
Driver Identification and Personal Attribute

Inference from In-Vehicle Network Log
TDK Thesis

written by: Mina Remeli

consulent: Dr Gergely Ács

2018

1

Contents

1 Introduction 5
1.1 Motivation . 5
1.2 Problem Definition . 6
1.3 Challenges . 6
1.4 Main Results . 7
1.5 Organization . 7

2 Related Work 8

3 Background 9
3.1 Time Series Classification (TSC) 9
3.2 Convolutional Neural Networks (CNNs) 10
3.3 CAN bus data . 11

4 Data 12
4.1 Collected Data . 12
4.2 Preprocessing . 14

5 Model 16
5.1 Model structure . 16
5.2 Classifiers . 19

5.2.1 Driver Identification . 19
5.2.2 Personal Attribute Inference 20

6 Evaluation 20
6.1 Evaluation Metrics . 20
6.2 1vsALL . 20
6.3 ALLvsALL . 23
6.4 Personal Attribute Inference . 23

7 Conclusion and Future Work 29

References 30

2

Kivonat

Napjainkban már nem csak a telefonjaink, hanem az autóink is hatalmas men-
nyiségű adatot gyűjtenek rólunk. Ezt különféle szenzorok teszik lehetővé,
amik többek között sebességet, kormányszöget, gáz-, fék- és kuplung-poźıciót is
mérhetnek. Ezeket az adatokat az autók kommunikációs hálózatából (CAN
buszból) az ODBII interfészen keresztül lehet elérni. Autók hálózati log-
jaiként is szoktak rá hivatkozni a szakirodalomban. Várható hogy az autonóm
járművekkel a láthatáron az ilyen adatok gyűjtése óriási hangsúlyt fog kapni a
közeljövőben.

Egy felettébb érdekes, de még kiaknázatlan használati területe a CAN
hálózati logoknak a vezető azonośıtás. Csupán néhány publikáció jelent meg az
elmúlt pár évben ami kifejezetten vezető azonośıtással foglalkozik CAN hálózati
logokból. Egyik oldalról az ilyen identitást feldeŕıtő adatokban a privát adatok
veszélyezettségét látták [1]. Másik oldalról meg a vezető azonośıtás potenciálját
látták abban hogy növeljék a vezetés élvezhetőségét [2]. Csakhogy az előbb
emĺıtett kutatások erősen korlátozottak: először is csak kevés vezetőt tudnak
megkülönböztetni, amiknek a száma 2 és 5 között terjed. Másodszor, az összes
vezető ugyanazon az útvonalon megy végig. Ezek a feltételek erősen korlátozzák
ezen modellek alkalmazhatóságát.

Amellett hogy vezető azonośıtást végzek, arra törekszem hogy személyes
adatok predikciójára is kiterjesszem a kutatásomat. Itt személyes adatok alatt
nemet, kort, vezetői tapasztalatot, stb. értek. Szeretném kiemelni, hogy a
személyes adatok predikciójára CAN hálózati logokból még nem volt példa
eddigi kutatásokban. A motiváció emögött az ilyen jellegű adatok kamatoz-
tathatósága – McKinzey&Co, egy menedzsment-tanácsadó cég becslése szerint
az autókból nyert adatok értéke 2030-ig akár 750 milliárd dollárt fog érni1. A
cégek már tudatosan készülnek az autókból nyert adatok piacára, ami majd
várhatóan meghaladja még az autók piacát is2!

A dolgozatomban mutatni fogok egy neurális hálókra épülő gépi tanulás
modellt a vezetők azonośıtására. Az ehhez felhasznált, CAN buszon lehallgatott
adatokat különböző szenzoroktól kapjuk, amik figyelik a fék, gáz, illetve kuplung
poźıcióját, az autó sebességet, stb. Azért esett a választásom neurális hálókra
mert általánosságban jól teljeśıtenek különféle idősorok klasszifikálásában, más
classifierekkel ellentétben [3]. Több mint 30, különböző útvonalon haladó vezető
CAN hálózati logjai állnak e célból rendelkezésre. Az ezekre épülő modell pon-
tosságát empirikus módon kiértékelem. Legvégül a kutatásom potenciális alka-
lmazási területeit mutatom be, illetve felvetek néhány jövőbeli kutatási irányt.

1https://www.wsj.com/articles/what-your-car-knows-about-you-1534564861
2https://www.forbes.com/sites/petercohan/2017/09/29/

this-startup-is-helping-daimler-and-bmw-compete-with-google-for-10-trillion-market/
#250ab5121342

3

https://www.wsj.com/articles/what-your-car-knows-about-you-1534564861
https://www.forbes.com/sites/petercohan/2017/09/29/this-startup-is-helping-daimler-and-bmw-compete-with-google-for-10-trillion-market/#250ab5121342
https://www.forbes.com/sites/petercohan/2017/09/29/this-startup-is-helping-daimler-and-bmw-compete-with-google-for-10-trillion-market/#250ab5121342
https://www.forbes.com/sites/petercohan/2017/09/29/this-startup-is-helping-daimler-and-bmw-compete-with-google-for-10-trillion-market/#250ab5121342

Abstract

Nowadays it is not just our phones, but also our cars that collect a tremendous
amount of data about us. This is done through recordings of different in-vehicle
sensors measuring the speed, gas, brake and clutch pedal position among others.
These data can be captured through the ODBII interface of the vehicle’s CAN
Bus, hence also referred to as CAN Network Log in the literature. With the
upcoming autonomous cars, such data collection is likely to be overwhelming in
the near future even more.

One interesting, but still quite unexplored usage of CAN Network Log is
identifying drivers. There are only a few prior works which have addressed driver
identification using CAN Network Logs exclusively. On one hand, it has been
well-recognized that such data can expose a driver’s identity [1] thereby raising
serious privacy concerns. On the other hand, driver identification provides a
novel way of enhancing driver experience [2]. However, the aforementioned
works have strong limitations: first, they distinguish only a few drivers, whose
number ranges between 2 and 5. Second, all drivers are supposed to drive on
the same route. These assumptions significantly restrict the applicability of the
proposed models.

In addition to driver identification, I aim to extend my research onto the
inference of different personal attributes, such as gender, age, or driver expe-
rience. The inference of drivers’ personal attributes from CAN Network Log
has not been explored by any prior works in the literature. The motivation
behind this is the lucrativity of such information – McKinzey&Co, a manage-
ment consulting firm, estimates that ”data from connected cars will be worth
up to $750 billion by 2030”1. Companies are already preparing for the market
for data from cars, which is expected to be even bigger than the market for the
cars themselves2!

In my work, I present a neural network based machine learning model for
identifying drivers based on the measurements of various in-vehicle sensors in-
stalled at the odometer, the brake- and gaspedal, and the clutch. These data
are captured on the vehicle’s CAN bus. The reason behind using neural net-
works is their superior overall classification accuracy of various time-series data
over other classifiers [3]. I empirically evaluate the accuracy of the proposed
model on the CAN Network Logs of more than 30 drivers, where each driver
follows different routes within the same city. Finally, I conclude my work with
describing potential applications of my proposal as well as some future research
directions.

4

1 Introduction

1.1 Motivation

There are a number of systems built in our cars for various purposes - to regulate
emission, to optimize engine performance or to log and detect malfunctions. The
data required for these comes from in-vehicle sensors. This data is converted
and processed by ECUs (Electronic Control Unit), which are essentially small
computers inside our cars. The ECUs communicate with each other through
the so-called CAN-bus.

The logging of such time-series produced by in-vehicle sensors is very com-
mon in our cars nowadays. For example, so-called ”insurance dongles” can
collect and send in-vehicle sensor data to insurance companies. Other (future)
ideas include selling such data to mapping firms looking to provide more accu-
rate traffic information, or selling consumption-related and other statistics to
operators of larger vehicle fleets1. Be that as it may, the full amount of infor-
mation that can be extracted from this kind of data is not yet fully understood
by companies, nor by the subjects.

Driver identification is a very exciting way of using such data. Why not
use this information to personalize your driving experience? Imagine getting
into your car after your wife/husband/friend drove it, only to have your seat
position, radio station and rear-view mirror adjusted back to your preferences
just after getting out of your driveway?[2] Or otherwise, you can use driver
identification to notify you any time someone else is driving your car.

Another interesting usage of CAN bus data (that has not been explored by
anyone else so far to the my best of my knowledge) is the inference of gender,
age, driver experience, etc. through such data. Car manufacturers are very
much aware of cars entering the digital space and plan to make the most of such
marketable data. With the possession of information related to age, gender etc.,
in-car advertisements (for example suggestions like which gas station to visit,
or where to shop) can be much more personalized. It is no wonder therefore
that people expect the market of such data to be even bigger than the already-
existing market of cars2.

However, there is a much more serious consequence to this that I want to
strongly emphasize. My study demonstrates that companies collecting CAN
logs of cars are indeed capable of identifying drivers and infer their various per-
sonal attributes. This has worrisome privacy implications especially if these
companies wish to sell CAN logs to 3rd parties. Although drivers are expected
to opt-in to such data sharing, it is still unclear whether they are completely
informed about the wealth of personal information that their CAN logs poten-
tially reveal to 3rd parties. Therefore, my study does not only raise the flag to
car drivers, but also to companies collecting such data; the feasibility to identify
(and/or profile) a driver means that CAN logs are indeed personal data and, as
such, is subject to the European General Data Protection Regulation (GDPR)
as of 25 May 2018. Therefore it is a fundamental duty of companies handling
such data to adequately inform drivers and protect their personal data.

Failing to do so does not only ruin customer trust but can also result in a
fine up to e20 million3.

3https://www.gdpreu.org/compliance/fines-and-penalties/

5

https://www.gdpreu.org/compliance/fines-and-penalties/

1.2 Problem Definition

In this study I demonstrate that personal attributes (e.g., age, gender, experi-
ence) can in fact be extracted only from in-vehicle network logs. I have divided
the problem into two stages - the first stage is to build a classifier model that
identifies drivers. One of the reasons behind this is that there have been some
(but altogether not too many) studies in this particular field that I could use
as reference. The second reason is that it solves a very similar problem to the
personal attribute inference (in fact, it can be viewed as the same problem if
identity is regarded as a kind of personal attribute). Naturally, the second stage
is to apply the model created in the first stage to personal attributes. So the
hypothesis is that whatever model works for driver identification, should work
for personal attributes as well.

In this paper I will present a CNN (Convolutional Neural Network) model.
CNN is a perfect candidate for our purpose because it excels at capturing local
reoccuring features such as accelerating, decelerating when braking, or changing
gear. To build this model I had the following sensor-produced time series that
measure clutch, gas and brake pedal position, rpm (revolutions per minute) and
speed. It is quite common for most cars today to log measurements such as
these.

Driver identification using CAN bus data is a subclass of the time series
classification problems. Thus far driver identification was only experimented
with using classical time series classification algorithms, where one had to invent
and extract features manually. I chose to work with CNNs instead because there
were not any similar efforts yet in this area. Using neural networks for time series
classification has only recently become the focal point of studies. Another reason
for choosing CNNs is that they can spare you the hard and cumbersome work
of extracting features manually. This gives us a practical end-to-end model to
work with.

Note that personal attribute prediction based on CAN bus data is so far
unprecedented, and could potentially lead to lucrative use-cases in the car in-
dustry.

1.3 Challenges

In what follows, I outline a few obstacles which I faced in my research and make
the above problems challenging to solve in practice.

• Data augmentation One of the challenging aspects of this work was
that I had to deal with a relatively small amount of data. With SVMs
or Random Forests this might not have been a promblem at all, whereas
neural networks are known to work better on larger datasets.

The usage of the sliding window technique has proven to be a successful
method for increasing the amount of data [3] (and also increasing the
model performance in general [4]). The sliding window technique was
first used by Cui et al. on time-series to increase the amount of data in
the model.

This technique is successful at augmenting data because the data one
obtains from it allows some samples to overlap. This means that one
single datapoint can occur in multiple samples. This in turn creates an

6

additional challenge when creating training/testing/validation sets that
are not allowed to overlap at all.

• Number of drivers Driver identification thus far has mostly presented
Random Forest based solutions, which worked only on a small number of
drivers (2-5) from the whole set of drivers (1-vs-few) [2] [1], whereas my
model classifies on all the 33 drivers present in the dataset (1-vs-all).

• Different routes Another source of additional complexity was that the
drivers did not take the same route as opposed to others’ research. How-
ever, the model still performed very well despite the circumstances.

• Fitting into memory After augmenting the data, I had some difficulties
finding efficient ways of loading that much data into memory all at once.
However since this is quite a common problem in the machine learning
community, I managed to find solutions that would feed the data into the
model while training/testing batch-by-batch.

• Granularity and sampling frequency Also the measured data was
very fine-grained, which introduced a possibility of it being noisy. In
addition to that every sensor had a different sampling frequency, which
also posed a problem. All of these added to the problem’s complexity.

1.4 Main Results

My main results are as follows:

• I achieve a 66% mean accuracy in distinguishing one driver from the rest
(compared to the 50% baseline). I achieve a 15% accuracy in distinguish-
ing all drivers from one another (compared to the 3.03% baseline)

• I achieve a 71% accuracy in inferring gender (compared to the 50% base-
line), 56% accuracy in age inference (compared to the 25% baseline) and
a 54% accuracy in experience inference (compared to the 33% baseline).

These are significant improvements over the state-of-the-art solutions which
achieved comparable results only in more restricted scenarios (e.g., when each
driver follows the same route, and the model is trained to distinguish only a
pair of drivers). Another notable achievement is that these predictions were
made using only 10 second long driving samples. Moreover, to the best of my
knowledge, no one has studied the feasibility of personal attribute inference from
CAN logs so far.

1.5 Organization

My paper is structured as follows. Section 2 introduces some related work. Sec-
tion 3 contains background information on TSC (Time Series Classification),
CNNs (Convolutional Neural Networks) and Can bus data. Then I shall elab-
orate on how the data was collected and preprocessed in Section 4. This is
followed by the description of my proposed model in Section 5. In Section 6 I
evaluate my results. I conclude this work with Section 7.

7

2 Related Work

Driver re-identification Driver re-identification is a relatively recent
subject of research, and there are not many related works in the literature yet.
There have been various approaches, ranging from identifying a driver from data
that comes from driving simulations, through CAN bus data or even through
introducing a 4-dimensional representation of one’s driving skills.

Miyajima et al. [5] have done experiments on two different test settings.
The first experiment setting focused on 12 subjects that have done routes in
a driving simulation where they collected data on the driver’s vehicle velocity,
distance from the vehicle in front, and the velocity from the vehicle in front.
In this setting they achieved a 81% identification rate. The second setting was
done using an actual vehicle, and included 30 test subjects with data collected
on driver’s vehicle velocity, force on gaspedal and force on brake pedal. All
subjects took the same route. Here they achieved a 73% identification rate.
They compared two methods for driver identification (Gaussian Mixture Model
and Helly model), and the conclusion in both test settings was that the GMM
performed better.

The next article that I want to describe is focused on the possible privacy
breach that the extraction of such information entails (Enev et al., [1]). There
they experimented with several classifiers, such as SVMs, Random Forest, Naive
Bayes and KNN on a dataset of in-vehicle sensor measurements produced by
15 drivers. All of the drivers followed the same route. Instead of doing a
1vsALL classification (by 1vsALL I mean a binary classification where one has
to distinguish 1 subject from all the others) they chose to do a Q-Weighted
classification which essentially trains a set of pairwise (binary) classifiers (one
for each pair of subjects). The drawback of this method that while it achieves
high accuracy, in the worst case scenario it still has to build and compare n ∗
(n−1)/2 ≈ n2 binary classifiers (where n is the number of drivers)[6]. They also
used the sliding window technique to increase the amount of their data (with
overlap).

Another related work suggests that all the information needed to identify a
driver can be obtained from the measurements of a single turn (Hallac et al.[2]).
This confirms the intuition that someone’s driving can be quite accurately dis-
tinguished based on how they slow down, switch gears and accelerate. In their
work they presented two, three, four and five-driver classifications with varying
models like logistic regression, SVM and Random Forest. All of the drivers in
the dataset followed the same route, so they selected the 12 most frequent turns
and built classifiers based only on the 8-10 seconds describing that particular
turn.

However, both researches done by Enev et al. [1] and Hallac et al. [2]
achieved their best results when using a Random Forest classifier. The drawback
of the algorithms that were tested by them is the need for manual feature
engineering, which requires a considerable amount of expertise in the field and
a deep knowledge of the data.

Finally, Fugiglando et al. [7] proposed the concept of Driving DNA, which
would serve as a representation of one’s driving style. The proposed dimen-
sions of the DNA consist of data partially collected from the CAN bus, namely
frontal acceleration (for measuring braking), lateral acceleration (for measuring
turning), rpm (for measuring fuel efficiency) and the combined information of

8

speed, rain and road speed limit (for measuring speeding). The advantage of
their method is the very low computational complexity.

All of the above mentioned works that have done driver re-identification have
done experiments where subjects had to follow the same route. In contrast to
that, I present comparable results without imposing such restrictions.

Time Series Classification (TSC) with a deep learning approach
There has only recently been some research on time series classification with
the help of neural networks. I shall like to mention a few. One of the very
first approaches was the usage of Multi-scale Convolutional Neural Networks
(MCNNs) on univariate timeseries by Cui et al. [3]. This approach was tested
and evaluated on the UCR dataset alongside 14 ’classical’ TSC algorithms.
However their architecture requires some additional preprocessing of the input,
in contrast to the end-to-end model I propose.

Another approach is a neural network-based model called MC-DCNN (short
for Multi-Channels Deep Convolutional Neural Networks) for multivariate time-
series proposed by Zheng et al. [8]. Their proposed architecture is very similar
to what I propose, when I use the inputs of multiple sensors (differing only in the
number of convolutions and the hyperparameters). They propose to split up the
multivariate time series into univariate ones, and then apply feature extraction
on the univariate time series. Finally the features are fed into a Multi Layer
Perceptron (MLP). Their model was evaluated on two datasets (not included in
the UCR).

Wang et al. [9] tested three neural networks (ResNet[10], FCN and MLP) on
the UCR datasets - their proposed models were evaluated against many TSC
algorithms (including MCNN) and they found that even though the FCN is
superior with the lowest test error rate - the T-test showed that there is not
much of a difference between the top 5 performing models (COTE, MCNN,
BOSS, FCN and ResNet).

Recently, there has been an overall evaluation of all the neural-network based
TSC methods in the work of Fawaz et al. [11]. They compared and tested DNN
classifiers not only on the UCR datasets (that mostly contain univariate time
series) but also on 12 multivariate time series datasets. They found that the
best performing models (in both in univariate and mutlivariate settings) were
the ResNet (Residual Network) and FCN (Fully Convolutional Neural Network).
Nevertheless, I chose not to use architectures such as ResNet or FCN, because
they have an extensive amount of parameters, which works better on larger
data.

3 Background

3.1 Time Series Classification (TSC)

Time series classification is a widely researched area in medicine, music and
the industry in general. A time series classification problem can be defined
as follows: given a set of classes Y (yi ∈ Y), and training data T (where
Ti = {t1, t2, ...tl} for time series of length l (Ti ∈ T). The goal is to find a
classifying function f , where f(Ti) = yi.

9

There are mainly two methods for time series classification - distance-based
(mostly with k-NN classifiers) and feature based classifications. The distance
based ones use similarity measures such as Euclidean distance or Dynamic Time
Warping (DTW). One of the most popular and successful approaches coming
from this class of classifiers was the 1-NN DTW [12] - it can really be considered
as one of the ”baseline” TSC methods.

A simple example of feature based TSC is to represent time-series with
features like mean, variance, standard deviation, etc. Today we typically use
more complex features as well, such as frequency-domain information provided
by Discrete Wavelet Transform (DWT) or Discrete Fourier Transform (DFT).
Another feature based TSC relies on extracting global/local patterns (words)
and by representing the original time series with a histogram containing these
”words” (bag-of-words model).

Another popular approach is to use ensembles of classifiers (like COTE [13])
that combine multiple classifiers to get more accurate results (which does bring
good results but is high complexity and very resource-intensive).

These are only a few examples of the many time-series classification algo-
rithms4 that have surfaced throughout the last few years. In order to create a
benchmark for evaluating all of these algorithms, they can be evaluated (and
tested against other classifiers) on the UCR datasets [14] (47 datasets from the
University of California, Riverside - their number has since been expanded to
85).

Many of these classifiers have been put to the test by Bagnall et al. [15]
on the aforementioned 85 datasets. The conclusion of the paper was that while
COTE outperformed even DTW (even though DTW is in general hard to beat)
by 8% on average, it can be said that there is no ”absolute winner” algorithm.
A good solution to a specific problem is tailored to it. (For example even a
high-scoring algorithm like COTE still leaves a lot to be desired in terms of
computational complexity.)

3.2 Convolutional Neural Networks (CNNs)

History The concept of neural networks reaches back all the way to the
1950-60’s. Back then researches were interested in making computational mod-
els of artificial neurons that try to mimic the behavior of the human brain.
However, back then the computational capacity and other issues (like vanish-
ing/exploding gradient) delayed the implementation of these concepts, and so
the interest in further research died down for some time.

How CNNs work CNNs are deep neural network structures that have
become increasingly popular over the past few years. They were introduced in
the early 1990’s by LeCun [16] who used this architecture to recognize hand-
written digits. They had a sudden surge in popularity after the Krizhevsky et al.
[17] architecture won the ImageNet contest in 2012 with an error rate of 16.4%
compared to the second place result of 26.1%.5 Since then CNNs have become
the go-to architecture for image classification. Another field where CNNs are
widely used is natural language processing or face detection.

4A more complete list of TSC algorithms: http://www.timeseriesclassification.
com/algorithm.php

5http://www.image-net.org/challenges/LSVRC/2012/results.html

10

http://www.timeseriesclassification.com/algorithm.php
http://www.timeseriesclassification.com/algorithm.php
http://www.image-net.org/challenges/LSVRC/2012/results.html

Figure 1. CNN architecture overview on an image classification
example. Source: https://www.mathworks.com/solutions/deep-learning/

convolutional-neural-network.html

The CNN architecture consists of two main parts: the first part is responsible
for extracting features, and the other one does the classification. The feature
extracting part in essence produces a set of (learnable) filters that can recognize
patterns in a translation-invariant way (so for example in case of images it can
easily detect the curve of a smile in the upper left corner of the picture just as
well as in the center or anywhere else).

An illustrative overview of the general architecture can be seen in Figure 1.
The components of the feature learning part are the following: (1) convolution
where the filters are created - here we can define how many filters we want,
how big they should be, and what stride we should use when going over the
image. This is usually followed by an activation function (for example ReLu)
that introduces non-linearity into the model (and also makes the model more
robust to the problem of vanishing/exploding gradient). The next part is (2)
pooling, where we ”compress” the input by averaging or taking the maximum
value.

The reason why CNNs became so popular is mainly because of how scalable
they are - because the filters share the same weights. This way, considerably
less weights need to be updated on every training iteration. Another appealing
aspect is that features are learned automatically.

Intuition behind using CNNs CNNs have proven over time to be a
scalable and reliable architecture for image classification. The reason why they
work with time-series as well, is because of the locality of the traits that po-
tentially identify a driver (the short moments when we accelerate, decelerate,
or change gear). CNNs excel just at that - finding traits that are unique to
each class that has to be identified. My multi-channel CNN architecture is thus
able to find a set of filters for each sensor that are best at capturing those local
traits.

3.3 CAN bus data

Logging and processing information from various in-vehicle sensors has been
present for a long time now. They can be tracked back as early as the 1970’s
when the american Congress passed the Clean Air Act, requiring car manufac-
turers to implement emission control systems in their vehicles. Since then there

11

https://www.mathworks.com/solutions/deep-learning/convolutional-neural-network.html
https://www.mathworks.com/solutions/deep-learning/convolutional-neural-network.html

has been a lot of progress, leading to modern diagnostic systems and dashboards
displaying information such as speed, consumption, temperature and so on.

There are several subsystems installed in our cars responsible for making A-
D conversions, preprocessing the sensor-collected data and possibly sending out
signals to inform other subsystems. These are called ECUs (Electronic Control
Unit). The way they communicate and transfer data to one another is with the
help of communication standards. There is one standard that is predominantly
used nowadays, and that is the CAN (Controller Area-Networking). All nodes
(such as ECUs) on the CAN bus send out information several times a second,
which consists of a header+data part, where the header is simply an ID referring
to the kind of data that is being transferred.

To show an example - let’s say that we capture some data on the CAN bus
with an ID of 1. Suppose we know that the second byte of that data contains
the speed of the vehicle. If we capture all the subsequent data packets with an
ID 1 and extract the second byte from it, then we get a time-series that shows
us how the speed of the vehicle changed in the time observed.

4 Data

4.1 Collected Data

Collection process The driving data is obtained through the OBD-II
(On-Board Diagnostic Systems) port of an 2018 Opel Astra. Each of the drivers
were asked to drive around in Budapest for 20-30 minutes. There was no route
they had to strictly follow, in contrast to other studies [1][2], which makes the
data more general and comparable to a real-life example. (However this also
introduces additional complexity in the classification process.) There were only
3 requirements the data collection process had to meet: (1) a minimum of 20-30
minutes of driving data from each driver, (2) no data was to be recorded while
driving uphill or downhill and (3) no data was to be recorded in very heavy
traffic. Figure 2 shows how the raw data looks from the sensors.

The credit for collecting these data goes to CrySyS (Laboratory of Cryp-
tography and System Security)6 at the Budapest University of Technology and
Economics (BME).

Personal attributes There are altogether 33 drivers’ data in the dataset,
28 males and 5 females. Their ages range from 20-69 (11 people were between
the age of 20-25, 8 between 25-30, 7 between 30-40, and 7 above 40). I also
ranked their driving experience (Low, Average and High), based on how many
kilometers they drive in a year on average (There were 12 with Low experience
(<7000 km per year), 11 with Average experience (8-14000 km per year), and
10 with High experience (>14000 km per year)). This information can be found
in Table 1 as well.

Sensors In my work I use the measurements of 5 sensors. In the sequel I
will refer to the 5 sensors’ data as brake, clutch, gaspedal, rpm and speed.

Brake, clutch and gaspedal measure the position of the respective pedals.
As for the rest: rpm records the revolutions per minute and speed measures

6https://www.crysys.hu/

12

https://www.crysys.hu/

the vehicle’s speed. The sensor’s measured value ranges (measured min and
measured max) are depicted in Table 2.

30 40 50 60 70 80 90
+1.4973238e9

0.0

0.2

0.4

0.6

0.8

1.0

(a) Brake pedal position (black) vs. gaspedal position (red).

5 10 15 20 25
+1.4973239e9

0.0

0.2

0.4

0.6

0.8

1.0

(b) Clutch pedal position (black) vs. rpm (blue) vs. speed (red).

Figure 2. Raw sensor data.

Attribute Value Population

Gender
Male 28

Female 5

Age

[20-25] 11
[25-30] 8
[30-40] 7
[40-70] 7

Experience
Low 12

Average 11
High 10

Table 1. Personal attributes.

min max mean standard deviation
speed 0 3513 891.77 727.21
gaspedal 0 254 18.55 31.24
clutch 0 255 97.73 106.07
brake 0 161 22.8 30.72
rpm 0 80 22.2 9.09

Table 2. Highest and lowest values measured on all sensors, their mean and
standard deviation.

Data frequency and their alignment The obtained time series from
each sensor were unfortunately unequal in length, because their sampling fre-
quency was not the same. This of course means that the i ’th sample from
sensor1 is not measured at the same time as the i ’th sample from sensor2.
This poses a problem for us, since we need aligned data in order to make a deci-
sion. To achieve the same length over all of the time series I have down-sampled

13

the data collected by sensors that work with a higher sampling frequency. The
sensor with the shortest sampling frequency was speed, namely it was 20Hz. For
example suppose that another sensor had a sampling frequency that was 5 times
bigger. I took that sensor’s recordings, split it up into groups of 5, and then
took the average of those groups to get the same amount of measurements as
the speed sensor. Hence, each transformed time-series has identical length, and
I work these transformed data henceforth.

Anonymization and consent The drivers’ identities were not disclosed,
instead of names they were labeled with unique pseudo-identifiers. The subjects
of this study have all given their consent to us to log and work with their driving
data. They were also informed on how their data was going to be used in this
study.

However, because my research suggests that CAN data does potentially con-
tain personal information about a driver, I cannot disclose their data. That
would require their further consent according to the GDPR.

4.2 Preprocessing

Creating samples First, I drop the 0 values when loading the data, be-
cause those values have no information for our purpose7 (theoretically the CNN
is able to learn if a value holds no information, but this seemed as a reasonable
choice since it speeds up the process of learning). As mentioned above, I align
each and every sensor’s data to one another in the described fashion. Then, I
had to slice up the approximately 20 minute long time series into samples that
the classifier could work with. The sample length I used was about 10 seconds
long (10 ∗ Tsample = 10 ∗ (1/fsample) = 200 elements in a sample). Intuitively
one might think that the distinguishing part in everyone’s driving is the part
where they accelerate, which is about 2-3 seconds long. However, when driving
in a city one must realize that there are a lot of situations where one must stand
still (in morning traffic, in front of a stoplight, or while letting an old lady cross
the street). Hence, I let the sample size be a bit longer, and also because other
research has achieved considerable results on similar sample sizes [2].

I created the samples using the sliding window technique. It takes a T =
{t1, t2, ..., tl} time series, and creates many smaller time series (Si, Si ⊂ T) of
length w (window size): Si = {ts∗k, ..., ts∗k+w}, k = 0, ..., l − w + 1 where s is
the stride. This also increases the amount of data since we have set s to be
smaller than w (this creates overlap between the Si samples). My window size
was w = 200 while the stride was s = 3. A window-sized slice equals one sample
in our setting.

It must be mentioned that the sliding window technique introduces redun-
dancy in the dataset because of the overlaps between two windows (if the stride
is smaller than the window size). One can argue that this might introduce over-
fitting. To battle this, I have used state-of-the art techniques to help our model
generalize better, which I will elaborate on in Section 5.1.

7I have experimented with datasets containing 0’s as well. It did not affect the model
accuracy in any significant way.

14

0 25 50 75 100 125 150 175 2000.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

bra
ke

(a) brake

0 25 50 75 100 125 150 175 2000

50

100

150

200

250

clu
tch

(b) clutch

0 25 50 75 100 125 150 175 2000

20

40

60

80

100

gas
ped

al

(c) gaspedal

0 25 50 75 100 125 150 175 2000
5

10
15
20
25
30
35

rpm

(d) rpm

0 25 50 75 100 125 150 175 2000
250
500
750

1000
1250
1500
1750
2000

spe
ed

(e) speed

Figure 3. A sample from each sensor.

Train/test split To create the train/test split first I have split the dataset
into two parts: dataset1 and dataset2. While doing this, I paid attention to split
the dataset in a way so that they come from the same distribution. (For further
explanation on how, see next subparagraph.)

The training samples are randomly sampled from dataset1, while the testing
samples are randomly sampled from dataset2. This ensures that the distribution
of the training and the testing datasets is the same on average. I also made sure
that the training and testing datasets are balanced. A balanced dataset contains
the same amount of positive samples as negative samples in binary classification

15

- in multiclass classification it means that there is the same number of targets
from each class.

Creating dataset1 and dataset2 In order to have two datasets that
come from the same distribution as the original one, I have done the following:
let us call the recordings of a sensor for one driver at one occasion a driving
session. After creating the 200 long samples from a particular driving session
(that corresponds to 10 seconds worth of driving data), I took the created
samples, and split them into two seperate datasets (while dropping some samples
from the center to ensure that there is absolutely no overlap between the 2
created datasets). The result is two datasets that contain the same distribution
of drivers as the original one. More precisely: the probability of observing a
driver a in the training set must be the same as the probability of observing a
driver a in the testing set (this should hold true for each driver a).

All machine learning problems are approached with the hypothesis that the
training data comes from the same distribution as the testing data. However,
this is not always true, because in practice we have no guarantee that the data
in production will come from the same distribution as the data we trained on.
And since a model can only learn from the training dataset, it will likely fail
no matter what on data that comes from a different distribution. This shifting
phenomenon is called covariate shift (when input distributions are shifted) or
dataset shift (when the joint distribution of input and output is shifted). To
battle this, one can either try to get data from the same distribution as the
testing dataset (if possible). Otherwise, one can train a number of models with
varying distributions and create an ensemble from them (multi-dataset models).

Figure 3 shows how a sample from each sensor might look like.

5 Model

5.1 Model structure

Overview The model has a fairly simple architecture when it has one in-
put, as can be seen in Figure 4. The presented model is a classical CNN and
consists mainly of two parts: a feature extracting part and a MLP (Multilayer
Perceptron) for the actual classification based on these features. This kind of
architecture is prevalently used for image classification, face and edge detec-
tion[18].

For my work I have used the Keras framework (v. 2.2.4) for python with
tensorflow-gpu (v. 1.11) in the backend. The models were trained and tested
on a machine with an Intel i7-7500 CPU, 8 GB RAM, and an NVIDIA Geforce
940Mx (2 GB). My work can be accessed on a public github repository: https:

//github.com/minaremeli/tdk_2018.

Hyperparameter and model structure heuristics The hyperparam-
eters and model structure were selected by rules of thumb that are commonly
used for building CNNs. Some of the general rules I tried to abide by was
to first experiment with simpler models, gradually increasing its complexity if

16

https://github.com/minaremeli/tdk_2018
https://github.com/minaremeli/tdk_2018

needed. Another very common rule is to first make the model overfit, and then
use regularizing strategies like L2 or dropout. Another CNN-specific rule says
to use one or two, but at most 3 convolutions in the feature extracting part. A
common heuristic for selecting the number of nodes in the dense layers is for
the number to be a power of 2. There are no ”common” heuristics yet for se-
lecting hyperparameters in the convolutional layers in a time-series application,
because this field is fairly young still.

Model architecture The general architecture of the model depends on
how many channels of data we want to feed into it. A ”channel” refers to a
stream of data that comes from one of the introduced sensors. For a general
overview of the model architecture please see Figure 4 with 1 input channel and
Figure 5 with 4 input channels. The main difference between the two settings is
that in case of a multi-channel model each channel has its own feature extracting
part (its own local convolutions) - that way when the channels are concatenated
later on, one can extract only the most meaningful information from each sensor
using dense layers.

The first layer is a normalization layer. It shifts the input values to a 0-mean
1-variance. The feature extracting part consists of 3 consecutive convolution-
activation-pooling layers. For the convolution layers I used a filter size of 8,
16 and 32 respectively, a kernel size of 5 and a local stride of 1 over all three
of them. The activation function I used after the convolutions is the ReLU[19]
(Rectified Linear Unit). The pooling layers had a pooling size of 2 (they halved
the input size by going over it with a 2x1 window that selected the largest of
the underlying values).

In the end I have three dense layers - a dense layer with 128 nodes followed
by a dropout with a rate of 0.2, and finished off with two more dense layers
- one with 64 nodes and the last one with either one node (if doing binary
classification, like 1vsALL) or 33 nodes (for multi-class classification).

Input As described in Section 4.2, our inputs are window-sized samples.
I will show two settings I used: one is where I used only one sensor’s data
for classification, and another where I used multiple. When working with one
sensor I had an input of size (200x1), whereas when I had multiple sensors I
had an input of (200x1) N times, where N is the number of sensors (and thus
channels).

Regularization techniques Pooling layers were used between the con-
volutional layers to increase generalization. Another method I used for this is
dropout layers on one of the hidden layers. The dropout technique8 essentially
deactivates a set of random neurons in the hidden layer it is applied to. This
is done again and again for each mini-batch, so in the end one gets a fairly
accurate and generalized model by ”combining” different models that have a
different set of weights and neurons. This is the basic intuition behind dropout.

8https://www.cs.toronto.edu/~hinton/absps/JMLRdropout.pdf

17

https://www.cs.toronto.edu/~hinton/absps/JMLRdropout.pdf

Figure 4. Model architecture with 1 channel.

18

Figure 5. Model architecture with 4 channels.

5.2 Classifiers

I describe next the different classifiers that I use in my study.

5.2.1 Driver Identification

• 1vsALL In this experimental setting I create binary classifiers that could
distinguish one driver (the subject) from all the others. The experiment
is repeated for each driver in the dataset (everyone takes a turn at being
the subject).

There are two stages to this experiment. The first stage of the experiment
trains models with the input of one sensor (this is done for each of the 5
sensors: brake, clutch, gaspedal, rpm, speed).

The second stage of the experiment trains the models with the sensors that
provided the best results in my previous experiment. Thus with these best
performing sensors I show a multi-channel CNN classifier. Hence, I have
5 classifiers per driver, and 33*5 classifiers altogether in this experiment.
Because the experiment took such a long time, I decided to train the
models on 2 epochs only. All the models had about 1700 samples to train
on.

• ALLvsALL In the ALLvsALL setting I show multiclass classifications,
where the model has to distinguish all of the 33 drivers from one another.
This model was trained for 2 epochs, on 27000 samples of training data,
on the measurements of clutch, gaspedal, rpm and speed seperately. The

19

reason why I trained on 2 epochs here as well is very similar as last time
(the duration of building 33 classifiers on so many training samples takes
quite a long time). In one experiment I also combine these four sensors
as input. I omitted the measurements of brake, because in the previous
experiment the models that used its data did not perform very well (its
accuracy was near random guess).

5.2.2 Personal Attribute Inference

In this section I build 3 different classifiers for the inference of age, gender,
and driving experience, respectively. The first classifier is a binary classifier for
guessing gender, the second and third one are multi-class classifiers for guessing
the subject’s age (4 classes: [20-25], [25-30], [30-40], [40-70]) and experience (3
classes: Low, Average and High). Here I will experiment with both the multi-
channel model, and the 1-channel models respectively. For further information
on the personal attributes, see Table 1.

For gender inference I had about 24000 samples for training data, for age
inference 65000 and for experience inference 80000. The models were trained
for 4 epochs.

6 Evaluation

6.1 Evaluation Metrics

To evaluate my model I have done an extensive amount of experiments, building
more than 200 classifiers in total. The main metric I used across all of my ex-
periments is the binary accuracy in case of binary classification, and categorical
accuracy. Binary and categorical accuracy both calculate the true positive rate
(TPR = TP

(TP+FP)) of the classifications.

Another metric I used (on the personal attribute inference) is the ROC (Re-
ceiver Operator Characteristic) curve. The ROC curve plots the true positive
rate (TPR) against the false positive rate (FPR), and is often used for selecting
an optimal model in machine learning.

6.2 1vsALL

Results on the first stage of this experiment can be seen in Table 3. On average
the best performing model was the one that got its data from the gaspedal
sensor, performing on average with 66%. The model built on the measurements
of clutch yielded the overall highest classification accuracy (92%). However the
models built on the data of clutch are not consistent in accuracy, having the
largest variance. One can also see that the models built on information from
brake make only near-random guesses. For this reason, I henceforth omit this
sensor from the experiments that use the inputs of multiple sensors at once.
Results on the first stage of this experiment can be observed in Table 3.

In the second stage of my experiment I combine the 4 best performing sen-
sors in a single multi-input model, namely of clutch, gaspedal, rpm and speed.
The results can be seen in Table 4. This multi-input model achieves a 64%
mean accuracy, which comes in as the second best performing model when dis-
tinguishing one driver from the rest. The variance is second best as well.

20

brake clutch gaspedal rpm speed
Driver ID
ID1 0.507212 0.519231 0.567308 0.485577 0.528846
ID12 0.444712 0.567308 0.531250 0.384615 0.540865
ID31 0.629808 0.778846 0.812500 0.668269 0.567308
ID24 0.572115 0.788462 0.600962 0.449519 0.540865
ID7 0.492788 0.627404 0.778846 0.456731 0.709135
ID0 0.512019 0.572115 0.634615 0.567308 0.528846
ID5 0.557692 0.526442 0.766827 0.447115 0.540865
ID13 0.572115 0.603365 0.545673 0.586538 0.461538
ID2 0.687500 0.865385 0.540865 0.603365 0.598558
ID26 0.487981 0.538462 0.802885 0.653846 0.514423
ID4 0.473558 0.798077 0.632212 0.502404 0.454327
ID20 0.663462 0.639423 0.692308 0.620192 0.447115
ID14 0.562500 0.670673 0.725962 0.560096 0.622596
ID22 0.560096 0.680288 0.697115 0.435096 0.610577
ID17 0.487981 0.918269 0.694712 0.540865 0.552885
ID3 0.427885 0.555288 0.649038 0.545673 0.569712
ID18 0.562500 0.697115 0.612981 0.406250 0.399038
ID28 0.557692 0.745192 0.670673 0.658654 0.591346
ID15 0.569712 0.560096 0.668269 0.713942 0.781250
ID30 0.514423 0.468750 0.783654 0.658654 0.492788
ID10 0.521635 0.528846 0.663462 0.514423 0.677885
ID9 0.519231 0.680288 0.581731 0.512019 0.543269
ID11 0.509615 0.569712 0.718750 0.670673 0.661058
ID16 0.454327 0.567308 0.545673 0.536058 0.468750
ID8 0.562500 0.658654 0.600962 0.629808 0.675481
ID19 0.430288 0.478365 0.750000 0.600962 0.519231
ID29 0.634615 0.718750 0.742788 0.677885 0.584135
ID23 0.588942 0.653846 0.730769 0.533654 0.598558
ID25 0.389423 0.774038 0.663462 0.605769 0.665865
ID27 0.591346 0.487981 0.632212 0.562500 0.600962
ID32 0.584135 0.540865 0.625000 0.685096 0.653846
ID21 0.475962 0.548077 0.670673 0.456731 0.569712
ID6 0.516827 0.536058 0.504808 0.480769 0.552885

Mean 0.534018 0.632212 0.661786 0.557911 0.57044
Variance 0.004685 0.013398 0.007017 0.008059 0.006797

Table 3. The mean accuracy rate across all predictions for each 1vsALL classifier
that trained on one sensor. The highest accuracies are highlighted in this table.

21

4 sensors
Driver ID

ID17 0.896635
ID29 0.810096
ID4 0.495192
ID24 0.509615
ID30 0.548077
ID22 0.644231
ID0 0.536058
ID14 0.790865
ID21 0.564904
ID31 0.858173
ID12 0.507212
ID2 0.769231
ID7 0.721154
ID13 0.584135
ID20 0.689904
ID11 0.651442
ID27 0.524038
ID32 0.576923
ID23 0.644231
ID18 0.447115
ID25 0.814904
ID16 0.528846
ID19 0.699519
ID3 0.687500
ID10 0.682692
ID5 0.564904
ID26 0.629808
ID8 0.716346
ID15 0.762019
ID28 0.687500
ID9 0.646635
ID1 0.490385
ID6 0.555288

Mean 0.643502
Variance 0.013682

Table 4. The mean accuracy rate across all predictions for each 1vsALL classifier
that trained on four sensors (clutch, gaspedal, rpm and speed). The highest
accuracy is highlighted.

22

4 sensors clutch gaspedal rpm speed
ALLvsALL 0.153924 0.1132 0.11686 0.059157 0.047674

Table 5. The mean accuracy rate for the ALLvsALL experiment. The highest
accuracy is highlighted in this table.

6.3 ALLvsALL

In the ALLvsALL experiment the best model achieves an accuracy of 15%,
which is approximately 5 times better than a random guess! (A random guess
in this case would be 1/33 = 0.0303, which is about 3%.) The best performing
model combined the same 4 inputs that were used in the previous experiment,
as described in Section 6.2. One can conclude that in this case the model
improved significantly when using the combined input of the 4 best-achieving
sensors. Results can be seen in Table 5.

6.4 Personal Attribute Inference

The results of the personal attribute inference can be seen in Table 6. One can
conclude that the models that are trained on all four sensors are almost always
superior to the models that are trained only on one sensor (the only exception
to the rule is the inference of experience, with only a slight difference between
the two best-scoring models). Thus I achieve a very impressive improvement
over the baseline in all cases. For gender inference, I get a model that peforms
1.4 times better than a random guess would, for age inference I get an even
larger improvement (2.2 times better), and last but not least the experience is
1.6 times better than a random guess. In two cases out of three the model that
was built on four sensors achieves far better results than the competing models.

4 sensors clutch gaspedal rpm speed
gender 0.706410 0.58141 0.634776 0.549038 0.59407
age 0.555756 0.416305 0.485188 0.32671 0.305093
experience 0.529144 0.413597 0.550647 0.357857 0.322982

Table 6. The mean accuracy rate for personal attribute inference. The highest
accuracies are highlighted in this table. The baselines for gender is 50%, for age
it’s 25% and for experience it’s 33%.

In Figure 6 I plotted the ROC curve for each classifier that was built for
gender inference. It can be observed here as well that the classifier built on the
combined input of the 4 sensors is the best.

23

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os

iti
ve

 ra
te

ROC curve (gender)

4 sensor (area = 0.786)
clutch (area = 0.497)
gaspedal (area = 0.702)
rpm (area = 0.518)
speed (area = 0.490)

Figure 6. ROC curve for the 5 models that were built for gender inference. AUC
(Area Under Curve) values are shown in the legend.

Attribute Value Class

Age

[20-25] 0
[25-30] 1
[30-40] 2
[40-70] 3

Experience
Low 0

Average 1
High 2

Table 7. Personal attributes to class mapping (For better understanding of the
ROC curves).

24

I have extended the ROC curve analysis onto age and experience inference as
well. For instance, in age inference we have 4 classes. I have created 4 different
ROC curves for these 4 settings (classes can be found in Table 7):

• Class 0 vs Class 1&2&3

• Class 1 vs Class 0&2&3

• Class 2 vs Class 0&1&3

• Class 3 vs Class 0&1&2

In Figure 7 we can see the ROC curves for the best classifier on age inference.
It is interesting that the class that is hardest to classify is Class 2 (age [30-40]).
Similarly, we can see the ROC curves of the other classifiers in Figure 8. The
model that is trained on gaspedal exhibits the same behavior as the model that
is trained on all 4 sensors - here too Class 2 is hardest to classify.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC curve (age, 4 sensors)

ROC curve of class 0 (area = 0.83)
ROC curve of class 1 (area = 0.82)
ROC curve of class 2 (area = 0.75)
ROC curve of class 3 (area = 0.82)

Figure 7. Age inference ROC curve for the classifier that uses all 4 sensors.
AUC (Area Under Curve) values are shown in the legend.

25

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e
ROC curve (age, clutch)

ROC curve of class 0 (area = 0.58)
ROC curve of class 1 (area = 0.41)
ROC curve of class 2 (area = 0.49)
ROC curve of class 3 (area = 0.48)

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC curve (age, gaspedal)

ROC curve of class 0 (area = 0.80)
ROC curve of class 1 (area = 0.81)
ROC curve of class 2 (area = 0.68)
ROC curve of class 3 (area = 0.70)

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC curve (age, rpm)

ROC curve of class 0 (area = 0.62)
ROC curve of class 1 (area = 0.55)
ROC curve of class 2 (area = 0.50)
ROC curve of class 3 (area = 0.52)

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0
Tr

ue
 P

os
iti

ve
 R

at
e

ROC curve (age, speed)

ROC curve of class 0 (area = 0.54)
ROC curve of class 1 (area = 0.49)
ROC curve of class 2 (area = 0.50)
ROC curve of class 3 (area = 0.50)

Figure 8. Age inference ROC curve for the classifier that uses all 4 sensors.
AUC (Area Under Curve) values are shown in the legend.

26

The ROC curve for the best classifier on experience inference can be seen in
Figure 9 (in this case it shows the model that is trained on the gaspedal). This
figure shows us that a more experienced driver can be more easily classified, than
an average or an inexperienced one. However, the model that is trained on all
four (which does not fall behind very much in terms of accuracy) distinguishes
the most and the least experienced drivers the best! This ROC curve can be
seen in Figure 10.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC curve (experience, gaspedal)

ROC curve of class 0 (area = 0.73)
ROC curve of class 1 (area = 0.74)
ROC curve of class 2 (area = 0.77)

Figure 9. Experience inference ROC curve for the classifier that uses the mea-
surement of gaspedal. AUC (Area Under Curve) values are shown in the legend.

27

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e
ROC curve (experience, 4 sensors)

ROC curve of class 0 (area = 0.75)
ROC curve of class 1 (area = 0.67)
ROC curve of class 2 (area = 0.75)

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC curve (experience, clutch)

ROC curve of class 0 (area = 0.57)
ROC curve of class 1 (area = 0.43)
ROC curve of class 2 (area = 0.51)

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC curve (experience, rpm)

ROC curve of class 0 (area = 0.58)
ROC curve of class 1 (area = 0.49)
ROC curve of class 2 (area = 0.53)

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0
Tr

ue
 P

os
iti

ve
 R

at
e

ROC curve (experience, speed)

ROC curve of class 0 (area = 0.47)
ROC curve of class 1 (area = 0.53)
ROC curve of class 2 (area = 0.56)

Figure 10. Experience inference ROC curve for the rest of the classifiers. AUC
(Area Under Curve) values are shown in the legend.

28

7 Conclusion and Future Work

In my work I have presented a novel way of performing driver re-identification,
which takes advantage of CNN’s ability to single out local patterns that are
unique to our driving. This achieved a 66% mean accuracy in distinguishing
one driver from all the others, and a 15% accuracy when performing multiclass
classification on all 33 drivers. Both are satisfying indicators that driver infer-
ence is in fact possible using only CAN bus data. These results were achieved
despite the fact that the drivers did not take the same route (as opposed to
other’s work [1] [2]). They are also commendable for the fact that the predic-
tions were made based only on 10 second long samples.

Furthermore, I have shown significant results in predicting the driver’s gen-
der (71%), age (56%) and experience (53%). This tells us that CAN bus data
does not only potentially identify, but also contains personal information on that
person. The GDPR imposes strict regulations regarding data which can profile
a person, and thus CAN data should be handled with the utmost precaution.
Therefore it is the duty of car companies to properly inform the drivers on what
kind of data they are collecting and potentially sharing with 3rd parties. An
alternate solution could be to anonymize the data. However, research shows
that it is rather hard to anonimyze high-dimensional data such as this [20].

Future work could include building a more accurate (yet scalable) end-to-end
model, tested on an even larger pool of drivers. Another challenging problem
would be to make the same kind of predictions based only on raw CAN logs.
It is often the case that we don’t know where (on which byte) the individual
sensor signals travel (car manufacturers like to keep it secret for security rea-
sons). However this would bring about its own challenges, like how do you tell
the relevant time series apart from hundreds of irrelevant ones, while keeping
everything scalable? This, and many more questions wait to be answered.

29

References

[1] Miro Enev et al. “Automobile Driver Fingerprinting”. In: Proceedings on
Privacy Enhancing Technologies 2016.1 (Jan. 2016), pp. 34–50. doi: 10.
1515/popets-2015-0029.

[2] David Hallac et al. “Driver identification using automobile sensor data
from a single turn”. In: 2016 IEEE 19th International Conference on In-
telligent Transportation Systems (ITSC) (2016). doi: 10.1109/itsc.2016.
7795670.

[3] Zhicheng Cui, Wenlin Chen, and Yixin Chen. “Multi-Scale Convolutional
Neural Networks for Time Series Classification”. In: (2016). arXiv: 1603.
06995 [quant-ph].

[4] Arthur Le Guennec, Simon Malinowski, and Romain Tavenard. “Data
Augmentation for Time Series Classification using Convolutional Neu-
ral Networks”. In: ECML/PKDD Workshop on Advanced Analytics and
Learning on Temporal Data (2016).

[5] Chiyomi Miyajima et al. “Study on Driver Identification Method Using
Driving Behavior Signals”. In: (2006). doi: 10.1093/ietisy/e89d.3.1188.

[6] Sang-Hyeun Park and Johannes Fürnkranz. “Efficient Pairwise Classifi-
cation”. In: Machine Learning: ECML 2007 Lecture Notes in Computer
Science (2007), pp. 658–665. doi: 10.1007/978-3-540-74958-5_65.

[7] Umberto Fugiglando et al. “Characterizing the ”Driver DNA” Through
CAN Bus Data Analysis”. In: CarSys ’17 Proceedings of the 2nd ACM
International Workshop on Smart, Autonomous, and Connected Vehicu-
lar Systems and Services (Oct. 2017), pp. 37–41. doi: 10.1145/3131944.
3133939.

[8] Yi Zheng et al. “Time Series Classification Using Multi-Channels Deep
Convolutional Neural Networks”. In: Web-Age Information Management
Lecture Notes in Computer Science (2014), pp. 298–310. doi: 10.1007/

978-3-319-08010-9_33.

[9] Zhiguang Wang, Weizhong Yan, and Tim Oates. “Time series classifica-
tion from scratch with deep neural networks: A strong baseline”. In: 2017
International Joint Conference on Neural Networks (IJCNN) (2017). doi:
10.1109/ijcnn.2017.7966039.

[10] Kaiming He et al. “Deep Residual Learning for Image Recognition”.
In: 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (June 2016). doi: 10.1109/cvpr.2016.90. url: http://dx.doi.
org/10.1109/CVPR.2016.90.

[11] Hassan Ismail Fawaz et al. “Deep learning for time series classification: a
review”. In: (Sept. 2018). arXiv: 1603.06995.

[12] Xiaopeng Xi et al. “Fast time series classification using numerosity re-
duction”. In: Proceedings of the 23rd international conference on Machine
learning - ICML 06 (2006). doi: 10.1145/1143844.1143974.

[13] Anthony Bagnall et al. “Time-Series Classification with COTE: The Col-
lective of Transformation-Based Ensembles”. In: IEEE Transactions on
Knowledge and Data Engineering 27.9 (2015), pp. 2522–2535. doi: 10.

1109/TKDE.2015.2416723.

30

https://doi.org/10.1515/popets-2015-0029
https://doi.org/10.1515/popets-2015-0029
https://doi.org/10.1109/itsc.2016.7795670
https://doi.org/10.1109/itsc.2016.7795670
https://arxiv.org/abs/1603.06995
https://arxiv.org/abs/1603.06995
https://doi.org/10.1093/ietisy/e89–d.3.1188
https://doi.org/10.1007/978-3-540-74958-5_65
https://doi.org/10.1145/3131944.3133939
https://doi.org/10.1145/3131944.3133939
https://doi.org/10.1007/978-3-319-08010-9_33
https://doi.org/10.1007/978-3-319-08010-9_33
https://doi.org/10.1109/ijcnn.2017.7966039
https://doi.org/10.1109/cvpr.2016.90
http://dx.doi.org/10.1109/CVPR.2016.90
http://dx.doi.org/10.1109/CVPR.2016.90
https://arxiv.org/abs/1603.06995
https://doi.org/10.1145/1143844.1143974
https://doi.org/10.1109/TKDE.2015.2416723
https://doi.org/10.1109/TKDE.2015.2416723

[14] Hoang Anh Dau et al. The UCR Time Series Classification Archive.
https://www.cs.ucr.edu/~eamonn/time_series_data_2018/. Oct. 2018.

[15] Anthony Bagnall et al. “The great time series classification bake off: a
review and experimental evaluation of recent algorithmic advances”. In:
Data Mining and Knowledge Discovery 31.3 (2016), pp. 606–660. doi:
10.1007/s10618-016-0483-9.

[16] Y. LeCun et al. “Handwritten digit recognition with a back-propagation
network”. In: Advances in Neural Information Processing Systems (NIPS
1989). Ed. by David Touretzky. Vol. 2. Denver, CO: Morgan Kaufman,
1990.

[17] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “ImageNet Clas-
sification with Deep Convolutional Neural Networks”. In: Advances in
Neural Information Processing Systems 25. Ed. by F. Pereira et al. Cur-
ran Associates, Inc., 2012, pp. 1097–1105. url: http://papers.nips.cc/
paper/4824-imagenet-classification-with-deep-convolutional-neural-

networks.pdf.

[18] Saining Xie and Zhuowen Tu. “Holistically-Nested Edge Detection”. In:
The IEEE International Conference on Computer Vision (ICCV). Dec.
2015.

[19] Vinod Nair and Geoffrey E. Hinton. “Rectified Linear Units Improve Re-
stricted Boltzmann Machines”. In: ().

[20] Charu C. Aggarwal. “On k-Anonymity and the Curse of Dimensionality”.
In: Proceedings of the 31st International Conference on Very Large Data
Bases, Trondheim, Norway, August 30 - September 2, 2005. 2005, pp. 901–
909. url: http://www.vldb.org/archives/website/2005/program/paper/

fri/p901-aggarwal.pdf.

31

https://www.cs.ucr.edu/~eamonn/time_series_data_2018/
https://doi.org/10.1007/s10618-016-0483-9
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://www.vldb.org/archives/website/2005/program/paper/fri/p901-aggarwal.pdf
http://www.vldb.org/archives/website/2005/program/paper/fri/p901-aggarwal.pdf

	Introduction
	Motivation
	Problem Definition
	Challenges
	Main Results
	Organization

	Related Work
	Background
	Time Series Classification (TSC)
	Convolutional Neural Networks (CNNs)
	CAN bus data

	Data
	Collected Data
	Preprocessing

	Model
	Model structure
	Classifiers
	Driver Identification
	Personal Attribute Inference

	Evaluation
	Evaluation Metrics
	1vsALL
	ALLvsALL
	Personal Attribute Inference

	Conclusion and Future Work
	References

