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Hungarian abstract 

 

A mai hozzáférési, aggregációs és szolgáltatói maghálózatok többnyire merev vezérlési 

síkkal rendelkeznek, ami nem teszi lehetővé a gyors innovációt és a változó igények követését. 

Az eddigi protokoll foltozás és túlméretezés helyett egy újabb megközelítésre van szükségünk 

a hálózatok kapacitásának és kihasználásának a növeléséhez. További cél összetett 

szolgáltatások gyors és rugalmas létrehozása és üzembe helyezése hatalmas szolgáltatói vagy 

céges hálózatokon. 

Ezekre a problémákra kínálnak megoldást a ma is aktív kutatás alatt lévő Software 

Defined Networking (SDN) és Network Function Virtualization (NFV) eszközök és 

irányelvek. Az SDN célja a hálózati eszközök szoftveres programozhatóságának biztosítása, 

mellyel a hálózat viselkedése dinamikusan irányítható. Az NFV célkitűzése pedig a 

hagyományosan speciális hardver eszközökben megvalósított hálózati funkciók szoftver 

komponensekben való implementálása, aminek eredményeként a virtuális funkciók általános 

célú hardveren, az aktuális forgalmi viszonyok alapján kiválasztott helyen futtathatók. Ezen 

komponensek láncolásával összetett szolgáltatások kialakítására nyílik lehetőség. 

A legfrissebb SDN és NFV eredményekre építve, több aktív kutatási projekt tűzte ki 

célul hálózatok és szolgáltatások teljes virtualizálását egy erre a célra tervezett hálózati 

architektúra felett. Ezen architektúra segítségével magas absztrakciós szinten írhatjuk le a 

hálózati működést, melyet a szoftveresen megvalósított szolgáltatás komponensek 

rugalmasságának köszönhetően dinamikusan tudunk leképezni a rendelkezésre álló 

erőforrásokra, ezzel biztosítva a hálózat folyamatos optimális működését.  

A vázolt rendszer egyik kulcs feladata, hogy az absztrakt leírást alkotó szolgáltatás 

láncoknak megtalálja valamilyen szempontból a lehető legjobb leképzését a hálózat fizikai 

erőforrásaira, a láncokra vonatkozó követelmények teljesítése mellett. Dolgozatom célja ezen 

algoritmuselméleti szempontból meglehetősen bonyolult feladatra megoldást adni, melynek 

eredményeként a különböző típusú számítási és hálózati erőforrások működése együtt 

optimalizálható. A probléma bonyolultságából adódóan reális célom az absztrakt leíráson és a 

hálózati gráfon futó, heurisztikus, közelítő megoldások kidolgozása, melyek futási ideje a 

legnagyobb hálózatok esetén is másodperces nagyságrendű. 
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Munkám során megvizsgáltam a rokon problémákra javasolt megoldásokat, 

megismertem a területen lévő eredményeket és a használatos eszközöket. Ezeket felhasználva 

tereztem egy saját, hálózati gráfokon futó, polinomiális idejű, heurisztikus, számos 

paraméterrel hangolható algoritmust. Továbbá definiáltam egy metrikát, mellyel a hálózat 

erőforrásainak kihasználtságát számszerűsíthetjük, ezzel értékelve, hogy a hálózat mennyire 

leterhelt, mennyire preferált az adott állapota. A hálózat preferencia értéke arra is használható, 

hogy két különböző, követelményeknek megfelelő leképzés közül választani tudjunk az 

hálózat egészére vonatkozó erőforrás kihasználtság alapján. Dolgozatomban ismertetem az 

algoritmusom tervezésének lépéseit, magát az algoritmus működését, illetve implementálását 

és tesztelését. Zárásul pedig felvázolom kutatási munkám további lépéseit és terveimet. 

  



5 

 

English abstract 

Today’s access, aggregation and core networks mostly have rigid control plane, which 

does not enable fast innovation and to keep up with the changing requirements. Instead of the 

overprovisioning and make, do and mend around networking protocols, we need a new 

approach for increasing network capacity and improving network resource utilization. 

Furthermore, fast and flexible creation of composite services on enormous carrier or enterprise 

networks would be a decent goal. 

For these problems, solutions are offered by the up-to-date research results of Software 

Defined Networking (SDN) and Network Function Virtualization (NFV) tools and principles. 

The goal of SDN is to support the programmability of network devices with arbitrary software, 

enabling the dynamic control of network behavior. The objective of NFV is the implementation 

of originally application specific hardware implemented network functions in software 

components, which could be run on general purpose hardware, thus enabling us to run the 

virtual functions anywhere in the network according to the actual traffic conditions. Chaining 

these software components opens the door to flexible creation of complex services. 

Several research projects aim at realizing full network and service virtualization using 

a novel architecture designed for this purpose and building on the newest findings of SDN and 

NFV. This architecture enables the description of network behavior on a high abstraction level, 

which can be mapped dynamically to the available network resources thanks to the flexibility 

of service components implemented in software. The dynamic mapping ensures the continuous 

optimal operation of the network. 

One of the key tasks of the mentioned architecture is to find in some sense the best 

mapping of the abstract description to physical network resources, satisfying the given 

requirements to the service chains. The goal of my paper is to give a solution to this 

algorithmically difficult problem, so that the operation of various computing and network 

resources could be optimized jointly. Based on the difficulty of the problem, my realistic 

purpose is to design a heuristic, approximate algorithm operating on the abstract description 

and the network graph, with running time of the order of a few seconds even on the largest 

networks.  

During my research I examined the suggested solutions to analogous problems and I 

got acquainted with the applied tools and findings of this field. Using this knowledge, I have 
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designed my own heuristic, approximate, polynomial algorithm, which runs on network graphs 

and tunable with many parameters. Furthermore, I have defined a metric for measuring the 

network resource utilization, which can be used to evaluate the state of the network, as a 

preference value of its actual load distribution. The preference value could also be used to 

choose between two requirement satisfying mappings, based on the overall resource utilization. 

In this paper, I write about the steps of designing the algorithm, the operation of the algorithm 

itself, and its implementation and testing. Finally, I sketch my future research and plans. 
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1 Introduction 

Nowadays, we have increasingly many and strict expectations from communication 

networks as users or companies. Network and service providers are familiar with this fact, and 

they will try to satisfy the needs of their customers and charge them for the supported services. 

But today’s network management and service development is not up to the task yet, so 

technology research is required in this field. 

Network flexibility, automatized and optimized operation of the largest networks, fast 

time-to-market of new services are going to be basic requirements of every provider in the near 

future. To achieve these, the general information technology approach of leveraging the 

abstraction level of development could also be applied to networks. Just like it happened in the 

second half of the last century with software development on single machines, we could 

achieve the high abstraction level of programming of a whole network as one entity.  

Configuring and programming the entire network at the same time raises many issues, 

so a new network architecture should be developed to support this task. The long-standing 

method of designing a layered architecture to divide complex problems to smaller tasks, could 

result in the following three layers: service, optimization and infrastructure.  

Service layer provides the ability to handle the network on a high abstraction level, 

where the user and the provider can focus on the operation itself, and do not have to deal with 

low level problems. They could describe the network in a natural way, for example think in 

service boxes as elementary network functions, which can be configured, and connections can 

be defined between them.  

The optimization layer’s task is to interpret the abstract definition to a lower level, 

which is understandable by the networking devices. Doing all this with optimal network 

resource utilization, operation verifiability, providing flexible management and observation 

possibilities in a fully automated manner, so the probability of human errors are minimized. 

Infrastructure layer provides a standard interface of the general purposed network 

capability hosting and forwarding devices for the upper layer. This is the bottom layer of the 

architecture, the most hardware-close level, where the main approach is virtualization for 

providing simultaneous behavior capability, which gives another dimension of optimization 

possibilities. 
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This operation definition and architecture design approach seems very promising. Many 

research projects and inter-company organizations work to create, standardize, develop, spread 

and exploit the capabilities of this architecture. The research presented in this paper aims to 

participate in such development work, specifically in the interpretation and compile task of the 

middle optimization layer of the envisioned architecture. A possible service requirement 

description and a corresponding algorithm are proposed as the main output of this research. 

More specifically, given an abstract service description as input, my algorithm maps the request 

to the currently available computing and networking resources; in the followings its 

implementation and evaluation are presented.  

The paper is organized as follows: a deeper insight to the motivation and to the basis of 

the problem is provided in section 2 with the high level definition of the task; in section 3, 

various related problems and state-of-the-art research is introduced; section 4 presents the 

design choices and other important statements about the research and the results; section 5 

explains the designed approximation algorithm as the proposed solution, in two phases of 

preprocessing and core functioning in details, and finally some basic test cases are presented; 

the last section makes conclusions and summarizes the paper. 
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2 Background and Motivation 

The following three subchapters aim at introducing the reader to the principles which 

enables us to envision the architecture described above, and to call it feasible. Software Defined 

Networking, Network Function Virtualization and Service Chaining are strongly coupled 

notions, and the functioning of one of them implies or requires the others to be present. 

2.1 Software Defined Networking 

Software Defined Networking (SDN) is a novel approach to every computer network 

related activity. Controlling the network from a centralized software, the cost of setup, 

maintenance and management can be dramatically decreased. Furthermore, SDN supports the 

customization and optimization of network behavior. 

The main idea of this new approach is the separation of data and control planes in 

computer networks. Centralizing the network control, the administrators do not have to deal 

with configuring all the network devices, they can just program the controller to gain the 

freedom of software development on the whole infrastructure as one entity. SDN is the 

possibility of network programmability. 

The principles of SDN are spreading fast, both in industrial and academical 

environment, thanks to the Open Networking Foundation (ONF) [1]. ONF is an organization 

founded by many multinational companies in 2011, it has more than 100 company members 

by now. Since it was established, the organization is dedicated to the promotion and adaptation 

of SDN. For this goal, they designed the OpenFlow protocol for public use, which realizes an 

open interface for networking hardware and gives way to fast innovation. 

The OpenFlow is the communication protocol between the controller and the network 

devices. It defines the interface of the switches or routers, so that any general purposed 

computer could connect to them as their controller [2]. 

OpenFlow enabled switches must be able to handle flow tables, which is populated by 

basic, relatively low level packet header matching rules, produced by the OpenFlow controller. 

If an incoming packet to the switch matches an OpenFlow rule, the corresponding action is 

executed (forward to a set of switch ports, drop or forward to controller). If multiple rules are 

matched by a packet, their priority decides which rule should take effect. In case of an empty 

flow table, or if a packet is not matched by any rule, the packet is forwarded to the controller, 
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which decides what to do with that, and can install rules to handle similar traffic exclusively 

on the datapath. Thanks to this behavior, after some time the flow tables can converge to a 

consistent state on the whole network, handling all traffic on the datapath. 

The need for higher abstraction languages has arisen in the past years, by the spreading 

SDN applications. Programming directly the behavior of the OpenFlow protocol and writing 

low level flow table entries can be ineffective and sometimes cumbersome. Several research 

projects aim at developing higher abstraction languages and compilers for SDN networks to 

enable as abstract development of networking software as we currently have in the case of 

ordinary software for single computers. One of them is The Frenetic Project [3], which provides 

theoretical background to its open source languages and compilers. 

2.2 Network Function Virtualization 

Network Function Virtualization (NFV) offers a new way to design, deploy and manage 

networking services [4]. The main goal of NFV is to enable us to run networking services in 

software, that were formerly implemented in hardware, like DHCP, DNS, network address 

translation (NAT) and firewall services, content caching or even webservers. 

The service realization in software component gives the network providers the freedom 

of replacing the network function to other site of execution according to the traffic 

circumstances; and creating new instances to scale with load; and not depending on specific 

vendors, because all the services could be run on general purposed hardware. These 

possibilities can lead to significant advantage on the market, and enables faster time-to-market, 

fast innovation, and can eliminate overprovisioning. All of this done by utilizing standard IT 

virtualization technologies. 

Just like in the case of SDN, the usage and spreading of NFV is also encouraged by 

organizations and company co-operation. European Telecommunication Standards Institute 

(ETSI) approved the foundation of NFV Industry Specification Group (NFV ISG) [5], with the 

objective of industry consensus on business and technical requirements for NFV, and to agree 

on common approaches to meet the specified requirements. NFV ISG publishes NFV use cases, 

requirements, architectural framework, proof of concept and terminology in their review paper 

[5]. All of this activity is required for organizations and researchers to achieve wide 

applicability and effective realization of NFV tools and principles. 
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One of the NFV research projects is ClickOS [6], just to name one. It provides tiny 

virtual machines, which realizes some basic network functionality that can be connected to 

each other to operate as a composite network service. ClickOS instances boot very quickly, 

consume limited amount of memory and provides fast packet processing, thus enabling to run 

hundreds of them concurrently on a single commodity server. 

2.3 Service Chaining 

The idea of service function chaining is strongly rooted in the soil created by the novel 

technologies of SDN and NFV. Service function chaining is basically the ability to control a 

network on a very high abstraction level, where we only have to deal with the behavioral 

description of the network, and not with all the networking devices one by one. As far as the 

ability of virtual service creation is granted by the technologies of NFV; and SDN ensures the 

efficient usage of arbitrary network control logic, it is a natural requirement to elevate the 

abstraction level of the description of network behavior. 

To explore and bring forth the possibilities of this new approach of service delivery and 

operation, Internet Engineering Task Force (IETF) has agreed to create a working group, called 

Service Function Chaining Working Group (SFC WG). The core use cases and the document 

of SFC problem statement was created in early 2014. The WG will produce an architecture for 

SFC, explore what information shall be gathered from a network for appropriate operation, and 

define connected terms and protocols if necessary [7]. 

In one of the recent papers of SFC WG, one can read the definitions of service chain 

and service function. As these notions are very often used in my document, I would like to 

quote their definitions, published by SFC WG [8].  
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“Service Function (SF): A function that is responsible for specific 

treatment of received packets. A Service Function can act at various layers 

of a protocol stack (e.g., at the network layer or other OSI layers). As a 

logical component, a Service Function can be realized as a virtual element 

or be embedded in a physical network element. One or multiple Service 

Functions can be embedded in the same network element. Multiple 

occurrences of the Service Function can exist in the same administrative 

domain. “ 

Definition 1: Service Function according to SFC WG [8]. 

As the Definition 1 implies, a service function can be pretty many things that operate 

on network traffic. To name some examples, it can be firewall, Deep Packet Inspection (DPI), 

load balancer, NAT and many more. The list of service functions is not definite yet, or maybe 

never will be.  

The definition of service function chaining can be seen on Definition 2. 

“Service Function Chain (SFC): A service function chain defines a set 

of abstract service functions and ordering constraints that must be 

applied to packets and/or frames selected as a result of classification. The 

implied order may not be a linear progression as the architecture allows 

for SFCs that copy to more than one branch, and also allows for cases 

where there is flexibility in the order in which service functions need to be 

applied. The term service chain is often used as shorthand for service 

function chain. “ 

Definition 2: Service Function Chaining according to SFC WG [8]. 

From the Definition 2, I would like to emphasize that, a service chain can have multiple 

branches. As far as the definition does not imply that, the graph of services could contain loops 

(but does not prohibit it either), maybe it would be more illustrative to call it service function 

tree, but let us stick to the term of IETF. The architecture, that the definition mentions, is the 

one to be defined by the SFC working group, so the definition also refers to the ability of 

service chain branching, as a requirement for their architecture. 

The UNIFY project is independent from the SFC WG, but there are some similarities 

in their problem statements and goals, so in my opinion, from the perspective of UNIFY, it 

could be instructive to keep tags on the results, statements and requirements published by SFC 

working group. 
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2.4 European research project 

A European research project called UNIFY, activates both academia and industry to 

develop a unified architecture of carrier networks and data centers. The main goal of the project 

is to create a reference architecture for fully virtualized networks, allowing flexible service 

creation using service chaining, and automated optimization of network resource utilization. 

Another important objective is the development of new, virtualization aware management 

technologies [9]. 

UNIFY defines three main architecture layers, as presented in Figure 1; it is a possible 

realization of the envisioned architecture, which was described on a high level in the 

Introduction. The architecture users can be enterprises, Over-the-top content (OTT) providers 

or even end users. 

 

Figure 1: Overview of UNIFY’s overarching architecture. 

The most difficult problem is raised by the middle (Orchestration) layer, so it should be 

further divided into sub-layers, as Figure 1 demonstrates. UNIFY defines three level of 

abstraction of network description. The input of the topmost level comes from the user, who 
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can define what services and in what order he/she wants to apply on the network traffic. The 

user can define high level Key Quality Indicators (KQIs), like how many users should the 

instantiated firewall handle. The input to the first sub-layer of the middle level (called Resource 

Orchestration) services are decomposed into elementary service functions defining a network 

function request graph; and KQIs are translated to Key Performance Indicators (KPIs), which 

defines what technical constraints, like latency, bandwidth and CPU capacity, should be held. 

This is translated to concrete resource reservations by the Resource Orchestration sub-layer. 

The next sub-layer distributes the reservations among the controllers of the network 

infrastructure. This low level network description defines where the network functions should 

be run, and which paths the traffic should take between them. 

As I will demonstrate in the followings, there are many mathematical and technical 

challenges connected to this part of the UNIFY framework, my paper researches this field of 

current computer engineering problems, specifically the task of the Resource Orchestration 

sub-layer. 

2.5 Problem statement 

During my research, I addressed the problem of the translation between the two bottom 

abstraction levels, which is the task of the orchestration and optimization algorithms. In this 

section I only highlight the problem, and do not go into details. 

The input from the upper abstraction level is a graph of elementary virtual network 

functions (VNFs) with their types and resource requirements. There are Service Attachment 

Points (SAPs), on the border of the request graph1, defining which network entities (server, 

gateway, user terminal) should the service graph operate between. End-to-end (SAP-to-SAP) 

or inter-VNF KPIs (latency, bandwidth, etc.) can also be given on specific paths of the service 

graph. 

We could consider the service graph as a generalization of the IETF definition of service 

function chain on Definition 2, with the extension of loops. The meaning of loops in the service 

graphs could be questioned2, but I do not want to make the constraint of looplessness, because 

the list of network functions is not clear in the state-of-the-art, and I think loops in the request 

graph could easily gain sense by inventing new VNFs. 

                                                 
1 The terms request graph and service graph are used interchangeably, both of them mean the graph of VNFs. 
2 One could ask: Does it make any sense? Doesn’t it make the request graph ambiguous?  
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The substrate network consists of switches and general purposed nodes, which could 

also be capable of forwarding. The nodes can run a specific set of VNF types, in as many 

instances as they can satisfy with the available resources. The nodes and switches are connected 

with links, which have limited bandwidth capacities and accumulate latency, just like 

networking devices. SAPs are connected to the network. 

The mapping procedure is demonstrated in Figure 2, SAPs are represented by ovals, 

VNFs are rectangles. 

 

Figure 2: An example mapping of service graph to substrate graph 

The first part of the output should be a mapping of all VNFs to one specific substrate 

node each, which can satisfy their resource request (one node can host multiple VNFs). 

Secondly, the output should contain the mapping of all request links to paths of the substrate 

network. All the given KPIs must be satisfied strictly. The mapping must be transparent to the 

upper layer, the VNFs must be applied in the given order.  

The mapping shall be optimized in a sense, that as many service requests should be 

hosted on the same substrate network as possible. 
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I place out of the scope of research the problem of traffic steering. Traffic steering is 

about how and where the substrate network should classify the traffic and determine that which 

sequence of VNFs shall be applied to a specific subset of the traffic. This problem is orthogonal, 

and can be handled separately. 

As I will explain it later, there are many approaches to similar problems with the 

utilization of linear programming, but today, the IT world is short on solutions to the problem 

of VNF mapping utilizing other approaches, dispensing their advantages. So I place out of 

scope the linear programming, as a general method of optimization problem solution.   
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3 Related Problems 

Due to the recent results of research projects operating on the fields of NFV and SDN, 

there are many findings to consider if one would like to solve the problem defined in the 

previous chapter. The papers of these state-of-the-art results are necessary to get familiar with, 

because these could be a very important source of ideas, or could even already provide solution 

to a generalization of the problem or the problem itself. Thanks to the much effort invested in 

this field by the scientists of the world, there are abundance of publications and research result 

available. Only the most relevant ones are presented here, further important papers can be 

found in [3] [10] [11] [12] [13] [14] [15]. 

In this chapter I am going to present related problems, occasionally from other field of 

informatics, which gave me guidelines, inspiration and ideas to plan my own mapping 

algorithm. The main terms of this chapter are Virtual Network Embedding, Virtual Datacenter 

mapping, graph pattern matching, graph partitioning. 

3.1 Virtual Network Embedding 

The demand of hosting multiple logical topologies on one physical network has arisen 

in the past few years, first in datacenters, nowadays in various kinds of networks. In this case 

we want the substrate network to provide resource for the requirements of the virtual topology 

consisting of virtual nodes and virtual links. Finding an appropriate mapping, a solution for the 

problem of Virtual Network Embedding (VNE), is an NP-hard problem [16].  

3.1.1 A useful objective function 

In the paper of Chowdhury et al [16] the requirements are CPU capacity in the case of 

virtual nodes and bandwidth capacity in the case of virtual links. The VNE problem is very 

similar to the problem proposed in the previous chapter. In both problems there is a graph of 

logical entities with computing capacity as demands, and logical links connecting them with 

required minimal bandwidth on the paths connecting the mapped nodes. Chowdhury et al gave 

two MIP (mixed integer program) based solutions, which method I placed out of scope in the 

beginning.  

The first main cause, Chowdhury’s algorithm does not fit our needs, it does not support 

request node collocation, or in other words it maps every request node to a different substrate 

node. I do not want to make such constraint in the case of VNF mapping. Secondly, this 
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algorithm handles the mapping of bandwidth request in a splittable manner, thus enabling 

traffic to be splat to multiple paths between two request nodes. (This is caused by the usage of 

multi-commodity flow problem for finding paths.) It could result in an unpleasant mapping, 

when we do not have the full control of latency between the VNF-s, because one traffic flow 

can be divided between multiple paths. And thirdly, the algorithm provides only an 

approximate solution despite the sophisticated tools used. 

The MIP formulation obviously includes an objective function for selecting the best 

mapping. So I am not going into the details of the MIP formulation, just discuss and evaluate 

the objective function which still can be useful to define my own. 

The objective function tries to describe the overall state of the loaded network by one 

scalar. The sum of reserved CPU capacity on all substrate nodes is weighted by the reciprocal 

of the residual capacity. Then, this sum is added to the sum of all reserved bandwidth of every 

links, weighted by the reciprocal of residual link capacity. Each node and link has a constant 

multiplier to control their importance. This composite objective function is to be minimized in 

the linear program, so that it would minimize the cost of request embedding, as well as balance 

the load [16]. This kind of multi-purposed objective function is definitely the path to follow. 

My algorithm’s objective function is the generalization of the above explained one, 

taking more resource types and parameters into consideration. This will be discussed in more 

details later. 

3.1.2 Approximation algorithm for the first sight 

The paper of Fürst et al deals with the problem of request node collocation as a part of 

the Virtual Network Embedding problem [17]. The main goal of the paper is to give an optimal 

grouping of the virtual nodes in the sense of minimizing the amount of link resources, by 

mapping the virtual nodes of a group to the same substrate node. The grouping must be done 

before running the mapping algorithm, this method is called pre-clustering. The results of Fürst 

et al gave an optimal pre-clustering of an arbitrary virtual network, which can be used as the 

input of any other virtual network embedding algorithm. The paper states that, the lack of 

collocation is a general flaw of state-of-the-art VNE algorithms. The pre-clustering is done by 

a linear programming algorithm, just like the above mentioned embedding algorithm.  

Fürst’s paper was more interested for me because of its approximation algorithm for 

mapping, and a referenced algorithm from another paper, both of them were used as test 

algorithms to study the effect of pre-clustering. 
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LoCo stands for location correlation, which is the name of the own approximation 

algorithm of Fürst et al for Virtual Network Embedding, which directly supports virtual node 

collocation. The algorithm of LoCo can be seen in Figure 3, which is explained below. Graph 

G is the virtual network to map, M is the set of already mapped virtual nodes and P is the set 

of pending virtual nodes, which are to be mapped next. P is initially the neighbors of the starting 

virtual node, s. 

 

Figure 3: Pseudo-code of the LoCo algorithm [17]. 

 LoCo is a greedy algorithm starting from s and then checking whether one of the 

neighboring virtual nodes can be mapped to a substrate node, where either the other end of the 

request link or another virtual node was mapped. After a successful mapping, the algorithm 

checks if there are virtual links, whose both ends are already mapped somewhere (this checking 

happens on the second map line). In continuation, the embedding process steps to the virtual 

node which is connected with the highest bandwidth requirement to the already mapped ones.  

If a virtual node cannot be mapped anywhere, the algorithm can also backtrack the 

mapping, by removing the previously mapped virtual node from the substrate network, and 

trying another possible host for the requested computing capacity. Hereby, LoCo is an 

effective, fast and simple suboptimal algorithm to solve the problem of VNE. 

The paper also publishes the measurement results on how much does the authors’ pre-

clustering algorithm (as far as, it is their main contribution) influence the substrate network 

utilization in co-operation with various embedding algorithms. LoCo performs pretty well on 

the tests, with and without pre-clustering, which also demonstrates, it is worth investigating the 

possibilities of approximation algorithms for VNE. 
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3.1.3 Meta information 

Furthermore, Fürst’s paper presents a general idea, a framework for virtual network 

embedding algorithms, which can be used to speed up or give guidelines to any mapping 

algorithms. The idea is referred as MetaTree. 

MetaTree is based on a hierarchical partition of the hosting network, thus forming a 

tree, which’s every node is an induced subgraph of the substrate network graph. The edges of 

MetaTree indicate the containment relationship between subsets [17]. 

 

Figure 4:MetaTree partitions of a substrate network graph [17].  

In Figure 4 we can see a picture demonstrating the structure of MetaTree. Every 

MetaTree node can have meta-information about the subgraph it refers to. The framework does 

not give any restriction on what can be a meta-information, it can include any useful data for 

the embedding process. For example, the meta-data can give the total amount of available 

resources, or the list of hostable network functions in the corresponding subgraph. But we can 

also imagine more theoretical attributes as meta-data, like the maximal distance of substrate 

nodes calculated in latency.  

The paper itself, does not give any specific method on how to construct a MetaTree, but 

it refers to other publications dealing with the problem of graph partitioning. For example, 

Farhat’s greedy algorithm [18], which partitions graphs into a given number of pieces based 

on node distances, achieving this by a simple breadth-fisrt searching (BFS) manner. The 

algorithm starts from a random node, and continues the BFS until the required number of nodes 

for one partition is reached, and handles the induced graph of the reached nodes as one partition. 
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After this, the finding of the next subgraph is started from another node, until the whole graph 

is covered. We could replace the BFS method with shortest path search on a network graph 

weighted by link and node latency. Thus, achieving a MetaTree with latency information of 

the corresponding subgraphs.  

The combination of MetaTree and distance based graph partitioning are very useful 

ideas that could be used for planning a custom algorithm, which will be explained in detail in 

the appropriate chapter. 

3.2 Virtual Data Center Allocation 

In the previous section, I have mentioned that Fürst et al used existing mapping 

algorithms to test the effect of their pre-clustering algorithm. One of those was SecondNet [19], 

which is a data center network virtualization architecture, with allocation algorithm capable of 

mapping virtual networks. Therefore, the problem of Virtual Data Center Allocation (VDCA) 

is also similar to the problem of my study, just like Virtual Network Embedding. In the paper 

of SecondNet, a formal proof on the NP-hardness of VDCA problem is given, which also 

demonstrates the difficulty of the field of network resource mapping. 

In VDCA, a connected set of virtual machines, with given resource requirements, shall 

be mapped to physical servers. The problem statement of VDCA diverges from VNE in that, 

the authors make difference between switches and servers in the substrate network, but this is 

not an issue with the applicability of the algorithm. Furthermore, they define two types of the 

VDCA problems, according to the strictness of bandwidth requirement.  

Firstly, type-0 needs to allocate paths with guaranteed bandwidth between two virtual 

machines (VM-s). Secondly, type-1 is between best-effort and type-0, so that it only guarantees 

local ingress/egress bandwidth reservation for virtual machines, but not on the entire path 

connecting them. Obviously, we want to deal with type-0, because the other two types can be 

seen as the special case of type-0 and we also defined service chain requirements to be strict. 

Initially, SecondNet performs a clustering3 based on hop-count, the number of hops 

from one server to another. The clusters are not disjoint on the servers (a server can be in 

multiple clusters), and the pre-clustering of Fürst et al, can still be used despite the clustering 

                                                 
3 The two terms, cluster and pre-cluster, can cause understandability issues here, but these are the terms used by 

the authors, so I would like to stick to them. To make clear: cluster belongs to SecondNet, pre-cluster belongs to 

the algorithm of Fürst et al. 
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of SecondNet. (The algorithm of Fürst et al pre-clusters to collocate virtual nodes connected 

with high bandwidth requirements between them.) SecondNet uses its clusters as subgroups of 

physical servers for the allocation of all the virtual machines (or the whole virtual network 

request). 

In the first step, the VDCA algorithm chooses a cluster which is big enough for mapping 

the entire request. Then, it builds a bipartite graph, with the virtual machines at one of the color 

classes and the physical servers at the other color class. The edges are drawn between a pair of 

VM and server if, and only if that mapping is feasible according to the requirements of the 

virtual machine. Two nodes are also added to the bipartite graph, connecting one of them to all 

VM-s, and the other one connected to all servers, referring to the nodes as source and 

destination respectively. With appropriate weight and cost assignment to the edges, the 

problem transforms to a min-cost flow problem, which can be solved efficiently. 

After successful VM allocation, in the third step, the algorithm finds paths to the VM 

pairs, in descending order of required bandwidth (to fail earlier if a bandwidth need cannot be 

satisfied with the actual VM allocation). If the path allocation fails, the algorithm moves to the 

next cluster to try again the search, otherwise, the mapping is finished. 

SecondNet is a very nice algorithm, because it could be used to solve a different task 

than it was originally planned to, as we can see this from the results of Fürst et al [17]. So 

naturally, it is not optimized for the task of VNE, but it can give a starting point for planning 

my own algorithm, and can reveal issues to pay attention to. Originally, it does not support 

virtual machine (virtual node) collocation by itself, but gained significant improvement in 

resource utilization by co-operating with pre-clustering mechanisms. So native collocation 

support should be a compulsory feature for a novel request mapping and resource allocation 

algorithm. 

Another weakness of SecondNet could be its two phased allocation procedure. First, it 

finds hosts for the VM-s, and does not perform any checking of link resources, and then it tries 

to find links with enough resource, which can cause many dead ends during execution. One of 

my main goals in this paper is to design an algorithm that has no need to run in two phases like 

that.  
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3.3 Graph pattern matching 

3.3.1 Definitions 

Graph pattern matching could be the mathematical basis of mapping a set of service 

chains to the physical resources of a substrate network, with the mathematical notions of 

subgraph isomorphism and graph simulation.  

Unlike isomorphism, graph simulation is not a commonly used notion, so I would like 

to devote some lines to demonstrate the difference between the two definitions. First, I quote 

the definition of graph simulation form the paper of Fan et al [20], which can be seen in 

Definition 3. 

Graph simulation: to find a binary relation S ⊆ VP ×V , where VP and V 

are the set of nodes in P and G, respectively, such that  

(a) for each node u in VP , there exists a node v in V such that (u; v) ∈ S, 

and u and v have the same label, and moreover,  

(b) for each (u; v) ∈ S and each edge (u; u′) in P, there is an edge (v; v′) in G 

such that (u′; v′) ∈ S 

Definition 3: Definition of graph simulation quoted from paper of Fan et al [20]. 

Graph isomorphism requires to have a bijective function between the nodes of the 

pattern and the target graph. Despite this, graph simulation needs only a binary relation between 

the nodes of the two graphs (which allows many-to-one mapping), as it is in Definition 3. 

Furthermore, graph simulation introduces the notion of node label, and requires the matching 

of the labels of the appropriate nodes to fit the definition. Node label can be any kind of data 

stored on a node, for example the list of hostable network functions or the available resources 

on a node. Finally, isomorphism requires to have a bijective function between the edges too, 

despite the definition of graph simulation, which only says, if there is an edge in the pattern, 

there should be an edge between the appropriate nodes as well in the target graph, but the 

implication does not stand in the other way. This can be checked in the (b) point of Definition 

3. 

All in all, graph simulation is much less strict in defining the pattern, but still requires 

for example pattern edges to be mapped to one edges, and not to paths, as we obviously need 

it. 
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So we can state that, in conjunction with Fan et al [20], graph simulation and 

isomorphism are not quite up to the task of service chain mapping, because they are way too 

restrictive in defining the graph pattern. Thus, limiting the applicability of existing graph 

pattern matching algorithms to the problem. 

Fan et al study that, what kind of graph pattern definition would be more applicable to 

new tasks, like social network analysis, so they defined the notion of bounded graph 

simulation. And they show a cubic time algorithm to find such newly defined graph patterns. 

Their fast algorithm could be scalable to graph sizes of even one billion nodes. In the second 

part of their paper, they also publish an incremental algorithm to find all matching patterns, 

without the need to run the whole algorithm from the beginning, if the graph or the pattern 

changes a little. I will only focus on the first part of the paper of Fan et al presenting the prior 

algorithm. 

To understand the definition of bounded (graph) simulation, we have to look at their 

definition of the pattern graph, which is called by the authors a b-pattern. A b-pattern consists 

of a set of nodes and edges, as an ordinary graph. In addition, there is a function on the edges 

of the b-pattern, which gives the upper bound of the length of the path, to which the edges are 

to be mapped. The length of a path can also be unbounded, and it is denoted by *, instead of 

the constant integer number. Furthermore, the b-pattern consists of a function on the domain 

of nodes, which defines the search condition on the nodes as the conjunction of a set of atomic 

formulas of the form X op x, where X denotes an attribute, x a constant and op can be <, ≤, 

=,  ̸=, >, ≥ [20]. Naturally, the target graph (also called data graph) also has a function on the 

nodes, similar to the latter pattern function (but with attributes being always a constant value) 

to match the pattern attributes to. 

By now we are ready for the definition of bounded simulation, which can be found in 

Definition 4, quoted from the paper of Fan et al. Both G and P are directed graphs, denoting 

the direction of edges by the order of the node 2-tuple.  
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Bounded simulation. Consider a data graph G = (V; E; fA) and a b-

pattern P = (Vp; Ep; fV; fE). We say that graph G matches pattern P via 

bounded simulation, […], if and only if there exists a binary relation S ⊆ Vp 

×V such that 

(1) for each node u in Vp, there exists a node v ∈ V such that (u; v) ∈ S; 

(2) for each pair (u; v) ∈ S, v ∼ u; and 

(3) for each edge (u; u′) in Ep, there exists a nonempty path p = (v; ...; v′) 

from v to v′ in G such that (a) (u′; v′) ∈ S, and (b) len(p) ≤ k if fE(u; u′) is a 

constant k. 

Definition 4: Definition of bounded graph simulation [20]. 

In Definition 4, fA and fV are the attribute functions of target and pattern graphs 

respectively, defining the values and the search conditions on the node attributes. The path 

length bounds are given by fE on the edges of the pattern graph. The matching of a pattern node 

to a data node, satisfying the search conditions, is denoted by ~ (swung dash), in (2) of 

Definition 4. 

The set S in the definition is called a match, obviously, there could be multiple matches 

of the pattern P (where one pattern node can fit to more data nodes) in the data graph G. Fan 

et al prove that, there exists a unique maximum match for every input (or an empty set S, also 

called a match). Its formal proof can be found in [20]. Their polynomial algorithm finds the 

maximum match in a data graph for a given b-pattern.  

3.3.2 The algorithm of Fan et al 

Now we are ready to understand the algorithm itself. In a few words, for every node in 

the pattern, the algorithm finds a set of potentially matching data nodes, which satisfy the 

search condition (initially not dealing with the length constraints). And then, it iteratively 

removes the nodes that violate the distance and connectivity constraints, until no further 

changes can be made, and the sets contain the maximal set of data nodes, that match the 

corresponding pattern node. 

In Figure 5, the pseudo-code of the algorithm can be seen. The previously explained 

notations in the definitions are still valid, the new ones will be explained in the followings, line 

by line. 
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The output of the algorithm is the unique maximum match of the b-pattern P to the data 

graph G via bounded simulation, or the empty set, if there is no match via bounded simulation 

at all. 

 

Figure 5: The maximum match searcher algorithm based on  

the notion of bounded graph simulation. [20]. 

First, the algorithm computes the distances of all the nodes in the unweighted data 

graph, by the utilization of BFS starting from every node. This can be done in cubic time. 

In the 2 – 4 line on Figure 5, for every pattern edge the algorithm computes the set of 

ancestors4 v’ in G (anc), that can match any parent (one hop ancestor) u’ of u, satisfying the 

data label search condition and the distance constraint. Naturally, the distance of v’ is counted 

from the matching data node v of the pattern node u. So, for example anc(4; fV (u’); v) contains 

ancestors of v in G, that are no further than 4 hops, and satisfies the search condition on u’. 

And the set of descendants5 (desc) is calculated similarly for every data node v in G. 

                                                 
4 Ancestors of a node v in a directed graph are all the nodes that are reachable from v, if we are stepping backward 

(opposite direction of the edge direction) on the edges. 
5 Similarly, descendants of a node v are all the reachable nodes, stepping in the direction of edges from v. 
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In the line 6, the mat sets are calculated for all pattern nodes that satisfies their search 

condition (but the distance constraint is not checked). Here we can see the clever usage of node 

degrees, intuitively: if u has at least one child, v should have one too, otherwise v is not a 

possible match for u. Next, the data nodes, which cannot match any parent of u, are gathered 

in premv(u). 

After the initialization processes, in line 9.-11. for each u’, the parents of u, the cycle 

eliminates data nodes from mat(u’), by the utilization of premv(u). If any of the mat sets 

becomes empty, there cannot be a match that can cover all pattern nodes, because mat sets 

cannot increase during execution (line 12.).  

Furthermore, the elements of premv(u), denoted by v1 on the Figure 5, are used to rule 

out some more possible matches of u’ (note that, v1 cannot match u’ because of the distance 

constraint – see the conjunction of line 9. and 10). By looking at the parents of u’, denoted by 

u’’ (see line 13.), v1’ is an ancestor of v1 (see line 14.), that is a possible match of u’’, but only 

if there is at least one data node among its descendants, which can be a match to u’ (see line 

15.). Otherwise it is added to premv(u’). This whole refining process continues until there is a 

chance for decreasing any mat set, by being premv not empty (see line 8.) 

Finally, the maximal match is produced from the mat sets of every pattern node (line 

18.). 

Fan et al also gives formal proof to that, the algorithm always terminates and it gives 

the maximal match of a b-pattern in a data graph in terms of bounded simulation (correctness 

proof). Furthermore, they prove the cubic runtime complexity of the algorithm.  
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4 Specifying the input and output 

The goal of this section is to appoint and further specify the problem of VNF mapping, 

because it is not yet specific enough to start the discussion of the algorithm. The design choices, 

that were required to make during my research, are also presented here. 

First, let us start with specifying the request graph and the service chains. The service 

graph is basically a network of VNF instances and SAPs, connected by request links. We can 

think about the links as undirected graph edges, because directing the traffic in the substrate 

network after the mapping, could also be the task of traffic steering, which I have placed out 

of the scope of the problem earlier.  

I am going to handle the resource requirements of the VNFs in the two components of 

memory and CPU computing capacity. Every VNF in the service graph must specify what kind 

of network function it should operate (only one type). I denote the VNF type with capital letters 

of the English alphabet. All VNFs shall have a unique name; it is recommended to be a readable 

character string, which is understandable by the user, because I plan to use these only for 

graphical representations. In the algorithm, I use unique integer identifiers to refer to the VNFs. 

More than one instances of a VNF type can be in the service graph at the same time. The 

undirected links in the request graph mean reachability constraints between the VNFs.  

One service chain consists of the maximal latency permitted, given in milliseconds, that 

the mapped paths shall not exceed even after applying all of the VNFs of the chain. Similarly, 

bandwidth requirement can be given to every service chain in megabit per seconds that the user 

shall be able to measure between the ends of the service chain. The chain itself shall be given 

as an ordered list of the integer identifiers of the VNFs, and (in case of SAP-to-SAP chains) 

SAP identifiers at both ends of the lists, indicating where the chain should be attached to. Not 

SAP-to-SAP chains can also be given (either or both ends starting from a VNF), with that 

constraint, it must be a part of a SAP-to-SAP chain6. The bandwidth requirement of a not SAP-

to-SAP chain shall determine how much bandwidth capacity is needed in addition to the 

requirement of the containing SAP-to-SAP chain. 

Arbitrary number of service chains can be given as part of the input, which are 

represented in an unordered list of service chains. As far as a VNF instance can only be mapped 

                                                 
6 I explain it in a later section why I had to make such constraint, and how it could be resolved. But the algorithm 

currently can only handle input with the given constraint. 
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to one hosting node in the substrate graph7, and if multiple service chains want to use the same 

VNF instance, the request paths leading to the host of that VNF must be mapped accordingly 

in the substrate network. The request links’ bandwidth requirement is given indirectly by the 

sum of bandwidth requirements of the service chains, which contain that specific request link. 

SAPs shall have no resource requirements, they should possess a unique name, which 

is used in both (substrate and request) graphs to identify them. If there exist a SAP in the request 

graph, but a SAP with the same name does not exist in the substrate graph, an error should be 

raised. A SAP name could be anything, which contains enough information for the surrounding 

architecture layers or the network management system to identify which physical entity it refers 

to. For example it could be the IP address of a server. SAPs should also have a unique integer 

identifier in both graphs, but these identifiers do not have to be identical in the two graphs for 

same SAP instances, because they are not used for the mapping (only their name is used). But 

the integer identifier of the SAPs in the service graph is used in service chain definition for 

telling where the services shall be attached. 

The substrate graph or the physical topology contains hosts, switches and SAPs. SAPs 

do not need to have any additional parameters, as they have in the request graph. 

Hosts have resources of available CPU capacity and memory, which is used by the 

hosted VNFs. Maximal resources of each resource component should also be stored; in an 

unloaded network, available and maximal resources should obviously be equal. Every host 

should be able to run a set of VNF types, and they should be able to host multiple instances of 

one type of VNF, if they have enough resource. The set of hostable VNFs is represented by a 

(unordered) list of capital letters of the English alphabet. Furthermore, the hosts should have 

two unique identifiers, one easily readable for graphical representation and one for inner 

representation.  

Switches can be added to the substrate graph, but they can be modeled by hosts with 

zero available resources. So from the perspective of the algorithm design, if we connect hosts 

directly or through switches, are identical cases. But naturally the operation of the algorithm 

will be influenced by the two cases, because if we model all switches with zero resourced 

VNFs, an additional resource checking would be executed on every modeled switch.  

                                                 
7 Our problem does not include optimizations with the tool of splitting or doubling VNF instances, it should be 

done by the upper layer. 
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The substrate links should have attributes indicating how much more bandwidth they 

can foster currently, and also the maximal bandwidth capacities should be stored for every link. 

Furthermore, if both ends of a request link is mapped to the same substrate node, the hosts 

should have a maximal and available inner bandwidth parameter, indicating how much inner 

traffic they can handle between the collocated VNFs. 

In both of the graphs every node should store information about its type, whether it is a 

switch, a VNF, a SAP or a host, so the algorithm could decide what it could do with the actual 

entity.  

For fast prototype creation and moderating the task’s complexity, it is a general 

approach to keep some input parameter constant. In my case, I did not want to decrease the 

complexity of the problem, so I made the trade-off with the time variable latency. In other 

words, as an input parameter of the substrate network, I made latency time invariant. So I made 

up three latency values, one for link latency, one for forwarding latency of hosts or switches, 

and finally one for VNF processing latency, and I use them as constants. This restriction does 

not change the task’s complexity, because latency still must be handled.  

In the future, it would be easy to extend the algorithm with handling dynamic latency, 

but this trade-off made the algorithm implementation much faster and proceeding to the testing 

could be done earlier. When I will discuss the algorithm implementation in a later section, I 

will refer to this condition and note which parts and how should be modified for dynamic 

latency handling, and I also explain in detail why it helped. 
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5 Proposed solution 

This chapter is organized as follows: first, I present the pseudo-code of my VNF 

mapping algorithm in two parts. Secondly, I show some basic test cases and propose an 

objective function, which could be used to evaluate the state of a network in general, according 

to the actual resource reservations. I use this function to evaluate the algorithm, comparing to 

the calculated optimal mapping in the sense of the proposed objective function, by an 

alternative (not practical) algorithm. 

5.1 My service chain mapping algorithm 

The algorithm operates in two phases, during its presentation, I am going to follow the 

order of execution, starting with the input preprocessing part, and finishing with the core part, 

which does the actual mapping procedure. 

Unluckily, there is no universally accepted pseudo-code format standard, which I could 

follow, so on the subsequent figures of the algorithm presentation, I will use the following 

conventions. Italic font style represents variables, or functions which return some attribute of 

an entity. Bold font style indicates general programming terms or control structures, for 

example a for loop or if-then-else structure, which I am not going to explain. Plain text indicates 

function names, tags or phrases, which needs further explanation, and can be found in the text, 

commenting on the specific lines of the pseudo-code. 

5.1.1 Preprocessing 

In Figure 6, we can read the pseudo-code of the preprocessing required to run on the 

input structures of the algorithm, before the actual VNF mapping could be executed. The goal 

of the preprocessing is to ease the implementation of the core part and to decrease its runtime 

complexity. It is achieved (besides some other minor tasks) by dividing the service graph to 

“subchains”, which are defined by the intersections of the input service chains, and are disjoint 

on the set of VNF instances. Furthermore, a subgraph of the substrate network is returned for 

every subchain, which is used to map the entire subchain. This process will be explained with 

the pseudo-code of the Preprocessor_Algorithm 
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Subgraph finding 

The input of the Preprocessor_Algorithm is given directly by the upper layer of the 

service chaining architecture, its format is specified in the earlier sections, which I have 

formalized here, in Figure 6. 

The substrate network is an undirected graph with vertex set denoted by V, and edge set 

denoted by E. The domain of the functions fres and fbw are V and E, and returns the available 

resources of a substrate node and the available bandwidth of a substrate link respectively. The 

set of VNFs is represented by Vp and the set of request links is Ep. Function freq returns the 

resource requirement of a VNF instance, and fvnf returns the type of a VNF instance. 

The list of service chains is given by an unordered list of 3-tuples, it can contain 

arbitrary number of service chains. Every service chain should consist of an ordered list of 

integer identifiers of VNF and SAP instances from Vp. The other two parameters are lat and 

bw, which denote the maximal permitted latency of the service chain given in milliseconds, 

and the minimal required bandwidth given in megabit per seconds respectively. This structure 

is denoted by the service_chains variable in Figure 6. 

Preprocessor_Algorithm 

Input: substrate_network = (V, E, fres, fbw), service_graph = (Vp, Ep, 

freq, fvnf), service_chains = [(chain, lat, bw)*]. 

Output: Preprocessed substrate_network and service_graph, and also 

subchains with corresponding subgraphs. 

1. processNetwork:  
2. for each host in substrate_network do 
3.   Make loop in host. 

4. endfor 
5. for each node1, node2 in substrate_network do 
6.   Calculate shortest path between node1 and node2. 

7. endfor 
8. output.append (substrate_network)  
9. processRequest: 
10.  sort_ascending (service_chains by lat) 
11.  for each chain, lat, bw in service_chains do 
12.   maxhop = transform (lat, chain ) 

13.   for each link in chain do 

14.    fbwreq (link) += bw 

15.   endfor 

16.   if chain is end-to-end then 

17.    e2e_subgraphs.append (findSubgraph (chain, maxhop)) 

18.    e2e_chains.append (chain, lat, bw, maxhop) 

19.    else 

20.     not_e2e_chains.append (chain, lat, bw, maxhop) 

21.   endelse 

22.  endfor 
23.  service_graph.add (fbwreq), output.append (service_graph) 
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24. divideIntoDisjointSubchains: 
25.  fcolor = colorLinksAndVNFs (service_graph, e2e_chains, \ 

  not_e2e_chains) 

26.  colored_service_graph = copy (service_graph) 
27.  colored_service_graph.add (fcolor) 
28.  while colored_service_graph has edge do 
29.   e2e_chain = e2e_chains.myiterator() 

30.   for each reqnode in \ 

   custom_order (colored_service_graph.nodes()) do 

31.     

32.    if any reqnode_neighbor in reqnode.neighbors() and \ 

    fcolor(reqnode_neighbor) contains fcolor(e2e_chain) then 

33.     subchain, subgraph_of_subchain = findOneSubchain \ 

     (fcolor, reqnode, reqnode_neighbor, e2e_subgraphs) 

34.     subchains.append (subchain) 

35.     subgraphs.append (subgraph_of_subchain) 

36.     for each edge in subchain do 

37.      colored_service_graph.remove(edge) 

38.     endfor 

39.     break 

40.    endif 

41.     

42.   endfor 

43.  endwhile 
44.  output.append (subchains, subgraphs) 
45. return output 

 

Figure 6: Pseudo-code of the input preprocessing for the VNF mapping algorithm of my own design.  

The first part of the Preprocessor_Algorithm is processNetwork (see lines 1.-8. of 

Figure 6). As I have foreshadowed in the earlier sections, collocating two ends of a request link 

has the cost of inner bandwidth8 utilization, at the amount of the bandwidth requirement of the 

request link between the two VNF instances. I have added a loop link in every host of the 

substrate network for storing the inner transmission bandwidth limit, which is generally much9 

higher than the bandwidth capacity of a substrate link, but still limited. 

Next, for every pair of substrate node, the shortest path (e.g. their distance in hop-count) 

is calculated and stored; this information will be used later in the preprocessing. This can be 

done by the Floyd-Warshall algorithm [21], with constant edge weights, in worst case 

complexity of O(Vp3). If we want to handle dynamic latencies, distances should be calculated 

in latency values of forwarding, processing and links. 

A link weight is calculated for every substrate link, and even for the loops (not indicated 

in the pseudo-code of Figure 6). Weight is a neutral bandwidth value divided by the maximal 

(the currently free) bandwidth capacity of the substrate link. Thus, links with higher bandwidth 

than the neutral, are preferred (have smaller weight) over other links. 

                                                 
8 Physically, it could be implemented as in-memory transmission on the hosts. 
9 Especially, if the host would be configured to use netmap [24] for example. 
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After this, the preprocessing of the substrate network is finished, substrate_network 

variable is added to the output, with the additional loop edges, as indicated in line 8 of Figure 

6. 

The processRequest involves the rest of the preprocessing algorithm (lines 9 – 44). In 

line 10, the function sort_ascending sorts the service chains (modifying the service_chains 

variable in place) in ascending order, based on latency requirement. The comparison between 

two service chains is made exclusively on their latencies, so the service chain with the strictest 

latency requirement comes to the beginning of the service_chains list. 

The for loop of lines 11 – 22 iterates over on all the input service chains. Line 12 uses 

the trade-off I have made with keeping the latency values constant. The transform function 

subtracts the number of VNF instances required to go through in the actual chain, multiplied 

by the constant value of latency of VNF application, acquiring the available latency which can 

be used for forwarding and link latency. The service chain will be mapped to a path in the 

physical network, which path will consume one time link latency value and one times 

forwarding latency in every hop. Thus, if we divide the available latency by the sum of the 

constant link latency and constant forwarding latency, we acquire how many hops long can the 

path be at most, which hosts the VNFs of the service chain. 

From now on, the maxhop variable will act as the limit, instead of maximal latency. As 

I have mentioned earlier, the adaptation of the algorithm to dynamic latency handling will be 

easy to implement, because instead of the hop-count, we would have to calculate distances with 

the actual latency values of links, hosts and switches, and use lat as the distance limit10. 

Next, in line 13-15 of Figure 6, the algorithm adds the bandwidth requirement of the 

actual service chain to all the links of Ep which are contained in chain (the actual service chain). 

By doing this and iterating over all the service chains, from now on, we can speak about 

bandwidth requirements of individual request links, its vales can be acquired by the fbwreq 

function, which is added to the service graph structure. Furthermore, the preprocessed 

service_graph is also appended to the output, with bandwidth requirements given on its request 

links. 

Furthermore, in lines 16-21 of Figure 6, if the actual chain is a SAP-to-SAP chain, the 

findSubgraph function determines an induced subgraph of the substrate network topology, 

                                                 
10 One-way latency measurement is not trivial in general, but there are findings in this problem, and furthermore, 

here we need only one-way latencies of individual links, which is much easier to measure. 
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which shall be used for the mapping of the entire chain (and not the other hosts and links of the 

substrate network, outside of the induced subgraph). The subgraph returned by the function 

includes all the nodes (hosts and switches), which’s sum of distances from the first and last 

element of the chain is less than or equal to maxhop. In case of dynamic latency handling, this 

comparison would be done directly to the upper limit of the latency instead of maxhop, and 

distance would be calculated measured in the actual latency and not in hop-count. Here, the 

distances are not calculated, because the lines 5 – 7 of the Preprocessor_Algorithm have already 

stored it. 

The subgraph finding is realized by a traversal from a SAP in the substrate network, 

which is one of the ends of chain. (Subgraph finding is only done on SAP-to-SAP chains, and 

SAPs of the service graph can be mapped unambiguously to the SAPs of the substrate network 

by their names, as I have conditioned earlier.) The inclusion criteria is checked for every node, 

until the process can be continued. After completion, if the other end of the service chain is not 

in the induced subgraph, an error is raised, because it would mean that the distance of the two 

SAPs is more than the permissible end-to-end latency on the service chain.  

Subgraphs are gathered in e2e_subgraphs and SAP-to-SAP chains in e2e_chains, and 

finally not SAP-to-SAP chains in not_e2e_chains, now with maximal hop-count included. 

These lists are used later in the preprocessing. Given an SAP-to-SAP chain, the algorithm can 

determine the corresponding stored subgraph (this fact is not reflected well by the pseudo-

code). 

Disjoint subchains 

The divideIntoDisjointSubchains section lasts from line 24 to line 43 of Figure 6. Its 

task is to divide the request graph into disjoint subsets (subchains) based on the intersection of 

service chains.  

First, let us imagine different colors for all service chains, and use them to color all the 

edges and vertices of the request graph contained by any of the chains. If an edge or node is 

contained by multiple service chains, color it with all the corresponding chain colors, gaining 

a new color (suppose that we can determine unambiguously every color’s components). An 

example of such coloring is given in Figure 7, where nodes number 6 and 7, and the link 

between them has the color of both service chains, creating a separate color from Chain1 and 

Chain2.  
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Figure 7: An example request graph and its coloring based on chain colors. 

In the 25 line of Figure 6, the colorLinksAndVNFs function creates the explained and 

demonstrated coloring of the service graph. As indicated in the pseudo-code, not SAP-to-SAP 

chains have their own colors too. The fcolor function can determine the set of service chains11 

that includes the given link or VNF instance. Furthermore, fcolor can return the color of a 

single service chain. The fcolor function is appended to the structure of colored_service_graph, 

which is a copy of the service_graph variable. I will also refer to this new graph as colored 

request graph. 

The while loop of lines 28-43 on the Figure 6 iterates until all of its edges and nodes are 

part of any of the subchains. A SAP-to-SAP service chain is selected by the myiterator function 

in every iteration of the while loop. myiterator returns every service chain twice in ascending 

order of latency requirements (chain with the strictest requirement comes first two times, and 

then the next strictest two times, etc.). 

The for loop starting from line 30 iterates on the nodes of the colored request graph. 

The custom_order here means that, the iteration starts with SAPs in ascending order of degree, 

and if all SAPs are done, it continues on VNFs in the same ordering as in the case of SAPs.  

Line 32 has a bit uncommon if condition with the any keyword. In a few words, this 

line checks if the current VNF instance has any neighbor, whose color contains the color of the 

actual service chain, stored in e2e_chain. The contains operator checks the inclusion of the 

                                                 
11 In the implementation this set is realized by a hashable constant set of integer identifiers of service chains. For 

the comparation of the link/edge colores, I used hash comparation for performance reasons. 
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one-element set of fcolor (e2e_chain) in the set of fcolor (reqnode_neighbor) 12. By iterating 

on the nodes of colored request in ascending order of degree (see custom_order), the if 

condition evaluates first to true on the node with the smallest number of degree.  

The findOneSubchain function starts from the actual node (SAP or VNF instance), in 

the direction of the neighbor which satisfied the condition. It uses the color of the link between 

reqnode and reqnode_neighbor to traverse as much edge of the colored request with the same 

color as it can. Only the color of the edges (not the nodes!) is inspected. This color is not 

necessarily the same color which reqnode has, because for instance, if reqnode is a SAP and 

there is another SAP-to-SAP service chain starting from here and continuing on another request 

link than the selected one, then the color of the link connecting to reqnode_neighbor is used. 

See Figure 8, and bind the variables reqnode=sap2 and reqnode_neighbor = VNF number 5. 

The definition of the coloring implies that, the traversal cannot have branches, it can 

only return a sequence of nodes and edges. An almost complete example can be seen on Figure 

8, only the traversal of links 5-6, 6-7 and 7-9 are left. All of these link would be in separate 

subchains each. 

 

Figure 8: The demonstration of the (almost finished) output of divideIntoDisjointSubchains section. 

The findOneSubchain function also utilizes the subgraphs found for the SAP-to-SAP 

chains and stored in e2e_subgraphs variable. In the case of 1st subchain on Figure 8, as the 

traversal on the color of Chain3 reached VNF number 5, a placement criteria is set for that 

VNF, because this instance is used by another SAP-to-SAP chain. The algorithm can know 

                                                 
12 This condition checking is realized by a list comprehension on the neighbors using the containment testing, and 

the folding of the list to one boolean value using the disjunction operator. 
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this, because the color of VNF number 5 is different from the color it actually used for the 

traversal. The placement criteria can be given to VNF instances, and it is a set of substrate 

nodes, where that VNF can be mapped. This set is determined by the intersection of the 

subgraphs of the service chains, which utilize that VNF instance.  

The subchain finding finishes when the traversal cannot proceed on links with the 

selected color, or it encounters a VNF instance, which is already in another subchain with 

stricter latency requirement (or in other words, already have placement criteria given). 

The other return value of the findOneSubchain function is a subgraph of the substrate 

topology, where all the VNFs of the corresponding subchain shall be mapped. This subgraph 

is determined by the intersection of the subgraphs of service chains, whose color is contained 

by the color of the traversal. For example, the subgraph of the 2nd subchain on Figure 8, is the 

intersection of the induced subgraphs found for Chain1 and Chain3, and as for another 

example, the subgraph of the 1st subchain is equal to the subgraph of Chain3 itself. 

In the process of dividing the request graph, every subchain and their corresponding 

subgraphs are stored in the subchains and subgraphs variables, as lines 34-35 of Figure 6 

indicate. Every link of the just found subchain is removed from the colored request graph. The 

ending nodes of the link are only removed from the graph, if their degree would decrease to 

zero by the link removal. For example, after running five iterations of the subchain finding 

process, on the request graph of Figure 8, there would only be three edges of 5-6, 6-7 and 7-9. 

After all of the SAPs are removed from colored_service_graph, the search for one 

subchain can only start from a VNF instance, which is already part of one of the subchains. 

This statement is not reflected from the pseudo-code, because I did not want to overload it with 

information which is not crucial for understanding the algorithm. 

As far as a subchain is always at least one edge long, in every iteration of the while 

loop, the number of edges of colored_service_graph is decreased at least by one. Edges are 

never added to the graph, so the subchain finding process always terminates after Ep iterations 

at most. 

As I have mentioned earlier, the algorithm supports the mapping of not SAP-to-SAP 

chains, but only if they are contained by the union of SAP-to-SAP chains. If it is true, after 

dividing the request graph to subchains, all the not SAP-to-SAP chains are also part of some 

subchain. Their bandwidth requirement is already added to the bandwidth requirements of the 

request links, but using subgraphs for their mapping (which is one of the main components of 
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heuristic insurance of latency requirement13) is not yet supported. For supporting not SAP-to-

SAP chain mapping, which do not obey to the above criteria is also possible with slight 

modifications of the subgraph finding process. 

Finally, in line 44 of Figure 6, all the found subchains and their corresponding 

subgraphs are appended to the output of the Preprocessor_Algorithm.  

The complexity of the algorithm is determined by the complexity of three components: 

Floyd-Warshall algorithm, substrate network initialization, subchain finding (roughly 

overestimated). This can be seen on Figure 9, where among other, previously mentioned 

symbols, c indicates the number of service chains. 

𝑂 (|𝑉|3 + 𝑐(|𝑉| + |𝐸|)  + |𝑉𝑝|
4

) 

Figure 9: The complexity of Preprocesspor_Algorithm. 

By finding subgraphs and subgraph intersections for the subchains with placement 

criteria on the appropriate VNF instances, we acquired a strong heuristic for making insurance 

to the latency (hop-count) requirement of service chains easier. Finding solution for the rest of 

the mapping problem is the task of the Core_Algorithm. 

5.1.2 Core algorithm 

After the input preprocessing is done, the algorithm acquires a list of subchains in 

ascending order of latency requirement. The edge sets of subchains are disjoint on the edge set 

of the input service graph.  

In a nutshell, the algorithm starts the mapping from the end of a subchain, and calculates 

a composite objective function value for all the hosts of its subgraph, and chooses the best one. 

The objective function value calculation for a host incorporates a composite preference value 

of the load state of that host, and the sum of the link weights of the path leading to the actual 

host. The importance between the two components can also be weighted. The algorithm 

greedily continues these calculations on the other nodes of the subchain and then the next 

subchain, while respecting feasibility conditions and placement criteria of VNFs.  

In the first line of the pseudo-code of Figure 10, the preprocessing algorithm of Figure 

6 is called, which returns the structures explained in the previous section.  

Core_Algorithm 

                                                 
13 Other components and detailed explanation is given in the next chapter. 
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Input: Substrate network topology, service graph, service chains with 

requirements. 

Output: VNF to substrate node mapping, link to path mapping. 

1. substrate_network, service_graph, subchains, subgraphs = \ 
 Preprocessor_Algorithm (input) 

2. for each node in service_graph do 
3.  if node is SAP then 

4.   mapped (node) = (true, id_in_network (node)) 

5.  else mapped (node) = false 

6. endfor 
7. for each link in service_graph do 
8.  mapped_link (link) = false 

9. endfor 
10.  for each subc, subg in subchains, subgraphs do 

11.   for each node1, node2 in subc.edges() do 

12.    if not mapped (node2) then 

13.  

14.    mapOneVNF: 

15.     best_host = (infinite, null) 

16.     for each n, path_to_n in \ 

      all_paths (id_in_network (node1), subg.nodes()) do 

17.      if n is a host and n can host fvnf(node2) and \ 

       n in placement_criteria_of (node2) and \ 

       fres(n) satisfies freq(node2) then 

18.       value = objectiveFunction (node2, n, path_to_n) 

19.       if value < best_host[0] and value >= 0 then 

20.        best_host = (value, n) 

21.        mapped_link (node1, node2) = path_to_n 

22.       endif 

23.      endif 

24.     endfor 

25.     if best_host[0] != null then 

26.      mapped (node2) = best_host[1] 

27.      updateNetworkResources (mapped(node2), \ 

       mapped_link (node1, node2)) 

28.     else 

29.      Error, VNF cannot be mapped anywhere! 

30.     endelse 

31.  

32.    else 

33.     mapOneRequestLink (node1, node2, fbwreq (node1, node2)) 

34.    endelse 

35.   endfor 

36.  endfor 

37. return mapped, mapped_link 

 

Figure 10: The core part of the VNF mapping algorithm of my own design. 

In lines 2-6 of Figure 10, for every VNF instance in the service graph, the mapped 

variable is set to false. If the node variable points to a SAP of the request graph, then the integer 

identifier of its appropriate SAP node in the substrate network can be unambiguously 

determined by their matching names, as I have already demanded this from the algorithm input 

in a previous section. The id_in_network function returns the integer identifier of a request 

node’s host or matching SAP. In the pseudo-code we can assume dynamic typing of the 

variables, so assigning a 2-tuple or a boolean value does not make any problem. 
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In the next three lines, link mapping is initialized similarly, but here we can handle them 

homogenously. The mapped_link (link) function14 will return the substrate path where the link 

variable will be mapped, after the algorithm have finished.  

Mapping one VNF 

The main for loop lasts from line 10 to line 36. It iterates over all the subchain – 

subgraph pairs returned by the preprocessing algorithm. The next embedded for loop iterates 

on the edges of the actual subchain, indicated by subc in Figure 10. The two ends of the current 

request link are stored in node1 and node2. As far as the preprocessing prioritized SAP-to-SAP 

chains in the subchain division process, the first subc values will start from SAPs. Later on, if 

everything goes well in the mapping procedure (every VNF will be able to be mapped 

somewhere), the following subchains will also start from either a SAP, or an already mapped 

VNF instance. In a few words, emphasizing the important consequence, the id_in_network 

function will always return a valid integer identifier value of a substrate node for every request 

node stored in node1. 

The node2 variable will usually point to a VNF instance, which is not yet mapped. So 

now we are ready for the mapOneVNF section, which lasts from line 14 to line 30 on Figure 

10. The mapping process stores the best host seen before, for the actual VNF instance in the 

best_host variable, with the objective function value calculated for that VNF – host pair. 

best_host is initialized to infinite objective function value and an invalid host identifier.  

In the for loop of lines 16-24, the algorithm iterates over all the nodes of the 

corresponding subgraph, indicated by subg.nodes() in line 16. The all_paths function returns a 

list of 2-tuples of substrate node integer identifier (variable n) and a substrate path leading to 

that substrate node (variable path_to_n). The paths calculated start from the id_in_network 

(node1) substrate node to every node of subg. I used the basic Dijkstra’s algorithm with the 

edged weights, which were calculated by the Preprocessor_Algorithm (but not indicated in its 

pseudo-code on Figure 6). The edge weights are the quotient for a neutral bandwidth value and 

the actual available bandwidth capacity of the edge.  

Line 17 formalizes what is required from a substrate node to be a candidate host for a 

specific VNF. First, n have to be a host, capable of running the VNF type of node2, and n must 

be inside the placement criteria of node2 (which can be stricter than the nodes of the current 

                                                 
14 In Python terms, we could also call it a dictionary. 
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subgraph, see previous section for explanation), and finally it shall have enough resource to 

foster the all the resource requirement components of node2 (which are currently CPU and 

memory capacity). 

I would like to draw the reader’s attention to the collocation support here, because 

node1 is always the first element of the path_to_n variable, and if node1 is a host, it is also 

checked for hosting capability in the for loop. 

Mapping one VNF is done by selecting the best host for that particular VNF instance, 

according to a composite preference value calculation, which is discussed in the followings. 

Preference value calculation 

The objectiveFunction in line 18, calculates a numeric value for the node2 – n mapping 

with a path of path_to_n from id_in_network (node1). If the mapping is not available because 

not every link of path_to_n have enough bandwidth to host fbwreq(node1, node2) megabit per 

seconds, then the objectiveFunction returnes a negative value. 

The return value of objectiveFunction is the weighted sum of two components. It 

determines the cost of the potential mapping, so its value shall be minimized. The first 

component is the sum of the link weights in path_to_n multiplied by the required bandwidth 

of the request link. The second component is the sum of preference function values of the actual 

load state for every resource component of the substrate node n. The less loaded a host is, the 

more likely the algorithm wants to choose it as the home of the VNF instance. 

Splitting the traffic of the request link, which generates the bandwidth requirement, is 

not allowed. Sometimes a network traffic flow can be handled on multiple paths at the same 

time, but some flows not. I suppose that, if a flow could be split, multiple service chains could 

be given to achieve this, so my algorithm handles every flow unsplittable. 

The general form of the preference value function, used in the composite calculation of 

objectiveFunction, can be seen on Figure 11. The function’s domain is the real numbers in the 

interval of [0, 1], which determines the ratio (percentage, if multiplied by 100) of occupied and 

maximal capacity of a resource component of a host (e.g. 0.7 in a host for CPU, means that the 

host’s 70% of CPU capacity is used).  

 𝑓(𝑥) = {(𝑒 + 1)
𝑥−𝑐

1−𝑐  − 1 , 𝑖𝑓 𝑥 ≥ 𝑐
0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 

Figure 11: The preference value function and its parameters. 
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The parameter c on Figure 11 determines what utilization value is the maximal, when 

we like load states equally preferable. The e parameter means what preference value a fully 

loaded host resource state should return to the algorithm. The two points on the function graph 

is connected by an exponential curve. A separate parameter pair of e and c can be given for 

every resource component (in our problem for CPU and memory). An example 

parameterization can be seen on Figure 12, with values e=2.5 and c=0.4. I have used these 

specific parameters for both of the preference functions. 

 

Figure 12: An example preference value function parameterization.  

The preference value function is only C1 continuous, which can cause a big “jump” in 

the values after the c parameter. This can be eliminated by well-proportioned function 

parameters or by replacing the function to some polynomial, which can operate on the whole 

interval. Moreover, a possible future work could be finding the optimal parameters, and maybe 

making them dependent of the topology or the resource conditions.  

All in all, the maximally preferred host is chosen in every step of the mapping process. 

This is realized by storing all the significant data of a VNF – host mapping pair in the best_host 

variable, demonstrated by the if-then-else structure of lines 25-30 of Figure 10. After trying all 

hosts in the actual subgraph, the mapping is stored in mapped for the output, and the available 

substrate resources are updated with the just found mapping (see line 27). The 

updateNetworkResources function also updates the edge weights, as far as the available 

bandwidth capacities have decreased, even in the case of VNF collocation, the logical loop 

link’s bandwidth and weight should be updated. If the algorithm could not find any possible 
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host for a VNF (see lines 28-29), then an error is raised. Backtracking on the possible mappings 

in this case would be an obvious and desirable improvement of the algorithm, which I plan to 

implement in the near future. 

Lines 32-34 are executed when the algorithm reaches the end of a subchain, or in other 

words, node2, the actual VNF instance is already mapped or it is a SAP. In this case, only the 

link connecting the last two request nodes must be mapped to a path between their hosts. The 

mapOneRequestLink function finds such a path, and updates the data of its links. 

Finally, the link and VNF mappings are forwarded to the lower architecture layer or 

returned to the network management system. 

The termination of the algorithm is trivial in this part, because only for loop iterations 

are used with specific bounds. 

The complexity of Core_Algorithm is composed of initialization and the mapping-

objective function calculation, its rough overestimation can be seen on Figure 13, with the 

previously used notations. 

𝑂 (|𝑉𝑝| + |𝐸𝑝|  + |𝐸𝑝|
2

|𝑉| |𝐸| ) 

Figure 13: The complexity of Core_Algorithm.  

 

5.2 Evaluation and Testing 

I have implemented my algorithm in Python 2.7.4 language and used the NetworkX 

Python library [22] for basic graph processing. The focus of this early stage of my research 

work was on getting acquainted with state-of-the-art solutions and designing and implementing 

my own algorithm. So thorough testing and parameter fine tuning still lay ahead. But still I 

present some basic test cases, and I propose an objective function for evaluating the actual load 

of all the resource components of the entire network, which could be used to compare specific 

mappings to each other.  

5.2.1 An objective function 

When I have discussed the publication of Chowdhury et al [16], I wrote that the problem 

with their objective function was that, it does not use every resource parameter of the network. 

So I have generalized (and a bit modified) it to design a function that fits better to our problem 
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definition. A generalized objective function for R types of resources and one link attribute can 

be seen on Figure 14. 

 

Figure 14: The general form of the objective function used for characterizing the network state. 

The node and edge sets of the substrate graph are V and E respectively, represented on 

Figure 14. The ri functions return the free resource ratio of the i-th resource type, this works 

the same way for the links, which are denoted as the R+1-th resource type. The fri functions 

return a preference value of the current utilization state of the given node or link. The 

preference values are summed for all network nodes and edges, and weighted sum of these 

sums gives the composed scalar value of the network state.  

The ai scalars denote the weights of the resource types, which can be used to control 

the importance between the different components. Their sum is optionally 1, but it could be 

used to scale the codomain of the objective function. In the case of weight sum of 1, the 

codomain depends on the size (node and link count) of the network. If we choose network size 

dependent value instead of 1, we can scale the objective function codomain to a normalized 

interval.  

In our case, I parameterized this objective function with R=2, CPU and memory 

capacity, and bandwidth capacity as link resource. For the preference value function, I used the 

same function that the algorithm used for the mapping (they not necessarily should be the 

same), this can be seen on Figure 12. Naturally, the input of that preference function shall be 

transformed, because that function uses the occupied resource ratio, but here in the objective 
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function we need it to use free resource ratio15. Luckily, the transformation between them is 

easy: if x is the occupied resource ratio, then 1-x is the free resource ratio.  

In conclusion, this objective function measures how well the load is distributed, and 

generally also characterizes the total amount of load, because if we load the network more, it 

is likely that the objective function value will also increase. 

5.2.2 Optimal searcher algorithm 

I have also implemented a naïve and impractical (slow) algorithm, which is not 

interesting algorithmically, but my goal with it was to determine the optimal mapping in the 

sense of the objective function presented in the previous section. In other words, it finds a VNF 

mapping and a link mapping so that, the objective function value for the load state of the 

substrate network would be as high as possible. 

In the first phase of the algorithm, it generates all VNF – host mappings, and for every 

mapping, it finds the optimal paths between the VNF instances, where a link is requested. After 

a possible full mapping is found, it calculates the objective function value, and continues to 

search for other full mappings. VNF and link mapping generation is realized by a naïve 

backtrack algorithm16. (It starts placing requests on the first available host/link, and updates 

resources; if it cannot place the next request, it frees up the previous request placing and tries 

on the next available host/link.). 

This algorithm is very slow, and cannot be applied on real network topologies, which 

are generally very large, and we cannot expect this algorithm to finish its execution in a short 

period of time. So I have planned a small network topology, which can be handled even by this 

naïve algorithm to compare the objective function values of its mapping and the mapping 

returned by my algorithm. I used the input request graph, which I have presented earlier on 

Figure 7. The network topology can be seen on Figure 15. The graph visualization was 

generated by an algorithm of matplotlib [23]. 

                                                 
15 I had to use free resource ratio in the algorithm, because the preference value had to be minimized in conjunction 

with path cost leading to the given node. Achieving that, a long and fast path is always less preferred than a short 

and fast path.  
16 After a VNF mapping is found, link mapping could be implemented more effectively using integer linear 

programming by defining that request must not be split. 
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Figure 15: An example network topology  

with the full mapping of the request of Figure 7, found by my algorithm. 

The mapping of Chain1 of Figure 7 is represented by the red (thicker) lines, Chain2 is 

mapped to the green (thinner) links, and unloaded substrate links are represented by the dashed 

lines on Figure 15. The integer VNF instance identifiers of the request graph are written with 

red bold numbers next to the nodes. Only the list of the available VNFs are shown on the 

figure17. 

The subgraph found for Chain2 could be 5-hops wide, Chain1’s subgraph was 36-hops 

wide, according to the actual parameterization. As we can see the algorithm utilized the 

freedom provided by the high latency requirement of Chain1. The request link between number 

6 and 7 VNF instances is mapped inside the number 10 substrate node, because of the 

collocation of the VNFs. 

The objective function (which was discussed in the explanation of Figure 14), after 

scaling its codomain to [0, 1000] by setting the sum of ai, returned a value of 620.24. The naïve 

optimal searcher algorithm returned a bit better value of 670.24 and found the mapping of 

Figure 16, which we can consider the optimal mapping in the sense of the proposed objective 

function.   

                                                 
17 I think all the VNF resource requirements and the node and substrate link resources would be too much data on 

the figure. I have verified the operation corresponding to resource checking. 
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VNF mapping: 
 [(1, 1), (2, 2), (3, 3), (4, 4), (5, 14), (6, 10), (7, 10), (8, 10), (9, 7)] 
Link mapping: 
(1, 5, {'mapped_to': [1, 5, 9, 14]}), 
(2, 6, {'mapped_to': [2, 6, 10]}), 
(3, 9, {'mapped_to': [3, 7]}), 
(4, 8, {'mapped_to': [4, 8, 11, 10]}), 
(5, 6, {'mapped_to': [14, 11, 10]}), 
(6, 7, {'mapped_to': [10, 10]}), 
(7, 8, {'mapped_to': [10, 10]}), 
(7, 9, {'mapped_to': [10, 13, 12, 7]})] 
 

Figure 16: The direct output of the naive optimal searcher algorithm. 

On Figure 16 VNF mapping is interpreted in “(VNF identifier, substrate node 

identifier)” format. I have selected integer identifiers of SAPs according to their names in both 

graphs (e.g. sap2 is identified by 2 in both graphs), but they are not necessarily have to be like 

this. As an example for decoding the output shown on Figure 16, VNF instance 5 was mapped 

to substrate node 14, and the link between sap1 and VNF 5 was mapped to path 1, 5, 9, 14. 

The optimal searcher algorithm gives a similar mapping to what my algorithm found, 

the objective function values do not differ too much. Both of them satisfies the requirements 

and balance the load, both of them agrees on the collocation of the VNF instances 6 and 7. 

Some paths are identical in both outputs; for example the request link between 7 and 9 are 

mapped to 10, 13, 12, 7 path. But the runtime of the naïve algorithm was a few hours even on 

such a small substrate graph, while my algorithm was executed in a blink of an eye. 

One could ask, how my algorithm would behave on dense (redundant) graphs. The 

optimal searcher inspects all the paths between mapped VNF instances, which procedure in 

this case can go up to factorial complexity. To demonstrate the effectiveness of my algorithm, 

I have run it on 60 node full mesh substrate graph with generated request graphs with more 

than 70 VNF instances, the execution finished in a few seconds, while the naive algorithm 

would fail because it would take too much time to finish. 

More thorough testing and planning other test cases are still wait ahead. I plan to model 

the inner network of a telecom provider with its real life parameters, to examine the execution, 

the returned mapping and the acceptance ratio (how many request graphs could it map) of my 

algorithm. 
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6 Conclusion 

Initially, I have demonstrated the newest technologies, which provide the focus of 

today’s networking related research fields. Software Defined Networking and Network 

Function Virtualization gave the novel optimization and design possibilities in networking. 

Breeding from these new technologies, Service Chaining enables researchers to develop new 

principles and architectures, which can make network description more abstract for human to 

understand better and for machines to optimize better. 

There are European research projects that tries to exploit the possibilities provided by 

the previously mentioned technologies, and to develop an architecture to support full network 

virtualization and abstract description with service chaining.  

According to up-to-date requirements, I have defined the problem of VNF mapping, 

and I have explored the state-of-the-art solutions of any useful related problem, involving 

Virtual Network Embedding, Virtual Data Center Allocation and graph pattern matching. I 

have decided to design my own algorithm utilizing the experience I have gathered from the 

recent research results. 

Then I have presented my design choices and general decisions about the algorithm. I 

have also made the input and output specific enough for proper design and implementation. 

I have presented and explained the approximation algorithm of my own design in details 

by analyzing the pseudo-code of both of its main parts: preprocessor and core. The algorithm 

searches for a subgraph of the substrate network where an entire service chain should be 

mapped. Then the algorithm divides the request graph into disjoint subchains to support the 

mapping process. Further placement criteria is given to VNF instances that are used by multiple 

service chains. The subgraphs are used the core mapping process as a heuristic to make the 

latency requirement delivering easier. Hosts are selected to the VNFs by a composite objective 

function consisting of preference value of the node and the cost of the path leading there. The 

mapping process can be directed and fine-tuned by many parameters.  

The focus of my work was on research result exploration, algorithm design and 

implementation, but I have also presented some basic test cases to evaluate my algorithm. As 

one of the tools for this I have proposed a generalized objective function for measuring the 

preference of a mapping. I used this objective function to define and calculate the optimal 
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mapping on a sample input, and I compared the output of my approximation algorithm to the 

optimal value. Which result I have found satisfying so far. 

My plans for future work are replacing the simplification of dynamic latency to hop-

count handling; extending the algorithm with backtracking support (so it could try more 

possible mappings, if it fails, but keeping it in polynomial time); fine-tuning the parameters of 

the objective function by replacing them to heuristics depending on the networking 

environment; and finally running thorough testing on carrier scale networks and real topologies 

and requests. 

  



51 

 

7 References 

 

[1]  Dan Pitt, Rick Bauer, Cassandra Blair, Beth Most, Daisuke Saso, "Open 

Networking Foundation website," Open Networking Foundation, [Online]. 

Available: https://www.opennetworking.org. [Accessed 14. 10. 2014.]. 

[2]  Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry 

Peterson, Jennifer Rexford, Scott Shenker, Jonathan Turner, "OpenFlow: Enabling 

Innovation in Campus Networks," 2008.  

[3]  Carolyn Jane Anderson, Nate Foster, Arjun Guha, Jean-Baptiste Jeannin, 

Dexter Kozen, Cole Schlesinger, David Walker, "NetKAT: Semantic Foundations 

for Networks," in POPL, San Diego, CA, USA, 2014.  

[4]  Roy Chua, Matt Palmer, Craig Matsumoto, "SDN Central – The 

independent community & #1 resource for SDN and NFV," [Online]. Available: 

http://www.sdncentral.com/. [Accessed 17. 10. 2014.]. 

[5]  Margaret Chiosi, Steve Wright, Don Clarke, Peter Willis et al, "ETSI 

NFV," 15-17. 10. 2013.. [Online]. Available: 

http://portal.etsi.org/NFV/NFV_White_Paper2.pdf. [Accessed 17. 10. 2014.]. 

[6]  Joao Martins, Mohamed Ahmed, Costin Raiciu, Vladimir Olteanu, Michio 

Honda, Roberto Bifulco, Felipe Huici, "ClickOS and the Art of Network," in NSDI 

’14, Seattle, WA, USA, 2014.  

[7]  Jim Guichard, Thomas Narten, Alia Atlas, "datatracker.ietf.org," [Online]. 

Available: https://datatracker.ietf.org/wg/sfc/charter/ . [Accessed 17. 10. 2014.]. 

[8]  J. Halpern, C. Pignataro, "IETF," 20. 09. 2014.. [Online]. Available: 

http://tools.ietf.org/pdf/draft-ietf-sfc-architecture-02.pdf. [Accessed 17. 10. 2014.]. 

[9]  András Császár, Róbert Szabó, "UNIFY - Unifying Cloud and Carrier 

Networks," [Online]. Available: https://www.fp7-unify.eu/. [Accessed 17. 10. 

2014.]. 



52 

 

[10]  Amit Kumar, Rajeev Rastogi, Avi Silberschatz, Bulent Yener, "Algorithms 

for Provisioning Virtual Private Networks in the Hose Model," in SIGCOMM’01, 

San Diego, California, USA, 2001.  

[11]  Matthias Rost, Stefan Schmid, Anja Feldmann, "It’s About Time: On 

Optimal Virtual Network Embeddings under Temporal Flexibilities," in Parallel 

and Distributed Processing Symposium, 2014 IEEE 28th International, Phoenix, 

AZ, USA.  

[12]  Robert Soule, Shrutarshi Basu, Robert Kleinberg, Emin Gün Sirer, Nate 

Foster, "Managing the Network with Merlin," in HotNets ’13,, 2013.  

[13]  Robert Soule, Shrutarshi Basu, Robert Kleinberg, Emin Gün Sirer, Nate 

Foster, "Merlin: Programming the Big Switch," 2013.  

[14]  Gabriel Valiente, Conrado Martinez, An algorithm for graph pattern-

matching, Carleton University Press, 1997.  

[15]  Jiefeng Cheng, Jeffrey Xu Yu, Bolin Ding, Philip S. Yu, HaixunWang, "Fast 

Graph Pattern Matching," in ICDE '08 Proceedings of the 2008 IEEE 24th 

International Conference on Data Engineering, Washington, DC, USA, 2008.  

[16]  N. M. Mosharaf Kabir Chowdhury, Muntasir Raihan Rahman, Raouf 

Boutaba, "Virtual Network Embedding with Coordinated Node and Link Mapping," 

in IEEE INFOCOM 2009, 2009.  

[17]  Carlo Fuerst, Stefan Schmid, Anja Feldmann, "Virtual network embedding 

with collocation: Benefits and limitations of pre-clustering," in Cloud Networking 

(CloudNet), IEEE 2nd International Conference, San Francisco, CA, USA, 2013.  

[18]  B. L. Chamberlain, "Graph Partitioning Algorithms for Distributing 

Workloads of Parallel Computations," 1998.  

[19]  Chuanxiong Guo, Guohan Lu, Helen J. Wang, Shuang Yang, Chao Kong, 

Peng Sun, Wenfei Wu, Yongguang Zhang, "Secondnet: a data center network 

virtualization architecture with bandwidth guarantees," in ACM CoNEXT, 2010.  



53 

 

[20]  Wenfei Fan, Xin Wang, Yinghui Wu, "Incremental Graph Pattern 

Matching," ACM Transactions on Database Systems, 2013.  

[21]  E. W. Weisstein, "Floyd-Warshall Algorithm," in MathWorld, 2009.  

[22]  Aric A. Hagberg, Daniel A. Schult, Pieter J. Swart, "Exploring network 

structure, dynamics, and function using NetworkX," in Proceedings of the 7th 

Python in Science Conference (SciPy2008), Pasadena, CA USA, 2008.  

[23]  J. D. Hunter, "Matplotlib: A 2D graphics environment," Computing In 

Science & Engineering, vol. 9, pp. 90-95, 2007.  

[24]  L. Rizzo, "Netmap: a Novel Framework for Fast Packet I/O," in Proc. of 

USENIX ATC, June 2012.  

 

 


