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KIVONAT

Az elmúlt évtizedekben a pilóta nélküli légijárművek (Unmanned Aerial Vehic-

le, UAV) egyre népszerűbbé váltak civil és akadémiai alkalmazásokban is, mint

például felderítés, áruszállítás, geofizikai adatgyűjtés, mentési műveletek vagy

éppen mezőgazdasági célú felhasználás. Az előrelépés nemcsak a technikai mo-

dernizációnak köszönhető, hanem a szélesebb körű felhasználhatóságnak, ami

nagyban a hagyományos navigációs módszerek innovációjának köszönhető. A

UAV-k jövőre gyakorolt hatása azon is múlik mennyire tudnak jól navigálni GPS

(Global Positioning System) nélküli környezetben például kimaradó, zavart (jam-

ming) vagy hamisított (spoofing) jelek esetén.

Dolgozatom középpontjában egy vizuális-inerciális navigációs algoritmus

áll. A tanulmány során megvalósított rendszer célja meghatározni egy légijármű

pozícióját, orientációját, sebességét és a gyorsulás és szögsebesség szenzor bias

értékeit inerciális szenzorrendszer (Inertial Measurement Unit, IMU) mérések és

mono kameraképek alapján. A javasolt rendszer egy hiba állapot Kálmán-szűrő

(Error-State Kalman Filter, ESKF) alapú keretrendszerben hajtja végre az IMU és

a kamera adatok integrációját. Az IMU mérésekből a repülőgép pozícióját, sebes-

ségét és orientációját lehet becsülni, amelynek hibáját a kamera képekből nyert

információval korrigálom. A korrekció során felhasznált jellegpontok pozícióját

háromszögelés útján számítom, amelyhez egy ún. LOST (Linear Optimal Sine Tri-

angulation) módszert alkalmazok. Az algoritmus tesztelése úgy történik, hogy a

kezdeti állapotban ismert GPS koordinátákat feltételezek, és ez idő alatt már meg-

kezdődik a jellegpontok pozíciójának optimalizációja, amelyeket az ESKF frissí-

tési fázisában használok fel. Később a GPS koordináták már nem ismertek, ezért

az ESKF becslésekből történik az újabb jellegpontok pozíciójának optimalizáció-

ja, azok alapján pedig a frissítés. Munkámban megvizsgálom a módszer pontos-

ságának korlátait, és azt is, hogy a GPS jel elvesztése után meddig ad kielégítő

pontosságot csak a vizuális-inerciális navigáció.
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Összefoglalva, a dolgozat bemutatja az algoritmus fejlesztését, amely fuzi-

onálja az inerciális és vizuális adatokat, valamint az ehhez szükséges elméleti

alapismereteket és matematikai módszertanokat. Az alap algoritmusokat (ESKF

és LOST) szakirodalomból vettem, amelyeket saját rendszerbe integráltam. A ku-

tatás során először egy szimulációt hoztam létre, amelyet fokozatosan közelítet-

tem a valóságos körülményeket leginkább modellező környezethez. Az ígéretes

szimulációs eredményeket követően fő célom az elkészített navigációs rendszer

tesztelése lesz szintetikus vagy valós felvételeken.
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ABSTRACT

Over the past decades, Unmanned Aerial Vehicles (UAVs) have become increas-

ingly popular in both civilian and academic applications, such as exploration,

cargo delivery, geophysical data collection, rescue operations, and agricultural

purposes. This expansion required not only technical modernization but also ad-

vancement in traditional navigation methods. The future impact of UAVs also de-

pends on their ability to navigate effectively in GPS (Global Positioning System)-

denied environments, for example, scenarios involving signal dropout, jamming,

or spoofing.

My work focuses on a visual-inertial navigation algorithm. In this study, the

implemented system’s goal is to determine an aircraft’s position, orientation, ve-

locity, and bias values of the accelerometer and gyroscope based on measure-

ments from an Inertial Measurement Unit (IMU) and monocular camera images.

The proposed system performs the integration of IMU and camera data within

an Error-State Kalman Filter (ESKF) framework. The aircraft’s position, velocity,

and orientation are estimated from IMU measurements, and these estimates are

corrected with the information obtained from camera images. During the correc-

tion, the positions of feature points are computed through triangulation using a

method called Linear Optimal Sine Triangulation (LOST). The algorithm is tested

as follows: in the initial stage the GPS coordinates are assumed to be known, and

the optimization of feature point positions begins this time, and they are utilized

in the ESKF update. Later, when GPS coordinates are no longer known, the op-

timization of feature point positions is based on the ESKF estimates, and these

optimized values are used in the update. In my work, I examine the limitations

of the method’s accuracy and investigate how long it can provide satisfactory

accuracy after losing the GPS signal, relying only on visual-inertial navigation.
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To summarize, the thesis presents the development of an algorithm that fuses in-

ertial and visual data besides the required theoretical background and mathemat-

ical foundations. The utilized algorithms (ESKF and LOST) were chosen from the

literature and integrated into the newly developed system. I applied a simulation

environment and a gradual approach during the development process, starting

with ideal conditions and incrementally introducing more realistic elements to

the simulation. After achieving promising simulation results, my primary ob-

jective in the future is to test the developed navigation system on synthetic or

real-world footage.
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CHAPTER 1

INTRODUCTION

Until the early 2000s Unmanned Aerial Vehicles (UAV) have been limited to the

defense and military industries, because of the high costs and the complexity of

constructing these vehicles. Nevertheless, they have become cheaper and more

available in several civil and academic applications over the past decades. They

have not just turned more common, but their capabilities have dramatically in-

creased, therefore they are more popular and widely used in applications such as

rescue operations [1], data collection and geophysics exploration [2], inspections

[3], and agricultural purposes [4].

This expansion required not only technical developments but advancement in

traditional navigation methods, where Global Positioning System (GPS) is com-

bined with Inertial Navigation System (INS), creating GPS-INS system [5]. The

small unmanned aircraft’s future impact depends on how well they can navi-

gate in GPS-denied environments such as narrow city corridors or circumstances

with GPS disturbance or spoofing. Inertial measurements by themselves can be

used to estimate the position of the aircraft respected to a known initial position,

but they will accumulate errors over time, especially with low-cost Inertial Mea-

surement Unit (IMU) sensors. This phenomenon is usually called drift because

estimated values drift away from the true values with time.

In order to give a better estimation of the position in most GPS-free applications

exteroceptive sensors are used such as cameras, laser scanners, distance sensors,

etc.. The type of used sensor mostly depends on the kind of vehicle. For example

only considering UAVs, a multirotor drone has completely different aircraft dy-

namics, mission profile, and sensing requirements compared to fixed-wing air-

craft. Since fixed-wing aircraft usually fly at high altitudes above the environ-

1



ment with relatively high speeds, distance sensors are ineffective. In this case, the

most common approach is using cameras for instance, both [6] and [7] leverage

visual information captured by cameras and integrate this data with measure-

ments from an IMU to estimate the motion of the aircraft. When an algorithm fails

to close the navigation loop, particularly in the absence of external absolute posi-

tioning references like GPS, it results in the estimates drift, which emerges due to

the algorithm’s inability to establish consistent and accurate reference points or

constraints, thereby leading to unbounded cumulative errors over time.

The measurement fusion and sensor noise filtering can take place in an Extended

Kalman Filter (EKF) framework because typically these are nonlinear systems.

EKFs can be used on any kind of vehicle including robots [8], Unmanned Aerial

Systems(UAS) [9, 10], etc. They can account for both sensor errors and process

uncertainty, but it is important to note that these methods only work well when

errors remain small, e.g. when the availability of GPS measurements makes it

possible to regularly remove drift errors. When GPS or any other global measure-

ments are unavailable for a longer period of time, the global position and yaw

angle of the aircraft is unobservable, which eventually leads to the divergence

of estimates [11, 12]. In addition, if an EKF receives a global measurement after

significant drift errors have accumulated, nonlinearities can complicate the uti-

lization of the measurement, and it could result in large jumps in the estimate, in

some cases it can even lead to filter divergence. This is because the local lineariza-

tion of the measurement equations around the drifted states is applied, which can

present incorrect dynamics.

In recent years a new method was proposed called relative navigation [13, 14],

which is able to handle these observability and consistency problems. With exte-

roceptive sensors we are able to navigate with respect to the surroundings, hence

this method can be divided into a relative front-end and a global back-end, the

complete architecture is shown in Figure 1.1. The front end provides an estima-

tion of the state relative to the local environment, while the back end is basically

an optimization algorithm, which uses the calculations of the front end to pro-

duce global estimates. Several important observability and computational bene-
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Figure 1.1: Block diagram of relative navigation ([7]: page 2, Figure 2)

fits are obtained by dividing the architecture into a relative front end and a global

back end:

• The front end calculates the estimate relative to a local frame, where the

states can remain observable and the uncertainty can be accurately repre-

sented by a Gaussian distribution. This enables the utilization of the com-

putational advantage of an Error-State Kalman Filter (ESKF), which is a bet-

ter solution, than an ordinary EKF because it calculates the nominal state

according to the original non-linear dynamics, therefore the linearization

around this state is a better approximation.

• On the other hand, the back end uses a graph that can effectively represent

nonlinearities in heading and can be robustly optimized with additional

constraints, such as opportunistic global measurements or place recogni-

tion.

In this paper, a visual-inertial navigation algorithm will be presented, which is

based on [7]. The target UAV is a fixed-wing aircraft called Sindy, shown in Figure

1.2.

1.1 Structure of the paper

To sum up the involved steps during the project, the primary objective was to

integrate a visual-inertial ESKF into a simulation that was already available to
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Figure 1.2: Realistic drawing of Sindy ([15]: title page)

me. The simulation consisted of a grid of feature points, and the goal was to

use an ESKF-based algorithm to estimate the aircraft’s state while flying along

a predefined trajectory. I followed a gradual approach in the development pro-

cess, starting with ideal conditions and incrementally introducing more realistic

elements to the simulation. These included IMU- and measurement- noises, sen-

sor biases, and pixelization. Firstly, I implemented the previously described filter

with known 3-D coordinates of the measured feature points, but later a triangula-

tion method was implemented called Linear Optimal Sine Triangulation (LOST).

The next step involved the insertion of the LOST estimates into the ESKF frame-

work.

The paper is structured as follows: Chapter 2 provides an introduction to several

fundamental mathematical concepts that are crucial for comprehending our ap-

proach. In Chapter 3, the mathematical foundations of the filter are explained,

and the steps of the filter are detailed. Chapter 4 focuses on the introduction of

the applied triangulation method called LOST. Chapter 5 is devoted to introduc-

ing the integration issues of ESKF and LOST. Chapter 6 presents the estimation

results in Matlab/Simulink environment. Finally, Chapter 7 offers a summary of

the work, and highlights certain future development steps.
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CHAPTER 2

MATHEMATICAL FOUNDATIONS

Before I would delve into the details of the visual-inertial relative navigation al-

gorithm, it is important to establish theoretical foundations. This chapter sum-

marizes the mathematical preliminaries that are essential for understanding how

the algorithm works. It covers key concepts about coordinate systems and cam-

era projection, and introduces an alternative method of rotation representation.

In my approach, filter-related mathematics uses four frames for the mathematical

notation: Earth (E), node (N)-, body (B), and camera (C) frame. These are shown

in Figure 2.1.

Figure 2.1: Applied coordinate systems
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The Earth frame means an Earth fixed frame, and the Nort-East-Down (NED)

coordinate system is chosen for this purpose in such UAV applications where

the vehicle covers only a few kms. The node frame is a locally declared fixed

frame, which usage is necessary for relative navigation methods since the filter

produces estimates in this frame. The body- and camera frames are detailed in

the following sections.

2.1 Navigation frames

The purpose of using different kinds of frames is to facilitate the kinematic mod-

eling of UAVs. To effectively study UASs, it is crucial to comprehend the relative

orientation and translation of different coordinate systems. Multiple frames are

required for several reasons:

• The motion of the aircraft is most easily described in a body-fixed frame,

however, Newton’s equations of motion are derived relative to a fixed, in-

ertial reference frame.

• The body-fixed frame is also used to express the aerodynamic forces and

moments that affect the aircraft.

• On-board sensors such as accelerometers and gyroscopes measure concern-

ing the body frame. This is essential in the case of strap-down IMUs since

they provide accelerations and angular rates with respect to the body frame.

• Finally, the mission requirements of the aircraft, e.g. flight path require a

global frame too.

2.1.1 North-East-Down reference frame

The NED coordinate system has emerged as a standard in UAV applications over

limited distances, typically spanning a few kilometers. Notably, this reference

frame is conventionally anchored to a stationary point on Earth, affording its

use as an inertial reference frame in analytical computations. Consistent with

its name, the NED system aligns its X-axis with the geographic north, its Y-axis
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with the east, and its Z-axis points inwards to the Earth. Its X-Y plane is the local

tangent plane of the Earth’s ellipsoid.

The front end of relative navigation methods adopts the node coordinate sys-

tem as an inertial frame, a crucial precondition for the functioning of the filter.

The node frame remains locally fixed and undergoes redeclaration following each

measurement. The back end of the system facilitates the derivation of global esti-

mates, such as NED coordinates, utilizing the outcomes yielded by the filter.

2.1.2 Body frame

The body coordinate system is the most important besides the inertial frame. It

appears directly in the kinematic equations, therefore it is crucial to understand

properly how it is defined and what is the relation to the inertial frame. The origin

is the center of the mass of the aircraft, and at this point, I would like to highlight

the fact in almost every application the IMU is placed here. The axes of the body

frame are defined as follows: the X-axis points out the nose of the aircraft, the

Y-axis points out the right wing and the Z-axis points downwards.

Once the coordinate system has been defined, it is necessary to mention the re-

lation to the inertial frame. The most commonly applied approach to obtain the

orientation of the aircraft in the NED system is to express it with Euler angles

which means three rotations one after another. Defining the Euler angles I use

the same terminology as in [10], their approach is to introduce three additional

coordinate systems: vehicle, vehicle-1, and vehicle-2. They are shown in Figure

2.2a-2.2d.

The vehicle frame is basically the NED coordinate system with shifted origin into

the center of mass, vehicle-1 frame is rotated with the yaw angle (ψ) around the

Z-axis of vehicle frame, vehicle-2 frame is rotated with pitch angle (θ) around the

Y-axis of vehicle-1 frame, and body frame is rotated with roll angle (ϕ) around

the X-axis of vehicle-2 frame. To summarize, the resulting rotation can be defined

as:

7



(a) Vehicle (b) Vehicle-1

(c) Vehicle-2 (d) Body frame

Figure 2.2: Frames to define Euler angles ([10]: pages 13-15, Figures 2.4-2.7)

RBV(ϕ, θ, ψ) = RBV2(x, ϕ)RV2V1(y, θ)RV1V(z, ψ)

=


CθCψ CθSψ −Sθ

SϕSθCψ − CϕSψ SϕSθSψ + CϕCψ SϕCθ

CϕSθCψ + SϕSψ CϕSθSψ − SϕCψ CϕCθ

 ,
(2.1)

where Cα is shorthand for cos(α) and Sα for sin(α).

Finally, I would like to mention the usage of homogeneous transformation is

widespread regarding vision-based applications, thanks to the fact it allows the

calculation of three-dimensional (3D) coordinates from one frame to another

with a single matrix multiplication. With known translation rEB and rotation

(RBE ≡ RBV) between the Earth frame (NED) and body frame, the homogeneous

transformation can be expressed as:

HBE =

RBE rEB

0T 1

 (2.2)
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The transformation can be applied as:

HBE =

RBE rEB

0T 1

ve

1

 =

RBEve + rEB

1

 (2.3)

2.2 Camera frames

It is important to say a few words about camera-related frames and transforma-

tion in view of the fact that, camera pictures are used to improve navigation. I

would like to clarify that, we distinguish between a camera- and an image coordi-

nate system. This means that a point with known coordinates in the Earth frame

can be projected onto the image plane with two operations: a transformation is

needed from the Earth frame to the camera system and after that, a projection is

needed.

2.2.1 Camera system

It is very important to determine the transformation from body-to-camera system

with sufficient accuracy. Generally, the camera is not placed in the body center,

therefore the transformation first requires a translation with rBC. Since navigation

happens with respect to the surroundings an at least partially downward-facing

camera is mandatory, which means a rotation is needed around the Y-axis of the

body frame. Furthermore, the axes of the camera system are defined differently,

than the axes of the body frame, therefore an additional operation is essential to

change the axes. Figure 2.3 shows why the swapping is needed: almost every

application defines the axes of the camera system as follows: the X-axis points to

the right, Y-axis points to the bottom and Z-axis points out of the principal point

of the image.

It means that the basis vectors of the rotated body frame should be transformed

as outlined below: i⃗′b = k⃗c, j⃗′b = i⃗c and k⃗′b = j⃗c, the transformation from body-to-

9



Figure 2.3: Camera and image system ([16]: page 7)

camera frame:

TCB = SRCB(y, β) =


0 1 0

0 0 1

1 0 0




cos(β) 0 − sin(β)

0 1 0

sin(β) 0 cos(β)



=


0 1 0

sin(β) 0 cos(β)

cos(β) 0 − sin(β)

 ,

(2.4)

where S stands for the axes swapping transformation, and β is the angle between

the camera and the body. Considering the translation the homogeneous transfor-

mation can be written in the form of:

HCB =

TCB rBC

0T 1

 (2.5)

2.2.2 Pinhole camera projection

Here and now, every known point in the Earth frame can be transformed into the

camera system with the usage of (2.2) and (2.5). The next task is to determine the

pixel coordinates of the point in question, and this requires a projection h(.). For

the simulation, the most simple model was chosen, the pinhole camera projection
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model. The pinhole model framework describes the aperture of the camera as a

point, therefore the lens distortion errors are neglected. As it can be seen in Figure

2.3, the model only requires two parameters:

1. The focal length (f) which shows the distance between the camera center

and the image plane.

2. The second parameter is the principal point which is typically near the cen-

ter of the image, however, it is a bit shifted in real cameras.

With the mentioned parameters, the transformation includes the normalization

of points with their distance from the camera center and the projection onto the

image plane. In the pinhole framework, the transformation of the normalized

points can be specified with a camera matrix, which can be derived from pinhole

parameters:

K =


f 0 px

0 f py

0 0 f

 (2.6)

Using (2.6) the whole projection is defined as:

h(pc) = K
pc

zc
=


f 0 px

0 f py

0 0 f




xc
zc
yc
zc

1

 =


f xc

zc
+ px

f yc
zc
+ py

f

 =


u

v

f

 (2.7)

As a final point, I would like to emphasize that the (2.7) transformation can deter-

mine the image coordinates of every three-dimensional point, but a real camera

has limitations which can be described either with the image size (W, H) or the

FOV angles.

2.3 Quaternions

Before embarking into the ESKF, it is worth mentioning a few words about

quaternions. Originally formulated in [17] by Sir William Rowan in the 19th
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century. Nowadays, quaternions have found extensive applications in various

domains, including computer graphics, robotics, and aerospace engineering.

In this paper, I adopt the same mathematical representation for quaternions as

described in [18]. Quaternions belong to the extended complex number space,

which includes two additional imaginary units, namely j and k, in addition to

the real and imaginary unit i. As a result, quaternions can be represented by

four-component vectors:

q = a + bi + cj + dk =
[

a b c d
]T

=

qw

qv

 , (2.8)

where q is a quaternion with a, b, c, and d parameters. The quaternion can be

expressed as a column vector or as a combination of the scalar component qw and

the vector component qv.

It is noticeable that, while regular complex numbers of unit length (z = eiθ)

are able to encode rotations in the 2D space, quaternions of unit length (q =

e(uxi+uy j+uzk)θ/2) can encode rotations in the 3D space. These quaternions can al-

ways be written in the form:

q =

 cos
(

θ
2

)
sin
(

θ
2

)
u

 , (2.9)

where u is the rotation axis and θ is the angle of the rotation. The rotation can be

performed on the 3D vector v by the following operation:

 0

v
′

 = q⊗

0

v

⊗ q∗, (2.10)

where⊗ is the Hamiltonian-quaternion multiplication, and q∗ is the conjugate of

q.
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The composition of two rotation, described byqAB and qBC quaternions can also

be evaluated using quaternion product:

qAC = qAB ⊗ qBC (2.11)

Further definitions and important formulas relevant to this paper are provided

in Appendix A.

Finally, I aim to justify the significance of quaternions in the field of computer

calculations. The first striking benefit is that quaternions offer a compact repre-

sentation of rotations, requiring only 4 parameters. In contrast, rotation matrices

necessitate 9 parameters. Another advantage of quaternions is their ability to

ensure more stable and accurate computations by avoiding singularities and mit-

igating the issue of gimbal lock, which can occur both for rotation matrices and

Euler angles.
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CHAPTER 3

INTRODUCTION OF THE APPLIED

FILTER TECHNIQUE

Upon laying down essential mathematical foundations, the subsequent focus

shifts toward introducing the chosen filter technique. In visual-inertial projects,

various approaches are available to filter measurements and estimate the sys-

tem’s state. Many of these approaches are a modified Kalman filter. The basics

of the implemented filter are based on the ESKF, which stands as a remarkable

method for filtering and estimating nonlinear systems. The basic algorithm is

taken from [18], but with three major differences:

1. I didn’t insert the gravitational constant (g) in the state vectors x, δx to es-

timate UAVs usually fly small distances and the gravitational acceleration

can be assumed constant.

2. The velocity vector v is body-fixed in my approach, making it vb. On the

contrary, the mentioned literature uses an inertial frame fixed velocity vec-

tor.

3. In their method, the rotation described by quaternion q and rotation matrix

R{q} ≡ R 1 stands for the body-to-earth rotation, while in this paper ro-

tation stands for the inverse transformation, earth-to-body transformation

to match the conventional Euler angle representation of rotation commonly

applied in aerospace. This impacts the formulation of the mathematical

equations, but in most cases, the equations have symmetrical properties.

1In this paper, R{q} detones the rotation matrix obtained from quaternion.
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3.1 Error-state kinematics

In IMU-driven systems the goal is to create a filter framework, that integrates

the accelerometer and gyrometer readings considering their bias and measure-

ment noise. As I previously detailed the IMU measurements only themselves

cause drift in their estimate, therefore they should be fused with absolute posi-

tion readings such as GPS or vision.

One of the tools which can be used for this purpose is the ESKF, which has mul-

tiple advantages if applied for nonlinear systems:

• The error state always operates close to the actual system state, thus the

linear Kalman filter approach can be applied to the error-state.

• All second-order products are negligible because the error-state always re-

mains small. This makes the computation of Jacobians very easy and fast.

• The dynamics of the error-state are slow, due to all large-signal dynamics

being integrated into the nominal-state. This results in a highly beneficial

property: the KF corrections can be applied at a lower rate, than the predic-

tions.

3.1.1 Kalman filter states for IMU driven systems

The objective is to estimate the position of the aircraft, which requires to use of

the kinematic equations of the aircraft. The kinematics expresses the relationships

among position, orientation, velocity, acceleration, and angular velocity. Whereas

acceleration and angular velocity are utilized as IMU measurements, the state in-

cludes position, velocity, and orientation. Moreover, it is supplemented by esti-

mating the biases of the sensors.

The position and orientation of the body are expressed in a fixed frame, which

is usually the node frame in relative navigation projects, but currently, the devel-

oped system doesn’t implement a backend, therefore there is no purpose for the

usage of the node frame. So from now on the localization frame is considered
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NED. On the contrary, the velocity and the biases are body-frame fixed, which

results in the state vector:

x =



pn

qn

vb

βa

βω


(3.1)

3.1.2 ESKF states

In the ESKF framework, there are three different states: true- (xt), nominal- (x),

and error-state (δx). In Table 3.1 all of the ESKF variables are summarized.

True Nominal Error Composition Noise Measured

pn,t pn δpn pn,t = pn + δpn

qn,t qn δqn ≈

 1
1
2 δθ

 qn,t = δq⊗ qn

vb,t vb δvb vb,t = vb + δvb

βa,t βa δβa βa,t = βa + δβa ηβa

βω,t βω δβω βω,t = βω + δβω ηβω

Rt R δR = e

[
δθ
]
× Rt = δRR

at ηa am

ωt ηω ωm

Table 3.1: ESKF states and inputs

The states are divided in such a way that the large-signal dynamics are assigned

to the nominal state, while the small-signal dynamics are assigned to the error

state. A few comments on the table:

• The relation between the error- quaternion and rotation vector was pre-

sented, using the formula defined in Appendix A.1, then approximating

cosine and sine as above, because δθ is always near 0.
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• The body referenced measurements are am and ωm. Their values are cap-

tured as noisy IMU measurements, therefore:

am = at − Rtg + βa,t + ηa

ωm = ωt + βω,t + ηω

(3.2)

From above the true values can be obtained, and substituting nominal- and

error- values into true variables:

at =

a︷ ︸︸ ︷
am − βa +Rg

δa︷ ︸︸ ︷
−δβa − ηa

ωt =

ω︷ ︸︸ ︷
ωm − βω

δω︷ ︸︸ ︷
−δβω − ηω

(3.3)

• The biases small-signal dynamics δβa, δβω are represented with Gaussian

white noises ηβa , ηβω
, just like the measurement noises ηa, ηω.

• The true rotation matrix can be approximated by composing the nominal

rotation matrix with power series because δR can be written in Taylor-series.

The (3.4) approximation is detailed in B.1, but the formula is provided here,

therefore neglecting the second- and higher-order terms, it yields:

Rt = δRR =

(
I +

[
δθ
]
×

)
R + O(||δθ||2) (3.4)

True-state

The dynamics of the true state can be described by the following equations:

ṗn,t = RT
t vb,t (3.5a)

q̇n,t =
1
2

 0

−(ωm − βω,t − ηω)

⊗ qn,t (3.5b)

v̇b,t = am − βa,t − ηa + Rtg +
[
vb,t

]
×
(ωm − βω,t − ηω) (3.5c)

β̇a,t = ηβa
(3.5d)
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β̇ω,t = ηβω
(3.5e)

The (3.5b) is the time derivative formula of quaternion, and detailed in Appendix

A.2. The (3.5c) also requires some explanation because this equation applies the

rule of vector derivative in rotating frames compared to an inertial frame:

d
dti

v =
d

dtb
v + ωb/i × v⇒ d

dtb
v =

d
dti

v + v×ωb/i, (3.6)

where the anti-commutative property of the cross product was used (ωb/i × v =

−v×ωb/i). In (3.5c), the cross product is expressed in matrix form with the skew

operator
[
.
]
×

, which can be constructed as:

[
a
]
×
≜


0 −az ay

az 0 −ax

−ay ax 0

 (3.7)

Nominal-state

The nominal-state corresponds to the modeled system without noises and per-

turbations:

ṗn = RTvb (3.8a)

q̇n =
1
2

 0

−ω

⊗ qn (3.8b)

v̇b = a + Rg +
[
vb

]
×

ω (3.8c)

β̇a,t = 0 (3.8d)

β̇ω,t = 0 (3.8e)
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These equations reflect the dynamics of the system with slowly varying biases,

which is beneficial because allows the integration of large-signal dynamics into

the nominal-state.

Error-state

The error-state equations are derived by using the previously defined true- and

nominal-state equations. The equations governing the error-state are as follows:

˙δpn = RTδvb + RT
[
vb

]
×

δθ (3.9a)

δ̇θ = −
[
ωm + βω

]
×

δθ+ δβω + ηω (3.9b)

δv̇b = −
[
Rg
]
×

δθ−
[
ωm − βω

]
×

δvb − δβa −
[
vb

]
×

δβω

− ηa −
[
vb

]
×

ηω

(3.9c)

δβ̇a = ηβa
(3.9d)

δβ̇ω = ηβω
(3.9e)

The calculations are detailed in Appendix B.2.

3.1.3 Error-state kinematics in discrete time

The previous equations are defined in continuous-time, but computer implemen-

tations use a discrete-time model. To incorporate discrete time intervals ∆t > 0,

the differential equations mentioned earlier must be transformed into difference

equations through integration.

The integration method may vary, since in certain cases, exact closed-form solu-

tions can be utilized, while in other cases, numerical integration techniques with

varying degrees of accuracy may be employed. Generally, we could say the equa-

tions have a deterministic part related to state dynamics and control, on the other

hand, there is a stochastic part related to perturbations and noises. In this case,
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the same method will be presented as in [18]: the deterministic part integrated

according to the ZOH method, and the stochastic part modeled as random im-

pulses applied to the velocity, orientation, and bias estimates. This results in the

nominal-state equations:

pn,k+1 = pn,k + RTvb,k∆t +
1
2

RT
(

ak + Rg +
[
vb,k

]
×

ωk

)
∆t2 (3.10a)

qn,k+1 = q{−(ωm − βω)∆t} ⊗ qn,k (3.10b)

vb,k+1 = vb,k +

(
ak + Rg +

[
vb,k

]
×

ωk

)
∆t (3.10c)

βa,k+1 = βa,k (3.10d)

βω,k+1 = βω,k (3.10e)

The position is integrated both from velocity and acceleration, and the rotation

from angular velocity. The last one is given in a closed form assuming that the

angular velocity is constant during the sampling interval. Using the same in-

tegration approach complemented by the integration of the stochastic part, the

error-state equations result as:

δpn,k+1 = δpn,k + RT
(

δvb,k +
[
vb,k

]
×

δθk

)
∆t (3.11a)

δθk+1 = R{−(ωm,k − βω,k)∆t}δθk + δβω,k∆t + θi,k (3.11b)

δvb,k+1 = δvb,k +

(
−
[
Rg
]
×

δθk −
[
ωm,k − βω,k

]
×

δvb,k

−δβa,k −
[
vb,k

]
×

δβω,k

)
∆t−

[
vb,k

]
×

θi,k − vb,i,k

(3.11c)

δβa,k+1 = δβa,k + ai,k (3.11d)

δβω,k+1 = δβω,k + ωi,k (3.11e)

θi, vb,i, ai and ωi are the random impulses which form the stochastic part of the

equation. Hence, they are modeled as Gaussian white noises, the negative sign

freely can be changed to a positive. Their covariance matrices are integrated as
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(see [18] Appendix E for details):

Θi = σ2
ηω

∆t2I

Vi = σ2
ηa ∆t2I

Ai = σ2
βa

∆tI

Ωi = σ2
βω

∆tI

(3.12)

3.2 Measurement equation

The measurement equation is based on the fundamental concept that the system

can acquire pixel coordinates of feature points as measurements. In order to form

the residual, the predicted pixel coordinates must be determined for each feature

point. This can be accomplished through the application of the pinhole equation

(2.7), which leads to:

h(TCB(RBE(p
f
n − pb

n)− pc
b)) = h(p f

c ) =


u

v

f

 , (3.13)

where p f
n denotes the feature position in NED frame, p f

c means the feature po-

sition in camera frame and pc
b describes the camera origin in body frame. The

transformation above requires the usage of both the state (pb
n, qb

n) and p f
n, thus,

linearizing the measurement equation yields two Jacobians, but in this chapter,

only the Jacobian with respect to the state is discussed.

3.3 ESKF framework

The ESKF is a special version of the Kalman filter, that contains two state vectors:

one for the nominal- (xk) and the other for the error-state (δxk) vector. The system
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is governed by the input uk and the noise perturbations i:

xk =



pn,k

qn,k

vb,k

βa,k

βω,k


, δxk =



δpn,k

δθk

δvb,k

δβa,k

δβω,k


, uk =

 am,k

ωm,k

 , i =


θi

vi

ai

ωi

 (3.14)

3.3.1 Prediction step

One of the best properties of the ESKF framework is that during the prediction

steps the nominal state can be calculated by the original nonlinear equations

(3.10), but the error-state has to be linearized. The transition- (Fx) and noise ma-

trix (Fi) can be derived from (3.11), where δxk+1 = f (δxk):

Fx =
∂ f

∂δxk
=

I RT
[
vb,k

]
×

∆t RT∆t 0 0

0 R{−(ωm,k − βω,k)∆t} 0 0 I∆t

0 −
[
Rg
]
×

∆t I−
[
ωm,k − βω,k

]
×

∆t −I∆t −
[
vb,k

]
×

∆t

0 0 0 I 0

0 0 0 0 I


(3.15)

Fi =
∂ f
∂i

=



0 0 0 0

I 0 0 0

−
[
vb,k

]
×
−I 0 0

0 0 I 0

0 0 0 I


, (3.16)

where I, 0 ∈ R3×3. Now the error-state dynamic is:

δxk+1 = Fxδxk + Fii (3.17)

22



Using formulas from above and denote equations in (3.10) with f (.) the predic-

tion step involves:

xk+1 = f (xk, uk) (3.18a)

δx̂k+1 = Fxδx̂k (3.18b)

Pk+1 = FxPkFT
x + FiQiFT

i (3.18c)

Here, δx̂ is the mean of the error-state, therefore δx ∼ N (δx̂, P). It is noteworthy

to mention that the error-state is modeled with Gaussian white noise, therefore

its prediction is always 0.

3.3.2 Update step

Here, I just focus on how the measurement Jacobian of the error-state is calcu-

lated. The most straightforward approach to do that for a feature point involves

the utilization of the chain rule.

Hx =
∂h(p f

c )

∂δx
=

∂h(p f
c )

∂p f
c

∂p f
c

∂xt

∂xt

∂δx
= JPxt Xδx, (3.19)

where h is the nonlinear transformation that projects p f
c onto the image plane.

Jacobian of the pinhole model with respect to feature point

The Jacobian of the projection is calculated by linearizing (2.7), whereas the trans-

formation results in a 3-element column vector, and the point has 3 coordinates

the Jacobian should be a 3× 3 matrix, but the last row leads to only zeros which

are not very useful, therefore it is neglected:

J =

 ∂h1(p
f
c )

∂x
∂h1(p

f
c )

∂y
∂h1(p

f
c )

∂z
∂h2(p

f
c )

∂x
∂h2(p

f
c )

∂y
∂h2(p

f
c )

∂z

 =

 f
z 0 − f x

z2

0 f
z −

f y
z2

∣∣∣∣∣∣
p f

c

(3.20)
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Jacobian of the feature point with respect to the true-state

The next step is to determine the derivative of p f
c by the true-state. Since the fea-

ture point is known in the localization frame, its transformation into the camera

frame should be considered:

∂p f
c

∂xt
=

∂TCBR{qb
n}(p

f
n − pb

n)

∂xt
, (3.21)

Here, pb
n and qb

n are elements from the state-vector, just they got superscripts to

clearly mark they describe the position and orientation of the body frame. It can

be seen that there is no other state parameter in the expression, therefore further

derivatives result in 03×3 matrices. The derivative by pb
n can be determined easily:

∂p f
c

∂pb
n
= −TCBR{qb

n} (3.22)

Calculating the derivative by the quaternion is tricky. Initially, the quaternion

rotation formula needs to be employed on (3.21), then the derivative should be

decomposed using the chain rule into separate components: one with respect to

the vector and the other with respect to the quaternion:

∂p f
c

∂qn
=

∂qCB ⊗ qn ⊗ (p f
n − pb

n)⊗ q∗n ⊗ q∗CB
∂qn

∣∣∣∣∣
a=p f

n−pb
n

=
∂qCB ⊗ (qn ⊗ a⊗ q∗n)⊗ q∗CB

∂qn ⊗ a⊗ q∗n

∂qn ⊗ a⊗ q∗n
∂qn

(3.23)

Using results from Appendices A.3 and A.4, the outcome is:

∂p f
c

∂qn
= 2TCB

[
qwa + qv × a | qT

v aI3×3 + qvaT − aqT
v − qw

[
a
]
×

]
(3.24)

The whole derivative by the true state results in a 3× 16 matrix:

Pxt =

[
∂p f

c
∂pb

n

∂p f
c

∂qn
03×9

]
(3.25)
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Jacobian of the true-state with respect to the error-state

Finally, ∂xt/∂δx should be determined. All derivatives yield the identity block I3,

except for the quaternion. The Jacobian of the true quaternion with respect to the

error rotation vector is:

∂(δq⊗ q)
∂δθ

= Qδθ =
1
2

[
q
]

R

0T

I3

 (3.26)

Detailed calculations can be found in Appendix B.3, which leads to the Jacobian:

∂xt

∂δx
= Xδx =


∂pn,t
∂δpn

. . . 0
... . . . ...

0 . . .
∂βω,t
∂δβω

 =


I3 0 0

0 QδΘ 0

0 0 I9

 (3.27)

3.3.3 Error injection into the nominal-state

After performing an update on the error-state, its mean has to be injected into

the nominal-state. All quantities require a simple summary of the nominal- and

error- states, except for the rotation which can be performed as a left-side quater-

nion multiplication by the error quaternion. These operations were provided in

Table 3.1, therefore the injection procedure:

pn = pn + δ̂pn (3.28a)

qn = q{δ̂θ} ⊗ qn (3.28b)

vb = vb + δ̂vb (3.28c)

βa = βa + δ̂βa (3.28d)

βω = βω + δ̂βω (3.28e)

Next, the error-state gets reset, therefore its mean has to be removed, which is

done by the inverse operations above. I’m denoting this operation with δx+ =
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g(δxk), which can be expressed as:

δp+
n = δpn − δ̂pn (3.29a)

δθ+ = 2

0 0T

0 I3

 (q{δθ} ⊗ q{−δ̂θ}
)

(3.29b)

δv+
b = δvb − δ̂vb (3.29c)

δβ+
a = δβa − δ̂βa (3.29d)

δβ+
ω = δβω − δ̂βω (3.29e)

In fact, the error-state is not directly estimated by the filter, as a result only the

mean and the covariance matrix have to be updated. Obviously, the mean resets

to zeros, but the covariance matrix update depends on g(.), thus the full error

reset:

δ̂x = 0 (3.30a)

P+ = GPGT (3.30b)

Here, G is the Jacobian matrix of g(.), defined as:

G =
∂g
∂δx

∣∣∣∣
δ̂x

=


I3 0 0

0 I +
[

1
2 δ̂θ
]
×

0

0 0 I9

 (3.31)

Similarly to what happened with the update Jacobian before, all quantities result

in identity blocks, except the orientation part. The calculations related to the

formula above are detailed in Appendix B.4.
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CHAPTER 4

OVERVIEW OF THE TRIANGULATION

METHOD

In the previous chapter, the ESKF was introduced as a method capable of updat-

ing the state using camera measurements, provided that the precise localization

coordinates of visible feature points are known. However, in practical applica-

tions, assuming prior knowledge of the coordinates of these visible feature points

is often untenable. Consequently, there arises the need to estimate these coordi-

nates, a process commonly referred to as triangulation.

This chapter provides an in-depth look at the triangulation method applied in this

study, with a focus on its integration into our visual-inertial navigation system.

The foundation of this method draws from [19], utilizing the core equations as

described therein. However, their approach only takes into account uncertainties

in the camera measurements, but our system requires to consider uncertainties in

the states too.

The central objective of this chapter is to explain the key components and modi-

fications in the custom-made triangulation approach. In particular, answers will

be given to questions such as how position and orientation are involved in the

LOST equations, and how can be formed the recursive version of LOST.

4.1 Problem statement

The modern triangulation problem takes on one of two forms: intersection or

resection [20], shown in the figure 4.1.
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Figure 4.1: Illustration of intersection (top) and resection (bottom) forms of the
triangulation problem ([19]: page 3)

The main difference between the two formalizations is that the intersection as-

sumes measurements taken from known vertices and the goal is to determine

the position of a visible feature point (r). On the other hand, the resection prob-

lem supposes known visible vertices and aims to estimate the position where the

measurement was taken.

The intersection problem has many practical applications such as satellite orbit

determination [21, 22], and 3-D scene reconstruction usually called Structure from

Motion (SfM) [23, 24, 25]. The resection problem describes the vehicle localization

problem that is generally included in navigation applications [13, 14, 26]. In this

project, both forms are applied, because LOST is used to optimize 3-D coordi-

nates of visible feature points which basically means a 3-D reconstruction of the

environment. On the contrary, the Kalman filter update is the form of a resection

problem in the sense that the optimized LOST estimates are used to improve the

state estimates.
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4.1.1 Line of sight (LOS) measurements

The triangulation problem typically involves angles acquired through various

optical instruments. In vehicle navigation, angles are often derived from images

captured by cameras or telescopes. Regardless of the specific application, the an-

gle measurements obtained through these optical instruments describe the direc-

tion from the sensor to the observed point. In other words, they express the path

from one vertex of a triangle to another, and this direction represents a straight

line connecting these two points, commonly known as the "line of sight" (LOS).

Before I would delve into the details, it’s important to establish a few mathemat-

ical notation:

•
[
ui vi f

]T
= ui = Kui, it is worth highlighting that the LOS measure-

ment can be derived from actual measurement using ui = K−1ui. How-

ever, it is important to emphasize that this transformation accounts for both

the adjustment of the principal point and multiplying the vector with the

focal length. Later merely introduces a scaling factor, which is inherently

resolved in LOST equations.

• ui ∝ ai ∝ p f
c,i, where ai =

ui
||ui||

=
pf

c,i

||p f
c,i||

• p f
c,i = ρai, where ρ denotes the range from the sensor to the observed point

4.2 LOST method

When more than 2 LOS measurements are available the polynomial methods do

not scale easily, therefore the LOST suggests a Maximum Likelihood Estimation

(MLE) solution for an unknown vertex (p f
n). The linear system can be created

by double applications of the Law of Sines which trigonometric law relates the

angles and side lengths of a triangle.

The initial equation is the Direct Linear Transform (DLT) form of the Law of Sines.

This mathematical prescription removes the unknown scale ambiguity along the

LOS trajectory, achieved by utilizing the collinearity of the camera measurement

29



and feature point position in the camera system:

p f
c = RCN(p

f
n − pc

n) = RCB(RBN(p
f
n − pb

n)− pc
b) (4.1)

[
ui

]
×

p f
c =

[
ui

]
×

RCB(RBN(p
f
n − pb

n)− pc
b) = 0 (4.2)

4.2.1 Covariance calculations

(4.2) is only true if every value is ideal. When only the noisy measurements and

nominal states are available, the right-hand side is no longer exactly zero:

[
ui

]
×

p f
c = ϵi (4.3)

ϵi can be calculated by applying the previously introduced error models which

are just an additional error in the case of body position and measurement noise,

but the Taylor series approximation for the rotation. Using the notation ut =

u + δu for the measurement model, the cross-product results in:

ϵi =
[
ui

]
×

RCNδpb
n +

[
ui

]
×

[
ρai + TCBpc

b

]
×

TCBδθ+ ρ
[
ai

]
×

δui (4.4)

In (4.4) there was used the property ρai = p f
c , because p f

c is not known apriori,

but the scaling factor can be calculated with applying the Law of Sines. Let’s

consider the intersection problem in Figure 4.1, the traveled distance can be de-

termined as dij = pc
n,j − pc

n,i = pb
n,j − pb

n,i, and applying law of sines on vertex

pb
n,j and p f

n:

||p f
c,j||

sin ϕ
=
||dij||
sin θ

⇒ ρj = ||p
f
c,j|| =

||dij|| sin ϕ

sin θ
=
||dij × ai||
||ai × aj||

, (4.5)

where the DLT form of the law of sines was given. Note that the formula above

is only valid in consistent frames.
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Utilizing the position and orientation covariance and cross-covariance matrices

from the filter or GPS measurements and assuming no correlation between them

and the measurement noise (V), then the covariance of ϵi is calculated as:

T =

[[
ui

]
×

RCN

[
ui

]
×

[
ρai + TCBpc

b

]
×

TCB ρ
[
ai

]
×

]
,

Pϵi = E{ϵiϵ
T
i } = T

Pδpb
n,δθ 06×3

03×6 V

TT
(4.6)

4.2.2 The optimal solution

One may write the MLE problem to minimize ϵ by variable p f
n:

min J(p f
n) =

n

∑
i=1

ϵT
i P−1

ϵi
ϵi (4.7)

Since Pϵi is always rank deficient due to skew-matrices involved in its calculation

and also the pixel error is only 2-D, henceforth the approximation P−1
ϵi
→ P+

ϵi

will be used, where + denotes the Moore-Penrose inverse. After a short detour, I

return to (4.7) which after substituting (4.4) and considering only terms consisting

p f
n:

min J(p f
n) =p f T

n

n

∑
i=1

RNC,i

[
ui

]
×

P+
ϵi

[
ui

]
×

RCB(RBN,ipb
n,i + pc

b)

+

(
n

∑
i=1

(RBN,ipb
n,i + pc

b)
TRBC

[
ui

]
×

P+
ϵi

[
ui

]
×

RCN,i

)
p f

n

− p f T

n

(
n

∑
i=1

RNC,iP+
ϵi

RCN,i

)
p f

n

(4.8)

Applying the 1st differential condition on (4.8):

∂ min J(p f
n)

∂p f
n

=

− 2
n

∑
i=1

RNC,i

[
ui

]
×

P+
ϵi

[
ui

]
×

RCB(RBN,i(p
f
n − pb

n,i)− pc
b) = 0

(4.9)
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Rearranging the terms the linear equation system which has to be solved is:

(
n

∑
i=1

RNC,i

[
ui

]
×

P+
ϵi

[
ui

]
×

RCN,i

)
p f

n =

n

∑
i=0

RNC,i

[
ui

]
×

P+
ϵi

[
ui

]
×

RCB(RBN,ipb
n,i + pc

b)

(4.10)

4.2.3 Practical formalization of the estimator

The usual approach for solving least squares systems is to avoid the explicit for-

mation of the normal equations, and instead solve (4.10) with an alternative tech-

nique such as solving it through factorization [27].

Since the weighting matrix P+
ϵi

is calculated from a covariance matrix which is

positive semi-definite, therefore it has real non-negative eigenvalues and real

eigenvectors. With the help of eigendecomposition, P+
ϵi

can be factorized as

P+
ϵi
= ViDiVT

i = (Vi
√

Di)(Vi
√

Di)
T = BiBT

i .

Decomposing (4.10) with notation Ai = BT
i

[
ui

]
×

RCN,i it yields:

A︷ ︸︸ ︷
A1
...

An

 p f
n =

b︷ ︸︸ ︷
A1(pb

n,1 + RNB,1pc
b)

...

An(pb
n,n + RNB,npc

b)

 (4.11)

The above equation must be solved in least squares terms, which means the esti-

mator is calculated as:

p̂ f
n = A+b (4.12)

4.2.4 Covariance of the estimator

As a result of statistically optimal weighting the estimator covariance can be com-

puted as:
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P
p f

n
=

(
n

∑
i=1

AT
i Ai

)−1

(4.13)

It is worth to mention that AT
i Ai matrices are rank deficient, therefore the inverse

calculation accuracy can degrade especially when the number of samples is low,

thus the application of pseudoinverse is recommended.

4.3 The recursive version

An additional advantage of decomposing the linear system is that the estimator

takes the form of a general LS solution, for which the recursive version is easy

to find. Initially, let’s formalize the estimation until the ith estimation based on

(4.12):

p̂ f
n,i =

(
∑

i
AT

i Ai

)−1(
∑

i
AT

i yi

)
= P

p f
n,i

bi, (4.14)

note that bi = P−1
p f

n,i
p̂ f

n,i. Then the (i + 1)th estimation is:

p̂ f
n,i+1 = P

p f
n,i+1

(
bi + AT

i+1yi+1

)
= P

p f
n,i+1

(
P−1

p f
n,i

p̂ f
n,i + AT

i+1yi+1

)
= P

p f
n,i+1

((
P−1

p f
n,i+1
−AT

i+1Ai+1

)
p̂ f

n,i + AT
i+1yi+1

)
= p̂ f

n,i + P
p f

n,i+1
AT

i+1

(
yi+1 −Ai+1p̂ f

n,i

)
,

(4.15)

where Ai+1 and yi+1 can be calculated from new data, and the covariance matrix

can be propagated based on (4.13):

P
p f

n,i+1
=
(
(P

p f
n,i
)−1 + AT

i+1Ai+1

)−1
(4.16)

33



CHAPTER 5

SYNERGIZING LOST AND ESKF

FOR ROBUST NAVIGATION

In the previous two chapters, the applied filter technique and triangulation ap-

proach were introduced, and now the focus shifts toward the integration of the

two methods. This integration process will begin by examining the impact on the

Kalman gain, a crucial component in the navigation system. Furthermore, the

discussion extends to the role of cross-covariances in the process of integration.

5.1 The modified Kalman gain

The derivation of the Kalman gain is based on [28], but adopted to the imple-

mented system. Firstly, the integration affects the Kalman gain because forming

the residual involves both the triangulated feature position and the filter state.

Previously, only the uncertainty of the state was assumed, but as soon as the true

values of the 3-D feature position are not known, then its uncertainty should be

taken into account too.

The derivation of the new Kalman gain requires looking into the prediction step

of the ESKF because compared to a conventional Kalman filter, the ESKF has

multiple prediction steps between two updates. The true value of the error-state

is given by (3.17) and the predicted error-state by (3.18b), extending them for N

prediction it yields:

δxk+N =

(
N−1

∏
j=0

Fx,k+j

)
δxk +

[
N−1

∑
j=0

(
N−1

∏
l=j+1

Fx,k+l

)
Fi,k+jik+j

]

= PFN
x δxk + SFN

i i

(5.1a)
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δx̂−k+N =

(
N−1

∏
j=0

Fx,k+j

)
δx̂k = PFN

x δx̂k, (5.1b)

where the - superscript denotes that these states are the result of the forecast alias

prediction step. Next, using the above formulas the linearized actual and the

estimated measurements can be written as:

zk+N ≈ h(xk+N, p f
n,k) + Hx,k+Nδxk+N + H f ,k+Nδp f

n,k + δuk+N (5.2a)

ẑk+N ≈ h(xk+N, p f
n,k) + Hx,k+Nδx̂−k+N + H f ,k+Nδp̂ f

n,k (5.2b)

After the measurement update, the new a posteriori estimation is:

δx̂k+N = δx̂−k+N + K(zk+N − ẑk+N)

= δx̂−k+N + K(Hx,k+Nδx̃k+N + H f ,k+Nδp̃ f
n,k + δuk+N),

(5.3)

where δx̃k+N = δxk+N − δx̂−k+N and δp̃ f
k+N = δp f

k+N − δp̂ f
k+N were considered as

the error of estimations. Then the error of the estimation can be expressed:

ek+N = δxk+N − δx̂k+N =PFN
x (δxk − δx̂k) + SFN

i i

−K(Hx,k+Nδx̃k+N + Hp,k+Nδp̃ f
n,k + δuk+N)

(5.4)

Substituting δx̃k+N into the above equation, utilizing ek = δxk − δx̂k and collect-

ing the terms leads to the a posteriori error:

ek+N =

Tx︷ ︸︸ ︷
(I−KHx,k+N)

(
PFN

x ek + SFN
i i
)
−

T f︷ ︸︸ ︷
KHp,k+N δp̃ f

n,k −Kδuk+N (5.5)

In order to give an optimal solution for the Kalman gain the a posteriori covari-

ance should be expressed, but this requires some considerations. The first is that

our approach updates the state first, then optimizes the feature coordinates with

the same measurements which leads to correlation between ek and δp̃ f
n,k. The

other is that in the above equation, the true error state appeared which covari-

ance is calculated by (3.18c) and here the result of this equation will be denoted
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as P−k+N. Then the a posteriori covariance is:

Pk+N = E{ek+NeT
k+N}

=

TxP−k+NTT
x + T f

P f
k︷ ︸︸ ︷

E{δp̃ f
n,k(δp̃ f

n,k)
T}TT

f + K E{δuk+NδuT
k+N}︸ ︷︷ ︸

V

KT

− TxPFx E{ek(δp̃ f
n,k)

T}︸ ︷︷ ︸
Px f

k

TT
f − T f E{δp̃ f

n,keT
k }︸ ︷︷ ︸

P f x
k

(PF)T
x TT

x

(5.6)

Now, in the last steps, only an optimal Kalman gain should be calculated, in the

sense that it minimizes the trace of the posterior covariance. For starters, let’s

formalize the a posteriori covariance by extracting the terms containing K:

Pk+N =P−k+N −K
(

Hx,k+NP−k+N + H f ,k+NP f x
k (PFx)

T
)

−
(

P−k+NHT
x,k+N + PFxP f x

k HT
f ,k+N

)
KT

+ K
(

Hx,k+NP−k+NHT
x,k+N + H f ,k+NP f

k HT
f ,k+N + V

+Hx,k+NPFxPx f
k + H f k+NP f

k x(PFx)
THT

x,k+N

)
KT

(5.7)

Finally, the optimal Kalman gain can be computed from the above equation:

K =
∂tr(Pk+N)

∂K
=
(

P−k+NHT
x,k+N + PFxPx f

k HT
f ,k+N

)
(

Hx,k+NP−k+NHT
x,k+N + H f ,k+NP f

k HT
f ,k+N + V

+Hx,k+NPFxPx f
k + H f k+NP f

k x(PFx)
THT

x,k+N

)−1

(5.8)

5.2 Cross-covariance estimation

First of all, I would like to make it clear currently the development is not there to

account for correlated errors and to enable full integration of the two methods,

although, there are a few ideas that can be a future solution and the objective of

this section is to introduce them.
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One of them is introduced in [29], called Gaussian cosimulation which utilizes

the positive semi-definite property of covariance matrices and decomposes them

as:

P1 = E{y1yT
1 } = L1LT

1 P2 = E{y2yT
2 } = L2LT

2 (5.9)

Afterward, the method introduces a tuneable parameter ρ and creates the covari-

ance matrix as:

E{y1yT
2 } = ρL1LT

2 (5.10)

Since the covariance of the 3-D coordinates of the feature point and the state are

not the same dimension, it raises further questions about how can be this method

used to generate cross-covariances into the filter update.
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CHAPTER 6

DEVELOPMENT

The initial simulation was developed by SZTAKI System Control Laboratory

(SCL) using Matlab/Simulink under the R2019b version, which formed the foun-

dation for subsequent development. The simulation incorporates various tool-

boxes, including aerospace, UAV, navigation, and real-time Simulink, among oth-

ers, to enhance its realism. The aircraft model utilizes the parameters of Sindy1,

while the environment is represented using the WGS84 convention.

During the development, I had to integrate a filter into the simulation, which

is mainly based on a user-defined Matlab function block. This block gets the

true-state of the aircraft as input and uses this data to project feature points on

a camera screen. It also runs an ESKF at 50 Hz, which performs a measurement

update after every 10th prediction meaning 5 Hz update rate. The results which

will be presented are created with simulated noises. The noises are assumed to be

isotropic Gaussian white noise, which means their distribution is N (0, σI). The

exact dispersion parameters are presented in Table 6.1.

Name Notation Value UoM
Angular velocity measurement noise σηω 1 ◦

s
Acceleration measurement noise σηa 0.1 m

s2

Accelerometer bias noise σηβa
5 mg√

Hz
Gyroscope bias noise σηβω

100 ◦
h
√

Hz

Table 6.1: Noise summary

6.1 Camera configuration

In the real-world realization, a Basler camera will be used, therefore its parame-

ters were used to configure camera projection. The focal length is 1177.5 px, and

1http://uav.sztaki.hu/sindy/home.html
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the size of the image is 2048×1536 px. The principal point is the image’s center,

thus Px=1024 px, Py=768 px.

During the simulation, I placed a huge amount of feature points on the Z=0 plane

of the NED system, which is under the flight path. The angle of the camera (β) is

−45◦, therefore most of the time a lot of feature points are visible in the camera

image.

Based on [30], the best practice is to choose feature points equally from each side

of the image, because the feature points move mostly at the edges of the image.

To sum up, the current solution selects the first 19 visible feature points in a band

from the left, right, bottom, and top edges of the image and uses only those that

are sufficiently converged. The width of the edges is configurable, an example

from the simulation can be seen in Figure 6.1 with 200 px width.

Figure 6.1: Camera image example

6.2 Simulation setup

The development was done in successive steps, hence the steps:
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1. Without any perturbation and update step the filter just integrated the nom-

inal values through time, this validated the correct nominal equations.

2. In the next step, I added process and measurement noises to the system,

and the updates were performed by the true value of feature coordinates.

3. Next, I also added biases to the system but still used the perfect values of

feature positions.

4. After validating the correct functioning of the filter, I checked the perfor-

mance of the triangulation method with the usage of true-state values.

5. Finally, the last step is ready a version of the filter, when the LOST estima-

tions were integrated into the filter update, but the LOST used GPS values

as input for triangulation.

I present the results of the (5) step, where the filter was started at 2s.

(a) North

Figure 6.2: NED coordinates
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(b) East

(c) Down

Figure 6.2: NED coordinates (Continued)
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(a) Roll

(b) Pitch

Figure 6.3: Euler angles

42



(c) Yaw

Figure 6.3: Euler angles (Continued)

(a) X component

Figure 6.4: Body-fixed velocity
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(b) Y component

(c) Z component

Figure 6.4: Body-fixed velocity (Continued)
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CHAPTER 7

CONCLUSION

In summary, the integration of ESKF and LOST with assuming known GPS co-

ordinates in the triangulation method can be regarded as a success. However,

further advancements are necessary to ensure its practical viability in real-world

scenarios. These enhancements encompass the following:

1. Creating a useful cross-covariance estimator method and integrating it into

the filter framework.

2. The integration of genuine image processing algorithms into the ESKF

framework, leading to:

(a) The incorporation of camera imperfections, such as lens distortion er-

rors into the simulation.

(b) The enhancement of the measurement update process to rely not solely

on a single camera image but also on track information pertaining to

feature points.

3. The development of a back-end component for the filter.
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APPENDIX A

QUATERNION OPERATIONS

All of the following formulas can be found in [18].

The Hamiltonian-quaternion multiplication (⊗) is defined as:

q⊗ p ≜


pwqw − pxqx − pyqy − pzqz

pwqx + pxqw + pyqz − pzqy

pwqy − pxqz + pyqw + pzqx

pwqz + pxqy − pyqx + pzqw

 =

 pwqw − pT
v qv

pwqv + qwpv + pv × qv

 (A.1)

The conjugate of a q quaternion is defined as:

q∗ ≜ qw − qv =

 qw

−qv

 (A.2)

The inverse of q quaternion is defined as:

q−1 =
q∗

||q||2 ⇒ ∀q, (||q|| = 1)→ q∗ = q−1, (A.3)

where the equivalence of the conjugate and the inverse of unit quaternions is

similar to the unitary property of the rotation matrices, which leads to the equiv-

alence of the transpose and inverse matrix.

The next important property of quaternions is that the quaternion product can be

expressed in matrix form:

q1 ⊗ q2 =
[
q1

]
L

q2 ⇐⇒ q1 ⊗ q2 =
[
q2

]
R

q1, (A.4)
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where
[
q1

]
L

and
[
q2

]
R

are the left- and right- quaternion-product matrices,

which can be derived from (A.1) and (A.4):

[
q
]

L
= qwI4×4 +

 0 −qv
T

qv

[
qv

]
×

 ,
[
q
]

R
= qwI4×4 +

 0 −qv
T

qv −
[
qv

]
×

 (A.5)

The relation between quaternions and rotation matrices can be derived from

(2.10), (A.4), and (A.5): 0

v
′

 = q⊗

0

v

⊗ q∗ =
[
q∗
]

R

[
q
]

L

0

v

 =

 0

Rv

 (A.6)

From above the direct conversion from quaternion to rotation matrix can be ob-

tained using (A.5) and results in:

R{q} = (q2
w − qT

v q)I3×3 + 2qvqT
v + 2qw

[
qv

]
×

(A.7)

A.1 Rotation vector to quaternion formula

The v = θu rotation vector represents rotation around u axis with θ angle. The

operator is denoted by q{v} throughout this paper and can be written in the form

of:
v = θu⇒ u =

v
||v|| , θ = ||v|| ⇒

q{v} =

 cos
(

θ
2

)
sin
(

θ
2

)
u

 =

 cos
(
||v||

2

)
sin
(
||v||

2

)
v
||v||

 (A.8)

A.2 The time derivative of quaternion

When determining the time derivative of a vector, the goal is usually to specify

the formula for the derivative in an inertial (fixed) frame with parameters known

in a body (not fixed) frame which is only rotating, but not translating in the iner-

tial frame.
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Two approaches exist to writing the derivative of a quaternion: one is using an

inertial frame-, other is using body frame- known parameters to describe the an-

gular velocity. The angular velocity measurements are typically captured in the

body frame, hence it is more practical to choose the second way.

Firstly, I will give the quaternion form of the angular velocity:

ωL(t) ≜
dϕL(t)

dt
= lim

∆t→0

∆ϕL
∆t

(A.8)
= lim

∆t→0

q{∆ϕL}
∆t

= lim
∆t→0

∆qL
∆t

= lim
∆t→0

 cos(∆θL/2)

sin(∆θL/2)u


∆t

≈ lim
∆t→0

 1

(∆θL/2)u


∆t

= lim
∆t→0

 1

∆ϕL/2


∆t

(A.9)

Now, the next step is to write the time derivative of quaternion and use results

from the previous equation:

dq(t)
dt

= lim
∆t→0

q(t + ∆t)− q(t)
∆t

= lim
∆t→0

qL ⊗ q− q
∆t

= lim
∆t→0

(qL − q1)⊗ q
∆t

= lim
∆t→0

 0

∆ϕL/2

⊗ q

∆t
=

1
2

 0

ωL

⊗ q,

(A.10)

where the distributive property of quaternion product over sum was used, and q1

denotes the identity quaternion1. It is crucial to note that, the q(t+ δt) quaternion

is utilized by multiplying q with qL from left because it stands for Earth-to-body

rotation.

1q1 =
[
1 0 0 0

]T
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A.3 Jacobian of quaternion rotation with respect to

the vector

To derive the derivative respected to the vector is very easy because the rotation

matrix form can be applied:

∂q⊗ a⊗ q∗

∂a
=

∂

 0

Ra


∂a

= R (A.11)

A.4 Jacobian of quaternion rotation with respect to

the quaternion

The derivative of the rotation with respect to the quaternion q is a bit more dif-

ficult, but can be derived straightforwardly with the usage of (A.6) and (A.7).

Using a lighter notation for the quaternion: q =

w

v

, the rotation is:

a′ = q⊗ a⊗ q∗ = Ra = w2a− vTva + 2vvTa− 2w
[
a
]
×

v (A.12)

The Jacobian by the quaternion can be achieved by calculating the derivative of

the scalar- and vector- part:

∂a′

∂w
= 2(wa + v× a)

∂a′

∂v
= 2(vTaI3 + vaT − avT − w

[
a
]
×
)

(A.13)

Using these results the Jacobian with respect to quaternion is:

∂(q⊗ a⊗ q∗)
∂q

= 2
[

wa + v× a | vTaI3 + vaT − avT − w
[
a
]
×

]
(A.14)
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APPENDIX B

ESKF-RELATED EQUATIONS

All of the following formulas with little difference can be found in [18].

B.1 True rotation matrix

Firstly, I would like to introduce the ODE of rotation matrices. The rotation matri-

ces have orthogonal properties, therefore their inverse is equal to their transpose,

which results in the:

RRT = I (B.1)

Considering the time derivative of the above yields:

d
dt
(RRT) = ṘRT + RṘT = 0

RṘT = −ṘRT /T

ṘRT = −(ṘRT)T,

(B.2)

which means that, ṘRT is skew-symmetric matrix, therefore there exits an ω vec-

tor which results in:
ṘRT =

[
ω
]
×

/← ·R

Ṙ =
[
ω
]
×

R
(B.3)

Here, the second row represents the ODE of rotation matrices, which creates a

relationship between the derivative of a rotation function, denoted as r(t), and a

quantity represented by ω. When considering the scenario around the origin, the

certain equation simplifies to Ṙ =
[
ω
]
×

. Here, ω can be interpreted as the vector

representing instantaneous angular velocities. This understanding sheds light on
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the Lie algebra so(3), which can be seen as the space of derivatives of r(t) at the

origin. It also serves as the tangent space to SO(3), the special orthogonal group

describing three-dimensional rotations.

If ω is constant, (B.3) can be time integrated as:

R(t) = e

[
ωt
]
×R(0) (B.4)

The e

[
ωt
]
× expression stands for the rotation matrix related to ωt = v rotation

vector. This means that the error rotation vector δθ has the connection between

the nominal- and the true- rotation matrix:

Rt = δRR = e

[
δθ
]
×R, (B.5)

where the error rotation matrix is described as the exponential of the skew matrix

of the error rotation vector, which can be written in Taylor series:

e

[
δθ
]
× =

k→∞

∑
k=0

1
k!

[
δθ
]k

×
(B.6)

After neglecting the second and higher order members we got the form in (3.4).

B.2 Error-state equations

The error-state can be expressed easily as the composition of the true-state (3.5)

and the nominal-state (3.8). As it was detailed in Chapter 3 the error state remains

small therefore second-order errors are negligible.

B.2.1 Position error

δṗn = ṗn,t − ṗn = RT
(

I−
[
δθ
]
×

)
(vb − δvb)− RTvb

= −RT
[
δθ
]
×

vb + RTδvb,
(B.7)
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where nominal state and second-order error were simplified. Using the anti-

commutative property of cross-product, it can be written in the form of:

δṗn = RTδvb + RT
[
vb

]
×

δθ (B.8)

B.2.2 Angular error

Calculating the angular error equation requires more complicated steps because

it desires to use the derivative rule of the quaternion product:

˙(δq⊗ q) = ˙δq⊗ q + δq⊗ q̇ (B.9a)

= δq̇⊗ q + δq⊗ 1
2

 0

ω

⊗ q (B.9b)

In (B.9b) the definition of quaternion derivative was used for local angular ve-

locities and earth-to-body rotation. This equation is equal to the dynamics of the

true quaternion state, which is defined in (3.5b), therefore simplifying with the

terminal q and isolating δq yields:

2 ˙δq =

 0

ωt

⊗ δq− δq⊗

 0

ω


=

[q]
L


 0

ωt

− [q]R


 0

ω


 δq

(B.10)

Converting δq to δθ and performing the matrix substraction results in:

 0

˙δΘ

 =

 0 −(ωt −ω)T

ωt −ω
[
ωt + ω

]
×

 1
δΘ
2

+ O(||δΘ||2)

=

 0 −δωT

δω
[
2ω + δω

]
×

 1
δΘ
2

+ O(||δΘ||2)

(B.11)

52



From the above arises a scalar- and a vector- equality. The scalar part is formed

by second-order infinitesimals, which is not very useful, therefore only the vector

part should be expressed. After neglecting second-order terms and substituting

parameters from Table 3.1 into the nominal- and error- parameters yields:

˙δΘ =
[
ωm − βω

]
×

δΘ− δβω − ηω (B.12)

B.2.3 Velocity error

The velocity error is derived very similarly to the position error:

˙δvb = v̇b,t − v̇b = a + δa +

(
I +

[
δΘ

]
×

)
Rg−

[
ω + δω

]
×
(vb + δvb)

− (a + Rg−
[
ω
]
×

vb)

(B.13)

Simplifying with nominal state and neglecting second-order terms gives the fol-

lowing equation:

˙δvb = δa +
[
δΘ

]
×

Rg +
[
δω
]
×

vb −
[
ω
]
×

δvb (B.14)

To achieve the final form of the equation, parameters inserted from Table 3.1 into

the nominal- and error-state, which results in:

δv̇b = −
[
Rg
]
×

δΘ−
[
ωm − βω

]
×

δvb − δβa −
[
vb

]
×

δβω

− ηa −
[
vb

]
×

ηω

(B.15)

53



B.3 Jacobian of true quaternion with respect to the er-

ror rotation vector

The relationship between the true quaternion and the error rotation vector can be

determined using the chain rule, which can be formulated as follows:

∂(δq⊗ q)
∂δθ

=
∂(δq⊗ q)

∂δq
∂δq
∂δθ

=
∂
([

q
]

R
δq
)

∂δq

∂

 1
1
2 δθ


∂δθ

=
1
2

[
q
]

R

0T

I3



=
1
2


−qx −qy −qz

qw qz −qy

−qz qw qx

qy −qx qw



(B.16)

B.4 Jacobian of reset function (g) with respect to the

error rotation vector

The goal is to determine the derivative of (3.29b) by the error rotation vector δθ.

Firstly, I aim to formalize that equation with rotation vector parameters, neglect-

ing the constant terms:

q{δθ} ⊗ q{−δ̂θ} =
[
q
]

R


 1

−1
2 δ̂θ


 1

1
2 δθ

+O(||δθ||2)

=

 1 1
2 δ̂θ

T

1
2 δ̂θ I +

[
1
2 δ̂θ
]
×

 1
1
2 δθ

+O(||δθ||2)

=

 1 + 1
4 δ̂θ

T
δθ

1
2 δ̂θ+ 1

2

(
I +

[
1
2 δ̂θ
]
×

)
δθ

+O(||δθ||2)

(B.17)
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This is equal to the error quaternion after the reset. Denotating the error rotation

vector with δθ+ the following equation can be written:

 1
1
2 δθ+

 =

 1 + 1
4 δ̂θ

T
δθ

1
2 δ̂θ+ 1

2

(
I +

[
1
2 δ̂θ
]
×

)
δθ

+O(||δθ||2) (B.18)

The above equation splits into a scalar- and a vector- part, where the scalar part is

formed by second-order infinitesimals, therefore it is not very useful, additionally

the constant member in the original (3.29b) equation is responsible for exactly this

neglect. Only considering the vector part, the Jacobian:

∂g(δθ)

∂δθ
=

∂δθ+

∂δθ
=

∂

(
δ̂θ+

(
I +

[
1
2 δ̂θ
]
×

)
δθ

)
∂δθ

= I +
[

1
2 δ̂θ
]
×

(B.19)
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ABBREVIATIONS

BME Budapesti Műszaki Egyetem

EKF Extended Kalman Filter

ESKF Error-State Kalman Filter

GPS Global Positioning System

IMU Inertial Measurement Unit

INS Inertial Navigation System

KF Kalman Filter

NED North-East-Down

RMSE Root Mean Square Error

SCL System Control Laboratory

SZTAKI Számítástechnikai és Automatizálási Kutatóintézet

UAS Unmanned Aerial System

UAV Unmanned Aerial Vehicle

3D Three-dimensional
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