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Abstract

As a result of the recent technological advancements in computation, programmable controllers
are now used extensively even in critical domains such as automotive embedded systems.
Moreover, in the era of “intelligent” devices, programs are not centralized anymore – for
example, the embedded controller directly actuating the vehicle is in close relation with the
electronic control unit, which is in turn communicating with services in the cloud. The
complexity of such heterogeneous systems may be very high. Model-driven development is
widely used to handle the complexity because it supports the developer in focusing on the
logical aspects of the problem instead of the technical details.
In this work, we present a modeling tool to answer the following challenges inherent in the
systems characterized above.

1. Component-based architecture: the targeted systems are typically composed of smaller
components – therefore a suitable modeling language shall support hierarchical model-
ing.

2. Communication: components usually communicate by means of logical signals or mes-
sages – communication shall happen through well-defined ports and interfaces.

3. Distributed components: components often do not constitute a single program, but
several pieces of software that run on different pieces of hardware – the resulting het-
erogeneous communication requires different compositional semantics.

4. Quality and correctness: often, these systems (or parts of them) perform critical tasks
where correct operation is fundamental – therefore, their design must be sound and
correct, which can be supported by validation and verification, while the quality of the
implementation can be ensured with automatic code generation and testing.

In this work we propose the gamma framework, which is a modeling tool to build hierar-
chical, component-based, reactive systems. Elementary components can be defined in the
built-in formal modeling language as well as in third-party tools integrated with gamma (e.g.,
Yakindu Statechart Tools). The framework supports three types of semantics for compo-
sition: asynchronous-reactive semantics for the proper abstraction of distributed communi-
cation, synchronous-reactive for components of a single program or for highly synchronous
communication, and cascade for the logical decomposition of a single function. The modeling
process is supported by live validation both on the component and system level. Model check-
ers (such as UPPAAL), integrated into the framework and hidden from the user, can be used
to ensure the correctness of models. The implementation of the design can be automatically
generated from the models, where the quality of the generated code is validated by a set of
automatically generated tests.
The extensive functionality and the possibilities provided by the gamma framework are also
demonstrated through a railway-themed case study.
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Chapter 1

Introduction

Programmable controllers are getting more and more widespread in several industrial fields,
such as automotive, railway and avionics domains. Such systems are generally not centralized;
they are composed of heterogeneous components that are distributed among several computing
nodes. Therefore, the components communicate and coordinate the actions of each other
through some communication network. They are often also capable of obtaining information
and reaching computing resources (e.g., cloud computing) via the Internet.
As the complexity of such systems increases, new methodologies and tools are required to
supervise the design, implementation and analysis of interacting components. The model-
driven development approach has been adopted to simplify the development process, aiming
to focus on the abstract representations of the activities and knowledge that are important in
a certain domain, rather than low-level computing concepts.
Programmable controllers are often considered as reactive systems. State-based formalisms
are well-suited for the design of reactive systems, although the resulting models can be com-
plicated and hard to maintain. This problem can be simplified by composition techniques, i.e.,
hierarchical models are built using smaller and less complex components. The interaction be-
tween the components has to be supported by well-defined interfaces and ports. Furthermore,
components of a single system often perform various tasks, which might require different com-
positional semantics. As such systems (or some parts of them) might execute critical tasks, it
is important to ensure the correctness of their design. This can be supported with verification
and validation techniques, whereas correctness of the implementation of the system can be
ensured with automatic source code generation.
This work introduces the gamma framework, a modeling tool that aims to support the afore-
mentioned needs, i.e., the development of component-based, hierarchical reactive systems.
The framework is open to integration with modeling tools (currently Yakindu Statechart
Tools) supporting the definition of state-based models, which can be compiled into gamma
statecharts. Based on the gamma statechart formalism, the formal composition language of
gamma can be used to define hierarchical composite systems. A composite system can be
defined according to one of the following semantics.

• Asynchronous-reactive: Such models represent components that are executed inde-
pendently. Asynchronous components communicate with each other by means of mes-
sages and message queues. This semantics is convenient for the design of communicating
microservices running in different processes.

• Synchronous-reactive: A synchronous model represents a coherent unit with a single
functionality consisting of concurrently (but not independently) running components.
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Contained components communicate in a synchronous manner using signals. This se-
mantics is suitable for the design of HW-dependent, programmable controllers.

• Cascade: Cascade components are special synchronous components where the execu-
tion of the contained components is sequential: every component receives the output of
the previous ones. This model is beneficial for the design of units with a pipeline-like
execution: each contained component can be considered as a filter that processes incom-
ing signals and forwards them to subsequent filter units. Therefore, this model supports
the design of adapters, runtime monitors and units with a batch-like execution.

The design of both elementary gamma statecharts and composite systems is supported by
validation rules that provide feedback to the user about their models at design time. The im-
plementation process is facilitated by automatic code generation. The generated source code
conforms to the formal compositional semantics. Formal verification of composite models is
also supported by the integration of the UPPAAL model checker. The whole model check-
ing process is hidden from the user with a GUI that facilitates the construction of formal
requirement queries.
One of the main priorities of the gamma project is to provide a freely available and extensible
framework with model-based technologies to support the research and development of complex
reactive systems. The architecture of the gamma framework has been designed considering
extensibility, so that researchers can easily integrate their work with the existing components
of the framework. Such extensions may include both engineering and formal modeling tools.

1.1 Project Timeline

This section briefly summarizes the evolution and the planned future of the gamma project
to put this work in context.

Immediate antecedents The initial research and development goal leading to the design
of the gamma framework was the desire to formally verify statechart models built in the
open-source Yakindu Statecharts Tools. To achieve this, a two-step model transformation to
UPPAAL has been implemented using the semi-formal statechart representation of another
project of the research group as the intermediate representation. This transformation is still
the part of the framework core.

The first prototype of the Gamma framework The semantical inconsistencies of
Yakindu and the need for integrating code from multiple statechart models (in the MoDeS3

project1) led to the design of the first version of the gamma framework. The goal was to
enable the composition of communicating statecharts to build composite systems. A heavy
emphasis of the initial research goal – i.e., formal verification of the models – led to a syn-
chronous compositional semantics that is restrictive enough to make model checking feasible,
while still enabling useful communication patterns between the components. The design and
implementation of the framework was presented in a Scientific Students’ Association Report
in 2016 [16].

Formalization of the synchronous compositional semantics The previously implicitly
defined semantics of the composition (defined by means of model transformations) has been
formally defined in a conference paper [18].

1https://inf.mit.bme.hu/research/projects/modes3
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Hierarchical composition and ports – Gamma 1.0 The next phase included the in-
troduction of hierarchical composition, i.e., composite systems could be used as components
of another composite system. Along with this improvement, the concept of ports and in-
terfaces were introduced to define the “signature” of components and couple related events
into well-defined points of service. A part of this work has been presented in the Bachelor’s
Thesis of the author [17], also including the back-annotation of the verification results both
in a textual format and as tests for the generated code (i.e., witness behaviors returned by
the model checker were transformed to use the concepts of the original model, and were used
to generate tests). The port system and improvements of the verification process is presented
in this work for the first time. A brief description of previous work is presented in Chapter 3.
This version of the gamma framework is publicly available along with a tutorial.2

Gamma 2.0 In the current phase of the project, our goal is to broaden the modeling power
of composition by introducing the cascade and asynchronous composition semantics. We are
now focusing more heavily on functionality and expressive power, replying to the various
feedbacks given to the first version. This work addresses the main challenge: the design of
the syntax and precise semantics of the extended composition language. This will serve as
the pivot for a full-fledged implementation of the code generator for the new compositional
modes as well as for their transformation to the formal language of UPPAAL.

Built-in code generation An ongoing work supporting the current version of the gamma
framework is the design and implementation of a built-in code generator for statechart models.
Currently, the framework relies on external code generators. Completing this project will
enable the direct usage of the statechart formalism of gamma.

Side projects There are many side projects building on the gamma framework. They include
code generation to distributed controllers (with network communication), a simplified, but
rigorously validated statechart formalism, and an extension that enables the specification of
contracts for the ports by means of sequence charts (with validation and runtime monitoring).

Gamma 3.0 Once the semantical improvements are finalized and included in the code gen-
eration and verification functionalities, we plan to improve the already extensible architecture
of the gamma framework and introduce new modeling formalisms, verification tools, code
generators (e.g., to C/C++) and potential model reductions.

1.2 Overview

The rest of the work is structured as follows. Chapter 2 presents the theoretical concepts
behind the gamma framework and three related modeling tools. Chapter 3 describes the state
of the gamma frameworkfrom where the current work started. Our main contribution, i.e., the
extension of the gamma language and the code generator, is introduced in Chapter 4. Chapter
5 presents the architecture and the employed technologies of the gamma framework as well as
the integration of third-party modeling languages. The applicability of the gamma framework is
demonstrated through a railway-themed case study in Chapter 6. Finally, Chapter 7 provides
concluding remarks and plans for future work.

2http://gamma.inf.mit.bme.hu/
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Chapter 2

Background

This chapter presents the notions and ideas necessary to understand the rest of the work.
As a motivation of the gamma framework, we start with the introduction of the model-driven
software development paradigm, which is the approach in which the framework has been
conceived. Then, we describe the state machine formalism that we use to represent models.
Next, we introduce the concept of composite reactive modeling, which is the basis of this work.
Finally, we present existing composition modeling solutions related to the gamma framework.

2.1 Modeling

Model is a primary concept in several fields of study. Generally, in software and system
engineering the term model is used in the following sense: a model is a simplified image of an
element of the real or a hypothetical world (the system), that replaces the system in certain
considerations. A model is always based on an original subject (the system) highlighting some
of its features while neglecting some others. This way the model becomes competent to be
used in the place of the original element with respect to a certain purpose [10].
Models can be either structural or behavioral. Structural models (class diagram, component
diagram, etc.) emphasize structural aspects of the system with respect to managed data or
to architecture. On the other hand, behavioral models (activity diagrams, statecharts, etc.)
focus on the dynamic behavior of the system by describing how they are executed.

2.1.1 Model-Driven Software Development

Model-driven software development (MDSD) is a software development methodology that
uses models as the primary artifact and main information source in each phase of the devel-
opment process [33]. By putting models in focus, the MDSD approach aims to 1) enhance
productivity via recommendations and best practices in the application domain, 2) simplify
the design process by using patterns and early validation with modeling tools and 3) maximize
compatibility and ease communication between teams and individuals working together by
standardizing terminology and using both general purpose and domain-specific languages. As
a consequence, the MDSD approach should reduce the cost of development and increase the
quality of the designed software [10].
Defining it this way, MDSD is a rather general concept aiming to put models into the focus in
the software development process while heavily relying on modeling technologies. There are
several subsets of MDSD giving more concrete guidelines on the development of software sys-
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tems recommending modeling techniques and technologies, such as model-driven architecture
[26] and model-centric software development [35].

2.1.2 Modeling Languages

Creating precise, interpretable models requires an environment that defines the rules of model
creation. This environment is provided by modeling languages.

Definition 1 (Modeling language). A modeling language consists of the following ele-
ments:

• Metamodel: a model defining the building blocks of the modeling language as well as
their relationships.

• Concrete syntax: a set of rules defining a graphical or textual notation for the element
and connection types defined in the metamodel.1

• Well-formedness constraints: a set of constraints that models have to meet in order to
be deemed valid in the modeling language.

• Semantics: a set of rules that define the meaning of the element and connection types
defined in the metamodel. Semantics can be classified as follows:

– Operational: operational semantics defines what should happen during execution.
– Denotational: denotational semantics is given by translating concepts in a modeling

language to another modeling language with a well-defined semantics. Thus, the
meaning of the modeling elements are implicitly given.

Regarding the portrayal of models, modeling languages can be graphical (UML, Ptolemy II)
or textual (C#, Verilog). There are several modeling languages (Yakindu, BIP) that employ
graphical and textual notations side by side, exploiting both of their advantages.
As for application domains, modeling languages can be partitioned into domain-specific
(AADL, Autosar, MATLAB Stateflow) and general purpose modeling languages (UML,
SysML, Petri nets). Domain-specific modeling languages are tailored to a certain applica-
tion domain, e.g., avionics, automotive, business modeling, whereas general purpose modeling
languages are broadly adaptable across application domains and lack specialized features for
a particular domain. The line is not always sharp between the two, as a modeling language
might have specialized features for a certain domain but can also be applicable in other fields.

2.2 State Machine Formalism

The main functionality of the gamma framework presented in this work is supporting the
composition of separately defined statecharts. This section briefly introduces the theory of
state machines – a formalism on which the widely-used statechart formalism is based.
State machine is a mathematical model of computation to describe the behavior of a system,
component or object in an event-driven way [3]. Formally, a deterministic, fully specified
finite state machine is a 5-tuple: M = (S, s0, I, O, T ) where:

• S = {s1, s2, · · · , sn} is a finite set of states, i.e., stable situations of the state machine.
s0 ∈ S is the initial state.

1A single modeling language can have multiple syntaxes.
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• I is a finite set of input events that are stimuli from the environment and O is a finite
set of output events that are stimuli for the environment such that I ∩O = ∅.

• T : (E × S) → (S × O) is the fully defined transition function that represents changes
of states in response to input events and generating output events meanwhile.

There are various extensions to the state machine formalism that facilitate the compact mod-
eling of hierarchical and concurrent systems [23]. The most relevant one to this work is
statecharts [22], which also supports auxiliary variables in addition to supporting concur-
rency and state refinement. Statecharts are generally represented graphically, although there
are modeling languages, such as gamma, that support their textual description. The graphical
representation of the most important elements of statecharts are depicted by Figure 2.1.

Figure 2.1: The graphical representation of the most important ele-
ments of statecharts.

Regions contain a set of states which are situated on a single hierarchy level. Regions are
represented by coherent areas, whereas states are represented by rounded rectangles. Com-
posite states can contain one or more regions that contain additional states. Each region has
a single entry node, which is represented as a black circle. The initial state of a particular
region is denoted by the transition coming out of the entry node. Transitions are represented
as arrows. Events associated to transitions are represented with their names.

2.3 Composite Reactive Modeling

Beyond a certain complexity, systems cannot be designed without composition techniques.
However, for a well-defined system behavior, the semantics of composition needs to be defined
precisely by means of amodel of computation. A model of computation is a set of rules defining
1) what constitutes a system component, 2) the government of concurrent execution of system
components and 3) the communication between system components [11]. A semantic domain
is the implementation of a certain model of computation [11].
The rest of the section introduces some models of computation related to the gamma frame-
work. Note that some of these models might have potential variants, the descriptions given
here cannot be considered universal.

Dataflow In the dataflow model a system component communicates with its environment
via input and output message queues. Message queues contain tokens that can be considered
as messages of certain types. The behavior of a single component comprises of a sequence of
firings. A single firing is initiated in response to a given combination of available input tokens,
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i.e., the arrival of particular data serves as trigger for a component. A firing consumes the
corresponding input tokens and produces a defined combination of output tokens.
An advantage of the dataflow domain is that it provides opportunity for statical analysis
of deadlock-freedom and boundedness. Schedulings of components can also be computed
statically [14]. Dataflow models are convenient for the representation of streaming systems,
where sequences of data flow in definable patterns between system components. For example,
signal processing systems, including video and audio systems are especially good application
domains. The execution semantics is usually defined in terms of Petri nets [32].

Asynchronous-Reactive In the asynchronous-reactive model, system components repre-
sent concurrent processes that communicate with each other using message queues [27]. Writ-
ing to the message queues always succeeds instantly, whereas reading from an empty queue
blocks the reader process. This nonblocking-write, blocking-read approach guarantees the
determinism of the model [24]. Message delivery is assumed to be dependable, therefore, the
sender does not receive nor expect any confirmation (send and forget approach). Messages
arrive into the target message queue in the same order they are sent. A single read opera-
tion always retrieves a single message from the queue. Additionally, prioritized queues can be
introduced to reorder the incoming messages and prefer the urgent ones in the read operation.
The asynchronous-reactive model describes concurrent processes whose executions are not
depending on external triggers, but are constantly running. Therefore, there is no guarantee
for the execution time and execution frequency of system components. It can be considered as
a generalization of the dataflow model where system components are concurrently executing
processes rather than components reacting to certain incoming token combinations [29].

Synchronous-Reactive The synchronous-reactive model has a notion of time and follows
the semantics of synchronous programming languages [8, 19, 13]. In this model system compo-
nents communicate with each other using signals which are transmitted and received through
ports. Furthermore, the execution is driven by a clock which emits ticks (clock signals). Sys-
tem components are executed in response to the clock signals. Upon execution, a component
reads the signals from its incoming ports and transmits signals through its outgoing ones.
Generally, components can be considered as functions mapping values from their incoming
ports to their outgoing ports depending on their current state. The output signals are sus-
tained until the next tick. The input signals are sampled only upon ticks, changes of signals
in between ticks are ignored. Contrary to dataflow and synchronous-reactive models, signals
can be absent and components are also able to react to such cases and even to a combination
of signals. Since in this model ticks serve as triggers of execution, a combination of signals
can be considered as guard expressions of certain activities of components.
The synchronous-reactive model is convenient in situations with complicated control flow,
where a system component might take different actions depending on whether a signal/mes-
sage is present or not. This model is able to handle these situations without possibly non-
deterministic communication using synchronization instead. Therefore, it is excellent for the
modeling of logical circuits. On the other hand, the synchronous-reactive model is considered
“less concurrent” than dataflow or asynchronous-reactive models, as the components are ex-
ecuted in a lockstep fashion for every clock signal. Consequently, such models are better to
describe a single-threaded component in a logically decomposed way.

7



2.4 Related Work

There are several software tools that aid the process of system design by supporting the
composition of components. This section introduces three frameworks that had influence on
the design of the gamma framework: Ptolemy II, BIP and MATLAB/Simulink Stateflow.

2.4.1 Ptolemy II

Ptolemy II2 [14, 11] is an open-source modeling framework that supports the modeling and
simulation of hierarchical composite systems with various component implementations and
interaction semantics. It is being developed by researchers at UC Berkeley. Ptolemy II is par-
ticularly strong at supporting simulations with component-based designs of diverse semantics.
Components, which are called actors in this framework, can be regarded as concurrently exe-
cutable software modules. Furthermore, they are able to interact with each other by sending
messages through interconnected ports. Ptolemy II models are created by the composition of
actors, which is supported on multiple hierarchy levels.
Actors are independent software components whose interactions can be executed with different
semantic variations, defined by models of computation (MoC). Ptolemy II offers numerous
MoCs that rigorously define the interaction between actors.

• In process networks (PN) actors represent concurrent processes, communicating by send-
ing messages to the message queues of each other.

• The rendezvous domain is similar to PNs, but communication is achieved via synchro-
nization (also known as handshake). When a process arrives to a synchronization point,
it has to wait for the other participant to be able to synchronize.

• Synchronous dataflow (SDF) is a type of dataflow model where actors are executed when
their required data inputs (tokens) become available. They consume a fixed amount
of tokens from particular input ports and produce a fixed amount of tokens to the
corresponding output ports.

• In the synchronous/reactive (SR) domain execution follows ticks of a global clock. The
actor implements a stateful function that maps the values of its input ports to the values
of its output ports at each tick.

• In the discrete events (DE) domain actors use events for communications, which are
placed on a time line. Each event has a time stamp and a value. Actors process events
in chronological order.

• The continuous-time domain models ordinary differential equations. Every connection
in this domain represents a continuous-time function.

The implementation of a MoC is called director in Ptolemy II. Each level of hierarchy in a
model must have a single director that specifies the MoC. However, directors of various hierar-
chy levels may have different types. Still, the composition of such heterogeneous components
adheres to a rigorous semantics which is a very powerful facility of Ptolemy II. Furthermore,
Ptolemy II offers additional compositional possibilities: actors can be combined with finite
state machines, which results in modal models [28]. In these cases each actor is associated to
a single state serving as its refinement. This way, the prevalent actor implementation inside
a component can dynamically change during runtime where the possible changes are defined

2http://ptolemy.eecs.berkeley.edu/
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by the particular state machine (with its active state) and the associated actors. Additional
notable composition modes are as follows: the (hierarchical) composition of state machines
and continuous-time models results in a hybrid system [31]; by composing the SR models with
state machines we get StateCharts [30]. Ptolemy II supports the simulation of models.
The idea of mixing well-defined MoCs that control the interaction of components heavily in-
fluenced the gamma framework that aims to support synchronous and asynchronous reactive
models. Compared to Ptolemy II, the gamma framework offers source code generation func-
tionalities that is not supported by the latest Ptolemy II versions3. What is more, the gamma
framework supports the formal verification of certain composite models, which is not available
in Ptolemy II.

2.4.2 BIP

BIP4 [9, 2, 4] (Behavior, Interaction, Priority) is a general purpose modeling framework
that supports the formal definition of heterogeneous systems. It is being developed by the
VERIMAG academic research laboratory. For the definition of system models BIP offers a
design flow5 that aims to ensure maximum consistency between the consecutive design steps.
The design flow is supported by the BIP language as well as a comprehensive tool set [6, 15].
The BIP language supports the layered definition of hierarchical composite systems [37],
defining three layers. The lowest layer specifies the behavior of system components, atomic
or compound, defined using a variant of the Petri net formalism extended with variables
and functions described in C. Ports are also defined in this layer. The intermediate layer
consists of a set of connectors linking ports together, thus defining the interactions between
transitions of contained components. The top layer includes a set of dynamic priority rules
between interactions and can be used for the specification of scheduling policies. This layered
architecture provides a clean separation of internal behavior (lowest layer) and communication
(intermediate and top layer) in compound components.
BIP defines a clear operational semantics that describes the behavior for both atomic and
compound components. The behavior of atomic components are based on a rigorous transition
system model, whereas the behavior of compound components is described as a composition
of the behaviors of its (atomic or compound) components [7].
The BIP design flow is backed up by a comprehensive tool set that implements numerous func-
tionalities. The tool set contains several transformers supporting the conversion of third-party
models (MATLAB/Simulink, AADL, C, GeNoM) to BIP models, which is called language em-
bedding by the developers. Furthermore, there are transformers aiming to transform various
BIP models into other BIP models, such as system models to distributed system models. The
tool set also contains code generators that are able to produce C/C++ or Java source code
from BIP models. Finally, formal verification of invariant properties and deadlock-freedom is
also supported. Recently, an online design studio has been released for BIP which supports
the graphical edition of BIP models as well as simulation and consistency check.6

BIP influenced the gamma framework in several aspects, e.g., supporting multiple design lan-
guages, hierarchical composition, the generation of source code and formal verification ca-
pabilities. The most significant difference is that the gamma framework puts the focus on
statecharts, instead of Petri nets and C-like functions, which we believe to be a more engineer-
friendly modeling formalism.

3http://ptolemy.eecs.berkeley.edu/ptolemyII/ptIIfaq.htm#CodeGen
4http://www-verimag.imag.fr/Rigorous-Design-of-Component-Based.html?lang=en
5http://www-verimag.imag.fr/The-BIP-Design-Flow.html?lang=en
6The design studio is available at https://editor.webgme.org/.
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2.4.3 MATLAB/Simulink Stateflow

Stateflow7 [25] is a commercial framework for the modeling and simulation of reactive systems.
It can be considered as the de-facto standard for compositional state-based modeling in the
domain of safety critical embedded system design [12]. In addition to supporting the logical
design of single components, Stateflow can integrate components using various scheduling
algorithms, simulate composite models, validate system models and generate source code.
Stateflow supports the definition of component behavior with two formalisms: statecharts
and flowcharts. The statechart language is a variant of the hierarchical finite state machine
notation introduced by Harel [22], supporting hierarchical representation, orthogonal regions,
history states and state activities. On the other hand, the flowchart language, which supports
the description of functions, has more unique characteristics. Flowcharts describe internal
behavior of states. A flowchart consists of junctions that are connected with transitions.
Transitions can contain guards and actions. Actions can contain MATLAB and Simulink
functions or even custom C code. Contrary to states, a junction is left immediately after it is
entered. A single execution of a flowchart lasts until a terminal junction (a junction without
outgoing transitions) is reached or all guards of the outgoing transitions of the junction are
evaluated to false. The execution of flowcharts, if their containing states are active, can be
initiated by certain triggers, such as clock ticks or entry/exit events.
One of the main merits of the Stateflow framework is that it supports the combination of
statechart diagrams with flowchart diagrams in a versatile way. A single execution of the
Stateflow model, called a step, is as follows:

1. Determine the active state.

2. Examine whether an outgoing transition of the state is enabled. If so, fire it and the
step ends.

3. Otherwise execute internal actions (flowcharts, then during actions).

4. Repeat this process recursively for any internal state that is active.

Formalizations of the Stateflow operational semantics can be found in [21, 36], whereas [20]
introduces a denotational semantics.
After creating a statechart model, it can be converted into an atomic component, called
subchart, and reused in composite models. Additionally, an interface has to be defined for
the subchart that specifies the events that can be sent to or received from the adjacent
subcharts. In addition to subcharts, composite models consist of links that are responsible
for the propagation of events between subcharts and a scheduling algorithm that specifies
the execution order of components. Components are activated on event reception – they
process the event as described above, potentially generating other events and activating other
components. The scheduling algorithm can be defined using conditional and time-based logic,
which support event-based and time-based operators (every, at, before and after). These
operators can be used for the measurement of time and the counting of event occurrences.
Thus, the need for separate timer and counter components are eliminated [1].
Stateflow provides additional functionalities that are very useful for system design, system val-
idation, verification and implementation. Composite system models can be simulated, which
involves highlighting active states, firing transitions and displaying the values of variables [34].
The Simulink Verification and Validation add-on supports traceability during development,
which includes the linking of Stateflow objects to requirement specifications defined in IBM

7https://www.mathworks.com/products/stateflow.html
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Rational DOORS. Additionally, this add-on supports the static analysis of Stateflow models,
checking whether the particular model is compliant to certain standards. Furthermore, design
errors can be detected using the Design Verifier tool, which builds on formal methods. Finally,
HDL, PLC or C/C++ source code can be generated directly from the composite models using
add-on code generator products.
The concept of composing statecharts is one of the basic functionalities of the gamma frame-
work, therefore we consider the work of Stateflow very important as the de-facto standard of
the domain. On the other hand, Stateflow is a commercial product, which makes it difficult
to study and extend it, which is imperative in research context. Moreover, the gamma frame-
work aims to support multiple modeling statechart-like languages as front-ends, realizing the
interactions of heterogeneous models. Contrary to our goal, Stateflow – as most commercial
tools do – strives to be self-contained, limiting the extensibility of the modeling formalisms.
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Chapter 3

The Gamma Framework

The gamma framework introduced in this work is designed to support the model-driven devel-
opment of safety-critical systems. It is based on the framework presented in the BSc thesis
of the author [17], but since then, it has been extended with numerous fixes and improve-
ments addressing both functionality and user-friendliness. In this section we briefly introduce
the gamma language, consisting of multiple parts, as well as additional functionalities of the
gamma framework since the results and solutions of this work heavily rely on them.

3.1 Overview

The goal of the gamma framework is to support the model-based design, implementation,
validation and verification of reactive systems (see Figure 3.1). All functionalities rely on
the gamma statechart language (introduced in Section 3.2), which provides a common basis
regarding model elements and semantics. Statecharts created with the gamma statechart
language can be composed using the gamma composition language (introduced in Section
4.1). The gamma framework supports system design by the integration of high-level engineering
modeling languages as software designers like to work on a high-abstraction level (Section 3.3).
Validation is supported by well-formedness constraints to give feedback to designers on the
quality of their models at runtime (Section 3.4). Furthermore, implementation is facilitated
by automatic source code generation from composition models (Section 3.5). Verification is
supported by the integration of formal modeling languages, thus enabling model checking
facilities. The framework also supports the generation of test cases (Section 3.6).

3.2 The Gamma Statechart Language

The huge abstraction gap that separates the design and formal modeling domains, both sup-
ported by the gamma framework, needs to be bridged by an intermediate language. For this
purpose we designed the gamma statechart language. Generally, this language provides a
common basis for all functionalities of the gamma framework. Furthermore, the integration of
additional engineering and formal languages is facilitated by this language.

3.2.1 Constraint, Statechart and Interface Language

The gamma language has four distinct parts: constraint, statechart, interface and composition.
Each part is in close relation with the others and have certain classes that serve as interaction
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Figure 3.1: The functionalities of the gamma framework.

points between them.1 Figure 3.2 depicts the dependencies between the parts of the gamma
language. The following sections briefly introduce the constraint, statechart and interface
languages of gamma. As the main contribution of this work is the design of the composition
language it is presented separately in Chapter 4.

Figure 3.2: Dependencies between the parts of the gamma language.

Constraint

The constraint part is the basis of the metamodel that does not depend on any other parts. It
supports the definition of constraints, which is a general concept for type definitions, variable,
structure, function declarations and the specification of expressions. Integer, natural, boolean,
real and enumeration types are supported by the language. Furthermore, there are more
than forty classes facilitating the specification of expressions including arithmetic, logical and
assignment expressions. The functionality of the constraint part of the metamodel is needed
to declare and handle variables in statecharts. Table 3.1 summarizes the supported operators
of the constraint language.

1Such classes are going to be marked with a dark gray background in class diagrams in the following
subsections.
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Table 3.1: Brief description of the supported operators of the constraint language

Prec. Name Operator Description Grouping
1 Implication imply implication Right-to-left
2 Disjunction or logical OR N-ary
3 Conjunction and logical AND N-ary
4 Negation not logical NOT Right-to-left
5 Equality =, /= equality/inequality Right-to-left
6 Relational <, >, <=, >= comparison operators Left-to-right
7 Addition +, - addition, subtraction Left-to-right
8 Scaling *, / multiplication, division Left-to-right
9 Modulo mod modulo Left-to-right
10 Euclidian division div Euclidean division Left-to-right
11 Sign +, - unary plus, unary minus Left-to-right

Interface

The interface part supports the definition of interfaces, which serve as contracts between
interacting components of gamma models. These contracts apply to the ability of dispatching
and receiving certain events. Events represent occurrences of some importance. Figure 3.3
depicts the interface part of the metamodel. StatechartInterfaces is the root element, and is
responsible for containing interfaces. Interfaces contain event declarations, which contain the
corresponding events, and also specify their directions. Directions can be in, out or in-out;
the latter represents events that can be used as both in and out events. Events can contain
parameter declarations, which provide additional information about the corresponding event.
Furthermore, an inheritance relationship is defined between interfaces: an interface inheriting
from other interfaces contains each event declaration of its parents and is permitted to contain
additional ones. This way, a particular interface can be used in each place where its ancestor
is expected. An example interface definition can be seen below.� �
interface Base {

in event baseEvent (param : integer )
}

interface Descendant extends Base {
inout event descendantEvent

}� �

Figure 3.3: The interface part of the gamma metamodel.
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Statechart

The main goal of the gamma statechart language is to support the rigorous design of reactive
systems while providing conventional facilities of modern statechart languages. To support
strictness, a well-defined semantics is needed. The language is given a denotational semantics
described in [17] by mapping gamma model constructions to the elements of a formal timed
automaton implementation. Moreover, the most important elements of the language are
presented in this section.
The statechart language supports the definition of hierarchical state machines with variables.
This part of the metamodel contains about thirty classes; Figure 3.4 depicts its most relevant
part. The following paragraphs introduce the most important elements of the statechart
language.
The syntax of the language is presented with an example statechart Timer. This statechart
measures time when it is in state Measuring. State Measuring can be activated with signal
start; the measurement can be stopped with signal stop. The elapsed time is stored in integer
variable elapsedTime.� �
statechart Timer [

// Port f o r communication
port c on t r o l : provides Control

] {
/// In t eg e r v a r i a b l e
var elapsedTime : integer := −1
// Trans i t i on without t r i g g e r
transition from I n i t i a l to I d l e
// Trans i t i on s with t r i g g e r s
transition from I d l e to Measuring

when c on t r o l . s t a r t / assign elapsedTime := −1
transition from Measuring to Measuring when c on t r o l . t i c k
transition from Measuring to I d l e when c on t r o l . stop
// Main reg i on
region main {

// I n i t i a l s t a t e
i n i t i a l I n i t i a l
// Simple s t a t e
state I d l e
// Simple s t a t e with entry ac t i on
state Measuring {

entry / assign elapsedTime := elapsedTime + 1
}

}
}� �
Statechart definition Statechart definition is the root element of the metamodel. It con-
tains variable declarations, transitions and regions. Regions contained by a statechart defini-
tion are considered as top regions; if there are multiple top regions, they are parallel, i.e., they
are executed simultaneously.

Variable declaration A variable declaration serves as a symbolic name for a particular
value, where this associated value can be changed during execution. The supported types of
variables are presented in the Constraint part the of metamodel. Furthermore, the variables
can be given an initial value using an expression.
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Figure 3.4: The part of the gamma metamodel supporting the defi-
nition of statecharts.

Timeout declaration A timeout declaration can be considered as a timer. Timeout decla-
rations can be set by assigning a time specification to them. When the specified time expires,
a timeout event is emitted, which can serve as a trigger for actions.

Region Region is the container element of the structural elements defined in the following
paragraphs. A region can either be a top region, contained by a statechart or a subregion,
contained by a composite state. A region must contain a single entry state.

Initial state An initial state is used for specifying the first active state of a region after the
region is entered. Only one transition can leave it, the target of which defines the first active
state of the particular region. This particular transition must not contain either triggers or
guards.

History state A history state can be either shallow or deep. Shallow history nodes can be
placed only into subregions of composite states. They are used to remember the last active
state of their parent regions. If the particular region is entered, the last active state of the
particular region will be active again. If the region has not been entered before, the transition
going out of the shallow history node will specify the active state (same behavior as initial
state). Similarly to initial states, the transition must not contain either triggers or guards.
Deep history is similar to shallow history, but it affects each nested subregion transitively as
well.

State A state represents a stable situation of its parent region. It can have entry and
exit events which specify different actions that have to be taken when the state is activated
or deactivated, respectively. Furthermore, invariants can be defined for gamma states that
specify certain conditions that must hold while the particular state is active; if a particular
invariant does not hold, the defined model is considered erroneous. Invariants can be used in
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verification processes. Composite states extend simple states with the ability of containing
one ore more regions. If a particular state contains multiple regions, they are parallel.

Transition Transitions specify state changes in a statechart. A transition has a single source
and a single target. Additionally, a transition can connect state nodes of different regions,
unless these regions are parallel. A transition, if not coming out of an entry state or choice
state, must contain a trigger, and can contain a guard and effects (actions). During execution,
a transition can fire if 1) its source state is active, 2) the event referenced by its trigger is
raised, 3) its guard (if it has one) is evaluated to true and 4) no transition is active on a
higher hierarchy level. Unguarded transitions can fire if the corresponding event is raised. If
multiple transitions are active at a time on the same hierarchy level, one of them is chosen
nondeterministically for firing. A firing transition executes its assigned actions if it has any.
This can be either an update of a variable or the raising of an event.

Choice state Choice states are a syntactic sugar used for splitting transitions. Each time
a choice state is entered, all guards of its outgoing transitions are evaluated according to
the creation order of the transitions. If a guard is evaluated to true, the corresponding
transition fires. Choice states are useful for avoiding “code” duplication (trigger and action
specifications).

Triggers Triggers specify events on which certain executions can be initiated, e.g., a tran-
sition can be fired. As Figure 3.5 depicts, the gamma language supports the definition of
complex triggers. A complex trigger, consisting of simple triggers, can describe the relation
of multiple triggers as logical relations. A complex trigger may initiate a particular execution
only if the corresponding logical relation is evaluated to true. Note that an execution can be
initiated on the absence of a certain event using unary triggers. Furthermore, simple triggers
can be classified into any triggers and event triggers. An any trigger can match any event
that has been raised in a particular execution cycle. An event trigger can refer to one of the
following events:

• Clock tick reference: this event indicates that a particular clock has emitted a tick.

• Timeout event reference: this event indicates that a certain timeout has been reached.

• Port event reference: this event indicates the reception of a particular event through a
particular port.

• Any port event reference: this event indicates the reception of any kind of event through
a particular port.

3.3 Integrating Engineering Models

The integration of engineering models is realized via model transformations which map high-
level models to the intermediate language of gamma. This enables designers to use the func-
tionalities of the gamma framework without the manual mapping of their models. Also, this
approach can support the interaction of various engineering tools with the gamma language as
a base point. For each supported engineering language a separate model transformation needs
to be defined. This is encumbered by the large element set and non-precise semantics of such
engineering languages. Currently, Yakindu is integrated into the framework as an engineering
tool. All transformation rules can be found in [17].

17



Figure 3.5: The part of the gamma metamodel supporting the defi-
nition of triggers.

3.4 Validation

Validation as a static analysis technique takes place on two levels in the gamma framework: on
the level of separate statechart models and during the composition of statechart components.
The former is realized by thirty formally defined graph patterns that specify ill-formedness
constraints. Such constraints include unused variables, race-conditions and enshadowing tran-
sitions. If a statechart model under validation violates any constraints, the designer is notified
runtime with the display of the incorrect element. All validation rules can be found in [17].
The composition of statechart components is also an error-prone process which can be aided
nicely with static analysis techniques. On this level the ill-formedness constraints are also
specified as graph patterns, though their implementation mode differs from the one on the level
of separate statechart models. Ill-formedness constraints on this level include the connection
of ports with invalid types (interfaces) and circular references in the composition hierarchy.

3.5 Code generation

The gamma framework supports automatic source code generation from composite system
models. During this process almost all elements specified in the composition phase is utilized.
Interface implementations are generated from the interfaces defined in the composition phase.
These interfaces are realized by the corresponding port objects of the generated composite
system implementations. As a result, users can reach the generated composite systems through
familiar interfaces.
Composite system implementations wrap the necessary statechart implementations and sub-
ordinated composite systems and construct the required connections (channels) between them.
Thus, wrapped components are able to communicate with each other by dispatching and re-
ceiving gamma event objects. It is essential that the behavior of composite systems conforms
to a rigorous semantics introduced in Section 4.2. Furthermore, composite system implemen-
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tations support the registration of observer objects which can be set to detect certain events.
These observers are notified on the reception of event objects which they can handle according
to their implementations.

3.6 Verification

Formal verification is realized via the integration of formal modeling languages capable of
model checking. Currently, UPPAAL is integrated into the framework as a model checking
tool. The integration is achieved with the use of model transformations mapping composite
system models to the formal domain. The transformation rules can be found in [17]. Similarly
to source code generation, it is important to ensure the generated models of the formal domain
behave according to the semantics of the composite systems. This is achieved with auxiliary
models responsible for the conduction of interactions among components.
To utilize the model checking facilities, temporal logic expressions need to be constructed
that can be considered as the formalizations of requirements. As the specification of such
expressions is cumbersome, their construction is supported by a graphical interface with fillable
patterns. Furthermore, to make the formal verification process even more transparent to the
user, the result of the model checking is back-annotated to the gamma language. This way,
the result trace can be analyzed in a familiar domain which facilitates the easy correction of
flaws.
Additionally, temporal logic expressions are automatically generated based on the composite
system models, all of which describe a state reachability criterion. With the model checker
these expressions can be used to test whether each specified state in the components of the
composite system model is reachable, i.e., a test suite with full state coverage is generated.

19



Chapter 4

Language Extensions for
Composition

The gamma constraint, statechart and interface languages presented in Section 3.2 were mainly
designed by fellow students and researchers of the Fault Tolerant Systems Research Group
and we defined only minor additions to it. This chapter introduces an extension to the gamma
statechart language, which supports the definition of hierarchical composite components. The
extension, referred to as composition language, is now integrated into the gamma language.
The goal of the composition language is to support the hierarchical composition of elementary
statechart components introduced in Section 3.2. The language supports three composition
types: 1) asynchronous-reactive composition which is suitable for the modeling of distributed
execution, 2) synchronous-reactive for components of a single program or for highly syn-
chronous communication, and 3) cascade supporting the logical decomposition of a single
operation. The following sections introduce the elements of the composition language as well
as their precise semantics. Furthermore, an example is shown to summarize the elements of
the gamma language. The section ends with a summary on how the functionalities of the
framework have been and will be extended in accordance with the extensions of the gamma
language.

4.1 The Composition Language

The gamma composition language supports the definition of communicating composite sys-
tems built from individual components. This is achieved by defining ports and interfaces,
which enable individual components to act as communicating endpoints (Section 4.1.1). The
communication between endpoints is supported by channels, responsible for connecting port
instances (Section 4.1.2). Finally, the hierarchical composition of components is supported by
various component types (Section 4.1.3). The following sections introduce the role of the ele-
ments of the gamma composition language in addition to their textual syntax and validation
rules.

4.1.1 Endpoint Elements

This section introduces the port and interface realization elements of the gamma composition
language. This part of the metamodel is depicted in Figure 4.1.
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Figure 4.1: Fragment of the metamodel supporting the communica-
tion of components.

Port Ports serve as endpoints of component instances in a composite component model,
through which events can be dispatched or received. Events are either called signals in case of
synchronous components or messages in case of asynchronous components. Each port realizes
a single interface by defining an interface realization. Communication between component
instances, and between the composite component and its environment happens through ports.

Interface realization Interfaces can be realized in either provided or required mode. The
difference is explained using the following interface definition:� �
interface Inter faceExample {

in event a
out event b
inout event c

}� �
Note that inout event c is just a syntactic sugar for in event c and out event c.

• In provided mode: Ports dispatch and receive events according to the direction specified
in the event declarations. In the current example, the component owning the realizing
port will be able to dispatch events b and c (out events), and receive events a and c (in
events) through this port. Such a port would be defined as:� �
port providePort : provides Inter faceExample� �

• Interfaces are “turned inside out”, that is, events declared with the direction in will be
dispatched, and events declared with the direction out will be received through such
ports. A component owning a port realizing InterfaceExample in required mode will be
able to dispatch events a and c (declared in events in the interface), and receive events
b and c (declared out events) through this port. Such a port would be defined as:� �
port r equ i r ePor t : requires Inter faceExample� �

Note that if two ports realize the same interface, one of them in provided mode, the other
one in required mode, they can be connected since the direction of the events would match.
Therefore, after connection they can exchange events with each other. As the example demon-
strates, the realization mode does not specify a single direction in which events are transmitted
through the particular port – dispatch and reception can be mixed in both cases.
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We say that a port is a broadcast port if the interface realization mode is provided and
the realized interface contains only out events. Unlike other ports, a broadcast port can
be connected to multiple ports realizing the same interface in required mode with signal-
based synchronous communication, since required ports are not able to dispatch events to the
broadcast port, so no congestion will occur.
The concept of ports realizing interfaces in providing or requiring modes may be unusual to
some designers, since ports usually support one-way event transmission in modern modeling
languages. Our goal with this solution is to investigate the possibilities residing in interface-
based communication in the domain of reactive systems. On the other hand, it is possible to
use only out events on every interface – then provided mode is “output” mode and required
mode is “input” mode.

4.1.2 Communication Elements

This section introduces the instance port reference, port binding and channel elements of the
gamma composition language. This part of the metamodel is depicted by Figure 4.2.

Figure 4.2: Fragment of the metamodel supporting the communica-
tion of components instances in composite components.

Instance port reference The instance port reference element is responsible for the identifi-
cation of a port of a component instance, thus it refers to a single port and a single component
instance.
Well-formedness constraint: the referred port must be contained by the type of the referred
component instance.

Port binding The port binding element is responsible for the connection of the exterior
ports of a composite component and the ports of constituent component instances. Therefore,
it refers to a single port and a single instance port reference. Owing to this design, all events
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received on the particular system port will be transmitted to the port of the associated
component instance, and all the events dispatched through the particular instance port will
be transmitted to the system port.
Well-formedness constraints: 1) a port of a composite component must be connected to a port
of a constituent component instance; 2) the system level port and the port of the component
instance must realize the same interface in the same realization mode.
A port binding that binds the port systemPort of a composite component to port simplePort
of component instance processor can be defined as follows.� �
bind systemProvidedPort −> proce s s o r . s impleProvided� �
Channels are responsible for the connection of component instance ports. Technically, they
use instance port references to refer to the endpoints. There are two types of channels:
broadcast channel and simple channel.

• Simple channels support the connection of a single port providing and a single port
requiring the same interface. As explained in Section 4.1.1, this design is valid and safe
since they handle the same events with appropriate directions. A channel that connects
port simpleProvided of processor1 and simpleRequired of processor2 can be defined as
follows.� �
channel [ p roc e s so r1 . s impleProvided ] −o )− [ p roc e s so r2 . s impleRequired ]� �
Well-formedness constraint: in case of synchronous and cascade composite components
a port must not be referred to in more than one channel or port binding (to avoid
congestion, as synchronous components does not have message queues).

• Broadcast channels support sending events to multiple target ports. Such channels refer
to 1) a single broadcast port and 2) multiple ports requiring the same interface as the
one the broadcast port provides. In this case the direction of event transmission is
determined: the broadcast port dispatches events and all the other ports connected to
it receive them. A broadcast channel that connects broadcast port broadcastProvided
of processor1 to simpleRequired of processor2 and processor3 can be defined as follows.� �
channel [ p roc e s so r1 . broadcastProvided ] −o )− [ p roc e s so r2 . s impleRequired ,

p roc e s so r3 . s impleRequired ]� �
Well-formedness constraint: similarly to simple channels, required ports must not be
referred to in more than one channel or port binding in case of synchronous and cascade
composite components.

4.1.3 Composition Elements

This section introduces the package element as well as all the elements that are descendants
of component.

Package Package is the root element of a composite component model. It supports the
declaration of functions and constants in addition to the definition of one or more components.
Furthermore, packages can depend on other packages by importing them. When a particular
package is imported, its components, e.g., statechart definitions and composite components
,become visible from the importer package. Consequently, such imported components can be
used as the type of component instances.
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Well-formedness constraint: there must not be any circular dependencies between the pack-
ages.
Package asyncCrossroad with an imported package crossroad and a constant declaration
QUEUE_CAPACITY can be defined as follows. Additionally, a synchronous component
wrapper AsyncCrossroadComponent is defined.� �
import c ro s s road

package asyncCrossroad

const QUEUE_CAPACITY : integer := 8� �
QUEUE_CAPACITY could be reused in any of the component definitions. If another package
imported main, then the importer could refer to and reuse all the elements of the package.

Component Components serve as types of component instances in a composite component.
They can be parameterized, that is, they can have parameters that can be referred to in their
bodies, e.g., when specifying the attributes of a message queue. A single component can
have any number of ports facilitating communication between components. Component is
an abstract element; its descendants can be classified into synchronous and asynchronous
components (see later in this section).

Composite component Composite components represent components that comprise of
multiple component instances (synchronous or asynchronous). The integration of such compo-
nent instances constitute the behavior of a particular composite component. The integration
of components is supported by the elements introduced in Section 4.1.2.
Component instances are individual reactive elements with internal state, capable of re-
ceiving and dispatching events through ports. Each component instance refers to a single
component, which serves as its type, that is, the component determines the ports on which
the component instance shall be able to communicate as well as the internal states it shall
be able to assume and the transitions it should be able to fire. Component instances can
be either atomic or composite. The instance is atomic if the corresponding component is a
statechart definition and composite if it refers to a composite component. This enables the
hierarchical composition of systems.
Component instances can be either synchronous or asynchronous. Synchronous instances can
refer to only synchronous components as their types, whereas asynchronous instances must
refer to asynchronous components. A component instance processor with a type Processor
can be defined as follows.� �
component proc e s s o r : Proces sor� �
Synchronous components

This section introduces the synchronous components (synchronous composite component and
cascade composite component). This part of the metamodel is depicted by Figure 4.3.

Synchronous component Synchronous components represent systems that communicate
in a synchronous manner. There are three elements in the composition language that are syn-
chronous components: statechart definitions (introduced in Section 3.2), synchronous compos-
ite components and cascade composite components. Synchronous components communicate
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Figure 4.3: Fragment of the metamodel describing the synchronous
component types.

with each other using signals. Synchronous components do not run independently, but their
execution is scheduled by a scheduler: a wrapping asynchronous component or even a custom
scheduler implementation. When executed, synchronous components process incoming sig-
nals and produce output signals in accordance with their internal states. Output signals are
produced for a single execution period only, i.e., another execution might produce different
output signals overwriting the output signals of the previous one.

Synchronous composite component The execution of a synchronous composite compo-
nent conforms to a turn-based semantic. A turn is called a cycle. In each cycle all component
instances of the particular composite component are executed. Although the order of the
execution of the component instances is not defined, it is fixed, therefore they are executed in
the same order in each cycle. This does not cause a loss of generality, as components cannot
affect each other in a single execution cycle: if a component instance produces a signal that
another component instance receives, the receiver will get it in the next cycle.
If a single component instance is executed it may 1) process all signals received in the last
execution turn, 2) assume a new state according to the processed signals (new state configura-
tion, new variable values) and 3) produce signals that can be received by components (others
or itself).
A synchronous composite component can be defined as follows. TwoProcessors has a single
port systemControlPort. Additionally, it contains two component instances processor1 and
processor2, both referring to synchronous component Processor as type. The system level
port systemControlPort is bound to controlPort of processor1. Also, TwoProcessors contains
a channel that facilitates the communication between the component instances: the signals
processor1 transmits through port protocol will be received by processor2 through controlPort
and vice versa.
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� �
sync TwoProcessors [

port systemControlPort : provides Control
] {

component proce s so r1 : Proces sor
component proce s so r2 : Proces sor

bind systemControlPort −> proce s so r1 . cont ro lPor t

channel [ p roc e s so r1 . p ro to co l ] −o )− [ p roc e s so r2 . cont ro lPor t ]
}� �
Cascade composite component Cascade composite components contain the same ele-
ments as synchronous composite components, but their execution semantics is different. The
execution of a cascade composite component also consist of cycles. In a single cycle all compo-
nents of the particular composite component are executed according to a topological ordering
based on channels. If a component is executed, it processes all incoming signals and produces
signals in accordance with its internal state. However, the signals are processed in the same
execution cycle by receivers, and not in the next one as it is specified in synchronous compos-
ite components. Therefore, in cascade composite components the flow of signals is one-way:
component instances earlier in the ordering transmit signals to the ones that are later, in
accordance with channel definitions. This structure ensures that a component can process all
signals it receives in a single cycle.
Well-formedness constraints: 1) every channel must be a broadcast channel (i.e., transmit
events only one way), 2) the contained component instances and their channel connections
must form a directed acyclic graph (DAG), where the component instances are considered as
nodes, and the direction of signal flow from one component to another is marked as a directed
edge.
A cascade composite component can be defined as follows. FourProcessors is very similar
to the synchronous composite component defined earlier. Additionally, it contains additional
component instances processor3 and processor4 with type Processor. The execution of Four-
Processors starts with processor1: it processes the incoming signals received through system-
ControlPort and transmits signals through port protocol to processor2 and processor4. Next,
processor2 is executed, processing the incoming signals received through port controlPort,
and transmits signals to processor3 thorugh port protocol. Next, processor3 is executed: it
processes the signals it received through port controlPort. Finally, processor4 is executed,
processing the signals received through port controlPort. Note that a component instance
never transmits signals to other instances defined earlier, ensuring the DAG configuration.� �
cascade FourProcessors [

port SystemControlPort : provides Control
] {

component proce s so r1 : Proces sor
component proce s so r2 : Proces sor
component proce s so r3 : Proces sor
component proce s so r4 : Proces sor

bind systemControlPort −> proce s so r1 . cont ro lPor t

channel [ p roc e s so r1 . p ro to co l ] −o )− [ p roc e s so r2 . contro lPort ,
p roc e s so r4 . cont ro lPor t ]

channel [ p roc e s so r2 . p ro to co l ] −o )− [ p roc e s so r3 . cont ro lPor t ]
}� �
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Asynchronous components

This section introduces asynchronous component elements synchronous component wrapper
and asynchronous composite component. This part of the metamodel is shown in Figure 4.4.

Figure 4.4: Fragment of the metamodel describing the asynchronous
component types.

Asynchronous component Asynchronous components represent independently running
component instances. There is no guarantee on the running time or the running frequency of
such components. Asynchronous components communicate with each other via ports using
bufferedmessages. There are two types of asynchronous components: asynchronous composite
component and synchronous component wrapper.
Asynchronous composite components support the hierarchical definition of asynchronous
components. Similarly to synchronous composite components, an asynchronous composite
component consists of port bindings and channels in addition asynchronous component in-
stances, which must refer to an asynchronous component as type. It is important to note that
contained composite instances cannot have synchronous components as types in asynchronous
composite components. In such cases, synchronous component wrappers can be used, which
assign asynchronous behavior to synchronous components.
An asynchronous composite component can be defined as follows. AsyncProcessor contains
a single port systemControlPort, two component instances asyncProcessor1, asyncProcessor2
with type ProcessorWrapper and a port binding, which binds the system level systemCon-
trolPort to the controlPort of component instance asyncProcessor1.� �
async AsyncProcessor [

port systemControlPort : provides Control
] {

component asyncProcessor1 : ProcessorWrapper
component asyncProcessor2 : ProcessorWrapper

bind systemControlPort −> asyncProcessor1 . cont ro lPor t
}� �
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Synchronous component wrapper A synchronous component wrapper, depicted by Fig-
ure 4.5, wraps a single synchronous component, turning it into an asynchronous component.
It is important to note that synchronous component wrappers implicitly have all ports of the
wrapped synchronous component – additional defined ports are generally used for the recep-
tion of control messages. Furthermore, a synchronous component wrapper has one or more
message queues, which store the incoming messages of the component. A message queue
has multiple attributes:

• Capacity specifies the maximum number of messages that can be stored in the particular
queue. If a queue is full and an additional message is received, the message is discarded.
This attribute is essential in verification processes of composite components.

• Priority specifies the order in which the contents of message queues are retrieved during
the execution of the asynchronous component. A message is always retrieved from a
non-empty queue with the highest priority. Priority values can be any integers.

• Event references specify the types of messages that can be stored in the particular
message queue. If a message arrives to an asynchronous component whose type is
not associated to any of the contained message queues, then the event gets discarded.
Therefore, it is always important to ensure that each incoming message type can be
stored in a message queue. If a particular message could be stored in multiple message
queues, the one declared first will be used (to enable hierarchical filters).

During execution, messages are retrieved individually from messages queues. A message
is always taken from the highest priority non-empty queue. If the particular message was
received on a port that is implicitly derived from the wrapped component, the message is
converted to a signal (as synchronous components communicate with signals) and transmitted
to the wrapped synchronous component (potentially overwriting previously sent signals). If
it was received on a port explicitly defined on the wrapper component, the message does not
get transmitted.
A synchronous component wrapper also has one or more control specifications, which
specify the message types that are able to trigger the execution of the particular component.
If a message with a specified type arrives to the wrapper component, the wrapped synchronous
component may be executed in one of the following ways:

• Run once: the synchronous component executes a single cycle.

• Run to completion: the synchronous component executes as many cycles as needed to
ensure all inner signals are processed and no additional steps could be taken.

• Reset: the synchronous component gets into its initial state.

Note that messages are transmitted to the wrapped component before execution, so control
specifications can trigger on any event, including the ones defined by the wrapped component.
Also note that the trigger must not be a complex trigger (see Section 3.2.1).
Finally, synchronous component wrappers can contain zero or more clocks, which emit tick
events at defined timed intervals. Such time intervals can be defined with attribute rate.
Currently, seconds and milliseconds are supported as unit of measurements. Tick events can
be handled in control specifications similarly to regular events received from ports.

Example 1 (Control specifications). To demonstrate the flexibility of this control
specification-based approach, we present two different execution semantics.

28



Figure 4.5: Fragment of the metamodel describing the synchronous
component wrapper element.

• A single control specification is defined that triggers on the “any event”. In this case,
every time an event is retrieved from a message queue, the wrapped component gets
executed. This behavior is similar to the semantics of UML statecharts.

• A single control specification is defined that triggers on the ticks of a clock. In this
case, the wrapped component gets executed in defined periods of time and processes the
events that arrive in between the actual and the previous clock tick.

Syntactically, a synchronous composite wrapper can be defined as follows. ProcessorWrapper
wraps synchronous component Processor and has a single port controlPort. Also, it contains
a single clock millisecondClock with rate 10 ms; a control specification, defining that event
execute from port controlPort shall trigger a single cycle execution; and a message queue
controlPortMessages with priority 1 and capacity 8 that is able to store any kind of message
received through port controlPort.
During execution, messages coming in to controlPortMessages are converted to signals and
transmitted to the wrapped component Processor. When an execute message is observed, it
is converted and transmitted to the wrapped component Processor, which is followed by the
initiation of a single execution cycle on the wrapped component Processor.� �
async ProcessorWrapper of Proces sor [

port cont ro lPor t : provides Control
] {

clock mi l l i s e condClock ( rate = 1 ms)

when cont ro lPor t . execute / run

queue contro lPortMessages ( priority = 1 , capacity = 8) {
cont ro lPor t .any

}
}� �
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4.1.4 Summary

As a summary, Table 4.1 describes the component types that are supported by the gamma
composition language in terms of synchronousness and compositeness.

Table 4.1: Component types supported by the gamma composition language.

Atomic Composite

Synchronous Statechart Synchronous composite component
Cascade composite component

Asynchronous Synchronous component wrapper Asynchronous composite component

Figure 4.6 presents the containment hierarchy of an example composite model. Note that the
synchronous and asynchronous domain can be bridged only by synchronous composite wrap-
pers. Furthermore, the leaves, which generally define the behavior of composite components,
are always statechart definitions.

Figure 4.6: A composite model hierarchy in gamma.

4.2 Composition Semantics

As presented in Section 4.1, the gamma framework supports several composition semantics. To
ensure unambiguity, this section formally introduces the semantics of each composition mode,
on which both source code generation and model transformations of the framework heavily
rely. The section starts with the introduction of synchronous component and synchronous
composite component semantics, which are followed by the semantics of the cascade composite
component (Section 4.2.1). Finally, asynchronous component and synchronous component
wrapper semantics are presented (Section 4.2.2).

4.2.1 Synchronous Components

Synchronous components represent systems communicating in a synchronous manner.
Their behavior is close to that of deterministic and fully specified finite state machines, intro-
duced in Section 2.2. The main difference is that in case of synchronous components events
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can be parameterized; an event instance consists of an event type and a parameter value in
accordance with the domain of the particular event. It is important to note that in case of
synchronous components, events can be absent.

Definition 2. A synchronous component is a tuple Cs = (S, s0, I, O,D, T ), where:

• S is the set of potential states, with s0 ∈ S being the initial state.

• I is the set of input events and O is the set of output events such that I ∩O = ∅.

• D : I ∪ O → {d1, . . . , dn} is a function that assigns a finite domain to every input and
output event. We say that an event e ∈ I ∪O is parameterized if |D(e)| > 1.

• An event instance is a pair of an event and a parameter (e, p) where e ∈ I ∪ O and
p ∈ D(e). The set of all event instances for a given event e is denoted by inst(e) =
{(e, p) | p ∈ D(e)} ∪ {(e,⊥)}, where (e,⊥) denotes the absence of the event.

• An input vector vI is a function that assigns an event instance to every input event
e ∈ I: vI(e) ∈ inst(e). Similarly, an output vector vO is a function that assigns an event
instance to every output event e ∈ O: vO(e) ∈ inst(e). The sets of all possible input
and output vectors are denoted by VI and VO, respectively.

• T : S × VI → S × VO is the transition function, which determines the next state and
the output vector of the component when executing it in a given state with a given
input vector. Note that this definition requires the component to have a deterministic
behavior. We also require T to be fully specified.

A synchronous composite component consists of several synchronous components. It can
receive input events from its environment (visible input events), all of which are transmitted to
its constituents for processing. Visible output events of the synchronous composite component
are also produced by contained components. Furthermore, the communication of contained
components is supported by channels, which transmit output events of particular components
to other ones as input events.

Definition 3. A synchronous composite component is a tuple Cs = (C, I, O,C), where:

• C = {(S1, s
0
1, I1, O1,D1, T1), . . . , (SK , s

0
K , IK , OK ,DK , TK)} is the set of synchronous

components constituting the composite component.

• I ⊆ Î is the set of visible input events, where Î =
⊔K

k=1 Ik.

• O ⊆ Ô is the set of visible output events, where Ô =
⊔K

k=1Ok.

• C : Î \ I → Ô is the channel function that assigns an output as the source of events to
every input, with the restriction that it must not be defined for elements of I, that is,
an input is either linked to an output or is a visible input.

As the metamodel fragment in Figure 4.3 presents, synchronous composite components are
synchronous components. The possible states of a synchronous composite component are im-
plicitly determined by its constituents. The execution of a synchronous composite component
is turn-based, a turn is called a cycle. In each cycle all component instances are executed: they
process incoming signals and produce outgoing ones. It is import to note that components do
not affect each other in a single execution cycle: if a component instance transmits a signal
to another component via a channel, the receiver will process it in the next cycle.
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Definition 4. A synchronous composite component Cs is itself a synchronous component
Cs(Cs) = (S, s0, I, O,D, T ), where:

• S = S1× . . .×SK×VÔ is the set of potential states, derived as all possible combinations
of the potential states of the constituent synchronous components and the last output
events of every component.

• s0 = (s0
1, . . . , s

0
K ,⊥Ô) is the initial state, where every constituent synchronous compo-

nent is in its initial state and the last output vector ⊥Ô ∈ VÔ assigns ⊥ to every output
event (∀e ∈ Ô : ⊥Ô(e) = ⊥).

• I is the set of input events as defined in Definition 3.

• O is the set of output events as defined in Definition 3.

• D is implicitly defined by Dk, as D̂ =
⊔K

k=1Dk and D(e) = D̂(e) for all e ∈ I ∪O.

• The transition function is defined as T
(
(s1, . . . , sK , vÔ), vI

)
=
(
(s′1, . . . , s′K , v′Ô), vO

)
,

where:

– For each input event e ∈ Î of any constituent component let vÎ(e) = vI(e) if e ∈ I
or vÎ(e) = vÔ(C(e)) otherwise. Note that vÎ implicitly defines every vIk

as well,
because vÎ =

⊔K
k=1 vIk

.
– The next state s′k of every component corresponds to the transition function Tk

such that Tk(sk, vIk
) = (s′k, v′Ok

).
– v′

Ô
=
⊔K

k=1 v
′
Ok

is the new set of “previous outputs”.
– The output of the synchronous composite component for each visible output event
e ∈ O is defined by the output of the constituent components: vO(e) = v′

Ô
(e).

Cascade composite components are very similar to synchronous composite components.
The difference is that in case of cascade components, the contained components are ordered.
A component can transmit signal to another one via a channel, only if it is defined earlier in
the ordering than the other one.
Definition 5. A cascade composite component is a tuple Cc = (C, I, O,C), where:

• C =
(
(S1, s

0
1, I1, O1,D1, T1), . . . , (SK , s

0
K , IK , OK ,DK , TK)

)
is an ordered sequence of

synchronous components constituting the cascade composite component.

• I ⊆ Î is the set of visible input events, where Î =
⊔K

k=1 Ik.

• O ⊆ Ô is the set of visible output events, where Ô =
⊔K

k=1Ok.

• C : Î \ I → Ô is the channel function that assigns an output as the source of events to
every input except the visible ones, that is, an input is either linked to an output or is a
visible input. Furthermore, if C(e1) = e2 such that e1 ∈ Ik and e2 ∈ Ol then we require
l < k.

Similarly to synchronous composite components, a cascade composite component is also a
synchronous component. The possible states of a cascade component are implicitly determined
by the contained components. The execution of a cascade composite component also consists
of cycles. In a single cycle all contained components of the particular cascade component are
executed in the order of their definition. If a component is executed, it processes all incoming
signals and produces outgoing signals. However, the produced signals are processed in the
same execution cycle by receivers, and not in the next one as it is specified in synchronous
composite components.
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Definition 6. A cascade composite component Cc is itself a synchronous component Cs(Cc) =
(S, s0, I, O,D, T ), where:

• S = S1 × . . .× SK is the set of potential states, derived as all possible combinations of
the potential states of the constituent synchronous components.

• s0 = (s0
1, . . . , s

0
K) is the initial state, where every constituent synchronous component is

in its initial state.

• I is the set of input events as defined in Definition 5.

• O is the set of output events as defined in Definition 5.

• D is implicitly defined by Dk, as D̂ =
⊔K

k=1Dk and D(e) = D̂(e) for all e ∈ I ∪O.

• The transition function is defined as T
(
(s1, . . . , sK), vI

)
=
(
(s′1, . . . , s′K), vO

)
, computed

iteratively:

– For the first component (S1, s
0
1, I1, O1,D1, T1), Definition 5 implies that I1 ⊆ I.

Therefore, we can apply T1(s1, vI1) = (s′1, vO1) to compute s′1 and vO1 , where
vI1(e) = vI(e) for every e ∈ I1.

– For subsequent components (Sk, s
0
k, Ik, Ok,Dk, Tk), the input vector vIk

will be
defined by the visible input events and the output vectors of previously executed
components: vIk

(e) =
(
vI ∪

⊔k
l=1 vOl

)
(e) due to Definition 5. Therefore, we can

apply Tk(sk, vIk
) = (s′k, vOk

) to compute s′k and vOk
.

– After the iteration, the result of T
(
(s1, . . . , sK), vI

)
is
(
(s′1, . . . , s′K), vO

)
, where

vO(e) =
(⊔K

k=1 vOk

)
for every e ∈ O.

4.2.2 Asynchronous Components

Asynchronous components represent component instances, which are able to run inde-
pendently. As opposed to synchronous components, the absence of events is not interpreted
in case of asynchronous components. Furthermore, an asynchronous component is always
triggered on a single input event, and, opposed to the state machine formalism in Section
2.2, capable of producing a sequence of output events. An asynchronous component is deter-
ministic in terms of state changes, but non-determinism is possible regarding the ordering of
output events.

Definition 7. An asynchronous component is a tuple Ca = (S, s0, I, O,D, T ), such that:

• S is the set of potential states, with s0 ∈ S being the initial state.

• I is the set of input events and O is the set of output events such that I ∩O = ∅.

• D : I ∪ O → {d1, . . . , dn} is a function that assigns a finite domain to every input and
output event. We say that an event e ∈ I ∪O is parameterized if D(e) > 1.

• An event instance is a pair of an event and a parameter (e, p) where e ∈ I ∪ O and
p ∈ D(e). The set of all event instances for a given event e is denoted by inst(e) =
{(e, p) | p ∈ D(e)} (notice that contrary to Definition 3, there is no symbol for the
absence of events).

• The set of all possible event instances is denoted by E = EI ∪ EO, where EI =⊔
e∈I inst(e) and EO =

⊔
e∈O inst(e) are the sets of all possible input and output event

instances, respectively.
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• T ⊆ S ×EI × S ×{E∗O} is the transition function, which determines the next state and
the sequence of output events (E∗O) of the component when executing it in a given state
with a given input event. Note that this definition does not require the component to
have a deterministic behavior. We still require T to be fully specified.

A synchronous component wrapper wraps a single synchronous component. In addition
to the events the wrapped synchronous component is able to receive, the synchronous wrap-
per is capable of receiving events for control; they are called control events. Additionally,
the synchronous wrapper defines trigger predicates (referred to as control specifications in
Section 4.1), which specify the events that trigger the execution of the wrapped synchronous
component.

Definition 8. An asynchronous wrapper for a synchronous component is defined as a tuple
A = (Cs, ec, trig), where:

• Cs = (Ss, s
0
s, Is, Os,Ds, Ts) is the wrapped synchronous component.

• ec is the control event.

• trig : IS∪{ec} → {>,⊥} is the trigger predicate that given an incoming event will return
if the underlying synchronous component should be executed or not.

Synchronous component wrappers are asynchronous components. The possible states of a
synchronous component wrapper are implicitly defined by the wrapped component and the
message queues, capable of storing incoming events. During execution, the wrapper retrieves
events individually from the message queues (always from the highest priority non-empty one)
and transmits them to the wrapped component. The wrapped synchronous component stores
these events until it gets executed. Also, if the last retrieved event from the message queue
is considered as a trigger event by the trigger predicate, the synchronous component gets
executed.

Definition 9. An asynchronous wrapper A for a synchronous component is itself an asyn-
chronous component Ca(A) = (S, s0, I, O,D, T ), such that:

• S = Ss × {E∗I } is the set of potential states, each state composed of a state of the
wrapped synchronous component and a finite sequence of input event instances.

• s0 = (s0
s, ε), where ε is the empty sequence.

• I = Is ∪ {ec} is the set of input events including the input events of the wrapped
synchronous component and the control event.

• O = Os is the set of output events defined in the wrapped synchronous component.

• D = Ds ∪ (ec → {d}) is the domain function of the wrapped synchronous component
extended with a mapping that assigns a singleton set to the control event (indicating
that it is not parameterized). The definition of inst should also be extended for ec

according to the definition of D, as well as EI as the set of potential event instances.

• The transition function is defined as T
(
(ss, q), (e, v)

)
= {(s′s, q′)} × Ω, such that:

– If trig(e) = ⊥, then s′s = ss and q′ = q _ (e, v), where _ denotes concatenation.
Ω = {ε} as the set of possible output sequences is only the empty sequence in this
case.

34



– If trig(e) = >, then s′s should be such that Ts(ss, vI(q)) = (s′s, vO), where

vI

(
(e1, v1), . . . , (en, vn)

)
(e) =


(e,⊥), if @i : e = ei,
(e, vi) otherwise, such that @j > i : e = ej

(that is, the last event instance
matching e in the sequence)

and q′ = ε. Ω = {Σ(vO)} as the set of possible output sequences is every possible
permutation σ(vO) of the elements of the output vector.

Asynchronous composite components contain one or more asynchronous component
instances of type asynchronous composite component or synchronous component wrapper.
Dispatched messages are forwarded to the corresponding component instances with respect to
causality rules, the parent asynchronous composite component does not store or delay them.
Note that only synchronous wrappers are capable of storing messages for a longer period of
time. Therefore, dispatched messages ultimately land in a message queue of a synchronous
component wrapper.

4.3 Crossroads Example

This section introduces the usage of the gamma language through a simple example. This
example defines a simple synchronous composite component model, called Crossroads, which
can serve as a controller unit of traffic lights at a crossroad. The synchronous component
model is going to contain two traffic light components as well as a controller component that
controls the traffic light components. This synchronous component is going to be wrapped by
a synchronous composite wrapper, enabling its independent execution.

Interfaces First of all, the interfaces have to be defined, which will be realized by the ports
of the components in the composite component model.

� �
interface LightCommands {

out event displayRed
out event disp layGreen
out event di sp layYe l low
out event displayNone

}
interface Po l i c e I n t e r r up t {

out event po l i c e
}� �

� �
interface Control {

out event t ogg l e
}
interface Executable {

out event execute
}� �

Statechart components After the interfaces have been defined, the statecharts interacting
in the synchronous composite component model can be designed. In this example we have two
statechart definitions: TrafficLight and Controller. TrafficLight models a standard 3-phase
light looping through the red-green-yellow-red sequence. As an extra, TrafficLight supports
an interrupted mode which may be triggered by the police – in this state, the traffic light is
blinking in yellow. Statechart Controller models a unit, which is able to control two traffic
lights, called priority and secondary, at a crossroad.
The composite component models that can be designed with the gamma framework heavily
rely on the concept of encapsulation, that is the definition of components are not regarded
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when component types (component declarations) are instantiated and connected, only ports
of components are considered. Therefore, during the design of a composite component the
users do not need to deal with the definition of components. The relevant part of statechart
definition TrafficLight is as follows.� �
package t r a f f i c L i g h t // Package o f the s t a t e cha r t

statechart Tra f f i cL i gh t [
// External por t s o f component type Tra f f i cL i gh t ,
port lightCommands : provides LightCommands ,
port po l i c e I n t e r r up t : requires Po l i c e In t e r rup t ,
port c on t r o l : requires Control

] {
// Sta techar t d e f i n i t i o n

}� �
The relevant part of statechart definition Controller is as follows.� �
package c o n t r o l l e r // Package o f the s t a t e cha r t

statechart Cont r o l l e r [
// External por t s o f component type Cont r o l l e r
port p r i o r i t yCon t r o l : provides Control ,
port secondaryContro l : provides Control ,
port po l i c e I n t e r r up t : requires Po l i c e In t e r rup t ,
port p r i o r i t yP o l i c e : provides Po l i c e In t e r rup t ,
port s econdaryPo l i c e : provides Po l i c e I n t e r r up t

] {
// Sta techar t d e f i n i t i o n

}� �
Synchronous composite component The synchronous composite component definition
Crossroad, composing two traffic lights and a controller, is as follows.� �
import t r a f f i c L i g h t
import c o n t r o l l e r

// Package o f the synchronous composite component model
package c ro s s road

sync Crossroad [
// External por t s o f the composite component model
port po l i c e : requires Po l i c e In t e r rup t ,
port pr io r i tyL ightOutput : provides LightCommands ,
port secondaryLightOutput : provides LightCommands

] {
// Component i n s t an c e s
component c o n t r o l l e r : Con t r o l l e r
component p r i o r i t yL i g h t : T r a f f i cL i gh t
component secondaryLight : T r a f f i cL i gh t
// Bindings connect ing system port s to i n t e r n a l por t s
bind po l i c e −> con t r o l l e r . p o l i c e I n t e r r up t
bind pr io r i tyL ightOutput −> pr i o r i t yL i g h t . lightCommands
bind secondaryLightOutput −> secondaryLight . lightCommands
// Channel d e f i n i t i o n s connect ing i n t e r n a l por t s
channel [ c o n t r o l l e r . p r i o r i t yCon t r o l ] −o )− [ p r i o r i t yL i g h t . c on t r o l ]
channel [ c o n t r o l l e r . secondaryContro l ] −o )− [ secondaryLight . c on t r o l ]

channel [ c o n t r o l l e r . p r i o r i t yP o l i c e ] −o )− [ p r i o r i t yL i g h t . p o l i c e I n t e r r up t ]
channel [ c o n t r o l l e r . s e condaryPo l i c e ] −o )− [ secondaryLight . p o l i c e I n t e r r up t ]

}� �
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The synchronous composite model definition starts with the imports of packages trafficLight
and controller. These packages contain the statechart definitions presented above, which
are going to be used later in the component instance definition phase. The external ports
of the composite component are police, realizing interface PoliceInterrupt in required mode,
along with priorityLightOutput and secondaryLightOutput, both realizing interface Light-
Commands in provided mode. The composite definition, as introduced in the previous sub-
section, contains component instances, port bindings and channel definitions.
The defined component instances are priorityLight and secondaryLight both with type Traf-
ficLight, modeling two traffic lights at a crossroad, as well as controller with type Controller.
External ports of the composite component models should be connected to ports of internal
component instances, to enable interactions between the composite component and its envi-
ronment. In this case, external port police is bound to port PoliceInterrupt of component
controller. Additionally, external ports priorityLightOuput and secondaryLightOutput are
bound to port LightCommand of component priorityLight and secondaryLight, respectively.
Finally, the channels are defined, which connect the ports of contained component instances,
making their interactions possible. Port priorityControl and secondaryControl of component
controller are connected to port control of priorityLight and secondaryLight, respectively.
Similarly, port priorityPolice and secondaryPolice of component controller are connected to
port policeInterrupt of priorityLight and secondaryLight, respectively. Note that this model
does not contain broadcast channels.

Synchronous component wrapper Now a synchronous component wrapper can be used
to wrap CrossroadComponent and enable its independent execution. The synchronous com-
ponent wrapper is as follows.� �
import c ro s s road

package asyncCrossroad // Package o f the wrapper
const QUEUE_CAPACITY : integer := 8

async AsyncCrossroadComponent of CrossroadComponent [
// External port o f the wrapper
port execut ion : requires Executable

] {
// Clock
clock c l o c kS i gna l ( rate = 100 ms)
// Control s p e c i f i c a t i o n s
when execut ion . execute / f u l l step
when c l o c kS i gna l / run
when po l i c e . i n t e r r up t / run
// Message queues
queue execut ionMessages ( priority = 2 , capacity = QUEUE_CAPACITY) {

execut ion . execute , c l o ckS i gna l
}
queue cros s roadsMessages ( priority = 1 , capacity = QUEUE_CAPACITY) {

p o l i c e .any , p r io r i tyL ightOutput .any , secondaryLightOutput .any
}

}� �
AsyncCrossroadComponent defines a single port execution on which the execution commands
are expected. Messages received on port execution are stored in executionMessages, whereas
the messages of additional (implicit) ports are stored in crossroadsMessages. The priority of
the former is higher. Owing to the control specifications, when a message execute is retrieved,
the wrapped component gets executed for a full step, that is, as many cycles as needed to
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process all signals of each contained components of the wrapped component. When either
a clock signal of clockSignal or an interrupt signal of port police is received, the wrapped
component is executed for a single cycle.
The graphical representation of the designed composite model is depicted in Figure 4.7.
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Figure 4.7: A graphical representation of the AsyncCrossroad
gamma composite component model.

4.4 Extending the Code Generation Functionality

As it was presented in Section 4.1, the gamma language has been extended with several
new elements, such as different kinds of composite components. To make them useful to
the users, it is important to extend the functionalities of the framework as well, so they
are capable of handling them. This section introduces the extensions and plans we have
made to the Java source code generator of the gamma framework in order to support code
generation for composite models. Currently, the Java code generator is capable of generating
functionally working code from interfaces and synchronous components. However, the code
snippets for the asynchronous components are not generated by the gamma framework. At
this phase, we already have detailed plans about how the code generator (and the UPPAAL
model transformation) should work with the asynchronous models, and this is an excerpt of
the sample code that will guide the implementation.

4.4.1 Interfaces

Each gamma interface used in a composite component is transformed to a Java interface. Each
generated Java interface contains three inner interfaces: Listener, Provided and Required. In-
ner interface Provided is realized by Java classes that represent ports realizing the particular
gamma interface in provided mode. Similarly, interface Required is realized by classes that
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represent ports realizing the particular gamma interface in required mode. Additionally, Lis-
tener contains two interfaces, also called as Provided and Required, which describe contracts
for listeners of certain event dispatches. The following snippet describes the Java interface
that is generated from the gamma interface Executable, presented in Section 4.3.� �
pub l i c i n t e r f a c e Execu tab l e In t e r f a c e {

i n t e r f a c e L i s t en e r {
i n t e r f a c e Provided {

void ra i s eExecute ( ) ;
}
i n t e r f a c e Required {}

}
i n t e r f a c e Provided extends L i s t en e r . Required {

pub l i c boolean i sRai sedExecute ( ) ;
void r e g i s t e r L i s t e n e r ( L i s t en e r . Provided l i s t e n e r ) ;

}
i n t e r f a c e Required extends L i s t en e r . Provided {

void r e g i s t e r L i s t e n e r ( L i s t en e r . Required l i s t e n e r ) ;
}

}� �
Inner Java interface Listener.Provided contains a raising method for each event that can be
sent by a port realizing the particular gamma interface in provided mode. For example, gamma
interface Executable has a single out event execute, thus, a port realizing it in provided mode
is able to dispatch execute events, which is indicated by raising method raiseExecute of the
corresponding Java interface. If the gamma event had parameter declarations, the correspond-
ing Java method would have the necessary parameters as well. Similarly, Listener.Required
contains a raising method for each event that can be sent by a port that realized the particular
gamma interface in required mode. In this example, as gamma interface Executable does not
contain any in events, no method is contained by Java interface Listener.Required.
Java interface Provided extends Listener.Required. This ensures that each event that can
be sent by a port realizing the particular interface in required mode (indicated by Lis-
tener.Required) can be accepted by any other port realizing it in provided mode (indicated by
Provided). As Listener.Required is empty, Provided does not contain any method that would
indicate event reception. Also, interface Provided contains “is raised” methods (isRaisedExe-
cute in this example), which can be used to check whether a certain event has been dispatched
recently: the last cycle in case of synchronous components and a defined period of time in case
of asynchronous components. Interface Provided contains an additional method registerLis-
tener, which supports the registration of listener objects. When a port dispatches a particular
event, the corresponding “raise” methods of the registered listener objects are called. Inner
Java interface Required is very similar to Provided; the difference is that it turns interfaces
the other way around as described in Section 4.1, otherwise all its functionalities are analogous
to interface Provided.
Note that if a Java class represents a port realizing a particular interface in provided mode
(that is it extends inner Java interface Provided), and another Java class represents a port of
the same interface in required mode (extends Java interface Required), their instances can be
connected very easily. Both has to be registered to the other one using the registerListener
method. After that, they can automatically dispatch events to each other using the methods
described by Listener.Required and Listener.Provided.
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4.4.2 Components

Each component that has been used in a composite component is transformed to a Java
class. The generated Java classes are slightly different when the corresponding component is
synchronous or an synchronous wrapper or an asynchronous component. Moreover, in case
of synchronous components, the implementation of composite and atomic components is also
slightly different.

Synchronous components

A class representing an atomic component has the following fields: a statechart object imple-
menting the behavior of the component and port objects representing gamma ports. Classes
generated from composite components also contain port objects in addition to component
objects representing the contained gamma components.

Composite components The following snippet describes some elements of the Java class
generated from the gamma synchronous composite component Crossroads, presented in Sec-
tion 4.3.� �
pub l i c c l a s s Crossroad {

// Component i n s t an c e s
p r i va t e T ra f f i cL i gh t secondary = new Tra f f i cL i gh t ( ) ;
p r i va t e T ra f f i cL i gh t p r i o r i t y = new Tra f f i cL i gh t ( ) ;
p r i va t e Con t r o l l e r c o n t r o l l e r = new Cont r o l l e r ( ) ;
// Port i n s t an c e s
p r i va t e Po l i c e p o l i c e = new Po l i c e ( ) ;
p r i va t e Pr ior i tyLightOutput pr io r i tyL ightOutput =

new Pr ior i tyLightOutput ( ) ;
p r i va t e SecondaryLightOutput secondaryLightOutput =

new SecondaryLightOutput ( ) ;
// . . .
/∗ Creates the channe l s between component i n s t an c e s ∗/
p r i va t e void i n i t ( ) {

c o n t r o l l e r . getSecondaryContro l ( )
. r e g i s t e r L i s t e n e r ( secondary . getContro l ( ) ) ;

secondary . getContro l ( )
. r e g i s t e r L i s t e n e r ( c o n t r o l l e r . getSecondaryContro l ( ) ) ;

c o n t r o l l e r . ge tSecondaryPo l i ce ( )
. r e g i s t e r L i s t e n e r ( secondary . g e tPo l i c e I n t e r r up t ( ) ) ;

secondary . g e tPo l i c e I n t e r r up t ( )
. r e g i s t e r L i s t e n e r ( c o n t r o l l e r . ge tSecondaryPo l i ce ( ) ) ;

// . . .
}
/∗ Executes a s i n g l e cy c l e ∗/
pub l i c void runCycle ( ) {

changeComponentEventQueues ( ) ;
secondary . runCycle ( ) ;
p r i o r i t y . runCycle ( ) ;
c o n t r o l l e r . runCycle ( ) ;

}
/∗ Executes as many cy c l e s as needed to ensure
that a l l generated events get proce s s ed ∗/

pub l i c void runFul lCyc le ( ) {
do {

runCycle ( ) ;
}
whi l e ( ! hasInnerEvent ( ) ) ;

}� �
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The fields represent contained component instances as well as ports used for communication
with the environment as described in Section 4.4.1. The classes of the ports are defined as
inner classes.
Method init is responsible for creating the channels, that is, it registers the corresponding ports
of components as listeners using the registerListener method of ports. Furthermore, getter
methods are generated that return the contained port instances, supporting event dispatch
from the environment. This way the registration of unique listeners is also supported, thus,
users can be notified about the occurrence of certain events.
The component can be executed by calling either its runCycle or runFullCycle method.
Method runCycle, implementing the run once action. consists of the following steps.

1. It changes the event queues of the contained components.

2. It initiates a single cycle on each contained component.

As mentioned in Section 4.1, in case of synchronous composite components, the contained
components cannot affect each other in a single cycle, but they process the received events at
the beginning of the next cycle. This is implemented with a pair of queues: one storing the
events of the actual cycle (events under process), and another one, storing the incoming events
for the next cycle. The runCycle method of cascade composite components are very similar.
The only difference is that they do not have a changeComponentEventQueues method as their
components receive the events in the same cycle they have been dispatched.
Method runFullCycle, implementing the run to completion action, is responsible for executing
the runCycle method as many times as it is needed to ensure that every generated event in
the contained component gets processed. This is supported by the hasInnerEvent method
that checks whether any of the contained components has unprocessed events.

Atomic components The difference between the generated class of atomic components
and composite components is as follows:

• In case of atomic components the class contains a single statechart implementation
object instead of the objects representing contained components.

• In case of atomic components the class contains a pair of queues responsible for storing
incoming events. Both are used in case of synchronous composite components and only
one for cascade composite components.

The following snippet describes these elements of the Java class generated from the gamma
synchronous atomic component TrafficLightCtrl, presented in Section 4.3.� �
pub l i c c l a s s T r a f f i cL i gh tC t r l {

// The wrapped statemachine implementation
p r i va t e Tra f f i cL ightCt r lS ta t emach ine t r a f f i cL i gh tCt r l S t a t emach i n e =

new Tra f f i cL ightCt r lS ta t emach ine ( ) ;

// Event queues f o r the synchron i za t i on o f events
p r i va t e Queue<Event> eventQueue1 = new LinkedList<Event>() ;
p r i va t e Queue<Event> eventQueue2 = new LinkedList<Event>() ;
. . .

}� �
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Synchronous component wrappers

A class representing a synchronous component wrapper has the following fields: an object rep-
resenting the wrapped synchronous composite component, timer objects implementing clocks,
port objects, and a multiqueue serving as a “bundle” for the separate messages queues. The
multiqueue is a third-party open-source concurrent collection implementation that extends the
existing Java concurrent collection library.1 Essentially, it is a data structure with one head
and multiple tails, allowing readers to block on more than one queue. It supports the defini-
tion of priorities for different sub-queues and provides round-robin selection of elements among
sub-queues with the same priority. The following snippet describes the important elements of
the Java class generated from the gamma synchronous component wrapper AsyncCrossroads,
presented in Section 4.3.� �
pub l i c c l a s s AsyncCrossroads {

// The wrapped synchronous component
p r i va t e CrossroadComponent crossroadComponent = new CrossroadComponent ( ) ;
// Timer as c l o ck implementation
p r i va t e Timer c l o ckS i gna l = new Timer ( ) ;
// Message queues
p r i va t e LinkedBlockingMultiQueue<Str ing , Event> __asyncQueue =

new LinkedBlockingMultiQueue<Str ing , Event>() ;
p r i va t e LinkedBlockingMultiQueue<Str ing , Event>.SubQueue execut ionMessages ;
p r i va t e LinkedBlockingMultiQueue<Str ing , Event>.SubQueue cross roadsMessages ;

p r i va t e void i n i t ( ) {
execut ionMessages = __asyncQueue . addSubQueue ( " execut ionMessages " , 2 , 8) ;
c ros s roadsMessages = __asyncQueue . addSubQueue ( " cros s roadsMessages " , 1 , 8) ;
c l o c kS i gna l . scheduleAtFixedRate (

new TimerTask ( ) {
pub l i c void run ( ) { execut ionMessages . o f f e r (new Event ( " c l o c kS i gna l " ) ) ; }

} , 100 , 100) ; // Delay and per iod in ms
}

pub l i c void run ( ) {
whi l e ( ! Thread . currentThread ( ) . i s I n t e r r up t ed ( ) ) {

Event event = __asyncQueue . p o l l ( ) ;
i f ( ! i sContro lEvent ( event ) ) {

// Event should be forwarded to the wrapped component
forwardEvent ( event ) ;

}
per formContro lAct ions ( event ) ;

}
}

p r i va t e void per formContro lAct ions ( Event event ) {
// Fu l l s tep t r i g g e r s
i f ( event . getSource ( ) . equa l s ( " execut ion . execute " ) ) {

crossroadComponent . runFul lCyc le ( ) ;
}
// S ing l e s tep t r i g g e r s
i f ( event . getSource ( ) . equa l s ( " c l o c kS i gna l " ) ) {

crossroadComponent . runCycle ( ) ;
}
e l s e i f ( event . getSource ( ) . equa l s ( " p o l i c e . i n t e r r up t " ) ) {

crossroadComponent . runCycle ( ) ;
}

}
}� �

1https://github.com/marianobarrios/linked-blocking-multi-queue
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In addition to the object representing the wrapped synchronous component, a single multi-
queue is defined (__asyncQueue) which is instantiated with two subqueues (crossroadsMes-
sages and executionMessages in this example), representing the gamma message queues. Note
that the subqueues are instantiated with parameters priority and capacity as defined in the
gamma model.
As each synchronous component wrapper represents an independently running unit, the gen-
erated class implements the Runnable Java interface. The instances of the class can run on
separate threads implementing the following behavior (see method run).

1. An event is retrieved from the multiqueue. The multiqueue either blocks if it is empty
or returns an event from the highest priority non-empty sub-queue.

2. Method isControlEvent is used to check whether the event is a control event, that is, it
can be processed by the wrapped component (not control event) or not (control event).

3. If the event is not a control event, it is forwarded to the wrapped component (forwardE-
vent) so the wrapped component can process it when a cycle is initiated.

4. The necessary control actions are performed, that is, method performControlAction
checks whether the given event indicates the initiation of a single step (single cycle), a
full step, or the reset of the wrapped component. The wrapped component is handled
accordingly.

The execution of the object representing a synchronous component wrapper can be stopped
by sending an interruption signal to its parent thread.

Asynchronous composite components

A class representing an asynchronous composite component has the following fields: objects
representing contained asynchronous components and port objects. The generated Java class
is simple: its only functionality is to bundle the contained components and forward incoming
events from the system ports to the corresponding ports of contained components. This can
be easily implemented in the port classes using listeners. Note that this can be considered as
flattening the asynchronous hierarchy to the synchronous wrapper components, as they are the
objects that store and handle asynchronous messages. Nevertheless, asynchronous composite
components make a very important part in supporting hierarchy and the separation of concern
and useful for the description of multi-threaded applications.
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Chapter 5

Implementation

This section starts with the introduction of the various techniques and tools that have been
used throughout the development of the gamma framework. Next the architecture of the
framework is presented, which is followed the introduction of the modeling tools that have
been integrated to the framework.

5.1 Technologies

We put a considerable amount of effort into finding the appropriate frameworks upon which
the gamma framework could be implemented. As we prefer open-source technologies with re-
ceptive communities, we chose the Eclipse environment with the Eclipse Modeling Framework
(EMF). Moreover, the VIATRA1 transformation framework was used for the implementation
of the model transformations and the Xtext framework for the development of the modeling
language. These technologies fit well into the Eclipse environment.

5.1.1 Eclipse Environment

Eclipse2 is an open-source, platform-independent integrated development environment (IDE).
It consists of a base workspace (the basis of all Eclipse distributions) and a plug-in system.
The plug-in system supports the customization of the environment for various purposes, e.g.,
EMF and Yakindu can be installed to support the modeling of statecharts or we can install
plug-ins of our own work to support the composition and verification of reactive systems.

Eclipse Modeling Framework Eclipse Modeling Framework3 (EMF) is an Eclipse-based
modeling framework with a strong code generation support. EMF aims to facilitate the
development of modeling tools and other applications offering a structured data model called
Ecore. Based on the model specification defined in XMI, EMF provides runtime support
and code generator tools to derive a set of Java classes describing objects of the model.
Furthermore, a set of adapter classes are generated which promote users in the modification
and editing of their models.
EMF is considered as a de facto standard in the development of domain-specific modeling
languages, providing environment to numerous technologies and frameworks, including server
solutions, persistence frameworks, UI frameworks and transformation frameworks.

1https://wiki.eclipse.org/VIATRA
2https://eclipse.org
3http://eclipse.org/modeling/emf/
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5.1.2 Xtext Framework

Xtext4 is an open-source Eclipse framework for the development of programming languages
and domain-specific languages. Languages can be specified using a grammar language. Xtext
is based on the EMF project: metamodels of the defined languages are Ecore models which
can be automatically generated from the grammar, or can be manually given. In addition,
Xtext provides several features to support development in the language: a parser, a linker, a
compiler, as well as a typechecker and editing support for Eclipse (syntax highlighting, code
completion, etc.).
The textual syntax of the gamma language has been built using the Xtext framework. Each
part of the metamodel of the gamma language was created separately from the grammar.
Xtend5 is a general-purpose, high-level, statically typed object-oriented programming lan-
guage that is built on the Xtext framework. Xtend source code is automatically compiled to
Java code, thus code written in Xtend can be integrated with all existing Java libraries easily.
Also, Xtend has its roots in Java syntactically as well as semantically, however, it offers a
tighter and more solid syntax. Furthermore, Xtend proposes additional functionality that is
not supported by Java, e.g., type inference, operator overloading, extension methods and dis-
patch methods. In addition to object-oriented features, Xtend integrates traits of functional
programing, such as lambda expressions, which also helps to keep the codebase small.
The model transformation and source code generation rules have been implemented using the
Xtend language. Unique features, such as extension methods, dispatch methods and lambda
expressions have been used extensively. As a result, the codebase has remained relatively
small while the source code itself has remained readable and concise.

5.2 Architecture

The architecture of the gamma framework is plug-in-based, which makes it modular, cus-
tomizable, and easily extensible. Each functionality that was introduced in Chapter 3 is
implemented as a collection of Eclipse plug-ins based on EMF. Figure 5.1 depicts the archi-
tecture of the framework, presenting the plug-ins and their dependencies.
Owing to the plug-in based architecture, it is possible to use only a subset of the gamma
framework functionalities by loading only the necessary plug-ins. This solution enables to save
resources, e.g., reduce memory footprint.
Furthermore, the plug-in based architecture supports the easy extension of the framework.
Additional engineering modeling languages as well as the analysis languages can be introduced
to the gamma framework by defining the necessary model transformations and implementing
them as a plug-in. These plug-ins then could be integrated into the framework easily, as they
would not interfere with the existing plug-ins or their dependencies.

5.3 Integrated Modeling Languages

Currently, a single engineering and a single analysis modeling language is integrated to the
gamma framework, Yakindu and UPPAAL, respectively. The integration of additional ones is
supported by the plug-in architecture, as presented in Section 5.2. This section introduces

4http://eclipse.org/Xtext/
5http://eclipse.org/xtend/
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Figure 5.1: The plug-in dependencies of the framework.

the features of modeling languages Yakindu and UPPAAL, which heavily influenced the design
and implementation techniques of the gamma framework.

5.3.1 Integrated Engineering Language: Yakindu

Yakindu is a toolkit for the model-driven development of reactive, event-driven embedded
systems by supporting the creation of complex hierarchical statecharts. Yakindu provides a
graphical editor where the structural elements can be chosen from a palette and instantiated
in the view. Variable declarations, actions and transition parameterizations can be specified
using a textual notation. A Yakindu statechart is depicted in Figure 5.2. To support users
in designing well-formed statecharts the tool provides basic validation features. Although,
these rules are not as comprehensive as the validation rules of gamma, live syntactic and
semantic checks on the entire model are included, therefore the users get feedback on their
work immediately.

Figure 5.2: The graphical representation of a Yakindu statechart.
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Syntactically correct statecharts can be simulated. Declared events can be raised using a
graphical interface and the change of states and variables can be observed in different views.
With this feature, basic testing of statecharts can be done at design time.
Yakindu also supports source code generation from syntactically correct and validated stat-
echarts. The generated code presents well-defined interfaces, which hide the details of im-
plementation and provide access only to event raising, variable check and active state check.
Code generation can be customized with configuration files specifying the expected features
of the generated code, e.g., timer services and observer registration.
The gamma framework utilizes the following Yakindu functionalities:

• Gamma statecharts can be created graphically with the help of the Yakindu editor. A
user can create a Yakindu statechart, which can be transformed to the gamma language
by means of the Yakindu-gamma model transformer.

• The gamma framework reuses the Yakindu source code generators when generating a com-
posite system implementation. Gamma generates only the source code that is responsible
for the connection of components; the implementation of the wrapped statecharts are
derived by Yakindu.

5.3.2 Integrated Model Checker: UPPAAL

UPPAAL is a software tool for the modeling, simulation, verification and validation of real-
time embedded systems. UPPAAL uses the timed automata formalism which is the extension
of the finite automata formalism presented in Section 2.2: it supports data types and variables
as well as the synchronization of concurrent automata through channels. UPPAAL is capable
of executing formal verification on the defined timed automata systems.

Formal verification with UPPAAL

Formal verification is a method for proving or disproving the correctness of a system with
mathematical precision. Correctness is checked with respect to certain properties or specifi-
cations given by the user. Model checking is a formal verification technique that explores the
behavior of the given model exhaustively, i.e., all relevant behaviors of the model are analyzed
(contrary to simulation and testing, which only sample behaviors).
UPPAAL uses model checking techniques to verify timed automata. Certain requirements
that are expected of the systems can be described with temporal logic expressions. The
language supported by UPPAAL is the subset of computation time logic (CTL). CTL is a
branching-time logic which means its model of time is a tree-like structure. It starts from a
root (the initial state) and each branch represents a possible execution sequence. The nodes
of the branches represent the states the system assumes throughout the execution sequence.

Formal verification with the Gamma framework

As presented in Section 3.6, formal verification, back-annotation of the results and generation
of a state-covering test-suite are supported with a GUI (see Figure 5.3). Thus, users do not
have to deal with the generated formal models, the manual construction of CTL expressions
and the handling of the UPPAAL model checker. Using this window users can formulate their
conditions they want to check with regard to their constructed models.
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Figure 5.3: The window supporting the verification and back-
annotation functionalities of the gamma framework.

On the upper-left part of the window users can choose the temporal operator that specifies
the paths on which the formulated conditions must hold. Also, these temporal operators are
presented with examples. The selectors on the upper-right part can be used to formulate
the desired condition using States, Variables and Operators. Selector States contain
the states of the model under verification, whereas selector Variables contain its variables.
Selector Operator contains the operators that are accepted by UPPAAL. It is important to
note that conditions can also be formulated by manually typing in the Condition text field.
Whether the condition holds on the model can be verified by clicking on the Verify button.
Only well-formed conditions can be given to verification, which is checked right before starting
the verification process. In cases of ill-formed conditions the user is notified in the lowermost
text field.
If the given condition is well-formed, the verification starts. UPPAAL examines whether the
condition holds or not and can generate a trace serving as proof or as a counterexample. Such
traces are automatically back-annotated to the gamma language, so users can examine them
in a familiar domain instead of the UPPAAL language. The following snippet introduces a
gamma trace, which has been created as the back-annotation of an UPPAAL trace, holding
information about the behavior of a synchronous composite system.� �
; trainCW . main_region_train_T1 , CCWFourSections . CCWFourSections_section4
. main_Free , trainCCW . main_region_train_T1 , . . .
<
−−−−−
> moveTrainCCW.move ,moveTrainCW .move
t 0
<
; trainCW . main_region_train_T1T2 , CCWFourSections . CCWFourSections_
s e c t i on4 . main_Free , trainCCW . main_region_train_T1T2 , . . .

−−−−−
> moveTrainCCW.move ,moveTrainCW .move
t 0
<
; trainCW . main_region_train_T2 , CCWFourSections . CCWFourSections_
s e c t i on4 . main_Free , trainCCW . main_region_train_T2 , . . .

−−−−−� �
As mentioned in Section 4.1, synchronous composite systems adopt a turn-based semantics. A
turn is called a cycle. These cycles are separated by the ––––- delimiter in the gamma trace.
At the beginning of each cycle, the composite system processes the events sent to its ports.
The events and ports through which they have been received are enumerated after the “>”
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mark in the form of port_name.event_name, e.g.,moveTrainCCW.move. In the first cycle
there are no incoming events as the composite system must assume a stable state first. The
incoming events might change the state of the composite system; the states of all instances are
enumerated after the “;” mark, e.g., trainCCW.main_region_train_T1. A composite system
might raise events as well. The events and ports through which they have been raised are
after the “<” mark. In this example the composite system does not send any signals. Finally,
during the execution of a cycle, time might elapse. The elapsed time in traces is represented
by a non-negative integer after the t character. In this example, the elapse of time is not
measured.
Both incoming and outgoing signals could have parameters. These parameters (their possible
types are presented in Section 3.2) appear in the trace too. They are represented after the
name of the port on which their signals are sent and a “:” mark, e.g. moveTrainCCW.move:10
if the move event would have had an integer parameter of 10.
In addition to gamma traces, JUnit test classes can be generated with the GUI that are based
on the UPPAAL traces. A test class based on a particular UPPAAL trace tests whether the
composite system implementation, automatically generated from the particular composite
model under verification, actually assumes the states that the back-annotated trace describes,
i.e., in reaction to the incoming events it assumes the corresponding state and raises the
necessary output events. With this technique the following functionalities of the gamma
framework can be tested for a particular trace:

• Yakindu to gamma transformation,

• composite system to UPPAAL transformation,

• source code generation from the composite system,

• back-annotation of the UPPAAL trace.

As multiple functionalities can be tested using this technique, it can be considered as the
validation of the gamma workflow. Naturally, the framework can be tested with as many
models and traces as needed to ensure the stability of the framework.

49



Chapter 6

Case Study: MoDeS3

This chapter demonstrates the applicability of the gamma framework by presenting a case-
study from the domain of critical cyber-physical systems. The selected case-study is the so-
called MoDeS3, which is based on a railway transportation system. The trains are controlled
by the users, but a distributed safety logic is responsible for preventing dangerous situations,
such as the collision of trains.1

6.1 Introduction

The goal of the MoDeS3 project is to apply model-based development techniques, open source
modeling and various verification techniques in the development of distributed safety critical
systems. MoDeS3 is a physical railway model. Multiple trains move on tracks, which are
built from sections and turnouts. The trains can be controlled by users by changing their
movement direction and speed. Turnouts are also controlled by users: their directions can
be switched so different paths of the railway can be traversed by the trains. The positions of
trains are detected by sensors embedded into the tracks: they sense the trains and notify the
corresponding embedded computer. Each embedded computer is connected to local sensors
of the sections and turnouts, and is responsible for gathering all the information that these
components offer. There are six BeagleBone Black (BBB) embedded computers altogether in
the demonstrator, serving as the controllers of the specified track components. Components
belonging to a single BBB are called a zone. Note that these BBBs can have only local
information, which means they have to cooperate and prevent accidents. This makes MoDeS3

a distributed system, therefore, a good case study for gamma.

6.2 Interlocking Safety Logic

Safety has to be assured inside a single zone, as well as on the edges of zones. Since embedded
computers (BBBs) have only local information about their own zone, MoDeS3 can be consid-
ered as a distributed system. This makes accident prevention difficult, since information has
to be gathered in one zone, which then has to be delivered to controllers of adjacent zones
via a network. As incidental packet losses might have critical consequences, the distribution
of information has to be supported by a reliable protocol.
The safety system responsible for preventing the collision of trains is based on statecharts. Two
different statecharts have been designed, one to describe the behavior of a single section, and

1http://modes3.tumblr.com
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another one to describe the behavior of a single turnout. These statecharts have been designed
in Yakindu and transformed to the gamma language. A single statechart is associated to each
element of a zone corresponding to its type. The statecharts of a zone have been composed
using the gamma framework, thus a composite component model is created, which describes
the behavior of an entire zone.

6.2.1 Interfaces

As we have multiple statechart models that need to communicate with each other, it is im-
portant to define the interfaces through which communication will take place. The interfaces
that ports of the gamma statecharts realize are the following.

� �
interface Protoco l {

in event canGo
in event cannotGo
in event r e s e r v e
in event r e l e a s e

}
interface Control {

in event r e s t a r tP r o t o c o l
}
interface Turnout {

in event tu rnoutSt ra i ght
in event turnoutDivergent

}� �

� �
interface Train {

in event stop
out event occupy
out event unoccupy

}
interface MoveTrain {

in event moveForward
in event moveBackward

}� �

Interface Protocol contains events that are used in section-to-section and turnout-to-section
communication. The semantics of the Protocol events are as follows.

• Reserve: this event is sent to adjacent sections from a section occupied by a train.

• CanGo: this event is the positive answer to a reserve notification if the section is free,
i.e., the train can proceed onto the particular section.

• CannotGo: this event is the negative answer to a reserve notification if the section is
not free, i.e., the train can not proceed onto the particular section.

• Release: this event is sent to adjacent sections from a section just left by a train.

The following events are used between the section or turnout and its corresponding controller,
holding information about the arrival and the leaving of a train:

• Occupy: this event is sent to a section if it has been occupied by a train.

• Unoccupy: this event is sent to a section if a train has left it.

• Stop: this event is sent to the corresponding controller if the section wants to stop the
train standing on it.

• RestartProtocol: this event is used for resetting sections in state Stop.

Interface Turnout contains events which can be sent to turnouts to change their directions.
Interface MoveTrain contains events that can be used for the controlling of a model train,
used in the verification process.
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6.2.2 Section Statechart

The section statechart has been abstracted to focus only on the qualities of the real sections
that are relevant in the safety logic. As a section has two endpoints, the model concentrates
on two directions it can receive or send protocol events to; these directions are called clock-
wise (CW) and counterclockwise (CCW). Communication with other section and turnout
statecharts is supported with the use of ports; the section statechart has two ports for both
directions, one for realizing interface Protocol in required mode and another one for pro-
vided mode. The communication with the corresponding controller is also supported by ports
realizing interface Control and Train.� �
port protocolProvidedCW : provides Protoco l
port protocolProvidedCCW : provides Protoco l
port protocolRequiredCW : requires Protoco l
port protocolRequiredCCW : requires Protoco l

port contro lProv ided : provides Control

port t ra inRequ i red : requires Train� �
The behavior of the section statechart is going to be introduced using a track segment model
consisting of four sections, which is depicted in Figure 6.1.

Figure 6.1: A track segment containing four consecutive sections.

Each section not affected by any train is in state Free. If a train is placed onto Section 2, it
goes to state Occupied. The adjacent sections Section 1 and Section 3 go to state Reserved.
The sections in state Reserved and in state Occupied (Section 1, Section 2 and Section 3)
are said to be in the “aura” of the particular train. If the train moves from Section 2 and
reaches adjacent Section 3, Section 3 tries to reserve the other adjacent section Section 4. If
the reservation is successful, Section 3 and Section 4 go to states Occupied and Reserved,
respectively. It is important to note that section Section 2 stays in state Occupied. When
section Section 2 is left entirely by the train, it goes to state Reserved, while releasing Section
1, which goes to state Free.
In the previous example Section 3 successfully reserved Section 4. On the other hand, if the
reservation had failed, Section 3 would have gone to state Stop. Generally, if a section in state
Reserved gets any more reservation claims by sections not belonging to its own “aura”, it will
respond with a cannotGo event. This will be processed by the section sending the reservation
claim, causing it to go to state Stop, which involves sending a stop notification to the train
standing on it. Sections in state Stop also send cannotGo events in response to incoming
reservation claims, which ensures to stop both of the trains proceeding towards one other.
Figure 6.2 demonstrates the behavior of section Section 3 when it is reached by the train.
Generally, this algorithm prevents the collision of trains going into the same direction in
addition to trains proceeding towards each other. In the former situation only the back train
following the other one is stopped; the train on the front may continue its way.
Sections in state Stop can be reset in one of the following ways. A restartProtocol event
can be sent to them, on which they try to reestablish the “aura” of the stopped train. Also,
stopped trains can be removed from sections manually. This results in sending an unoccupy
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Figure 6.2: The behavior of a section statechart upon receiving an
occupation event.

event to the section in state Stop, on which it goes into state Free while sending Release
events to adjacent sections.

6.2.3 Turnout Statechart

The turnout statechart has been designed similarly to the section statechart. It supports each
event used in section-to-section and section-to-train communication. Furthermore, it supports
events turnoutStraight and turnoutDivergent. Since trains must not stop on turnouts, events
stop and restartProtocol are not supported by turnout statecharts.
A turnout has three sides, each connected to a single section. The sides, and thus the sections
from the turnout point of view are named as top, straight and divergent (see Figure 6.3).

Figure 6.3: Naming convention of sections from a turnout’s point of
view.
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A turnout has two states. In state Straight it connects sections top and straight, in state
Divergent it connects sections top and divergent.
Events of section-to-turnout communication are not directly processed by turnout statecharts,
but are passed to an adjacent section statechart. The particular section depends on the state
of the turnout, whether it is state Straight or Divergent. The adjacent section processes the
event and if it has any responses, they are transmitted back to the section initiating the event
exchange.
Events turnoutStraight and turnoutDivergent can be sent to turnouts at any time but they
will only change their states if there is no train standing on them. However, situations when
a user changes the state of a turnout while a train proceeds towards its straight or divergent
endpoint must be addressed. In these situations, the endpoint gets locked-up, the turnout
state is switched (Straight to Divergent or vice versa), and the section under the train is put
into state Stop.

6.3 Supporting the Development and Verification

The framework presented in this work was used in multiple phases of the development of
the interlocking safety logic. The validation possibilities were used during the design of the
statecharts in addition to basic Yakindu validation. Some validation rules can not be checked
by Yakindu, such as non-deterministic behavior and occlusion of transitions. Many flaws were
discovered with the use of the validation plugin of our framework well before the simulation
and testing of the models even began. After the statecharts have been finished, UPPAAL
automata were generated from the statecharts, and reachability and deadlock freedom criteria
were checked (see Section 6.4).
As the interlocking system is based on the interaction of statechart instances, the composition
of them had to be constructed according to the design of the track. This was done using the
composition language. The corresponding ports of the statechart components were connected,
which was followed by the generation of source code. Due to lack of time, we did not manage
to deploy the source code onto the BBB controllers, but we are going to work on it in the
near future.

6.4 Formal Verification of the Safety Logic

Analysis of the safety logic can focus on 1) the interaction of elements in a single zone as well
as 2) the interaction of multiple BBBs. The latter one is based on the implemented network
protocol, therefore this work presents the former one. The presented model is a synchronous
composite component model since the interleaving of possible events in case of asynchronous
composite models would cause a state space explosion, making it impossible for UPPAAL to
evaluate any non-trivial requirement on the generated automata.
Dangerous situations in a single zone can show up in the following ways: 1) trains proceeding
towards each other leading to collision and 2) one train going into another from the back.
These situations have to be detected by the same safety logic.
Sections interact with each other as they sense the arrival and the leaving of a train. To
verify their emergent behavior a train model has to be created. The model contains three
states which represents the position of the train. State T1 represents its initial position, the
section it is placed onto manually. Reaching state T1T2 means the train has reached the
next adjacent section but has not left the initial one entirely. State T2 represents the train
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completely leaving its initial section and fully taking the adjacent one. The states can be
changed with the raising of the moveForward or moveBackward event of the port realizing
interface MoveTrain in provided mode, which symbolizes the proceeding of the train. Also,
there is a boolean variable disabled which can be set to prevent further movement.
A hierarchical composition model has been created to model the railway system. The track
model under verification is going to consist of a sequence of six sections, which can be con-
structed using two instances of a track model containing a sequence of three sections. The
track model with three sections is as follows.� �
sync ThreeSect ions [

// Ports f o r events on the s i d e s
port protocolProvidedCCW : provides Protoco l
port protocolRequiredCCW : requires Protoco l
port protocolProvidedCW : provides Protoco l
port protocolRequiredCW : requires Protoco l
// Ports f o r c o n t r o l l i n g the t r a i n s
port t ra inRequ i red1 : requires Train
port t ra inRequ i red2 : requires Train
port t ra inRequ i red3 : requires Train

] {
// Sec t i on i n s t an c e s
component s e c t i on1 : Sec t i on
component s e c t i on2 : Sec t i on
component s e c t i on3 : Sec t i on
// Binding system port s to the por t s o f component i n s t an c e s
bind protocolProvidedCCW −> se c t i on1 . protocolProvidedCCW
bind protocolRequiredCCW −> se c t i on1 . protocolRequiredCCW
bind protocolProvidedCW −> se c t i on3 . protocolProvidedCW
bind protocolRequiredCW −> se c t i on3 . protocolRequiredCW
bind t ra inRequ i red1 −> se c t i on1 . t ra inRequ i red
bind t ra inRequ i red2 −> se c t i on2 . t ra inRequ i red
bind t ra inRequ i red3 −> se c t i on3 . t ra inRequ i red
// Connecting por t s o f ad jacent s e c t i o n s
channel [ s e c t i on1 . protocolProvidedCW ] −o )− [ s e c t i on2 . protocolRequiredCCW ]
channel [ s e c t i on2 . protocolProvidedCCW ] −o )− [ s e c t i on1 . protocolRequiredCW ]
channel [ s e c t i on2 . protocolProvidedCW ] −o )− [ s e c t i on3 . protocolRequiredCCW ]
channel [ s e c t i on3 . protocolProvidedCCW ] −o )− [ s e c t i on2 . protocolRequiredCW ]

}� �
The track model consisting of six sections can be constructed as follows:� �
sync S ixSe c t i on s [

// Ports f o r c o n t r o l l i n g the t r a i n s
port moveTrainCCW : provides MoveTrain
port moveTrainCW : provides MoveTrain

] {
// I n s t a n t i a t i n g two t r a i n s and two times three s e c t i o n s
component threeSectionsCCW : ThreeSect ions
component threeSectionsCW : ThreeSect ions
component trainCCW : Train
component trainCW : Train
// Binding system port s to the por t s o f t r a i n component
bind moveTrainCCW −> trainCCW . Train
bind moveTrainCW −> trainCW . Train
// Connecting the t rack segments
channel [ threeSectionsCCW . ProtocolProvidedCW ] −o )−

[ threeSectionsCW . ProtocolRequiredCCW ]
channel [ threeSectionsCW . ProtocolProvidedCCW ] −o )−

[ threeSectionsCCW . ProtocolRequiredCW ]
// Connecting the t r a i n s to s e c t i o n s . . .

}� �
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As can be seen, the synchronous composite component SixSections consists of six consecutive
sections. In this example they are going to be called section1, section2, · · · , section6, where
section1 is component section1 of threeSectionsCCW and section6 is component section3 of
threeSectionsCW. The sections are connected in a way that enables them to correctly interact
with one other, i.e., they are able to send and receive reserve and release as well as canGo
and cannotGo event to/on the correct ports, thus implementing the safety logic. The first
section of the sequence can only interact with the second one, and the sixth section can only
interact with the fifth one.
Two trains, train1 and train2 are instantiated and placed onto section2 and section5. The
train instances have to be connected to sections, so trains can notify sections of their positions
(events occupy and unoccupy) and sections are enabled to stop trains (event stop). This can
be done in two separate modes each modeling one of the dangerous situations:

1. Train1 is connected to section2 and section3, train2 is connected to section5 and sec-
tion4. Section2 and section5 are represented by state T1 in the train model, while
section3 and section4 are represented by T2. This layout models two trains proceeding
towards each other as it can be seen in Figure 6.4. The corresponding channel definition
in synchronous composite component model SixSections is as follows:� �
channel [ trainCCW . TrainProvided1 ] −o )− [ threeSectionsCCW . TrainRequired2 ]
channel [ trainCCW . TrainProvided2 ] −o )− [ threeSectionsCCW . TrainRequired3 ]
channel [ trainCW . TrainProvided1 ] −o )− [ threeSectionsCW . TrainRequired2 ]
channel [ trainCW . TrainProvided2 ] −o )− [ threeSectionsCW . TrainRequired1 ]� �

Section 1 Section 2 Section 3 Section 4 Section 5 Section 6

Figure 6.4: Layout: two trains proceed towards each other.

2. Train1 is connected to section2 and section3, train2 is connected to section5 and sec-
tion6. Section2 and section5 are represented by state T1 in the train model, while
section3 and section6 are represented by T2. This layout models one train proceeding
towards another one from the back as it can be seen in Figure 6.5. The corresponding
channel definition in synchronous composite component model SixSections is as follows:� �
channel [ trainCCW . TrainProvided1 ] −o )− [ threeSectionsCCW . TrainRequired2 ]
channel [ trainCCW . TrainProvided2 ] −o )− [ threeSectionsCCW . TrainRequired3 ]
channel [ trainCW . TrainProvided1 ] −o )− [ threeSectionsCW . TrainRequired2 ]
channel [ trainCW . TrainProvided2 ] −o )− [ threeSectionsCW . TrainRequired3 ]� �

Section 1 Section 2 Section 3 Section 4 Section 5 Section 6

Figure 6.5: Layout: a train proceeds to another one from behind.

Two separate composite models have to be constructed in these ways, so both dangerous
situations can be analyzed. With the use of the gamma-UPPAAL model transformer the
composite model can be transformed to UPPAAL and verification can begin.
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6.4.1 Analysis of the First Layout

As a result of the gamma-UPPAAL model transformation, eight automata are created, six of
which represent the sections and the remaining two stand for the trains. In order to verify their
emergent behavior, queries can be defined which are processed by UPPAAL and evaluated on
the network of the automata.
The following requirements are expected to be satisfied at all times:

1. The system must be deadlock free.

2. Two separate trains must not be positioned on the same section. If two trains proceed
towards each other, both of them have to be stopped on adjacent but separate sections.

The following queries have been evaluated on the system:

• A[] not deadlock, i.e. the system is deadlock free.

• A[] !(Process_main_region_trainOfStatechartOfTrain1.T2 &&
Process_main_region_trainOfStatechartOfTrain2.T2), i.e., train1 is never
positioned on section3 completely while train2 is positioned on section4 completely.

• A[] !(Process_main_region_trainOfStatechartOfTrain1.T2 &&
Process_main_region_trainOfStatechartOfTrain2.T1T2), i.e., train1 is never
positioned on section3 completely while train2 is positioned on the edge of section4 and
section5.

• A[] !(Process_main_region_trainOfStatechartOfTrain1.T1T2 &&
Process_main_region_trainOfStatechartOfTrain2.T2), i.e., train1 is never
positioned on the edge of section2 and section3 while train2 is positioned on section4
completely.

UPPAAL is able to evaluate these queries on the models and provides answers as the result
of an exhaustive state space search. UPPAAL has shown that the requirements are satisfied
by the designed composite system. This proves the following statements:

1. There is no deadlock in this layout, i.e., the UPPAAL models are valid.

2. Two trains proceeding towards each other can not collide, as they are disabled (i.e., their
braking starts) right after they reach a section that has only one other section between
it and the section occupied by the other train. The braking period in the worst case is
the length of a whole section.

6.4.2 Analysis of the Second Layout

The only difference of this layout from the first one is the orientation of train2, i.e., it may
proceed towards section6 instead of section4.
The following requirements are expected to be satisfied at all times:

1. The system must be deadlock free.

2. Two separate trains must not be positioned on the same section. If one train proceeds
towards another one from the back at least one whole section has to be in between them.
If the train in the back breaks this rule, it has to be stopped. The train in the front may
keep going.
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The following queries have been evaluated on the system:

• A[] not deadlock, that is, the system is deadlock free.

• A[] !(Process_main_region_trainOfStatechartOfTrain1.T2 &&
Process_main_region_trainOfStatechartOfTrain2.T1), that is, train1 is never
positioned on section3 completely while train2 is facing in the other direction and is
positioned on section4 completely.

• A[] !(disabledOfTrain2), that is, train2 can never be stopped by the safety logic in
this layout .

UPPAAL has shown that the requirements are satisfied by the designed composition system.
This proves the followings:

1. There is no deadlock in this layout, i.e., the UPPAAL models are valid.

2. One train proceeds towards another one from the back is stopped (i.e., its braking starts)
before it reaches a section that is located next to an occupied section of another train.
This does not affect the train in front, it can keep going.

6.5 Summary

In summary, the correctness of the MoDeS3 safety logic designs has been proven with the help
of the gamma framework. As a result, the source code generated from the composition models
will also work correctly in these situations owing to the formal composition semantics both
UPPAAL models and the generated source conform to.
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Chapter 7

Conclusion

In this work we presented the gamma framework, which supports the design, implementa-
tion and verification of state-based reactive sytems using model-driven software development
concepts. The core of gamma is its statechart language, which is supported by the Yakindu
Statechart Tools for high-level design, a Java code generator for implementation and the
UPPAAL model checker for formal verification. Moreover, its extensible architecture allows
additional tools and features to be plugged in.
The main contribution of this work is the extension of the gamma framework with features
for hierarchical composite modeling. First of all, we extended the statechart language with
elements for composition. These new elements define ports and interfaces, enabling individual
components to serve as endpoints. Communication is provided by channels connecting port
instances. Relying on these elements, we defined various kinds of components for hierarchical
composite model building. The three distinguished composition modes are the asynchronous-
reactive, the synchronous-reactive and cascade.
Asynchronous components represent independently running components, which communicate
with immutable messages stored in message queues. This semantics is suitable for designing
separate units executed in their own processes. Synchronous-reactive components are useful
for providing a single executing unit consisting of multiple, functionally independent compo-
nents. This composition mode is beneficial for the design of low-level controllers. Cascade
composition is practical for designing units with pipeline-like behavior: the input given into
the model is processed by multiple consecutive filters. We believe that these composition
methods cover a large portion of the problems emerging in the design of reactive systems.
From the theoretical point of view, we also defined the precise semantics of the aforementioned
composition modes. This enabled us to extend the currently existing code generation and
verification tools in the gamma framework to be able to handle hierarchical composite models.
These functionalities are not yet complete, as for example code generation and model checking
currently support only synchronous models. However, these deficiencies can be completed
rather easily as we already have detailed plans on how they should work.
Furthermore, we plan to integrate ongoing side-projects, aiming to extend the gamma frame-
work with additional functionalities, including source code generation from gamma statecharts
and code generation to distributed controllers with network communication. Moreover, we
also plan to extend the framework with additional engineering tools, e.g., MagicDraw and
Stateflow, and analysis modeling tools, e.g., Spin [5].
By offering multiple modeling aspects, compositional semantics, source code generation and
verification functionalities in a single, extensible framework, we hope that gamma can assist
system and software engineers in leveraging the potential of model-driven development.
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