirements is done in zero knowledge.

26

5.1.2 An intuitive explanation of Zerocoin

Let us say I want to mint a new zerocoin c. I generate a random serial number S and commir to it, using a
secret 7 that only I know. For example, one can think of this commitment like putting S into a locked box that
only opens with the key 7, which only I have. I proceed to put this locked box (commitment) into a publicly
accessible area. I also put bitcoins of the same value as ¢ into a publicly accessible cauldron (a container).

Now I would like to spend my zerocoin. To do this, I need to know the secret r that was used to mint the
coin — luckily, I was the one who chose it, so I know. Cue ZKPs: I generate a proof 7 of the statement ‘I
know a commitment (box) ¢ and a secret key r such that opens ¢ to S. I publish this proof 7 together with
the serial number S in disguise; for example, I post these two to some website anonymously.

Other users verify my proof 7 as well as the fact that S has not yet been seen (meaning the coin has not
been spent yet). Provided my proof was accepted, I am allowed to take ¢’s worth of bitcoins out from the
cauldron.

Notice that I can take any bitcoins up to the value of ¢ when I spend my zerocoin. By giving away my
secret 7 to another user and providing them with the serial number S, I essentially payed them the coin: note,
howhewer, that I could spend the coin before the other user, therefore this minimal system is not enough to
accomodate for paying other users in zerocoins. One can see that Zerocoin operates in a similar manner to
Bitcoin laundries, but it does more (Miers et al., 2013).

5.2 A complete audit protocol

Now that we have established our blockchain and audit models (see Chapter 4), we can define an exact audit
protocol which accounts for privacy as well, using the power of ZKPs.

The protocol outlined in Algorithm 1 assumes direct communication between the CB and a blockchain
node; in other words, it follows the model on Figure 4.5. A very similar protocol can be applied to the scenario
where a CB-controlled node is present on the blockchain.

Let us start with an arbitrary state of the side-blockchain and an incoming audit request from the CB.
The current state is marked: the audit is performed on the data that existed at the time of the audit request.
In the meantime, the blockchain can still be operational, blocks can be appended, smart contracts can be
executed, etc. From this point, the required steps are as follows:

1. If required, we convert the blockchain state into a format that can be fed into the audit algorithm. In
this process, we trim all unnecessary information and essentially generate a view of blockchain which is
basically just a sequence of transactions.

2. We open a communications channel between the CB and a node on the blockchain to convey audit
information.

3. The two parties engage in an Interactive Zero-Knowledge Protocol, during which the algorithm outlined
in Algorithm 1 is executed as a computation and successful termination signifies a successful audit.
This algorithm must be previously agreed upon by both parties and it is itself public. The concrete
arguments of the algorithm are only known by the blockchain node.

4. Whether successful or not, the CB takes note of the event.

Practically, communication can be done over for example TCP with TLS. It is up to the Central Bank to
decide how the audit’s results are handled: they may require a more in-depth audit to give the consortium a
chance to come clear about the situation at the cost of exposing their private data or they may simply record
the violation.

27

Algorithm 1 Blockchain playback verification algorithm

Require:
$ = the total balance
H = an array of block headers, where each header h has a prev and a root denoted h.prev and h.root
T = an array of block bodies, where each body b consists of an array of two transactions ¢; and ¢, and
each transaction ¢ has an s, a 7, and an a value, denoted by ¢.s, t.r, and t.a respectively
W = a set of whitelisted recipient accounts
Hash is an arbitrary hash function
4 is the concatenation operator

function Aupit($, H, T, W) > T if state conforms to requirements, L otherwise
By +$ > account 0’s initial balance is the total
H +— nil > last block’s hash
fori < 0..|H|—1do
if H #nil A\ H;.prev #H then > (5)
return |
end if
forallt € T; do
if B; ¢ < t.a then > (1)
return |
end if
if By, ¢ W then > (2)
return |
end if
Bt.'r — Bt.r +t.a > (3)
Bt‘s — Bt.s —t.a > (4)
end for
‘H < HasuBoby(T;)
end for
return |
end function

function HasaBoby(T)
h < HasuTransacTioN(T()
forj« 1..|T|—1do
h < h4+HasuTransactioN(T})
end for
return h
end function

function HasHTRANSACTION(?)
return Hash(¢.s 4 t.r # t.a)
end function

28

6 Zilch Prototype

With the entire protocol available as pseudocode, it is a trivial task to write the necessary code in Zerojava,
especially once one gets accustomed to Zerojava’s quirks.

6.0.1 Inputs and Outputs

First, I define how the blockchain state is converted to an input processable by Zilch. As mentioned in
Subsection 3.4.1, Zilch gets its inputs on (virtual) zapes, like a Turing Machine. Based on our blockchain
model established in Section 4.1, and given the format of a Zilch tape, it is relatively straightforward to invent
a simple encoding. Zilch knows integers and booleans. For our purposes, a long enough sequence of integers
should be sufficient to describe the entire blockchain state.

Examples of private and public tapes with commented lines can be seen on Listing 6.1 and Listing 6.2
respectively. The public tape contains the whitelist contents.

Listing 6.1: Private input tape example

. 1000 # $ (total balance)

2 2 # |B|

3 4 # |T|

s 3 # ‘A|

s 2 # |{t:te By}

¢ 0 # prevy (ignored; always considered nil)
7 0 # S(t9)

s 1 # R(tY

s 100 # At9)
0w 0 # S(19)
w2 # R(19)
2 50 # A(t9)
B3 2 # ‘{f:tEBlH

s 12345678 # prevy

51 # S(t})

6 2 # R(ty)

7 50 # A(t)

s 2 # S(td)

w1 # R(t3)
» 25 # A(t3)

.2 # # of blocks to verify (counting from & including last)
» 2 # |Whitelist| (let Whitelist be a sequence now)
3 1 # I’Vh,itelz‘st()

i 2 # W hitelist;

29

The example private tape encodes the following blockchain state:

Hash(Bo)=12345678
—_——l
B = ((By = (nil, rooty), Ty = (1 = (0,1,100),t3 = (0,2,50))),
(B = (1234578, r00t1), Ty = (t1 = (1,2,50),t3 = (2,1,25))))

Given these inputs, it is not hard to algorithmize the audit protocol in Zerojava. The entire resulting source
code has been appended to this paper in Listing A.1 in a highly readable form.

6.0.2 Notes on the hashing function

In Chapter 4 and also in Algorithm 1, Hash is defined as an arbitrary hash function. In a real-life scenario,
this function is of course the one used by the blockchain system. Since Ethereum, a very popular blockchain
platform uses kEccak-256 for hashing, I decided to implement that myself in Zerojava, based on the publicly
available reference paper and simple C implementation.

This task has proved much more difficult than anticipated: not only does Zilch not provide any variable
types other than integers, integer arrays, and booleans, but it also seems to suffer from implementation bugs
and is very hard to debug, since the only feedback one can get is System.out.println outputs during
execution, and even those are only capable of printing out integer values.

Over the course of several days, I successfully reimplemented the function using almost only Zerojava’s
limited language. I did this after the realization that since Zerojava is basically a subset of Java, I am able
to develop the algorithm just like developing any Java program, paying attention not to use any features
unavaiable in Zerojava. However, the algorithm relies heavily on (1) 64-bit unsigned integers (uint64_t in C)
(2) single unsigned bytes (uint8_t in C). In java, I was able to use longs and bytes (with the involvement
of some additional bitwise operations), but it is still not trivial to translate this code into Zerojava.

Unfortunately, due to some bugs in Zilch that I was not able to resolve so far, I could not use a real
KECCAK-256 implementation in my demo. Instead I ‘mocked’ hashing by simply using # mod p with a large
p value to ensure collision resistance (p = 65 000). For reference, however, I decided to include my working
implementation as an appendix to this paper, at Listing A.2. This code has been tested as a_Java program, but
is not usable in Zerojava in this form, due to the usage of types such as bytes and some operators unknown
to Zerojava. ‘Porting’ the code is not the real challenge, but getting Zilch to execute it seems to be very
problematic.

6.1 Challenges and Limitations

As mentioned, Zilch seems to have implementation bugs. For short, simple programs, this usually does not
cause problems (even though some instructions are simply broken, so much that even the unit tests that are
shipped with Zilch do not execute), but they become more and more apparent for larger programs such as
the one I implemented. Not to mention my KECCAK-256 implementation, which itself is magnitudes more
complex than the audit code.

One of the problems I discovered during development is that the ‘bitwise shift right’ (>>) operator causes
overflows and therefore segmentation faults when Zilch is compiled with 64-bit registers. Zilch ships with
unit tests, which can be built into a binary zilch-tests. There is one unit test that ensures the correct
behaviour of the shift right instruction, but it fails, when register length is set to 64. After several hours of
debugging, I localized the error to be in Zilch's algebra library, where at one point, data is written to an array
that does not fit into the reserved memory anymore. I successfully (and rather inelegantly) solved this problem
by increasing the value of a previously defined macro ExtensionSize from 128 to a 4096, which got rid of
the array overflow.

30

Zilch also exhibited behaviour that can only be labelled strange while executing larger programs with several
nested loops. Based on the information I could gather from debug System.out.println statements, Zilch
unexpectedly jumps out of the current iteration and starts it over, again and again. I cannot tell whether it
is only what Zilch prints on the output, or if the iterator variable really does not change value due to this,
causing an infinite loop.

Compiling Zerojava is also not as painless as one would hope. Several operators that are available according to
the specification do not actually work, such as the XOR assignment operator ~=. Zerojava also requires excessive
parenthetization: for example, one may not write foo[1] ~ bar[i], onlyas (foo[1]) ~ (bar[i]). The
error messages are rather misleading, but one can eventually guess what might be the problem, given at least
the line number of the offending statement.

Unfortunately, even perfectly valid and parseable Zerojava code does not always compile well. The Zerojava
compiler employs a visitor design pattern when processing the parsed input, but there are several variations of
a mistake in the code: on a line where a single instruction is about to be appended to a StringBuilder, a
function is called, which has the side effect of appending data to the same StringBuilder, causing mangled
instructions where an instruction gets wedged in the middle of another. During compilation, the Zerojava
compiler translates the code between several formats: this particular problem happens at the Kanga to Spiglet
conversion step. Thankfully, this bug was relatively easy to fix: one simply needs to refactor the problematic line
such that the function that is called inside the arguments of the StringBuilder append call is called before,
on a separate line, then save the return value to a variable and pass that as an argument to the StringBuilder
appending.

Zilch is a very powerful tool, but it can be a little confusing at times, difficult to handle. I have contacted
the developer for more information, who has responded to my queries promptly, and gave me some advice that
I was not yet able to try out. These problems delayed the successful implementation of the kEccak-256 hash
function in Zerojava, but it should be noted that evidently, the implementation should be possible, provided
that the bugs mentioned are either worked around or eliminated.

6.2 Operation

The Zerojava compiler can be used to generate the zMIPS instructions for Zilch. Then, executing the Zilch
binary with the right command-line arguments starts a simulated Prover—Verifier interaction during which the
program runs and Zilch prints out the results to the standard output. In addition to the result, the timesteps
that were required are also printed. Listing 6.3 shows the output of a demo execution.

Listing 6.3: Zilch’s output in a demo execution

$ zilch --asm Audit.zmips

| Answer (decimal) =1 I
| 32-bit answer = 00000000000000000000000000000001 |
| Timesteps required = 2244 I

Based on the algorithm I am using, I expected O(n) time results in n, the blockchain’s length on the
private tape. I have evaluated my implementation for inputs as little as 6 blocks up to inputs where there were
100 blocks on the private tape. The number of transactions in each block remained constant (two). Figure 6.1
shows a very clear linear relationship between the input size and the timesteps required to prove conformity.
Timesteps are Zilch’s own units: they represent the execution of one instruction.

31

-10%

timesteps required (as reported by Zilch)

0k \ \ \ \ \
0 20 40 60 80 100

block count (2 transactions per block)

Figure 6.1. Evaluation results: number of timesteps required plotted against input size

32

7 Conclusion and Further Work

I have successfully implemented the audit protocol of my own design in Zerojava, and evidence suggests that
the implementation is correct and the performance of the program is adequate (achieving linear execution
time in input size). I have also done most of the work required to implement KEcCAK-256 in Zerojava and
therefore as a ZMIPS assembler code for Zilch, but a careful review of my conversion of some Java features to
Zilch-only features is in order. Other than that, Zilch or the Zerojava compiler definitely contains bugs, which
hindered development; I have contacted the author and we are presently discussing the problems I reported.

As a continuation of my work, I plan to iteratively relax the limitations of my blockchain model, starting
with, for example, the fixed number of transactions per block. An exciting challenge is how bridged CBDC
that is processed by smart contracts can be handled. Ideally, I would like to be able to apply my protocol to
real life blockchain systems, presumably with an additional step of taking a restricted view of the blockchain
state (only collecting data that are necessary in an audit).

Looking further, the audit protocol outlined in this paper is not specialized to CBDC systems whatsoever.
The prospects of applying the methodology in the broader area of intercompany integrations is certainly worth
looking into.

I must also add that even though Zilch, or in fact its front end Zerojava enabled quick prototyping, especially
given my inexperience in the area, it seems that it may not be the best tool of choice for the complexity of
the problem — the implementation of the hash functions used by cryptocurrencies today already seemed too
much for either the framework, or at least the compiler to handle. Also, an different implementation might
employ non-interactive proofs instead of an interactive protocol like the one I designed, at the potential cost
of performance. There are indubitably many possibilities to explore, even when solely considering the choice

of cryptographic toolkit.

33

Acronyms

AC
CB
CBDC

CP-SNARK

DAG
DAP
DLT
1ZKP
KYC
MIPS

NIZKP
NP
00
RSA
TCP
TLS
™
UTM
ZK
ZKP

zk-ShNARK

zk-SNARK

zk-STARK

Arithmetic Circuit 2, 12, 13, 14, 17, 18

Central Bank 2, 3, 4, 5, 6, 7, 22, 23, 24, 25, 26, 27
Central Bank Digital Currency 1, 2, 3, 4, 5, 6, 7, 12,
19, 22, 23, 26, 33

Commit and Prove Succinct Non-interactive ARgu-
ment of Knowledge 12

Directed Acyclic Graph 13

Decentralized Anonymous Payment scheme 26
Distributed Ledger Technology 5, 6, 7

Interactive Zero-Knowledge Protocol 8, 10, 17, 27
Know Your Customer 5

Microprocessor without Interlocked Pipelined Stages
17

Non-Interactive Zero-Knowledge Proof 10, 12
Nondeterministic Polynomial time 10
Object-Oriented 14, 15

Rivest, Shamir, Adleman 13

Transmission Control Protocol 27

Transport Layer Security 27

Turing Machine 8, 9, 10, 17, 29

Universal Turing Machine 9

Zero-Knowledge 10, 12

Zero-Knowledge Proof 1, 2, 3,7, 8, 9, 10, 11, 12, 13,
14, 15, 17, 18, 26, 27

Zero-Knowledge Short Non-interactive ARgument of
Knowledge 14

Zero-Knowledge Succinct Non-interactive ARgument
of Knowledge 11, 12, 14

Zero-Knowledge Succinct Transparent ARgument of
Knowledge 3, 11, 12, 14, 17, 18

34

ibli h

Bibliography

Auer, R. A. and Bshme, R. (2020). The technology of retail central bank digital currency. Monetary Economics:
Central Banks - Policies ¢ Impacts eJournal.

Ben-Sasson, E., Bentov, 1., Horesh, Y., and Riabzev, M. (2018). Scalable, transparent, and post-quantum
secure computational integrity. Cryptology ePrint Archive, Report 2018/046. https://ia.cr/2018/046.

Ben-sasson, E., Chiesa, A., Garman, C., Green, M., Miers, 1., Tromer, E., and Virza, M. (2014). Zerocash:
Decentralized anonymous payments from bitcoin. pages 459—474.

Ben-Sasson, E., Chiesa, A., Tromer, E., and Virza, M. (2014). Succinct non-interactive zero knowledge for a
von neumann architecture. In Proceedings of the 23rd USENIX Conference on Security Symposium, SEC'14,
pages 781-796, USA. USENIX Association.

Benarroch, D., Campanelli, M., Fiore, D., and Kolonelos, D. (2019). Zero-knowledge proofs for set
membership: Efficient, succinct, modular. In JACR Cryprol. ePrint Arch.

Bootle, J., Chiesa, A., and Liu, S. (2020). Zero-knowledge IOPs with linear-time prover and polylogarithmic-
time verifier. Cryptology ePrint Archive, Report 2020/1527. https://ia.cr/2020/1527.

Campanelli, M., Fiore, D., and Querol, A. (2019). Legosnark: Modular design and composition of succinct
zero-knowledge proofs. Cryptology ePrint Archive, Report 2019/142. https://ia.cr/2019/142.

Feige, U., Fiat, A., and Shamir, A. (1988). Zero-knowledge proofs of identity. Journal of Cryptology, 1:77-94.

Goldreich, O., Micali, S., and Wigderson, A. (1991). Proofs that yield nothing but their validity or all
languages in np have zero-knowledge proof systems. J. ACM, 38:691-729.

Goldwasser, S., Micali, S., and Rackoft, C. (1989). The knowledge complexity of interactive proof systems.
SIAM J. Comput., 18:186—208.

Groth, J. (2016). On the size of pairing-based non-interactive arguments. Cryptology ePrint Archive, Report
2016/260. https://1ia.cr/2016/260.

Koumbarakis, A. and Dobrauz-Saldapenna, G. (2019). Central bank digital currency: Benefits and drawbacks.
page 9.

Manuel, B., Alfredo, D. S., Silvio, M., and Giuseppe, P. (1991). Noninteractive zero-knowledge. SIAM J.
Comput., 20(6):1084-1118.

Miers, I., Garman, C., Green, M., and Rubin, A. D. (2013). Zerocoin: Anonymous distributed e-cash from
bitcoin. In 2013 IEEE Symposium on Security and Privacy, pages 397—411.

Mohr, A. (2007). A survey of zero-knowledge proofs with applications to cryptography.

Mouris, D. and Tsoutsos, N. G. (2021). Zilch: A framework for deploying transparent zero-knowledge proofs.
IEEE Transactions on Information Forensics and Security, 16:3269-3284.

Naganuma, K., Yoshino, M., Sato, H., and Suzuki, T. (2017). Auditable zerocoin. In 2017 IEEE European
Symposium on Security and Privacy Workshops (EuroS PW), pages 59-63.

35

https://ia.cr/2018/046
https://ia.cr/2020/1527
https://ia.cr/2019/142
https://ia.cr/2016/260

Opare, E. and Kim, K. (2020). A compendium of practices for central bank digital currencies for multinational
financial infrastructures. JEEE Access, page 1.

Parno, B., Howell, J., Gentry, C., and Raykova, M. (2013). Pinocchio: Nearly practical verifiable computation.
In 2013 IEEE Symposium on Security and Privacy, pages 238-252.

Sun, J. (2021). Reflections on the latest e-cny pilot test in china. Journal of Asia-Pacific and European Business,
1(01).

Thaler, J. (2021). Proofs, arguments, and zero-knowledge. unpublished, ‘made publicly available in conjunction
with the Fall 2020 offering of COSC 544 at Georgetown University’.

36

Appendices

37

A Complete Source Code Listings

Listing A.1: Complete implementation of Algorithm 1 in Zerojava

1 class Audit {

2

3 public static void main(String[] _args)

4 {

5 Hash H; // hash calculator
6 int[] wl; // whitelist

7 int[] txSs, txRs, txAs; // tx Senders,

8 // Receivers, Amounts
9 int[] bal; // balances

10 int[] hash; // block header hashes
11 int[] txc; // tx count per block
12 int total; // total balance
13 int blkent, txcnt, ucnt; // #blocks, #txs,
14 // #accounts

15 int wllen; // length of whitelist
16 int lastn, // how many txs to
17 // verify

18 // the following are helper variables

19 int lasthash, curhash;

20 int i, j, R, 1;

21 int m, z;

2 int he, ha;

23 int s, r, a;

2% int bals, balr;

25 int erri, errj, errt;

26 int nonval, end;

27 boolean ok, err;

28

29

30 /* PrivateTape format expected as defined */

31 total = PrivateTape.read();

32 blkent = PrivateTape.read();

33 txcnt = PrivateTape.read();

34 ucnt = PrivateTape.read();

35

36 lastn = PublicTape.read();

37 wllen = PublicTape.read();

38

39 txSs = new int[txcnt];

40 txRs = new int[txcnt];

4t txAs = new int[txcnt];

42

43 // indices are account IDs, values are the balances
44 bal = new int[ucnt];

45

46 // indices are block indexes,

47 // values are the previous block header’s hashes
48 hash = new int[blkcnt];

49 // values are the number of txs in the block

50 txc = new int[blkcnt];

51

52 wl = new int[wllen];

38

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112

H = new Hash();

nonval
end

txcnt - lastn; // ignored txs
txcnt;

/* Read whitelist */

i=0;

while (1 < wllen) {
wl[i] = PublicTape.read();
it++;

}

/* Read txs */

i=0;

while (1 < blkcnt) {
txc[i] = PrivateTape.read();
hash[1] = PrivateTape.read();

m = txc[i];

j=0;

while (j < m) {
// offset
1=C(1>0) 2 txc[(L - 1)] : 0;
R=({=*1 +j;
txSs[R] = PrivateTape.read();
txRs[R] = PrivateTape.read();
txAs[R] = PrivateTape.read();
J++;

}

it++;

/* Set inital balances */
bal[0] = total;

i=1;

while (1 < ucnt) {
bal[i] = 0;
i++;

}

/* Non-validating playback */

lasthash = 0; curhash = 0;

1i=0; j=20; R=0;

while (R < nonval) {
s = txSs[R]; r = txRs[R]; a = txAs[Rk];
bals = bal[s]; balr = bal[r];

curhash += ((s + r) + a);

bal[s] = bals - a;
bal[r] = balr + a;
J++;

if (§ == (txc[i])) {

39

113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172

i+
J
la
cu
}
R++;

}
// (i, j) is now t

/* Validating play

err = false; erri

while (kR < end) {
r = txRs[R
bals = bal

curhash +=

bal[s]
ballr]

// unless
if (lerr)
ok

//
//
if

//
if

//
if

//
if

+5

:0;

sthash = curhash;
rhash = 0;

he last (blk, tx) idx seen

back */
= -1; errj = -1; errt = -1;

]; s = txSs[R]; a = txAs[R];
[s]; balr = bal[r];

((r + s) +a);

bals - a; // (3)
balr + a; // (4)

an error has already been found. ..

{
= true;
verify last hash if at start of block
(5)
(G==0{
he = hash[i];
ha = H.hash(lasthash);
if (ha != he) {
ok = false;
errt = 5;
}
whitelisted receiver (2)
(oR) {
ok = false;
zZ = 0;

while (z < wllen) {
if (r == (wl[z]))
oR = true;
Z++;
}
if (loR)
errt = 2;

sufficient balance (1)
(oR) {

ok = (bals >= a);

if (loR)

errt = 1;

check if OK
(toR) {

err = true;

erri = i;

40

173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

errj = j;

}
}
J++;
if (§ == (txc[i])) {
1+
j=0;
lasthash = curhash;
curhash = 0;
}
R++;

}

/* Print errors */

if (err) {
System.out.println(erri);
System.out.println(errj);
// errt mapping:
// =1 ! no error (should never be printed)
// 1 : insufficient sender balance
// 2 : recetiver not allowed
// 5 : bad prev hash
System.out.println(errt);

}

Prover.answer((Cerr) 2 1 : 0);

/* Mock Hash class instead of KECCAK256 */
class Hash {

// for [(0,1,100),(0,2,50)] --> 153
public int hash(int R)
{

}

return R % 65000;

Listing A.2: Complete implementation of KECCAK in Zerojava

1
2
3
4
5
6
7
8
9

10

/*
* ZeroJava reimplementation of the reference KECCAK
* implementation on github.com/XKCP/XKCP
* (Standalone/CompactFIPS202/C/Keccak-readable-and-compact.c)
*/
class KECCAK {

/*

*

* The following are helper methods used to get around the
* Limitations of Zerojava.

*
*/

41

/* Bitwise negation as a method call: just Llike ‘~x' in C */
public long not(long x)

{
// int -1 represents an all-1-bit value
// (11...1 in binary)
return (x ~ -1);

}

/*

* Convert an array of 8 bytes to a 64-bit integer
* (long, LITTLE ENDIAN byte order)

*/
public long bytes2long(byte[] a)
{
long result;
int i;
result = 0;
i=17;
while (1 >= @) {
result = ((result << 8) | ((a[i])) & OxFF);
==§
}
return result;
}
/*

* Convert a 64-bit integer (long) to an array of 8 bytes
* (LITTLE ENDIAN byte order)

*/
public byte[] long2bytes(long x)
{
byte[] result;
int i;
result = new byte[8];
t= 73
while (i >= 0) {
result[i] = (byte) ((x >> (i%8)) & 255);
1--;
}
return result;
}
/*
*

* The following methods implement macros and operators from the
* reference implementation.
*

*/

/* The ‘MIN' macro from the reference implementation */
public long min(long a, long b)
{

}

return (a < b) ? a : b;

42

74
75 /* The ‘ROL64' macro from the reference implementation */

76 //

77 // [ABCDE ... PQRS]
78 /o
79 // o+ +
80 // v
81 // ==>[BCD ... PQRS A]
82 // (moves off bits)
83 public long rolé4(long a, long off)
84 {
85 return ((a << off) »~ (a >>> (64 - off)));
86 3}
87
88 /*
89 * The indexing macro named “i' from the reference
90 * implementation
91 */
92 public int i(int x, int y)
% {
94 return (x + (5 * y));
95 }
96
97 /*
98 * The ‘readLane' macro from the reference implementation.
99 * The state is passed as a parameter as well.
100 */
101 public long readLane(byte[] state, int x, int y)
102 {
103 byte[] lane;
104 int off;
105 int i;
106
107 lane = new byte[8];
108 off = this.i(x, ¥y);
109
110 i=0;
111 while (1 < 8) {
112 lane[1] = state[(8*off) + i1];
113 i++;
114 }
115
116 return bytes2long(lane);
117 }
118
119 /* The ‘writelane' macro from the reference implementation. */
120 public long writeLane(byte[] state, int x, int y, long lane)
121
{
122 byte[] lanebytes;
123 int off;
124 int i;
125
126 lanebytes = long2bytes(lane);
127 off = this.i(x, ¥);
128
129 i=0;
130 while (1 < 8) {
131 state[(8xoff) + 1] = lanebytes[i];
132 i++;
133 }

43

134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193

}

return 0; // ignored

/* The “XORLane' macro from the reference implementation. */
public long xorLane(byte[] state, int x, int y, long lane)

{

/%

*
*
*
*

byte[] lanebytes;
int off;
int i;

lanebytes = long2bytes(lane);
off = this.i(x, y);

i=0;
while (1 < 8) {
state[(8xoff) + 1]
= (byte) ((state[(8xoff) + i])
~ (lanebytes[i]));
1++;

}

return 0; // ignored

The following methods are reimplementations of the reference
implementation's functions

*/

/%

{

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

Function that computes the linear feedback shift register
(LFSR) used to define the round constants
(see [Keccak Reference, Section 1.2]).

—-- from the reference implementation's LFSR86540 function

Instead of modifying the value using a polonger, this method
returns the value that the LFSR should be set to, which is
the responsibility of the caller.

The reference implementation already returns a boolean value
though, (LFSR & 0x01 != 0).

To return both values, this method actually returns an array
of two elements: the first one being @ or 1 based on the
value of the boolean expression (1 if true of course) and the
second being the new value of LFSR which should be assigned
by the caller.

*/
public byte[] 1fsr86540(byte 1fsr)

// result: [boolean(byte) return, byte new Lfsrstate]
byte[] result;

result = new byte[2];
result[0] = (byte) (((lfsr & 0x01) !=0) 2 1 : 0);

44

194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253

if ((1fsr & 128) = 0) // 0x80 = 128
// X8 + X76 + XA5 + X4 + 1 ——=> 0x71 = 113
result[1] = (byte) ((1lfsr << 1) ~ 113);
else
result[1] = (byte) (lfsr << 1);

return result;

}
/*
* Function that computes the Keccak-f[1600] permutation of the
* given state.
*
* —-— from the reference implementation's
* KeccakF1600_StatePermute function
*
* Since Zerojava does not have pointers, the state is passed as
* an array and the method returns the new permuted state array
* which should be assigned to the state variable -- a
* responsibility of the caller.
*/
public long f1600statePermute(byte[] state)
{
// vars used in the reference impl as well
long round; // round counter
int X, ¥, t, J; // loop vars
long r, Y; // helper vars for the rho and
// pi steps

// temporary vars needed to overcome Zerojava
// limitations

boolean b;

long _ // always ignored
// -- theta step

long[] C;

long D;

// -- rho and pi steps

long current, pitemp;

// -- chi step

long[] chitemp;

// -- iota step

long bitpos; // “bitPosition’
byte 1fsrstate; // “LFSRstate'
byte[] 1fsrresult;

1fsrstate = 1; // 0x01

round = 0;
C = new long[5];
while (round < 24) {

/*
e theta step —---—---——-
* (see [Keccak Reference, Section 2.3.2])
*/

// Compute the parity of the columns

X = 0;

while (x < 5) {
C[x] = this.readlLane(state, x, 0);
y=1;
while (y < 5) {

45

254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
29
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313

Clx] = (Cc[xD)
~ (this.readlLane(state,
X, ¥)));
Y++t;
}
X++;
}
X = 0;
while (x < 5) {
// Compute the theta effect for a given
// column
D = (CCLC(x + 4) % 5)])
~ (this.role4(C[((x + 1) % 5)1,
12));
// Add the theta effect to the whole
// column
Yy = 0;
while (y < 5) {
= this.xorLane(state, x, Yy,

D);
Ytt;
}
X++;
}
/*
e rho and pi steps —-------—-
* (see

* [Keccak Reference, Section 2.3.3 and 2.3.4])
*/

// Start at coordinates (1 0)

X =1,y = 0;

current = this.readlLane(state, x, y);

t = 0;

// Iterate over

/7 (Co 1)(2 3))~t * (1 0)

// for 0 <= t <= 23

while (t < 24) {
// Compute the rotation constant
// r = (t+1)(t+2)/2
r=(C(CCt +1) x (t+2))/ 2) % 64);
// Compute ((0 1)(2 3)) * (x y)
Y= (((2 *x) + @B *Yy)) %5);
X =Y,
y = (int) VY;
// Swap current and state(x, y),
// and rotate
pitemp = this.readlLane(state, X, y);
_ = this.writelLane(state, x, Yy,

this.rolé4(current,
r);

current = pitemp;

E++;

46

314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373

V3

X % % X % % X X

* (see
*/
Y = 05
chitemp

[Keccak Reference, Section 2.3.1])

= new long[5];

while (y < 5) {

* (see
*/
i=o;

// Take a copy of the plane

X = 0;
while (x < 5) {
chitemp[x]
= this.readlLane(state,
Xy, ¥);
X++;
}
X = 0;

while (x < 5) {
_ = this.writeLane(state, X, Y,
(Cchitemp[x])
~ ((this.not(
chitemp[((x + 1) % 5)1))
& (chitemp[((x + 2) % 5)1))));
X++;

Y+t

-—— iota step ———--———
[Keccak Reference, Section 2.3.5])

whlle,(j < 7)1

}

round++;

}

bitpos = ((1 << j) - 1);
1fsrresult = this.lfsrge540(1lfsrstate);
b = (Lfsrresult[0] == 1);
1fsrstate = 1fsrresult[1];
if (b)
= this.xorLane(state, 0, 0,
(1L << bitpos));

J++;

return 0; // ignored

Function to compute the KeccaRk[r, c] sponge function over a

given input.

Parameters:
r
c
input
delimSuffix

The value of the rate r.
The value of the capacity c.
The input message.

Bits that will be automatically appended

47

374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
39
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433

* to the end of the input message, as in

* domain separation.

* This is a byte containing from 0 to 7

* bits.

* These n bits must be in the least

* significant bit positions and must be

* delimited witha bit at position n

* (counting from 0=LSB to 7=MSB) and

* followed by bits 0 from position n+1 to
* position 7.

* Some examples:

* - If no bits are to be appended, then

* delimSuffix must be 0x01.

* - If the 2-bit sequence 0,1 is to be

* appended (as for SHA3-%), delimSuffix
* must be 0x06.

* - If the 4-bit sequence 1,1,1,1 is to be
* appended (as for SHAKE%*), delimSuffix
* must be 0x1f.

* - If the 7-bit sequence 1,1,0,1,0,0,0 is
* to be absorbed, delimSuffix must be

* 0x8b.

* outLen The number of output bytes desired.
*

*

*

*

*

One must have r+c=1600 and the rate a multiple of 8 bits in
this implementation.

-- from the reference implementation
*/
public byte[] keccak(long r, long c, byte[] input,
byte delimSuffix, long outLen)

{
// vars used by the reference implementation
byte[] state;
long rbyte, blksiz; // ‘rateInBytes' and ‘blockSize'
int i; // a loop variable
// vars used to overcome Zerojava limitations
byte[] out; // output as a byte array
int i, L // additional Lloop variables
long =
// initialize some variables
rbyte = r / 8;
blksiz = 0;

// verify parameters are acceptable
if (((r + c) !=1600) || ((r % 8) != 0))
System.exit(8);

// Initialize the state

state = new byte[200];

j=0;

while (j < 200) {
state[j] = 0;
J++;

}

// Absorb all the input blocks
1 = input.length;
while (1 > 0) {

48

434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493

blksiz = this.min(l, r);
i=0;
while (1 < blksiz) {
state[i] = (byte) ((state[i])
~ (input[i]));
i++;
}
1 -= blksiz;

if (blksiz == r) {
_ = this.f1600statePermute(state);
blksiz = 0;

lb==§
}

// Do the padding and switch to the squeezing phase
// Absorb the last few bits and add the first bit of
// padding (which coincides with the delimiter in
// delimSuffix)
state[(int) blksiz]

= (byte) ((state[(int) blksiz]) ~ (delimSuffix));
// If the first bit of padding is at position r-1, we
// need a whole new block for the second bit of padding
// /instead of 0x80, 128 is used/
if (((delimSuffix & 128) !'= 0) && (blksiz == (r - 1)))

_ = this.f1600statePermute(state);

// Add the second bit of padding
state[(int) (rbyte - 1)]

= (byte) ((state[(int) (rbyte - 1)]) ~ 128);
// Switch to the squeezing phase
_ = this.f1600statePermute(state);

// Squeeze out all output blocks
// first, we must initialize the output array
out = new byte[(int) outLen];
i=0;
while (1 < outLen) {
out[i] = 0;
i++;
}
// now for the actual squeezing
j=0;
while CoutLen > 0) {
blksiz = this.min(outLen, r);

i=0;

while (1 < blksiz) {
out[(j + 1)] = state[i];
1++;

}
outLen -= blksiz;

if (outLen > 0)
_ = this.f1600statePermute(state);
}

return out;

49

494
495
496

50

	Introduction
	cbdc
	Benefits and drawbacks
	Possible cbdc models
	Bridged cbdc

	zkp
	Introduction to zkp
	Definitions and basic properties
	The many types of zkp
	Practical Implementations

	A Blockchain Audit Model for Bridged cbdc
	Blockchain Model
	Requirement formalization
	Audit Model

	A zkp-based Audit Protocol
	Privacy Concerns During Audits
	A complete audit protocol

	Zilch Prototype
	Challenges and Limitations
	Operation

	Conclusion and Further Work
	Acronyms
	Appendices
	Complete Source Code Listings

