

Budapest University of Technology and Economics

Faculty of Electrical Engineering and Informatics

Department of Telecommunications and Media Informatics

Németh Balázs

Flexible mapping of virtual services to
computing and network resources

KONZULENS

Dr. Sonkoly Balázs,

(BME – TMIT)

BUDAPEST, 2014

2

Hungarian abstract ... 3

English abstract .. 5

1 Introduction ... 7

2 Background and Motivation .. 9

2.1 Software Defined Networking .. 9
2.2 Network Function Virtualization .. 10
2.3 Service Chaining ... 11
2.4 European research project... 13

2.5 Problem statement .. 14

3 Related Problems ... 17

3.1 Virtual Network Embedding... 17
3.1.1 A useful objective function ... 17

3.1.2 Approximation algorithm for the first sight 18
3.1.3 Meta information .. 20

3.2 Virtual Data Center Allocation ... 21

3.3 Graph pattern matching .. 23
3.3.1 Definitions ... 23

3.3.2 The algorithm of Fan et al ... 25

4 Specifying the input and output ... 28

5 Proposed solution .. 31

5.1 My service chain mapping algorithm ... 31
5.1.1 Preprocessing .. 31
5.1.2 Core algorithm .. 39

5.2 Evaluation and Testing ... 44
5.2.1 An objective function .. 44

5.2.2 Optimal searcher algorithm ... 46

6 Conclusion ... 49

7 References ... 51

3

Hungarian abstract

A mai hozzáférési, aggregációs és szolgáltatói maghálózatok többnyire merev vezérlési

síkkal rendelkeznek, ami nem teszi lehetővé a gyors innovációt és a változó igények követését.

Az eddigi protokoll foltozás és túlméretezés helyett egy újabb megközelítésre van szükségünk

a hálózatok kapacitásának és kihasználásának a növeléséhez. További cél összetett

szolgáltatások gyors és rugalmas létrehozása és üzembe helyezése hatalmas szolgáltatói vagy

céges hálózatokon.

Ezekre a problémákra kínálnak megoldást a ma is aktív kutatás alatt lévő Software

Defined Networking (SDN) és Network Function Virtualization (NFV) eszközök és

irányelvek. Az SDN célja a hálózati eszközök szoftveres programozhatóságának biztosítása,

mellyel a hálózat viselkedése dinamikusan irányítható. Az NFV célkitűzése pedig a

hagyományosan speciális hardver eszközökben megvalósított hálózati funkciók szoftver

komponensekben való implementálása, aminek eredményeként a virtuális funkciók általános

célú hardveren, az aktuális forgalmi viszonyok alapján kiválasztott helyen futtathatók. Ezen

komponensek láncolásával összetett szolgáltatások kialakítására nyílik lehetőség.

A legfrissebb SDN és NFV eredményekre építve, több aktív kutatási projekt tűzte ki

célul hálózatok és szolgáltatások teljes virtualizálását egy erre a célra tervezett hálózati

architektúra felett. Ezen architektúra segítségével magas absztrakciós szinten írhatjuk le a

hálózati működést, melyet a szoftveresen megvalósított szolgáltatás komponensek

rugalmasságának köszönhetően dinamikusan tudunk leképezni a rendelkezésre álló

erőforrásokra, ezzel biztosítva a hálózat folyamatos optimális működését.

A vázolt rendszer egyik kulcs feladata, hogy az absztrakt leírást alkotó szolgáltatás

láncoknak megtalálja valamilyen szempontból a lehető legjobb leképzését a hálózat fizikai

erőforrásaira, a láncokra vonatkozó követelmények teljesítése mellett. Dolgozatom célja ezen

algoritmuselméleti szempontból meglehetősen bonyolult feladatra megoldást adni, melynek

eredményeként a különböző típusú számítási és hálózati erőforrások működése együtt

optimalizálható. A probléma bonyolultságából adódóan reális célom az absztrakt leíráson és a

hálózati gráfon futó, heurisztikus, közelítő megoldások kidolgozása, melyek futási ideje a

legnagyobb hálózatok esetén is másodperces nagyságrendű.

4

Munkám során megvizsgáltam a rokon problémákra javasolt megoldásokat,

megismertem a területen lévő eredményeket és a használatos eszközöket. Ezeket felhasználva

tereztem egy saját, hálózati gráfokon futó, polinomiális idejű, heurisztikus, számos

paraméterrel hangolható algoritmust. Továbbá definiáltam egy metrikát, mellyel a hálózat

erőforrásainak kihasználtságát számszerűsíthetjük, ezzel értékelve, hogy a hálózat mennyire

leterhelt, mennyire preferált az adott állapota. A hálózat preferencia értéke arra is használható,

hogy két különböző, követelményeknek megfelelő leképzés közül választani tudjunk az

hálózat egészére vonatkozó erőforrás kihasználtság alapján. Dolgozatomban ismertetem az

algoritmusom tervezésének lépéseit, magát az algoritmus működését, illetve implementálását

és tesztelését. Zárásul pedig felvázolom kutatási munkám további lépéseit és terveimet.

5

English abstract

Today’s access, aggregation and core networks mostly have rigid control plane, which

does not enable fast innovation and to keep up with the changing requirements. Instead of the

overprovisioning and make, do and mend around networking protocols, we need a new

approach for increasing network capacity and improving network resource utilization.

Furthermore, fast and flexible creation of composite services on enormous carrier or enterprise

networks would be a decent goal.

For these problems, solutions are offered by the up-to-date research results of Software

Defined Networking (SDN) and Network Function Virtualization (NFV) tools and principles.

The goal of SDN is to support the programmability of network devices with arbitrary software,

enabling the dynamic control of network behavior. The objective of NFV is the implementation

of originally application specific hardware implemented network functions in software

components, which could be run on general purpose hardware, thus enabling us to run the

virtual functions anywhere in the network according to the actual traffic conditions. Chaining

these software components opens the door to flexible creation of complex services.

Several research projects aim at realizing full network and service virtualization using

a novel architecture designed for this purpose and building on the newest findings of SDN and

NFV. This architecture enables the description of network behavior on a high abstraction level,

which can be mapped dynamically to the available network resources thanks to the flexibility

of service components implemented in software. The dynamic mapping ensures the continuous

optimal operation of the network.

One of the key tasks of the mentioned architecture is to find in some sense the best

mapping of the abstract description to physical network resources, satisfying the given

requirements to the service chains. The goal of my paper is to give a solution to this

algorithmically difficult problem, so that the operation of various computing and network

resources could be optimized jointly. Based on the difficulty of the problem, my realistic

purpose is to design a heuristic, approximate algorithm operating on the abstract description

and the network graph, with running time of the order of a few seconds even on the largest

networks.

During my research I examined the suggested solutions to analogous problems and I

got acquainted with the applied tools and findings of this field. Using this knowledge, I have

6

designed my own heuristic, approximate, polynomial algorithm, which runs on network graphs

and tunable with many parameters. Furthermore, I have defined a metric for measuring the

network resource utilization, which can be used to evaluate the state of the network, as a

preference value of its actual load distribution. The preference value could also be used to

choose between two requirement satisfying mappings, based on the overall resource utilization.

In this paper, I write about the steps of designing the algorithm, the operation of the algorithm

itself, and its implementation and testing. Finally, I sketch my future research and plans.

7

1 Introduction

Nowadays, we have increasingly many and strict expectations from communication

networks as users or companies. Network and service providers are familiar with this fact, and

they will try to satisfy the needs of their customers and charge them for the supported services.

But today’s network management and service development is not up to the task yet, so

technology research is required in this field.

Network flexibility, automatized and optimized operation of the largest networks, fast

time-to-market of new services are going to be basic requirements of every provider in the near

future. To achieve these, the general information technology approach of leveraging the

abstraction level of development could also be applied to networks. Just like it happened in the

second half of the last century with software development on single machines, we could

achieve the high abstraction level of programming of a whole network as one entity.

Configuring and programming the entire network at the same time raises many issues,

so a new network architecture should be developed to support this task. The long-standing

method of designing a layered architecture to divide complex problems to smaller tasks, could

result in the following three layers: service, optimization and infrastructure.

Service layer provides the ability to handle the network on a high abstraction level,

where the user and the provider can focus on the operation itself, and do not have to deal with

low level problems. They could describe the network in a natural way, for example think in

service boxes as elementary network functions, which can be configured, and connections can

be defined between them.

The optimization layer’s task is to interpret the abstract definition to a lower level,

which is understandable by the networking devices. Doing all this with optimal network

resource utilization, operation verifiability, providing flexible management and observation

possibilities in a fully automated manner, so the probability of human errors are minimized.

Infrastructure layer provides a standard interface of the general purposed network

capability hosting and forwarding devices for the upper layer. This is the bottom layer of the

architecture, the most hardware-close level, where the main approach is virtualization for

providing simultaneous behavior capability, which gives another dimension of optimization

possibilities.

8

This operation definition and architecture design approach seems very promising. Many

research projects and inter-company organizations work to create, standardize, develop, spread

and exploit the capabilities of this architecture. The research presented in this paper aims to

participate in such development work, specifically in the interpretation and compile task of the

middle optimization layer of the envisioned architecture. A possible service requirement

description and a corresponding algorithm are proposed as the main output of this research.

More specifically, given an abstract service description as input, my algorithm maps the request

to the currently available computing and networking resources; in the followings its

implementation and evaluation are presented.

The paper is organized as follows: a deeper insight to the motivation and to the basis of

the problem is provided in section 2 with the high level definition of the task; in section 3,

various related problems and state-of-the-art research is introduced; section 4 presents the

design choices and other important statements about the research and the results; section 5

explains the designed approximation algorithm as the proposed solution, in two phases of

preprocessing and core functioning in details, and finally some basic test cases are presented;

the last section makes conclusions and summarizes the paper.

9

2 Background and Motivation

The following three subchapters aim at introducing the reader to the principles which

enables us to envision the architecture described above, and to call it feasible. Software Defined

Networking, Network Function Virtualization and Service Chaining are strongly coupled

notions, and the functioning of one of them implies or requires the others to be present.

2.1 Software Defined Networking

Software Defined Networking (SDN) is a novel approach to every computer network

related activity. Controlling the network from a centralized software, the cost of setup,

maintenance and management can be dramatically decreased. Furthermore, SDN supports the

customization and optimization of network behavior.

The main idea of this new approach is the separation of data and control planes in

computer networks. Centralizing the network control, the administrators do not have to deal

with configuring all the network devices, they can just program the controller to gain the

freedom of software development on the whole infrastructure as one entity. SDN is the

possibility of network programmability.

The principles of SDN are spreading fast, both in industrial and academical

environment, thanks to the Open Networking Foundation (ONF) [1]. ONF is an organization

founded by many multinational companies in 2011, it has more than 100 company members

by now. Since it was established, the organization is dedicated to the promotion and adaptation

of SDN. For this goal, they designed the OpenFlow protocol for public use, which realizes an

open interface for networking hardware and gives way to fast innovation.

The OpenFlow is the communication protocol between the controller and the network

devices. It defines the interface of the switches or routers, so that any general purposed

computer could connect to them as their controller [2].

OpenFlow enabled switches must be able to handle flow tables, which is populated by

basic, relatively low level packet header matching rules, produced by the OpenFlow controller.

If an incoming packet to the switch matches an OpenFlow rule, the corresponding action is

executed (forward to a set of switch ports, drop or forward to controller). If multiple rules are

matched by a packet, their priority decides which rule should take effect. In case of an empty

flow table, or if a packet is not matched by any rule, the packet is forwarded to the controller,

10

which decides what to do with that, and can install rules to handle similar traffic exclusively

on the datapath. Thanks to this behavior, after some time the flow tables can converge to a

consistent state on the whole network, handling all traffic on the datapath.

The need for higher abstraction languages has arisen in the past years, by the spreading

SDN applications. Programming directly the behavior of the OpenFlow protocol and writing

low level flow table entries can be ineffective and sometimes cumbersome. Several research

projects aim at developing higher abstraction languages and compilers for SDN networks to

enable as abstract development of networking software as we currently have in the case of

ordinary software for single computers. One of them is The Frenetic Project [3], which provides

theoretical background to its open source languages and compilers.

2.2 Network Function Virtualization

Network Function Virtualization (NFV) offers a new way to design, deploy and manage

networking services [4]. The main goal of NFV is to enable us to run networking services in

software, that were formerly implemented in hardware, like DHCP, DNS, network address

translation (NAT) and firewall services, content caching or even webservers.

The service realization in software component gives the network providers the freedom

of replacing the network function to other site of execution according to the traffic

circumstances; and creating new instances to scale with load; and not depending on specific

vendors, because all the services could be run on general purposed hardware. These

possibilities can lead to significant advantage on the market, and enables faster time-to-market,

fast innovation, and can eliminate overprovisioning. All of this done by utilizing standard IT

virtualization technologies.

Just like in the case of SDN, the usage and spreading of NFV is also encouraged by

organizations and company co-operation. European Telecommunication Standards Institute

(ETSI) approved the foundation of NFV Industry Specification Group (NFV ISG) [5], with the

objective of industry consensus on business and technical requirements for NFV, and to agree

on common approaches to meet the specified requirements. NFV ISG publishes NFV use cases,

requirements, architectural framework, proof of concept and terminology in their review paper

[5]. All of this activity is required for organizations and researchers to achieve wide

applicability and effective realization of NFV tools and principles.

11

One of the NFV research projects is ClickOS [6], just to name one. It provides tiny

virtual machines, which realizes some basic network functionality that can be connected to

each other to operate as a composite network service. ClickOS instances boot very quickly,

consume limited amount of memory and provides fast packet processing, thus enabling to run

hundreds of them concurrently on a single commodity server.

2.3 Service Chaining

The idea of service function chaining is strongly rooted in the soil created by the novel

technologies of SDN and NFV. Service function chaining is basically the ability to control a

network on a very high abstraction level, where we only have to deal with the behavioral

description of the network, and not with all the networking devices one by one. As far as the

ability of virtual service creation is granted by the technologies of NFV; and SDN ensures the

efficient usage of arbitrary network control logic, it is a natural requirement to elevate the

abstraction level of the description of network behavior.

To explore and bring forth the possibilities of this new approach of service delivery and

operation, Internet Engineering Task Force (IETF) has agreed to create a working group, called

Service Function Chaining Working Group (SFC WG). The core use cases and the document

of SFC problem statement was created in early 2014. The WG will produce an architecture for

SFC, explore what information shall be gathered from a network for appropriate operation, and

define connected terms and protocols if necessary [7].

In one of the recent papers of SFC WG, one can read the definitions of service chain

and service function. As these notions are very often used in my document, I would like to

quote their definitions, published by SFC WG [8].

12

“Service Function (SF): A function that is responsible for specific

treatment of received packets. A Service Function can act at various layers

of a protocol stack (e.g., at the network layer or other OSI layers). As a

logical component, a Service Function can be realized as a virtual element

or be embedded in a physical network element. One or multiple Service

Functions can be embedded in the same network element. Multiple

occurrences of the Service Function can exist in the same administrative

domain. “

Definition 1: Service Function according to SFC WG [8].

As the Definition 1 implies, a service function can be pretty many things that operate

on network traffic. To name some examples, it can be firewall, Deep Packet Inspection (DPI),

load balancer, NAT and many more. The list of service functions is not definite yet, or maybe

never will be.

The definition of service function chaining can be seen on Definition 2.

“Service Function Chain (SFC): A service function chain defines a set

of abstract service functions and ordering constraints that must be

applied to packets and/or frames selected as a result of classification. The

implied order may not be a linear progression as the architecture allows

for SFCs that copy to more than one branch, and also allows for cases

where there is flexibility in the order in which service functions need to be

applied. The term service chain is often used as shorthand for service

function chain. “

Definition 2: Service Function Chaining according to SFC WG [8].

From the Definition 2, I would like to emphasize that, a service chain can have multiple

branches. As far as the definition does not imply that, the graph of services could contain loops

(but does not prohibit it either), maybe it would be more illustrative to call it service function

tree, but let us stick to the term of IETF. The architecture, that the definition mentions, is the

one to be defined by the SFC working group, so the definition also refers to the ability of

service chain branching, as a requirement for their architecture.

The UNIFY project is independent from the SFC WG, but there are some similarities

in their problem statements and goals, so in my opinion, from the perspective of UNIFY, it

could be instructive to keep tags on the results, statements and requirements published by SFC

working group.

13

2.4 European research project

A European research project called UNIFY, activates both academia and industry to

develop a unified architecture of carrier networks and data centers. The main goal of the project

is to create a reference architecture for fully virtualized networks, allowing flexible service

creation using service chaining, and automated optimization of network resource utilization.

Another important objective is the development of new, virtualization aware management

technologies [9].

UNIFY defines three main architecture layers, as presented in Figure 1; it is a possible

realization of the envisioned architecture, which was described on a high level in the

Introduction. The architecture users can be enterprises, Over-the-top content (OTT) providers

or even end users.

Figure 1: Overview of UNIFY’s overarching architecture.

The most difficult problem is raised by the middle (Orchestration) layer, so it should be

further divided into sub-layers, as Figure 1 demonstrates. UNIFY defines three level of

abstraction of network description. The input of the topmost level comes from the user, who

14

can define what services and in what order he/she wants to apply on the network traffic. The

user can define high level Key Quality Indicators (KQIs), like how many users should the

instantiated firewall handle. The input to the first sub-layer of the middle level (called Resource

Orchestration) services are decomposed into elementary service functions defining a network

function request graph; and KQIs are translated to Key Performance Indicators (KPIs), which

defines what technical constraints, like latency, bandwidth and CPU capacity, should be held.

This is translated to concrete resource reservations by the Resource Orchestration sub-layer.

The next sub-layer distributes the reservations among the controllers of the network

infrastructure. This low level network description defines where the network functions should

be run, and which paths the traffic should take between them.

As I will demonstrate in the followings, there are many mathematical and technical

challenges connected to this part of the UNIFY framework, my paper researches this field of

current computer engineering problems, specifically the task of the Resource Orchestration

sub-layer.

2.5 Problem statement

During my research, I addressed the problem of the translation between the two bottom

abstraction levels, which is the task of the orchestration and optimization algorithms. In this

section I only highlight the problem, and do not go into details.

The input from the upper abstraction level is a graph of elementary virtual network

functions (VNFs) with their types and resource requirements. There are Service Attachment

Points (SAPs), on the border of the request graph1, defining which network entities (server,

gateway, user terminal) should the service graph operate between. End-to-end (SAP-to-SAP)

or inter-VNF KPIs (latency, bandwidth, etc.) can also be given on specific paths of the service

graph.

We could consider the service graph as a generalization of the IETF definition of service

function chain on Definition 2, with the extension of loops. The meaning of loops in the service

graphs could be questioned2, but I do not want to make the constraint of looplessness, because

the list of network functions is not clear in the state-of-the-art, and I think loops in the request

graph could easily gain sense by inventing new VNFs.

1 The terms request graph and service graph are used interchangeably, both of them mean the graph of VNFs.
2 One could ask: Does it make any sense? Doesn’t it make the request graph ambiguous?

15

The substrate network consists of switches and general purposed nodes, which could

also be capable of forwarding. The nodes can run a specific set of VNF types, in as many

instances as they can satisfy with the available resources. The nodes and switches are connected

with links, which have limited bandwidth capacities and accumulate latency, just like

networking devices. SAPs are connected to the network.

The mapping procedure is demonstrated in Figure 2, SAPs are represented by ovals,

VNFs are rectangles.

Figure 2: An example mapping of service graph to substrate graph

The first part of the output should be a mapping of all VNFs to one specific substrate

node each, which can satisfy their resource request (one node can host multiple VNFs).

Secondly, the output should contain the mapping of all request links to paths of the substrate

network. All the given KPIs must be satisfied strictly. The mapping must be transparent to the

upper layer, the VNFs must be applied in the given order.

The mapping shall be optimized in a sense, that as many service requests should be

hosted on the same substrate network as possible.

16

I place out of the scope of research the problem of traffic steering. Traffic steering is

about how and where the substrate network should classify the traffic and determine that which

sequence of VNFs shall be applied to a specific subset of the traffic. This problem is orthogonal,

and can be handled separately.

As I will explain it later, there are many approaches to similar problems with the

utilization of linear programming, but today, the IT world is short on solutions to the problem

of VNF mapping utilizing other approaches, dispensing their advantages. So I place out of

scope the linear programming, as a general method of optimization problem solution.

17

3 Related Problems

Due to the recent results of research projects operating on the fields of NFV and SDN,

there are many findings to consider if one would like to solve the problem defined in the

previous chapter. The papers of these state-of-the-art results are necessary to get familiar with,

because these could be a very important source of ideas, or could even already provide solution

to a generalization of the problem or the problem itself. Thanks to the much effort invested in

this field by the scientists of the world, there are abundance of publications and research result

available. Only the most relevant ones are presented here, further important papers can be

found in [3] [10] [11] [12] [13] [14] [15].

In this chapter I am going to present related problems, occasionally from other field of

informatics, which gave me guidelines, inspiration and ideas to plan my own mapping

algorithm. The main terms of this chapter are Virtual Network Embedding, Virtual Datacenter

mapping, graph pattern matching, graph partitioning.

3.1 Virtual Network Embedding

The demand of hosting multiple logical topologies on one physical network has arisen

in the past few years, first in datacenters, nowadays in various kinds of networks. In this case

we want the substrate network to provide resource for the requirements of the virtual topology

consisting of virtual nodes and virtual links. Finding an appropriate mapping, a solution for the

problem of Virtual Network Embedding (VNE), is an NP-hard problem [16].

3.1.1 A useful objective function

In the paper of Chowdhury et al [16] the requirements are CPU capacity in the case of

virtual nodes and bandwidth capacity in the case of virtual links. The VNE problem is very

similar to the problem proposed in the previous chapter. In both problems there is a graph of

logical entities with computing capacity as demands, and logical links connecting them with

required minimal bandwidth on the paths connecting the mapped nodes. Chowdhury et al gave

two MIP (mixed integer program) based solutions, which method I placed out of scope in the

beginning.

The first main cause, Chowdhury’s algorithm does not fit our needs, it does not support

request node collocation, or in other words it maps every request node to a different substrate

node. I do not want to make such constraint in the case of VNF mapping. Secondly, this

18

algorithm handles the mapping of bandwidth request in a splittable manner, thus enabling

traffic to be splat to multiple paths between two request nodes. (This is caused by the usage of

multi-commodity flow problem for finding paths.) It could result in an unpleasant mapping,

when we do not have the full control of latency between the VNF-s, because one traffic flow

can be divided between multiple paths. And thirdly, the algorithm provides only an

approximate solution despite the sophisticated tools used.

The MIP formulation obviously includes an objective function for selecting the best

mapping. So I am not going into the details of the MIP formulation, just discuss and evaluate

the objective function which still can be useful to define my own.

The objective function tries to describe the overall state of the loaded network by one

scalar. The sum of reserved CPU capacity on all substrate nodes is weighted by the reciprocal

of the residual capacity. Then, this sum is added to the sum of all reserved bandwidth of every

links, weighted by the reciprocal of residual link capacity. Each node and link has a constant

multiplier to control their importance. This composite objective function is to be minimized in

the linear program, so that it would minimize the cost of request embedding, as well as balance

the load [16]. This kind of multi-purposed objective function is definitely the path to follow.

My algorithm’s objective function is the generalization of the above explained one,

taking more resource types and parameters into consideration. This will be discussed in more

details later.

3.1.2 Approximation algorithm for the first sight

The paper of Fürst et al deals with the problem of request node collocation as a part of

the Virtual Network Embedding problem [17]. The main goal of the paper is to give an optimal

grouping of the virtual nodes in the sense of minimizing the amount of link resources, by

mapping the virtual nodes of a group to the same substrate node. The grouping must be done

before running the mapping algorithm, this method is called pre-clustering. The results of Fürst

et al gave an optimal pre-clustering of an arbitrary virtual network, which can be used as the

input of any other virtual network embedding algorithm. The paper states that, the lack of

collocation is a general flaw of state-of-the-art VNE algorithms. The pre-clustering is done by

a linear programming algorithm, just like the above mentioned embedding algorithm.

Fürst’s paper was more interested for me because of its approximation algorithm for

mapping, and a referenced algorithm from another paper, both of them were used as test

algorithms to study the effect of pre-clustering.

19

LoCo stands for location correlation, which is the name of the own approximation

algorithm of Fürst et al for Virtual Network Embedding, which directly supports virtual node

collocation. The algorithm of LoCo can be seen in Figure 3, which is explained below. Graph

G is the virtual network to map, M is the set of already mapped virtual nodes and P is the set

of pending virtual nodes, which are to be mapped next. P is initially the neighbors of the starting

virtual node, s.

Figure 3: Pseudo-code of the LoCo algorithm [17].

 LoCo is a greedy algorithm starting from s and then checking whether one of the

neighboring virtual nodes can be mapped to a substrate node, where either the other end of the

request link or another virtual node was mapped. After a successful mapping, the algorithm

checks if there are virtual links, whose both ends are already mapped somewhere (this checking

happens on the second map line). In continuation, the embedding process steps to the virtual

node which is connected with the highest bandwidth requirement to the already mapped ones.

If a virtual node cannot be mapped anywhere, the algorithm can also backtrack the

mapping, by removing the previously mapped virtual node from the substrate network, and

trying another possible host for the requested computing capacity. Hereby, LoCo is an

effective, fast and simple suboptimal algorithm to solve the problem of VNE.

The paper also publishes the measurement results on how much does the authors’ pre-

clustering algorithm (as far as, it is their main contribution) influence the substrate network

utilization in co-operation with various embedding algorithms. LoCo performs pretty well on

the tests, with and without pre-clustering, which also demonstrates, it is worth investigating the

possibilities of approximation algorithms for VNE.

20

3.1.3 Meta information

Furthermore, Fürst’s paper presents a general idea, a framework for virtual network

embedding algorithms, which can be used to speed up or give guidelines to any mapping

algorithms. The idea is referred as MetaTree.

MetaTree is based on a hierarchical partition of the hosting network, thus forming a

tree, which’s every node is an induced subgraph of the substrate network graph. The edges of

MetaTree indicate the containment relationship between subsets [17].

Figure 4:MetaTree partitions of a substrate network graph [17].

In Figure 4 we can see a picture demonstrating the structure of MetaTree. Every

MetaTree node can have meta-information about the subgraph it refers to. The framework does

not give any restriction on what can be a meta-information, it can include any useful data for

the embedding process. For example, the meta-data can give the total amount of available

resources, or the list of hostable network functions in the corresponding subgraph. But we can

also imagine more theoretical attributes as meta-data, like the maximal distance of substrate

nodes calculated in latency.

The paper itself, does not give any specific method on how to construct a MetaTree, but

it refers to other publications dealing with the problem of graph partitioning. For example,

Farhat’s greedy algorithm [18], which partitions graphs into a given number of pieces based

on node distances, achieving this by a simple breadth-fisrt searching (BFS) manner. The

algorithm starts from a random node, and continues the BFS until the required number of nodes

for one partition is reached, and handles the induced graph of the reached nodes as one partition.

21

After this, the finding of the next subgraph is started from another node, until the whole graph

is covered. We could replace the BFS method with shortest path search on a network graph

weighted by link and node latency. Thus, achieving a MetaTree with latency information of

the corresponding subgraphs.

The combination of MetaTree and distance based graph partitioning are very useful

ideas that could be used for planning a custom algorithm, which will be explained in detail in

the appropriate chapter.

3.2 Virtual Data Center Allocation

In the previous section, I have mentioned that Fürst et al used existing mapping

algorithms to test the effect of their pre-clustering algorithm. One of those was SecondNet [19],

which is a data center network virtualization architecture, with allocation algorithm capable of

mapping virtual networks. Therefore, the problem of Virtual Data Center Allocation (VDCA)

is also similar to the problem of my study, just like Virtual Network Embedding. In the paper

of SecondNet, a formal proof on the NP-hardness of VDCA problem is given, which also

demonstrates the difficulty of the field of network resource mapping.

In VDCA, a connected set of virtual machines, with given resource requirements, shall

be mapped to physical servers. The problem statement of VDCA diverges from VNE in that,

the authors make difference between switches and servers in the substrate network, but this is

not an issue with the applicability of the algorithm. Furthermore, they define two types of the

VDCA problems, according to the strictness of bandwidth requirement.

Firstly, type-0 needs to allocate paths with guaranteed bandwidth between two virtual

machines (VM-s). Secondly, type-1 is between best-effort and type-0, so that it only guarantees

local ingress/egress bandwidth reservation for virtual machines, but not on the entire path

connecting them. Obviously, we want to deal with type-0, because the other two types can be

seen as the special case of type-0 and we also defined service chain requirements to be strict.

Initially, SecondNet performs a clustering3 based on hop-count, the number of hops

from one server to another. The clusters are not disjoint on the servers (a server can be in

multiple clusters), and the pre-clustering of Fürst et al, can still be used despite the clustering

3 The two terms, cluster and pre-cluster, can cause understandability issues here, but these are the terms used by

the authors, so I would like to stick to them. To make clear: cluster belongs to SecondNet, pre-cluster belongs to

the algorithm of Fürst et al.

22

of SecondNet. (The algorithm of Fürst et al pre-clusters to collocate virtual nodes connected

with high bandwidth requirements between them.) SecondNet uses its clusters as subgroups of

physical servers for the allocation of all the virtual machines (or the whole virtual network

request).

In the first step, the VDCA algorithm chooses a cluster which is big enough for mapping

the entire request. Then, it builds a bipartite graph, with the virtual machines at one of the color

classes and the physical servers at the other color class. The edges are drawn between a pair of

VM and server if, and only if that mapping is feasible according to the requirements of the

virtual machine. Two nodes are also added to the bipartite graph, connecting one of them to all

VM-s, and the other one connected to all servers, referring to the nodes as source and

destination respectively. With appropriate weight and cost assignment to the edges, the

problem transforms to a min-cost flow problem, which can be solved efficiently.

After successful VM allocation, in the third step, the algorithm finds paths to the VM

pairs, in descending order of required bandwidth (to fail earlier if a bandwidth need cannot be

satisfied with the actual VM allocation). If the path allocation fails, the algorithm moves to the

next cluster to try again the search, otherwise, the mapping is finished.

SecondNet is a very nice algorithm, because it could be used to solve a different task

than it was originally planned to, as we can see this from the results of Fürst et al [17]. So

naturally, it is not optimized for the task of VNE, but it can give a starting point for planning

my own algorithm, and can reveal issues to pay attention to. Originally, it does not support

virtual machine (virtual node) collocation by itself, but gained significant improvement in

resource utilization by co-operating with pre-clustering mechanisms. So native collocation

support should be a compulsory feature for a novel request mapping and resource allocation

algorithm.

Another weakness of SecondNet could be its two phased allocation procedure. First, it

finds hosts for the VM-s, and does not perform any checking of link resources, and then it tries

to find links with enough resource, which can cause many dead ends during execution. One of

my main goals in this paper is to design an algorithm that has no need to run in two phases like

that.

23

3.3 Graph pattern matching

3.3.1 Definitions

Graph pattern matching could be the mathematical basis of mapping a set of service

chains to the physical resources of a substrate network, with the mathematical notions of

subgraph isomorphism and graph simulation.

Unlike isomorphism, graph simulation is not a commonly used notion, so I would like

to devote some lines to demonstrate the difference between the two definitions. First, I quote

the definition of graph simulation form the paper of Fan et al [20], which can be seen in

Definition 3.

Graph simulation: to find a binary relation S ⊆ VP ×V , where VP and V

are the set of nodes in P and G, respectively, such that

(a) for each node u in VP , there exists a node v in V such that (u; v) ∈ S,

and u and v have the same label, and moreover,

(b) for each (u; v) ∈ S and each edge (u; u′) in P, there is an edge (v; v′) in G

such that (u′; v′) ∈ S

Definition 3: Definition of graph simulation quoted from paper of Fan et al [20].

Graph isomorphism requires to have a bijective function between the nodes of the

pattern and the target graph. Despite this, graph simulation needs only a binary relation between

the nodes of the two graphs (which allows many-to-one mapping), as it is in Definition 3.

Furthermore, graph simulation introduces the notion of node label, and requires the matching

of the labels of the appropriate nodes to fit the definition. Node label can be any kind of data

stored on a node, for example the list of hostable network functions or the available resources

on a node. Finally, isomorphism requires to have a bijective function between the edges too,

despite the definition of graph simulation, which only says, if there is an edge in the pattern,

there should be an edge between the appropriate nodes as well in the target graph, but the

implication does not stand in the other way. This can be checked in the (b) point of Definition

3.

All in all, graph simulation is much less strict in defining the pattern, but still requires

for example pattern edges to be mapped to one edges, and not to paths, as we obviously need

it.

24

So we can state that, in conjunction with Fan et al [20], graph simulation and

isomorphism are not quite up to the task of service chain mapping, because they are way too

restrictive in defining the graph pattern. Thus, limiting the applicability of existing graph

pattern matching algorithms to the problem.

Fan et al study that, what kind of graph pattern definition would be more applicable to

new tasks, like social network analysis, so they defined the notion of bounded graph

simulation. And they show a cubic time algorithm to find such newly defined graph patterns.

Their fast algorithm could be scalable to graph sizes of even one billion nodes. In the second

part of their paper, they also publish an incremental algorithm to find all matching patterns,

without the need to run the whole algorithm from the beginning, if the graph or the pattern

changes a little. I will only focus on the first part of the paper of Fan et al presenting the prior

algorithm.

To understand the definition of bounded (graph) simulation, we have to look at their

definition of the pattern graph, which is called by the authors a b-pattern. A b-pattern consists

of a set of nodes and edges, as an ordinary graph. In addition, there is a function on the edges

of the b-pattern, which gives the upper bound of the length of the path, to which the edges are

to be mapped. The length of a path can also be unbounded, and it is denoted by *, instead of

the constant integer number. Furthermore, the b-pattern consists of a function on the domain

of nodes, which defines the search condition on the nodes as the conjunction of a set of atomic

formulas of the form X op x, where X denotes an attribute, x a constant and op can be <, ≤,

=, ̸=, >, ≥ [20]. Naturally, the target graph (also called data graph) also has a function on the

nodes, similar to the latter pattern function (but with attributes being always a constant value)

to match the pattern attributes to.

By now we are ready for the definition of bounded simulation, which can be found in

Definition 4, quoted from the paper of Fan et al. Both G and P are directed graphs, denoting

the direction of edges by the order of the node 2-tuple.

25

Bounded simulation. Consider a data graph G = (V; E; fA) and a b-

pattern P = (Vp; Ep; fV; fE). We say that graph G matches pattern P via

bounded simulation, […], if and only if there exists a binary relation S ⊆ Vp

×V such that

(1) for each node u in Vp, there exists a node v ∈ V such that (u; v) ∈ S;

(2) for each pair (u; v) ∈ S, v ∼ u; and

(3) for each edge (u; u′) in Ep, there exists a nonempty path p = (v; ...; v′)

from v to v′ in G such that (a) (u′; v′) ∈ S, and (b) len(p) ≤ k if fE(u; u′) is a

constant k.

Definition 4: Definition of bounded graph simulation [20].

In Definition 4, fA and fV are the attribute functions of target and pattern graphs

respectively, defining the values and the search conditions on the node attributes. The path

length bounds are given by fE on the edges of the pattern graph. The matching of a pattern node

to a data node, satisfying the search conditions, is denoted by ~ (swung dash), in (2) of

Definition 4.

The set S in the definition is called a match, obviously, there could be multiple matches

of the pattern P (where one pattern node can fit to more data nodes) in the data graph G. Fan

et al prove that, there exists a unique maximum match for every input (or an empty set S, also

called a match). Its formal proof can be found in [20]. Their polynomial algorithm finds the

maximum match in a data graph for a given b-pattern.

3.3.2 The algorithm of Fan et al

Now we are ready to understand the algorithm itself. In a few words, for every node in

the pattern, the algorithm finds a set of potentially matching data nodes, which satisfy the

search condition (initially not dealing with the length constraints). And then, it iteratively

removes the nodes that violate the distance and connectivity constraints, until no further

changes can be made, and the sets contain the maximal set of data nodes, that match the

corresponding pattern node.

In Figure 5, the pseudo-code of the algorithm can be seen. The previously explained

notations in the definitions are still valid, the new ones will be explained in the followings, line

by line.

26

The output of the algorithm is the unique maximum match of the b-pattern P to the data

graph G via bounded simulation, or the empty set, if there is no match via bounded simulation

at all.

Figure 5: The maximum match searcher algorithm based on

the notion of bounded graph simulation. [20].

First, the algorithm computes the distances of all the nodes in the unweighted data

graph, by the utilization of BFS starting from every node. This can be done in cubic time.

In the 2 – 4 line on Figure 5, for every pattern edge the algorithm computes the set of

ancestors4 v’ in G (anc), that can match any parent (one hop ancestor) u’ of u, satisfying the

data label search condition and the distance constraint. Naturally, the distance of v’ is counted

from the matching data node v of the pattern node u. So, for example anc(4; fV (u’); v) contains

ancestors of v in G, that are no further than 4 hops, and satisfies the search condition on u’.

And the set of descendants5 (desc) is calculated similarly for every data node v in G.

4 Ancestors of a node v in a directed graph are all the nodes that are reachable from v, if we are stepping backward

(opposite direction of the edge direction) on the edges.
5 Similarly, descendants of a node v are all the reachable nodes, stepping in the direction of edges from v.

27

In the line 6, the mat sets are calculated for all pattern nodes that satisfies their search

condition (but the distance constraint is not checked). Here we can see the clever usage of node

degrees, intuitively: if u has at least one child, v should have one too, otherwise v is not a

possible match for u. Next, the data nodes, which cannot match any parent of u, are gathered

in premv(u).

After the initialization processes, in line 9.-11. for each u’, the parents of u, the cycle

eliminates data nodes from mat(u’), by the utilization of premv(u). If any of the mat sets

becomes empty, there cannot be a match that can cover all pattern nodes, because mat sets

cannot increase during execution (line 12.).

Furthermore, the elements of premv(u), denoted by v1 on the Figure 5, are used to rule

out some more possible matches of u’ (note that, v1 cannot match u’ because of the distance

constraint – see the conjunction of line 9. and 10). By looking at the parents of u’, denoted by

u’’ (see line 13.), v1’ is an ancestor of v1 (see line 14.), that is a possible match of u’’, but only

if there is at least one data node among its descendants, which can be a match to u’ (see line

15.). Otherwise it is added to premv(u’). This whole refining process continues until there is a

chance for decreasing any mat set, by being premv not empty (see line 8.)

Finally, the maximal match is produced from the mat sets of every pattern node (line

18.).

Fan et al also gives formal proof to that, the algorithm always terminates and it gives

the maximal match of a b-pattern in a data graph in terms of bounded simulation (correctness

proof). Furthermore, they prove the cubic runtime complexity of the algorithm.

28

4 Specifying the input and output

The goal of this section is to appoint and further specify the problem of VNF mapping,

because it is not yet specific enough to start the discussion of the algorithm. The design choices,

that were required to make during my research, are also presented here.

First, let us start with specifying the request graph and the service chains. The service

graph is basically a network of VNF instances and SAPs, connected by request links. We can

think about the links as undirected graph edges, because directing the traffic in the substrate

network after the mapping, could also be the task of traffic steering, which I have placed out

of the scope of the problem earlier.

I am going to handle the resource requirements of the VNFs in the two components of

memory and CPU computing capacity. Every VNF in the service graph must specify what kind

of network function it should operate (only one type). I denote the VNF type with capital letters

of the English alphabet. All VNFs shall have a unique name; it is recommended to be a readable

character string, which is understandable by the user, because I plan to use these only for

graphical representations. In the algorithm, I use unique integer identifiers to refer to the VNFs.

More than one instances of a VNF type can be in the service graph at the same time. The

undirected links in the request graph mean reachability constraints between the VNFs.

One service chain consists of the maximal latency permitted, given in milliseconds, that

the mapped paths shall not exceed even after applying all of the VNFs of the chain. Similarly,

bandwidth requirement can be given to every service chain in megabit per seconds that the user

shall be able to measure between the ends of the service chain. The chain itself shall be given

as an ordered list of the integer identifiers of the VNFs, and (in case of SAP-to-SAP chains)

SAP identifiers at both ends of the lists, indicating where the chain should be attached to. Not

SAP-to-SAP chains can also be given (either or both ends starting from a VNF), with that

constraint, it must be a part of a SAP-to-SAP chain6. The bandwidth requirement of a not SAP-

to-SAP chain shall determine how much bandwidth capacity is needed in addition to the

requirement of the containing SAP-to-SAP chain.

Arbitrary number of service chains can be given as part of the input, which are

represented in an unordered list of service chains. As far as a VNF instance can only be mapped

6 I explain it in a later section why I had to make such constraint, and how it could be resolved. But the algorithm

currently can only handle input with the given constraint.

29

to one hosting node in the substrate graph7, and if multiple service chains want to use the same

VNF instance, the request paths leading to the host of that VNF must be mapped accordingly

in the substrate network. The request links’ bandwidth requirement is given indirectly by the

sum of bandwidth requirements of the service chains, which contain that specific request link.

SAPs shall have no resource requirements, they should possess a unique name, which

is used in both (substrate and request) graphs to identify them. If there exist a SAP in the request

graph, but a SAP with the same name does not exist in the substrate graph, an error should be

raised. A SAP name could be anything, which contains enough information for the surrounding

architecture layers or the network management system to identify which physical entity it refers

to. For example it could be the IP address of a server. SAPs should also have a unique integer

identifier in both graphs, but these identifiers do not have to be identical in the two graphs for

same SAP instances, because they are not used for the mapping (only their name is used). But

the integer identifier of the SAPs in the service graph is used in service chain definition for

telling where the services shall be attached.

The substrate graph or the physical topology contains hosts, switches and SAPs. SAPs

do not need to have any additional parameters, as they have in the request graph.

Hosts have resources of available CPU capacity and memory, which is used by the

hosted VNFs. Maximal resources of each resource component should also be stored; in an

unloaded network, available and maximal resources should obviously be equal. Every host

should be able to run a set of VNF types, and they should be able to host multiple instances of

one type of VNF, if they have enough resource. The set of hostable VNFs is represented by a

(unordered) list of capital letters of the English alphabet. Furthermore, the hosts should have

two unique identifiers, one easily readable for graphical representation and one for inner

representation.

Switches can be added to the substrate graph, but they can be modeled by hosts with

zero available resources. So from the perspective of the algorithm design, if we connect hosts

directly or through switches, are identical cases. But naturally the operation of the algorithm

will be influenced by the two cases, because if we model all switches with zero resourced

VNFs, an additional resource checking would be executed on every modeled switch.

7 Our problem does not include optimizations with the tool of splitting or doubling VNF instances, it should be

done by the upper layer.

30

The substrate links should have attributes indicating how much more bandwidth they

can foster currently, and also the maximal bandwidth capacities should be stored for every link.

Furthermore, if both ends of a request link is mapped to the same substrate node, the hosts

should have a maximal and available inner bandwidth parameter, indicating how much inner

traffic they can handle between the collocated VNFs.

In both of the graphs every node should store information about its type, whether it is a

switch, a VNF, a SAP or a host, so the algorithm could decide what it could do with the actual

entity.

For fast prototype creation and moderating the task’s complexity, it is a general

approach to keep some input parameter constant. In my case, I did not want to decrease the

complexity of the problem, so I made the trade-off with the time variable latency. In other

words, as an input parameter of the substrate network, I made latency time invariant. So I made

up three latency values, one for link latency, one for forwarding latency of hosts or switches,

and finally one for VNF processing latency, and I use them as constants. This restriction does

not change the task’s complexity, because latency still must be handled.

In the future, it would be easy to extend the algorithm with handling dynamic latency,

but this trade-off made the algorithm implementation much faster and proceeding to the testing

could be done earlier. When I will discuss the algorithm implementation in a later section, I

will refer to this condition and note which parts and how should be modified for dynamic

latency handling, and I also explain in detail why it helped.

31

5 Proposed solution

This chapter is organized as follows: first, I present the pseudo-code of my VNF

mapping algorithm in two parts. Secondly, I show some basic test cases and propose an

objective function, which could be used to evaluate the state of a network in general, according

to the actual resource reservations. I use this function to evaluate the algorithm, comparing to

the calculated optimal mapping in the sense of the proposed objective function, by an

alternative (not practical) algorithm.

5.1 My service chain mapping algorithm

The algorithm operates in two phases, during its presentation, I am going to follow the

order of execution, starting with the input preprocessing part, and finishing with the core part,

which does the actual mapping procedure.

Unluckily, there is no universally accepted pseudo-code format standard, which I could

follow, so on the subsequent figures of the algorithm presentation, I will use the following

conventions. Italic font style represents variables, or functions which return some attribute of

an entity. Bold font style indicates general programming terms or control structures, for

example a for loop or if-then-else structure, which I am not going to explain. Plain text indicates

function names, tags or phrases, which needs further explanation, and can be found in the text,

commenting on the specific lines of the pseudo-code.

5.1.1 Preprocessing

In Figure 6, we can read the pseudo-code of the preprocessing required to run on the

input structures of the algorithm, before the actual VNF mapping could be executed. The goal

of the preprocessing is to ease the implementation of the core part and to decrease its runtime

complexity. It is achieved (besides some other minor tasks) by dividing the service graph to

“subchains”, which are defined by the intersections of the input service chains, and are disjoint

on the set of VNF instances. Furthermore, a subgraph of the substrate network is returned for

every subchain, which is used to map the entire subchain. This process will be explained with

the pseudo-code of the Preprocessor_Algorithm

32

Subgraph finding

The input of the Preprocessor_Algorithm is given directly by the upper layer of the

service chaining architecture, its format is specified in the earlier sections, which I have

formalized here, in Figure 6.

The substrate network is an undirected graph with vertex set denoted by V, and edge set

denoted by E. The domain of the functions fres and fbw are V and E, and returns the available

resources of a substrate node and the available bandwidth of a substrate link respectively. The

set of VNFs is represented by Vp and the set of request links is Ep. Function freq returns the

resource requirement of a VNF instance, and fvnf returns the type of a VNF instance.

The list of service chains is given by an unordered list of 3-tuples, it can contain

arbitrary number of service chains. Every service chain should consist of an ordered list of

integer identifiers of VNF and SAP instances from Vp. The other two parameters are lat and

bw, which denote the maximal permitted latency of the service chain given in milliseconds,

and the minimal required bandwidth given in megabit per seconds respectively. This structure

is denoted by the service_chains variable in Figure 6.

Preprocessor_Algorithm

Input: substrate_network = (V, E, fres, fbw), service_graph = (Vp, Ep,

freq, fvnf), service_chains = [(chain, lat, bw)*].

Output: Preprocessed substrate_network and service_graph, and also

subchains with corresponding subgraphs.

1. processNetwork:
2. for each host in substrate_network do
3. Make loop in host.

4. endfor
5. for each node1, node2 in substrate_network do
6. Calculate shortest path between node1 and node2.

7. endfor
8. output.append (substrate_network)
9. processRequest:
10. sort_ascending (service_chains by lat)
11. for each chain, lat, bw in service_chains do
12. maxhop = transform (lat, chain)

13. for each link in chain do

14. fbwreq (link) += bw

15. endfor

16. if chain is end-to-end then

17. e2e_subgraphs.append (findSubgraph (chain, maxhop))

18. e2e_chains.append (chain, lat, bw, maxhop)

19. else

20. not_e2e_chains.append (chain, lat, bw, maxhop)

21. endelse

22. endfor
23. service_graph.add (fbwreq), output.append (service_graph)

33

24. divideIntoDisjointSubchains:
25. fcolor = colorLinksAndVNFs (service_graph, e2e_chains, \

 not_e2e_chains)

26. colored_service_graph = copy (service_graph)
27. colored_service_graph.add (fcolor)
28. while colored_service_graph has edge do
29. e2e_chain = e2e_chains.myiterator()

30. for each reqnode in \

 custom_order (colored_service_graph.nodes()) do

31.

32. if any reqnode_neighbor in reqnode.neighbors() and \

 fcolor(reqnode_neighbor) contains fcolor(e2e_chain) then

33. subchain, subgraph_of_subchain = findOneSubchain \

 (fcolor, reqnode, reqnode_neighbor, e2e_subgraphs)

34. subchains.append (subchain)

35. subgraphs.append (subgraph_of_subchain)

36. for each edge in subchain do

37. colored_service_graph.remove(edge)

38. endfor

39. break

40. endif

41.

42. endfor

43. endwhile
44. output.append (subchains, subgraphs)
45. return output

Figure 6: Pseudo-code of the input preprocessing for the VNF mapping algorithm of my own design.

The first part of the Preprocessor_Algorithm is processNetwork (see lines 1.-8. of

Figure 6). As I have foreshadowed in the earlier sections, collocating two ends of a request link

has the cost of inner bandwidth8 utilization, at the amount of the bandwidth requirement of the

request link between the two VNF instances. I have added a loop link in every host of the

substrate network for storing the inner transmission bandwidth limit, which is generally much9

higher than the bandwidth capacity of a substrate link, but still limited.

Next, for every pair of substrate node, the shortest path (e.g. their distance in hop-count)

is calculated and stored; this information will be used later in the preprocessing. This can be

done by the Floyd-Warshall algorithm [21], with constant edge weights, in worst case

complexity of O(Vp3). If we want to handle dynamic latencies, distances should be calculated

in latency values of forwarding, processing and links.

A link weight is calculated for every substrate link, and even for the loops (not indicated

in the pseudo-code of Figure 6). Weight is a neutral bandwidth value divided by the maximal

(the currently free) bandwidth capacity of the substrate link. Thus, links with higher bandwidth

than the neutral, are preferred (have smaller weight) over other links.

8 Physically, it could be implemented as in-memory transmission on the hosts.
9 Especially, if the host would be configured to use netmap [24] for example.

34

After this, the preprocessing of the substrate network is finished, substrate_network

variable is added to the output, with the additional loop edges, as indicated in line 8 of Figure

6.

The processRequest involves the rest of the preprocessing algorithm (lines 9 – 44). In

line 10, the function sort_ascending sorts the service chains (modifying the service_chains

variable in place) in ascending order, based on latency requirement. The comparison between

two service chains is made exclusively on their latencies, so the service chain with the strictest

latency requirement comes to the beginning of the service_chains list.

The for loop of lines 11 – 22 iterates over on all the input service chains. Line 12 uses

the trade-off I have made with keeping the latency values constant. The transform function

subtracts the number of VNF instances required to go through in the actual chain, multiplied

by the constant value of latency of VNF application, acquiring the available latency which can

be used for forwarding and link latency. The service chain will be mapped to a path in the

physical network, which path will consume one time link latency value and one times

forwarding latency in every hop. Thus, if we divide the available latency by the sum of the

constant link latency and constant forwarding latency, we acquire how many hops long can the

path be at most, which hosts the VNFs of the service chain.

From now on, the maxhop variable will act as the limit, instead of maximal latency. As

I have mentioned earlier, the adaptation of the algorithm to dynamic latency handling will be

easy to implement, because instead of the hop-count, we would have to calculate distances with

the actual latency values of links, hosts and switches, and use lat as the distance limit10.

Next, in line 13-15 of Figure 6, the algorithm adds the bandwidth requirement of the

actual service chain to all the links of Ep which are contained in chain (the actual service chain).

By doing this and iterating over all the service chains, from now on, we can speak about

bandwidth requirements of individual request links, its vales can be acquired by the fbwreq

function, which is added to the service graph structure. Furthermore, the preprocessed

service_graph is also appended to the output, with bandwidth requirements given on its request

links.

Furthermore, in lines 16-21 of Figure 6, if the actual chain is a SAP-to-SAP chain, the

findSubgraph function determines an induced subgraph of the substrate network topology,

10 One-way latency measurement is not trivial in general, but there are findings in this problem, and furthermore,

here we need only one-way latencies of individual links, which is much easier to measure.

35

which shall be used for the mapping of the entire chain (and not the other hosts and links of the

substrate network, outside of the induced subgraph). The subgraph returned by the function

includes all the nodes (hosts and switches), which’s sum of distances from the first and last

element of the chain is less than or equal to maxhop. In case of dynamic latency handling, this

comparison would be done directly to the upper limit of the latency instead of maxhop, and

distance would be calculated measured in the actual latency and not in hop-count. Here, the

distances are not calculated, because the lines 5 – 7 of the Preprocessor_Algorithm have already

stored it.

The subgraph finding is realized by a traversal from a SAP in the substrate network,

which is one of the ends of chain. (Subgraph finding is only done on SAP-to-SAP chains, and

SAPs of the service graph can be mapped unambiguously to the SAPs of the substrate network

by their names, as I have conditioned earlier.) The inclusion criteria is checked for every node,

until the process can be continued. After completion, if the other end of the service chain is not

in the induced subgraph, an error is raised, because it would mean that the distance of the two

SAPs is more than the permissible end-to-end latency on the service chain.

Subgraphs are gathered in e2e_subgraphs and SAP-to-SAP chains in e2e_chains, and

finally not SAP-to-SAP chains in not_e2e_chains, now with maximal hop-count included.

These lists are used later in the preprocessing. Given an SAP-to-SAP chain, the algorithm can

determine the corresponding stored subgraph (this fact is not reflected well by the pseudo-

code).

Disjoint subchains

The divideIntoDisjointSubchains section lasts from line 24 to line 43 of Figure 6. Its

task is to divide the request graph into disjoint subsets (subchains) based on the intersection of

service chains.

First, let us imagine different colors for all service chains, and use them to color all the

edges and vertices of the request graph contained by any of the chains. If an edge or node is

contained by multiple service chains, color it with all the corresponding chain colors, gaining

a new color (suppose that we can determine unambiguously every color’s components). An

example of such coloring is given in Figure 7, where nodes number 6 and 7, and the link

between them has the color of both service chains, creating a separate color from Chain1 and

Chain2.

36

Figure 7: An example request graph and its coloring based on chain colors.

In the 25 line of Figure 6, the colorLinksAndVNFs function creates the explained and

demonstrated coloring of the service graph. As indicated in the pseudo-code, not SAP-to-SAP

chains have their own colors too. The fcolor function can determine the set of service chains11

that includes the given link or VNF instance. Furthermore, fcolor can return the color of a

single service chain. The fcolor function is appended to the structure of colored_service_graph,

which is a copy of the service_graph variable. I will also refer to this new graph as colored

request graph.

The while loop of lines 28-43 on the Figure 6 iterates until all of its edges and nodes are

part of any of the subchains. A SAP-to-SAP service chain is selected by the myiterator function

in every iteration of the while loop. myiterator returns every service chain twice in ascending

order of latency requirements (chain with the strictest requirement comes first two times, and

then the next strictest two times, etc.).

The for loop starting from line 30 iterates on the nodes of the colored request graph.

The custom_order here means that, the iteration starts with SAPs in ascending order of degree,

and if all SAPs are done, it continues on VNFs in the same ordering as in the case of SAPs.

Line 32 has a bit uncommon if condition with the any keyword. In a few words, this

line checks if the current VNF instance has any neighbor, whose color contains the color of the

actual service chain, stored in e2e_chain. The contains operator checks the inclusion of the

11 In the implementation this set is realized by a hashable constant set of integer identifiers of service chains. For

the comparation of the link/edge colores, I used hash comparation for performance reasons.

37

one-element set of fcolor (e2e_chain) in the set of fcolor (reqnode_neighbor) 12. By iterating

on the nodes of colored request in ascending order of degree (see custom_order), the if

condition evaluates first to true on the node with the smallest number of degree.

The findOneSubchain function starts from the actual node (SAP or VNF instance), in

the direction of the neighbor which satisfied the condition. It uses the color of the link between

reqnode and reqnode_neighbor to traverse as much edge of the colored request with the same

color as it can. Only the color of the edges (not the nodes!) is inspected. This color is not

necessarily the same color which reqnode has, because for instance, if reqnode is a SAP and

there is another SAP-to-SAP service chain starting from here and continuing on another request

link than the selected one, then the color of the link connecting to reqnode_neighbor is used.

See Figure 8, and bind the variables reqnode=sap2 and reqnode_neighbor = VNF number 5.

The definition of the coloring implies that, the traversal cannot have branches, it can

only return a sequence of nodes and edges. An almost complete example can be seen on Figure

8, only the traversal of links 5-6, 6-7 and 7-9 are left. All of these link would be in separate

subchains each.

Figure 8: The demonstration of the (almost finished) output of divideIntoDisjointSubchains section.

The findOneSubchain function also utilizes the subgraphs found for the SAP-to-SAP

chains and stored in e2e_subgraphs variable. In the case of 1st subchain on Figure 8, as the

traversal on the color of Chain3 reached VNF number 5, a placement criteria is set for that

VNF, because this instance is used by another SAP-to-SAP chain. The algorithm can know

12 This condition checking is realized by a list comprehension on the neighbors using the containment testing, and

the folding of the list to one boolean value using the disjunction operator.

38

this, because the color of VNF number 5 is different from the color it actually used for the

traversal. The placement criteria can be given to VNF instances, and it is a set of substrate

nodes, where that VNF can be mapped. This set is determined by the intersection of the

subgraphs of the service chains, which utilize that VNF instance.

The subchain finding finishes when the traversal cannot proceed on links with the

selected color, or it encounters a VNF instance, which is already in another subchain with

stricter latency requirement (or in other words, already have placement criteria given).

The other return value of the findOneSubchain function is a subgraph of the substrate

topology, where all the VNFs of the corresponding subchain shall be mapped. This subgraph

is determined by the intersection of the subgraphs of service chains, whose color is contained

by the color of the traversal. For example, the subgraph of the 2nd subchain on Figure 8, is the

intersection of the induced subgraphs found for Chain1 and Chain3, and as for another

example, the subgraph of the 1st subchain is equal to the subgraph of Chain3 itself.

In the process of dividing the request graph, every subchain and their corresponding

subgraphs are stored in the subchains and subgraphs variables, as lines 34-35 of Figure 6

indicate. Every link of the just found subchain is removed from the colored request graph. The

ending nodes of the link are only removed from the graph, if their degree would decrease to

zero by the link removal. For example, after running five iterations of the subchain finding

process, on the request graph of Figure 8, there would only be three edges of 5-6, 6-7 and 7-9.

After all of the SAPs are removed from colored_service_graph, the search for one

subchain can only start from a VNF instance, which is already part of one of the subchains.

This statement is not reflected from the pseudo-code, because I did not want to overload it with

information which is not crucial for understanding the algorithm.

As far as a subchain is always at least one edge long, in every iteration of the while

loop, the number of edges of colored_service_graph is decreased at least by one. Edges are

never added to the graph, so the subchain finding process always terminates after Ep iterations

at most.

As I have mentioned earlier, the algorithm supports the mapping of not SAP-to-SAP

chains, but only if they are contained by the union of SAP-to-SAP chains. If it is true, after

dividing the request graph to subchains, all the not SAP-to-SAP chains are also part of some

subchain. Their bandwidth requirement is already added to the bandwidth requirements of the

request links, but using subgraphs for their mapping (which is one of the main components of

39

heuristic insurance of latency requirement13) is not yet supported. For supporting not SAP-to-

SAP chain mapping, which do not obey to the above criteria is also possible with slight

modifications of the subgraph finding process.

Finally, in line 44 of Figure 6, all the found subchains and their corresponding

subgraphs are appended to the output of the Preprocessor_Algorithm.

The complexity of the algorithm is determined by the complexity of three components:

Floyd-Warshall algorithm, substrate network initialization, subchain finding (roughly

overestimated). This can be seen on Figure 9, where among other, previously mentioned

symbols, c indicates the number of service chains.

𝑂 (|𝑉|3 + 𝑐(|𝑉| + |𝐸|) + |𝑉𝑝|
4

)

Figure 9: The complexity of Preprocesspor_Algorithm.

By finding subgraphs and subgraph intersections for the subchains with placement

criteria on the appropriate VNF instances, we acquired a strong heuristic for making insurance

to the latency (hop-count) requirement of service chains easier. Finding solution for the rest of

the mapping problem is the task of the Core_Algorithm.

5.1.2 Core algorithm

After the input preprocessing is done, the algorithm acquires a list of subchains in

ascending order of latency requirement. The edge sets of subchains are disjoint on the edge set

of the input service graph.

In a nutshell, the algorithm starts the mapping from the end of a subchain, and calculates

a composite objective function value for all the hosts of its subgraph, and chooses the best one.

The objective function value calculation for a host incorporates a composite preference value

of the load state of that host, and the sum of the link weights of the path leading to the actual

host. The importance between the two components can also be weighted. The algorithm

greedily continues these calculations on the other nodes of the subchain and then the next

subchain, while respecting feasibility conditions and placement criteria of VNFs.

In the first line of the pseudo-code of Figure 10, the preprocessing algorithm of Figure

6 is called, which returns the structures explained in the previous section.

Core_Algorithm

13 Other components and detailed explanation is given in the next chapter.

40

Input: Substrate network topology, service graph, service chains with

requirements.

Output: VNF to substrate node mapping, link to path mapping.

1. substrate_network, service_graph, subchains, subgraphs = \
 Preprocessor_Algorithm (input)

2. for each node in service_graph do
3. if node is SAP then

4. mapped (node) = (true, id_in_network (node))

5. else mapped (node) = false

6. endfor
7. for each link in service_graph do
8. mapped_link (link) = false

9. endfor
10. for each subc, subg in subchains, subgraphs do

11. for each node1, node2 in subc.edges() do

12. if not mapped (node2) then

13.

14. mapOneVNF:

15. best_host = (infinite, null)

16. for each n, path_to_n in \

 all_paths (id_in_network (node1), subg.nodes()) do

17. if n is a host and n can host fvnf(node2) and \

 n in placement_criteria_of (node2) and \

 fres(n) satisfies freq(node2) then

18. value = objectiveFunction (node2, n, path_to_n)

19. if value < best_host[0] and value >= 0 then

20. best_host = (value, n)

21. mapped_link (node1, node2) = path_to_n

22. endif

23. endif

24. endfor

25. if best_host[0] != null then

26. mapped (node2) = best_host[1]

27. updateNetworkResources (mapped(node2), \

 mapped_link (node1, node2))

28. else

29. Error, VNF cannot be mapped anywhere!

30. endelse

31.

32. else

33. mapOneRequestLink (node1, node2, fbwreq (node1, node2))

34. endelse

35. endfor

36. endfor

37. return mapped, mapped_link

Figure 10: The core part of the VNF mapping algorithm of my own design.

In lines 2-6 of Figure 10, for every VNF instance in the service graph, the mapped

variable is set to false. If the node variable points to a SAP of the request graph, then the integer

identifier of its appropriate SAP node in the substrate network can be unambiguously

determined by their matching names, as I have already demanded this from the algorithm input

in a previous section. The id_in_network function returns the integer identifier of a request

node’s host or matching SAP. In the pseudo-code we can assume dynamic typing of the

variables, so assigning a 2-tuple or a boolean value does not make any problem.

41

In the next three lines, link mapping is initialized similarly, but here we can handle them

homogenously. The mapped_link (link) function14 will return the substrate path where the link

variable will be mapped, after the algorithm have finished.

Mapping one VNF

The main for loop lasts from line 10 to line 36. It iterates over all the subchain –

subgraph pairs returned by the preprocessing algorithm. The next embedded for loop iterates

on the edges of the actual subchain, indicated by subc in Figure 10. The two ends of the current

request link are stored in node1 and node2. As far as the preprocessing prioritized SAP-to-SAP

chains in the subchain division process, the first subc values will start from SAPs. Later on, if

everything goes well in the mapping procedure (every VNF will be able to be mapped

somewhere), the following subchains will also start from either a SAP, or an already mapped

VNF instance. In a few words, emphasizing the important consequence, the id_in_network

function will always return a valid integer identifier value of a substrate node for every request

node stored in node1.

The node2 variable will usually point to a VNF instance, which is not yet mapped. So

now we are ready for the mapOneVNF section, which lasts from line 14 to line 30 on Figure

10. The mapping process stores the best host seen before, for the actual VNF instance in the

best_host variable, with the objective function value calculated for that VNF – host pair.

best_host is initialized to infinite objective function value and an invalid host identifier.

In the for loop of lines 16-24, the algorithm iterates over all the nodes of the

corresponding subgraph, indicated by subg.nodes() in line 16. The all_paths function returns a

list of 2-tuples of substrate node integer identifier (variable n) and a substrate path leading to

that substrate node (variable path_to_n). The paths calculated start from the id_in_network

(node1) substrate node to every node of subg. I used the basic Dijkstra’s algorithm with the

edged weights, which were calculated by the Preprocessor_Algorithm (but not indicated in its

pseudo-code on Figure 6). The edge weights are the quotient for a neutral bandwidth value and

the actual available bandwidth capacity of the edge.

Line 17 formalizes what is required from a substrate node to be a candidate host for a

specific VNF. First, n have to be a host, capable of running the VNF type of node2, and n must

be inside the placement criteria of node2 (which can be stricter than the nodes of the current

14 In Python terms, we could also call it a dictionary.

42

subgraph, see previous section for explanation), and finally it shall have enough resource to

foster the all the resource requirement components of node2 (which are currently CPU and

memory capacity).

I would like to draw the reader’s attention to the collocation support here, because

node1 is always the first element of the path_to_n variable, and if node1 is a host, it is also

checked for hosting capability in the for loop.

Mapping one VNF is done by selecting the best host for that particular VNF instance,

according to a composite preference value calculation, which is discussed in the followings.

Preference value calculation

The objectiveFunction in line 18, calculates a numeric value for the node2 – n mapping

with a path of path_to_n from id_in_network (node1). If the mapping is not available because

not every link of path_to_n have enough bandwidth to host fbwreq(node1, node2) megabit per

seconds, then the objectiveFunction returnes a negative value.

The return value of objectiveFunction is the weighted sum of two components. It

determines the cost of the potential mapping, so its value shall be minimized. The first

component is the sum of the link weights in path_to_n multiplied by the required bandwidth

of the request link. The second component is the sum of preference function values of the actual

load state for every resource component of the substrate node n. The less loaded a host is, the

more likely the algorithm wants to choose it as the home of the VNF instance.

Splitting the traffic of the request link, which generates the bandwidth requirement, is

not allowed. Sometimes a network traffic flow can be handled on multiple paths at the same

time, but some flows not. I suppose that, if a flow could be split, multiple service chains could

be given to achieve this, so my algorithm handles every flow unsplittable.

The general form of the preference value function, used in the composite calculation of

objectiveFunction, can be seen on Figure 11. The function’s domain is the real numbers in the

interval of [0, 1], which determines the ratio (percentage, if multiplied by 100) of occupied and

maximal capacity of a resource component of a host (e.g. 0.7 in a host for CPU, means that the

host’s 70% of CPU capacity is used).

 𝑓(𝑥) = {(𝑒 + 1)
𝑥−𝑐

1−𝑐 − 1 , 𝑖𝑓 𝑥 ≥ 𝑐
0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Figure 11: The preference value function and its parameters.

43

The parameter c on Figure 11 determines what utilization value is the maximal, when

we like load states equally preferable. The e parameter means what preference value a fully

loaded host resource state should return to the algorithm. The two points on the function graph

is connected by an exponential curve. A separate parameter pair of e and c can be given for

every resource component (in our problem for CPU and memory). An example

parameterization can be seen on Figure 12, with values e=2.5 and c=0.4. I have used these

specific parameters for both of the preference functions.

Figure 12: An example preference value function parameterization.

The preference value function is only C1 continuous, which can cause a big “jump” in

the values after the c parameter. This can be eliminated by well-proportioned function

parameters or by replacing the function to some polynomial, which can operate on the whole

interval. Moreover, a possible future work could be finding the optimal parameters, and maybe

making them dependent of the topology or the resource conditions.

All in all, the maximally preferred host is chosen in every step of the mapping process.

This is realized by storing all the significant data of a VNF – host mapping pair in the best_host

variable, demonstrated by the if-then-else structure of lines 25-30 of Figure 10. After trying all

hosts in the actual subgraph, the mapping is stored in mapped for the output, and the available

substrate resources are updated with the just found mapping (see line 27). The

updateNetworkResources function also updates the edge weights, as far as the available

bandwidth capacities have decreased, even in the case of VNF collocation, the logical loop

link’s bandwidth and weight should be updated. If the algorithm could not find any possible

44

host for a VNF (see lines 28-29), then an error is raised. Backtracking on the possible mappings

in this case would be an obvious and desirable improvement of the algorithm, which I plan to

implement in the near future.

Lines 32-34 are executed when the algorithm reaches the end of a subchain, or in other

words, node2, the actual VNF instance is already mapped or it is a SAP. In this case, only the

link connecting the last two request nodes must be mapped to a path between their hosts. The

mapOneRequestLink function finds such a path, and updates the data of its links.

Finally, the link and VNF mappings are forwarded to the lower architecture layer or

returned to the network management system.

The termination of the algorithm is trivial in this part, because only for loop iterations

are used with specific bounds.

The complexity of Core_Algorithm is composed of initialization and the mapping-

objective function calculation, its rough overestimation can be seen on Figure 13, with the

previously used notations.

𝑂 (|𝑉𝑝| + |𝐸𝑝| + |𝐸𝑝|
2

|𝑉| |𝐸|)

Figure 13: The complexity of Core_Algorithm.

5.2 Evaluation and Testing

I have implemented my algorithm in Python 2.7.4 language and used the NetworkX

Python library [22] for basic graph processing. The focus of this early stage of my research

work was on getting acquainted with state-of-the-art solutions and designing and implementing

my own algorithm. So thorough testing and parameter fine tuning still lay ahead. But still I

present some basic test cases, and I propose an objective function for evaluating the actual load

of all the resource components of the entire network, which could be used to compare specific

mappings to each other.

5.2.1 An objective function

When I have discussed the publication of Chowdhury et al [16], I wrote that the problem

with their objective function was that, it does not use every resource parameter of the network.

So I have generalized (and a bit modified) it to design a function that fits better to our problem

45

definition. A generalized objective function for R types of resources and one link attribute can

be seen on Figure 14.

Figure 14: The general form of the objective function used for characterizing the network state.

The node and edge sets of the substrate graph are V and E respectively, represented on

Figure 14. The ri functions return the free resource ratio of the i-th resource type, this works

the same way for the links, which are denoted as the R+1-th resource type. The fri functions

return a preference value of the current utilization state of the given node or link. The

preference values are summed for all network nodes and edges, and weighted sum of these

sums gives the composed scalar value of the network state.

The ai scalars denote the weights of the resource types, which can be used to control

the importance between the different components. Their sum is optionally 1, but it could be

used to scale the codomain of the objective function. In the case of weight sum of 1, the

codomain depends on the size (node and link count) of the network. If we choose network size

dependent value instead of 1, we can scale the objective function codomain to a normalized

interval.

In our case, I parameterized this objective function with R=2, CPU and memory

capacity, and bandwidth capacity as link resource. For the preference value function, I used the

same function that the algorithm used for the mapping (they not necessarily should be the

same), this can be seen on Figure 12. Naturally, the input of that preference function shall be

transformed, because that function uses the occupied resource ratio, but here in the objective

46

function we need it to use free resource ratio15. Luckily, the transformation between them is

easy: if x is the occupied resource ratio, then 1-x is the free resource ratio.

In conclusion, this objective function measures how well the load is distributed, and

generally also characterizes the total amount of load, because if we load the network more, it

is likely that the objective function value will also increase.

5.2.2 Optimal searcher algorithm

I have also implemented a naïve and impractical (slow) algorithm, which is not

interesting algorithmically, but my goal with it was to determine the optimal mapping in the

sense of the objective function presented in the previous section. In other words, it finds a VNF

mapping and a link mapping so that, the objective function value for the load state of the

substrate network would be as high as possible.

In the first phase of the algorithm, it generates all VNF – host mappings, and for every

mapping, it finds the optimal paths between the VNF instances, where a link is requested. After

a possible full mapping is found, it calculates the objective function value, and continues to

search for other full mappings. VNF and link mapping generation is realized by a naïve

backtrack algorithm16. (It starts placing requests on the first available host/link, and updates

resources; if it cannot place the next request, it frees up the previous request placing and tries

on the next available host/link.).

This algorithm is very slow, and cannot be applied on real network topologies, which

are generally very large, and we cannot expect this algorithm to finish its execution in a short

period of time. So I have planned a small network topology, which can be handled even by this

naïve algorithm to compare the objective function values of its mapping and the mapping

returned by my algorithm. I used the input request graph, which I have presented earlier on

Figure 7. The network topology can be seen on Figure 15. The graph visualization was

generated by an algorithm of matplotlib [23].

15 I had to use free resource ratio in the algorithm, because the preference value had to be minimized in conjunction

with path cost leading to the given node. Achieving that, a long and fast path is always less preferred than a short

and fast path.
16 After a VNF mapping is found, link mapping could be implemented more effectively using integer linear

programming by defining that request must not be split.

47

Figure 15: An example network topology

with the full mapping of the request of Figure 7, found by my algorithm.

The mapping of Chain1 of Figure 7 is represented by the red (thicker) lines, Chain2 is

mapped to the green (thinner) links, and unloaded substrate links are represented by the dashed

lines on Figure 15. The integer VNF instance identifiers of the request graph are written with

red bold numbers next to the nodes. Only the list of the available VNFs are shown on the

figure17.

The subgraph found for Chain2 could be 5-hops wide, Chain1’s subgraph was 36-hops

wide, according to the actual parameterization. As we can see the algorithm utilized the

freedom provided by the high latency requirement of Chain1. The request link between number

6 and 7 VNF instances is mapped inside the number 10 substrate node, because of the

collocation of the VNFs.

The objective function (which was discussed in the explanation of Figure 14), after

scaling its codomain to [0, 1000] by setting the sum of ai, returned a value of 620.24. The naïve

optimal searcher algorithm returned a bit better value of 670.24 and found the mapping of

Figure 16, which we can consider the optimal mapping in the sense of the proposed objective

function.

17 I think all the VNF resource requirements and the node and substrate link resources would be too much data on

the figure. I have verified the operation corresponding to resource checking.

48

VNF mapping:
 [(1, 1), (2, 2), (3, 3), (4, 4), (5, 14), (6, 10), (7, 10), (8, 10), (9, 7)]
Link mapping:
(1, 5, {'mapped_to': [1, 5, 9, 14]}),
(2, 6, {'mapped_to': [2, 6, 10]}),
(3, 9, {'mapped_to': [3, 7]}),
(4, 8, {'mapped_to': [4, 8, 11, 10]}),
(5, 6, {'mapped_to': [14, 11, 10]}),
(6, 7, {'mapped_to': [10, 10]}),
(7, 8, {'mapped_to': [10, 10]}),
(7, 9, {'mapped_to': [10, 13, 12, 7]})]

Figure 16: The direct output of the naive optimal searcher algorithm.

On Figure 16 VNF mapping is interpreted in “(VNF identifier, substrate node

identifier)” format. I have selected integer identifiers of SAPs according to their names in both

graphs (e.g. sap2 is identified by 2 in both graphs), but they are not necessarily have to be like

this. As an example for decoding the output shown on Figure 16, VNF instance 5 was mapped

to substrate node 14, and the link between sap1 and VNF 5 was mapped to path 1, 5, 9, 14.

The optimal searcher algorithm gives a similar mapping to what my algorithm found,

the objective function values do not differ too much. Both of them satisfies the requirements

and balance the load, both of them agrees on the collocation of the VNF instances 6 and 7.

Some paths are identical in both outputs; for example the request link between 7 and 9 are

mapped to 10, 13, 12, 7 path. But the runtime of the naïve algorithm was a few hours even on

such a small substrate graph, while my algorithm was executed in a blink of an eye.

One could ask, how my algorithm would behave on dense (redundant) graphs. The

optimal searcher inspects all the paths between mapped VNF instances, which procedure in

this case can go up to factorial complexity. To demonstrate the effectiveness of my algorithm,

I have run it on 60 node full mesh substrate graph with generated request graphs with more

than 70 VNF instances, the execution finished in a few seconds, while the naive algorithm

would fail because it would take too much time to finish.

More thorough testing and planning other test cases are still wait ahead. I plan to model

the inner network of a telecom provider with its real life parameters, to examine the execution,

the returned mapping and the acceptance ratio (how many request graphs could it map) of my

algorithm.

49

6 Conclusion

Initially, I have demonstrated the newest technologies, which provide the focus of

today’s networking related research fields. Software Defined Networking and Network

Function Virtualization gave the novel optimization and design possibilities in networking.

Breeding from these new technologies, Service Chaining enables researchers to develop new

principles and architectures, which can make network description more abstract for human to

understand better and for machines to optimize better.

There are European research projects that tries to exploit the possibilities provided by

the previously mentioned technologies, and to develop an architecture to support full network

virtualization and abstract description with service chaining.

According to up-to-date requirements, I have defined the problem of VNF mapping,

and I have explored the state-of-the-art solutions of any useful related problem, involving

Virtual Network Embedding, Virtual Data Center Allocation and graph pattern matching. I

have decided to design my own algorithm utilizing the experience I have gathered from the

recent research results.

Then I have presented my design choices and general decisions about the algorithm. I

have also made the input and output specific enough for proper design and implementation.

I have presented and explained the approximation algorithm of my own design in details

by analyzing the pseudo-code of both of its main parts: preprocessor and core. The algorithm

searches for a subgraph of the substrate network where an entire service chain should be

mapped. Then the algorithm divides the request graph into disjoint subchains to support the

mapping process. Further placement criteria is given to VNF instances that are used by multiple

service chains. The subgraphs are used the core mapping process as a heuristic to make the

latency requirement delivering easier. Hosts are selected to the VNFs by a composite objective

function consisting of preference value of the node and the cost of the path leading there. The

mapping process can be directed and fine-tuned by many parameters.

The focus of my work was on research result exploration, algorithm design and

implementation, but I have also presented some basic test cases to evaluate my algorithm. As

one of the tools for this I have proposed a generalized objective function for measuring the

preference of a mapping. I used this objective function to define and calculate the optimal

50

mapping on a sample input, and I compared the output of my approximation algorithm to the

optimal value. Which result I have found satisfying so far.

My plans for future work are replacing the simplification of dynamic latency to hop-

count handling; extending the algorithm with backtracking support (so it could try more

possible mappings, if it fails, but keeping it in polynomial time); fine-tuning the parameters of

the objective function by replacing them to heuristics depending on the networking

environment; and finally running thorough testing on carrier scale networks and real topologies

and requests.

51

7 References

[1] Dan Pitt, Rick Bauer, Cassandra Blair, Beth Most, Daisuke Saso, "Open

Networking Foundation website," Open Networking Foundation, [Online].

Available: https://www.opennetworking.org. [Accessed 14. 10. 2014.].

[2] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry

Peterson, Jennifer Rexford, Scott Shenker, Jonathan Turner, "OpenFlow: Enabling

Innovation in Campus Networks," 2008.

[3] Carolyn Jane Anderson, Nate Foster, Arjun Guha, Jean-Baptiste Jeannin,

Dexter Kozen, Cole Schlesinger, David Walker, "NetKAT: Semantic Foundations

for Networks," in POPL, San Diego, CA, USA, 2014.

[4] Roy Chua, Matt Palmer, Craig Matsumoto, "SDN Central – The

independent community & #1 resource for SDN and NFV," [Online]. Available:

http://www.sdncentral.com/. [Accessed 17. 10. 2014.].

[5] Margaret Chiosi, Steve Wright, Don Clarke, Peter Willis et al, "ETSI

NFV," 15-17. 10. 2013.. [Online]. Available:

http://portal.etsi.org/NFV/NFV_White_Paper2.pdf. [Accessed 17. 10. 2014.].

[6] Joao Martins, Mohamed Ahmed, Costin Raiciu, Vladimir Olteanu, Michio

Honda, Roberto Bifulco, Felipe Huici, "ClickOS and the Art of Network," in NSDI

’14, Seattle, WA, USA, 2014.

[7] Jim Guichard, Thomas Narten, Alia Atlas, "datatracker.ietf.org," [Online].

Available: https://datatracker.ietf.org/wg/sfc/charter/ . [Accessed 17. 10. 2014.].

[8] J. Halpern, C. Pignataro, "IETF," 20. 09. 2014.. [Online]. Available:

http://tools.ietf.org/pdf/draft-ietf-sfc-architecture-02.pdf. [Accessed 17. 10. 2014.].

[9] András Császár, Róbert Szabó, "UNIFY - Unifying Cloud and Carrier

Networks," [Online]. Available: https://www.fp7-unify.eu/. [Accessed 17. 10.

2014.].

52

[10] Amit Kumar, Rajeev Rastogi, Avi Silberschatz, Bulent Yener, "Algorithms

for Provisioning Virtual Private Networks in the Hose Model," in SIGCOMM’01,

San Diego, California, USA, 2001.

[11] Matthias Rost, Stefan Schmid, Anja Feldmann, "It’s About Time: On

Optimal Virtual Network Embeddings under Temporal Flexibilities," in Parallel

and Distributed Processing Symposium, 2014 IEEE 28th International, Phoenix,

AZ, USA.

[12] Robert Soule, Shrutarshi Basu, Robert Kleinberg, Emin Gün Sirer, Nate

Foster, "Managing the Network with Merlin," in HotNets ’13,, 2013.

[13] Robert Soule, Shrutarshi Basu, Robert Kleinberg, Emin Gün Sirer, Nate

Foster, "Merlin: Programming the Big Switch," 2013.

[14] Gabriel Valiente, Conrado Martinez, An algorithm for graph pattern-

matching, Carleton University Press, 1997.

[15] Jiefeng Cheng, Jeffrey Xu Yu, Bolin Ding, Philip S. Yu, HaixunWang, "Fast

Graph Pattern Matching," in ICDE '08 Proceedings of the 2008 IEEE 24th

International Conference on Data Engineering, Washington, DC, USA, 2008.

[16] N. M. Mosharaf Kabir Chowdhury, Muntasir Raihan Rahman, Raouf

Boutaba, "Virtual Network Embedding with Coordinated Node and Link Mapping,"

in IEEE INFOCOM 2009, 2009.

[17] Carlo Fuerst, Stefan Schmid, Anja Feldmann, "Virtual network embedding

with collocation: Benefits and limitations of pre-clustering," in Cloud Networking

(CloudNet), IEEE 2nd International Conference, San Francisco, CA, USA, 2013.

[18] B. L. Chamberlain, "Graph Partitioning Algorithms for Distributing

Workloads of Parallel Computations," 1998.

[19] Chuanxiong Guo, Guohan Lu, Helen J. Wang, Shuang Yang, Chao Kong,

Peng Sun, Wenfei Wu, Yongguang Zhang, "Secondnet: a data center network

virtualization architecture with bandwidth guarantees," in ACM CoNEXT, 2010.

53

[20] Wenfei Fan, Xin Wang, Yinghui Wu, "Incremental Graph Pattern

Matching," ACM Transactions on Database Systems, 2013.

[21] E. W. Weisstein, "Floyd-Warshall Algorithm," in MathWorld, 2009.

[22] Aric A. Hagberg, Daniel A. Schult, Pieter J. Swart, "Exploring network

structure, dynamics, and function using NetworkX," in Proceedings of the 7th

Python in Science Conference (SciPy2008), Pasadena, CA USA, 2008.

[23] J. D. Hunter, "Matplotlib: A 2D graphics environment," Computing In

Science & Engineering, vol. 9, pp. 90-95, 2007.

[24] L. Rizzo, "Netmap: a Novel Framework for Fast Packet I/O," in Proc. of

USENIX ATC, June 2012.

