
Budapest University of Technology and Economics
Faculty of Electrical Engineering and Informatics

Department of Measurement and Information Systems

Abstraction-based model checking for real-time
software-intensive system models

Scientific Students’ Association Report

Author:

Dóra Cziborová

Advisor:

dr. Kristóf Marussy
Mihály Dobos-Kovács

2023

Contents

Kivonat i

Abstract ii

1 Introduction 1

2 Preliminaries 3
2.1 Model checking . 3
2.2 Modeling formalisms . 3

2.2.1 Timed automata with data variables 4
2.2.2 Extended symbolic transition systems 5

2.3 Abstract domains . 8
2.3.1 Explicit value abstraction . 8
2.3.2 Predicate abstraction . 9
2.3.3 Zone abstraction . 9
2.3.4 Product abstraction . 10

2.4 Abstract reachability graphs . 10
2.5 CEGAR . 11

2.5.1 The CEGAR abstractor . 12
2.5.2 The CEGAR refiner . 12

2.6 Lazy abstraction . 12
2.7 Related work . 15

3 Overview 16
3.1 Gamma Statechart Composition Language 17
3.2 Proposed algorithms . 19

4 The timed XSTS formalism 20

5 Verification of timed XSTS models 22
5.1 Encoding timed behavior using data variables 22

5.2 Control flow splitting with Boolean flags . 24
5.2.1 Operation simplification by substitution 25
5.2.2 Operation transformation with Boolean flags 25

5.2.2.1 Sequences . 26
5.2.2.2 Conditional operations . 26
5.2.2.3 Non-deterministic choices 28
5.2.2.4 Loops . 28
5.2.2.5 Assumptions . 29
5.2.2.6 Data assignments . 29
5.2.2.7 Other basic operations . 30

5.2.3 Using an SMT solver to determine control flows 30
5.2.4 Soundness of control flow splitting 30

5.3 Verification of timed XSTS with combined abstraction 31

6 Evaluation 34
6.1 Configurations . 35
6.2 Results and discussion . 35

7 Conclusion 40
7.1 Future work . 41

Bibliography 41

Kivonat

A valós idejű szoftverintenzív rendszerek biztonságának biztosítása kulcsfontosságú számos
kritikus alkalmazásban, mint az automatikus vezetéstámogató rendszerek, vasúti rendszer-
figyelők, okos városok. A formális verifikációs módszerek, mint az automatizált modellellen-
őrzés matematikailag precíz bizonyítékot adhatnak a rendszerek helyességére a biztonságos
működés érdekében.

A valós idejű időzítési követelmények és a bonyolult időbeli viselkedések megnehezítik
a valós idejű szoftverintenzív rendszerek verifikációját. Ezek a rendszerek tartalmaznak to-
vábbá külső adatokkal, például beérkező szenzor adatokkal végzett számításokat, melyek
erősen adatfüggő viselkedéseket eredményeznek. Emiatt kétféle kihívással is találkozunk:
(1) a szoftverek fejlesztéséhez gyakran összetett eszközök szükségesek, mint például az
állapottérkép alapú modellezőeszközök a viselkedés megfelelő kifejezőerejű leírásához, va-
lamint (2) a formális verifikációt hátrátatja az esetleges időzítések és bejövő adatok által
okozott állapottér-robbanás.

Az utóbbi probléma ellensúlyozására az irodalomban absztrakció alapú modellellenőr-
ző eszközök kerültek kifejlesztésre. Korábbi munkám során kifejlesztettem absztrakció ala-
pú algoritmusok egy olyan kombinációját, mely képes az időzített viselkedések és összetett
bejövő adatok egyidejű kezelésére. Az időzített modellellenőrzésben használt alacsonyszin-
tű formalizmusok azonban nem rendelkeznek kellő kifejezőerővel a magasszintű modelle-
ző eszközökből származó rendszer modellek reprezentálására. Bár az időzített viselkedés
diszkrét közelítése elterjedt megoldás az olyan, kifejezőbb verifikációs algoritmusok hasz-
nálatának lehetővé tételére, melyek natívan nem támogatják az időzített viselkedést, ezzel
a diszkretizáció hibája miatt elveszhet a helyesség.

A dolgozat célja egy köztes formalizmus javaslata a valós idejű rendszer modellek rep-
rezentálására, valamint ehhez a formalizmushoz létező absztrakció alapú modellellenőrző
algoritmusok adaptálása. Ehhez (i) javasolok egy kiterjesztést a Gamma állapottérkép
alapú modellezőeszközben köztes modellként használt kiterjesztett szimbolikus tranzíciós
rendszer (XSTS) formalizmushoz, hogy lehetővé tegyem időzített rendszerek leírását, ki-
használva a Gamma és az XSTS létező képességeit az összetett adatvezérelt viselkedés és
a rendszer komponensek közti kommunikáció reprezentálására. Ezen kívül (ii) absztrakció
alapú modellellnőrzési megközelítéseket adaptálok az időzített XSTS modellek verifikáci-
ójára, beleértve (iii) a komponensek kommunikációja és a hierarchikus modellezés által
okozott összetett vezérlési folyamok kezelését a kombinált verifikációs algoritmusomban.
Továbbá, (iv) az időzített XSTS formalizmust és a verifikációs algoritmusokat implemen-
tálom a nyílt forráskódú Theta verifikációs keretrendszerben. Végül (v) a javasolt megkö-
zelítéseket ipari projektetből származó esettanulmányokon és szintetikus benchmark mo-
delleken értékelem ki.

Munkám eredményeképp lehetővé válik az összetett valós idejű szoftverintenzív rend-
szerek verifikációja a kifejezőerő korlátozása és diszkretizációs hiba nélkül.

i

Abstract

Ensuring the safe operation of real-time software-intensive systems is crucial in many
critical applications, such as automatic driver assist systems, monitors for railway systems,
and smart cities. Automated model checking provides a mathematically precise way to
maintain safety and prevent damage to property by formally verifying correctness.
Real-time scheduling requirements and complex timed behavior make the verification of
real-time software-intensive systems difficult. These systems also contain computations
with external data, e.g. sensor data, and heavily data-dependent computations. These
properties pose a twofold challenge: (1) development of the software often requires com-
plex toolchains, such as statechart-based modeling to adequately express behaviors, and
(2) formal verification is adversely affected by state space explosion caused by the possible
scheduling and data inputs.
To counteract the latter problem, abstraction-based model checking tools have been devel-
oped in the literature. In our previous work, we developed a combination of abstraction-
based algorithms to simultaneously handle timed behaviors and complex data acquisition.
However, existing low-level formalisms for timed model checking lack the expressive power
to represent system models from high-level modeling toolchains. While discrete approxi-
mations of timed behaviors are a common solution to enable the use of more expressive
verification algorithms that do not natively support timed behaviors, this may introduce
unsoundness due to discretization error.
This work aims to propose an intermediate formalism to represent real-time software-
intensive system models, and adapt existing abstraction-based model checking algorithms.
In particular, we (i) propose an extension to the Extended Symbolic Transition Sys-
tem (XSTS) formalism used as an intermediate model in the Gamma statchart-based mod-
eling toolchain to represent timed systems, leveraging the existing capabilities of Gamma
and XSTS to represent complex data-driven behaviors and communication between system
components. We also (ii) adapt abstraction-based model checking approaches to handle
the verification of timed XSTS, including (iii) handling complex control flow caused by
component communication and hierarchical modeling in our combined verification algo-
rithm. We (iv) implement the timed XSTS formalism and the verification algorithms in
the open-source Theta verification framework and (v) evaluate the proposed approaches
on case studies from industrial projects, as well as synthetic benchmarks.
As a result, verification of complex real-time software-intensive systems is enabled without
limitations to expressive power or unsoundness introduced by discretization.

ii

Chapter 1

Introduction

Software-based systems are becoming more and more widespread in many areas, including
safety-critical systems, where software faults can result in severe consequences. So ensuring
the safe operation of real-time software-intensive systems is crucial in critical applications,
such as automatic driver assist systems, monitors for railway systems, and smart cities. In
one, hand, testing is widely used to find faults in software. However, testing can not prove
functional correctness alone. On the other hand, automated model checking provides a
mathematically precise way to find errors or to prove correctness of software systems.
Real-time scheduling requirements and complex timed behavior make the verification of
real-time software-intensive systems difficult. These systems also contain heavily data-
dependent computations. These properties pose a twofold challenge: (1) development of
the software often requires complex toolchains and high-level modeling formalism, such
as statechart-based modeling to adequately express behaviors, and (2) formal verification
is adversely affected by state space explosion caused by the possible scheduling and data-
intensive operations.
Various techniques and algorithms were introduced in the literature to tackle the state
space explosion problem. Abstraction-based model checking proved its efficiency to reduce
the complexity of verifying software systems. Advanced refinement techniques help finding
the right abstraction to prove the correctness or find the software faults. These techniques
are efficient for software, but they are not able to handle timing information.
The verification of timed systems often relies on a modeling formalism that restricts both
the data dependent and also the timing operations in order to be able to use efficient
algorithms for the timed verification. As a consequence, existing low-level formalisms for
timed model checking lack the expressive power to represent system models from high-level
modeling toolchains.
In this work we propose an expressive intermediate formalism to represent real-time
software-intensive system models, and introduce a novel model checking method for the
efficient verification. In particular, we (i) propose an extension to the Extended Sym-
bolic Transition System (XSTS) formalism used as an intermediate model in the Gamma
statchart-based modeling toolchain to represent timed systems, leveraging the existing
capabilities of Gamma and XSTS to represent complex data-driven behaviors and com-
munication between system components. We also (ii) introduce abstraction-based model
checking approaches for the efficient verification of timed XSTS, including (iii) handling
complex control flow caused by component communication and hierarchical modeling in
our combined verification algorithm. We (iv) implement the timed XSTS formalism and
the verification algorithms in the open-source Theta verification framework and (v) evalu-

1

ate the proposed approaches on case studies from industrial projects, as well as synthetic
benchmarks.
Thanks for our contributions, engineers can rely on an expressive intermediate formalism
to formally represent engineering models and our toolchain provides sound, abstraction-
based techniques to efficiently verify the engineering models.
As a result, verification of complex real-time software-intensive systems is supported with-
out limitations to expressive power or unsoundness introduced by approximations of former
approaches.

2

Chapter 2

Preliminaries

2.1 Model checking

Formal verification is the term used for proving the correctness of a system using mathe-
matical techniques. Model checking [13] is a formal verification method that exhaustively
explores all possible behaviors (the state space) of a formal model of the system to check it
against some formally specified requirements. The desired properties are typically safety
properties (the defined unsafe state of the system is never reached) and liveness properties
(the desired state is always reached eventually).
Both safety and liveness properties define a reachability problem. The result of the reach-
ability analysis is either a path to the given state, or a mathematical proof that the state
is not reachable. In case of safety properties, a path to the unsafe state is a counterex-
ample to the safety property, while the desired result is a proof of the unsafe state being
unreachable. For liveness properties this is reversed, the desired result is a path to the
given state, while a proof of unreachability is a counterexample to the property.
Explicitly enumerating all states on all paths would not be an efficient or even viable
approach to reachability analysis. The size of the state space of the system grows ex-
ponentially in the number of variables, resulting in what is called state space explosion,
which is one of the main challenges of model checking.
To counteract the problem of state space explosion, many reachability analysis techniques
have been developed in the literature, including bounded model checking [11], symbolic
model checking [8], abstract interpretation [14], and abstraction [12], the latter forming
the basis of the algorithms presented in this work.

2.2 Modeling formalisms

Model checkers operate on formal models with well-defined syntax and semantics, e.g.
Kripke structures, timed automata [6] and symbolic transition systems [23]. In the following
we describe two modeling formalisms that are relevant to our work, timed automata with
data variables and extended symbolic transition systems.

3

2.2.1 Timed automata with data variables

This work focuses on the verification of systems containing both timed behavior and data
operations. Timed automata are suitable for modeling timed behavior. Although not
without certain limitations, data variables can also be included in timed automata.
Timed behavior is modeled using clock variables. Clock variables are continuous, non-
negative variables. All clock variables are initialized at zero, can be reset, and are in-
cremented equally within the model. For a set of clock variables VC , a clock valuation
valC : VC → R≥0 maps each clock c ∈ VC to a non-negative value. We denote the set of
clock valuations by ValC .
Let VD be a set of data variables with (finite or infinite) domains D1, D2, . . . , D|VD|. A data
valuation valD : VD →

⋃|VD|
i=1 Di maps each variable x ∈ VD to a value in its corresponding

domain, i.e. ∀xi ∈ VD : valD(xi) ∈ Di. We denote the set of data valuations by ValD.

Definition 1 (Timed automaton with data variables). A timed Automaton with
data variables is a tuple TA = ⟨L, E , VC , VD, l

0, val0D⟩, where

• L is a finite set of locations;

• E ⊂ L ×OTA × L is a set of edges labeled with operations op ∈ OTA;

• VC and VD are finite sets of clock and data variables;

• l0 ∈ L is the initial location;

• val0D ∈ ValD is the initial valuation of data variables. �

A state of the automaton is a tuple ⟨l, ⟨valD, valC⟩⟩ where l ∈ L, valD is a data valuation
over VD, and valC is a clock valuation over VC .
Let JopKTA(⟨valD, valC⟩) denote applying op to the valuation ⟨valD, valC⟩. Thus, {l′} ×
JopKTA(⟨valD, valC⟩) is the set of states reachable by edge ⟨l, op, l′⟩ from ⟨l, ⟨valD, valC⟩⟩.
In timed automaton models, operations must not contain interdependence of data and
clocks, i.e. JopKTA(⟨valD, valC⟩) = JopKTA(valD) × JopKTA(valC). Therefore, operations
can be divided into two categories, data operations that leave clock valuations unchanged
(for a data operation opD and clock valuation valC , JopDKTA(valC) = {valC}), and clock
operations that leave the data valuations unchanged (for a clock operation opC and data
valuation valD, JopCKTA(valD) = {valD}).
(a) Data operations:

• A data guard has the form [φ], where φ is a predicate over VD. They control which
edges are enabled, for a guard g = [φ], JgKTA(valD) = {valD} if valD satisfies φ,
otherwise JgKTA(valD) = ∅.

• An assignment x := φ assigns the value of an expression φ evaluated on valD to
the variable x ∈ VD with domain D, i.e. Jx := φKTA(valD) = {val′D}, such that
val′D(x) = φ(valD), φ(valD) ∈ D, and ∀x′ ∈ VD\{x} : val′D(x′) = valD(x′).

• A havoc operation havoc(x) is a non-deterministic assignment that sets a data vari-
able x ∈ VD to any value of its domain D, i.e. Jhavoc(x)KTA(valD) = {val′D |
val′D(x) ∈ D, ∀x′ ∈ VD\{x} : val′D(x′) = valD(x′)}.

4

(b) Clock operations:

• [constr] is a clock guard if constr is a clock constraint, i.e. a formula of the form
ci ∼ k or ci − cj ∼ k, where ci, cj ∈ VC , ∼ ∈ {<,≤,=,≥, >}, and k ∈ Z. For a
clock guard g = [constr], JgKTA(valC) = {valC} if valC satisfies constr, otherwise
JgKTA(valC) = ∅.

• A reset operation c := 0 sets a clock c ∈ VC to 0, Jc := 0KTA(val) = {val′} such that
val′(c) = 0, and ∀c′ ∈ VC\{c} : val′C(c′) = valC(c′).

• A delay operation increments all clocks, JdelayKTA(val) = {valδ | δ ∈ R≥0} where
valδ(c) = val(c) + δ for all clocks c ∈ VC .

Lastly, compound operations of the form op1; op2, where op1, op2 ∈ OTA, are executed
sequentially: Jop1, op2KTA(val) = {val′′ | val′′ ∈ Jop2KTA(val′), val′ ∈ Jop1KTA(val)}.
The initial states of the automaton form a set I = {⟨l0, ⟨val0D, val0C⟩⟩ | val0C = {ci 7→ δ |
ci ∈ VC}, δ ∈ R≥0} with data variables initialized to val0D and clock variables to some
initial delay δ ≥ 0.
A run of the automaton is an alternating finite sequence of states and operations σTA =
⟨l0, ⟨val0D, val0C⟩⟩

op1−−→ ⟨l1, ⟨val1D, val1C⟩⟩
op2−−→ · · · opk−−→ ⟨lk, ⟨valkD, valkC⟩⟩, with ⟨valiD, valiC⟩ ∈

JopiKTA(⟨vali−1
D , vali−1

C ⟩) and ⟨li−1, opi, l
i⟩ ∈ E for all 1 ≤ i ≤ k. A location l is reachable

in the model if and only if there exists a run σTA such that lk = l.

2.2.2 Extended symbolic transition systems

The modeling improvements proposed in this work are based on a higher-level modeling
formalism, extended symbolic transition systems [33].

Definition 2 (Extended symbolic transition system). An extended symbolic tran-
sition system is a tuple XSTS = ⟨V, Vctrl, val

0, init, env, tran⟩, where

• V = {x1, x2, . . . , x|V |} is a set of variables with domains D1, D2, . . . , D|V |;

• Vctrl ⊆ V is a set of control variables, it is strongly recommended to track these
variables explicitly (see explicit abstraction in 2.3.1 and product abstraction in 2.3.4);

• val0 is the initial valuation that maps each variable x ∈ V to the initial value of the
variable in its corresponding domain, or ⊤ if unknown, i.e. initval(xi) ∈ Di ∪ {⊤};

• init ⊆ OXSTS is a set of operations representing the initialization transition set, it
describes more complex initialization that cannot be described by val0;

• env ⊆ OXSTS is a set of operations representing the environment transition set, it
describes the interactions of the system with the environment;

• tran ⊆ OXSTS is a set of operations representing the internal transition set, it
describes the internal behavior of the system. �

Let T denote the set of transition sets {init, env, tran}. Each transition set in T consists of
one or more operations taken from a set of operations OXSTS . When executing a transition
set, the operation to be executed is selected from the transition set in a non-deterministic
manner.

5

A state of an XSTS model is a pair ⟨val, τ⟩, where val : V → ⋃|V |
i=1Di is a valuation that

maps each variable x ∈ V to a value in the domain of the variable (∀xi ∈ V : val(xi) ∈ Di),
and τ ∈ T denotes the transition set to be executed in this state, which is the only one
that can be executed in this state. In the initial state τ = init, and the valuation is
val = val0, so there is exactly one initial state, ⟨val0, init⟩.
Let JopKXSTS(⟨val, τ⟩) denote the result of applying the operation op ∈ OXSTS on the
XSTS state ⟨val, τ⟩. With a slight abuse of notation we will write JopKXSTS(val) for the
result of applying op on val, and JopKXSTS(τ) for applying op on τ . The two components of
the XSTS states are independent, hence JopKXSTS(⟨val, τ⟩) = JopKXSTS(val)×JopKXSTS(τ).
For all operations op ∈ OXSTS , JopKXSTS(τ) = ∅ if op ̸∈ τ . The transition set init is
executed only once, from the initial state. The transition sets env and tran are executed
in an alternating manner, but only after init. In accordance with this consecution of
transition sets, JopKXSTS(init) = {env}, JopKXSTS(env) = {tran} and JopKXSTS(tran) =
{env}.
The set of valuations resulting from JopKXSTS(val) depends on the kind of operation op.
The operations in OXSTS are either basic operations or compound operations describing
more complex semantics, with other (basic or compound) operations embedded. The
following operations are defined for the XSTS formalism:
(a) Basic operations:

• Assumptions have the form [φ], where φ is a predicate over V . They control which
operations can be taken, for an assumption g = [φ], JgKXSTS(val) = {val} if val
satisfies φ, otherwise JφKXSTS(val) = ∅.

• Assignments have the form x := φ. They assign the value of an expression φ
evaluated on val to the variable x ∈ V with domain D, i.e. Jx := φKXSTS(val) =
{val′} such that val′(x) = φ(val), φ(val) ∈ D, and ∀x′ ∈ V \{x} : val′(x′) = val(x′).

• Havoc operations are non-deterministic assignments denoted by havoc(x) where
x ∈ V with domain D. They assign a non-deterministically chosen value to the
variable from its domain, i.e. Jhavoc(x)KXSTS(val) = {val′ | val′(x) ∈ D, ∀x′ ∈
V \{x} : val′(x′) = val(x′)}.

• No-op operations are denoted simply by skip, JskipKXSTS(val) = {val}. The main
purpose of this operation is to enable writing composite operations in a generic form.

(b) Compound operations:

• Sequences have the form op1, op2, . . . , opn, where opi ∈ OXSTS . The operations
op1, op2, . . . , opn are executed one after the other, Jop1 op2 . . . opnKXSTS(val) =
{val(n) | val(n) ∈ JopnKXSTS(val(n−1)), . . . , val′′ ∈ Jop2KXSTS(val′), val′ ∈
Jop1KXSTS(val)}.

• Non-deterministic choices have the form {op1} or {op2} or . . . or {opn}, where opi ∈
OXSTS . Exactly one operation op ∈ {op1, op2, . . . , opn} is executed, chosen in a non-
deterministic manner, J{op1} or {op2} or . . . or {opn}KXSTS(val) = JopKXSTS(val)
such that op ∈ {op1, op2, . . . , opn}.

• Conditional operations have the form if(φ) then {op1} else {op2}, where φ is a
predicate over V , and op1, op2 ∈ OXSTS . Exactly one of op1 and op2 is ex-

6

ecuted, determined by the evaluation of the predicate φ on val. If val sat-
isfies φ, then Jif(φ) then {op1} else {op2}KXSTS(val) = Jop1KXSTS(val), otherwise
Jif(φ) then {op1} else {op2}KXSTS(val) = Jop2KXSTS(val).

• Loops have the form for i from φa to φb do {op}, where i is an inte-
ger variable, φa and φb are expressions such that φa(val) ∈ Z, φb(val) ∈ Z,
and op ∈ OXSTS . The semantics of this operation is that of usual for-loops,
Jfor i from φa to φb do {op}KXSTS(val) = Jif(φa(val) < φb(val)) then {i :=
φa(val), op, for i from φa + 1 to φb do {op}} else {skip}KXSTS(val).

A run of an XSTS is an alternating finite sequence of states and operations σXSTS =
⟨val0, init⟩ op1−−→ · · · opk−−→ ⟨valk, τk⟩, with ⟨vali, τ i⟩ ∈ JopiKXSTS(⟨vali−1, τ i−1⟩) for all 1 ≤
i ≤ k. A state ⟨val, τ⟩ is reachable in the model if there exists a run σXSTS such that
valk = val and τk = τ .

FOL operation semantics

The operations of XSTS models can also be interpreted as FOL formulas containing vari-
ables from V and their primed versions, such that primed variables represent the variables
in the next state. We use the notation JopKFOL to represent the FOL semantics of an
operation op. The FOL semantics of XSTS operations are as follows:

• An assumption does not change any variables, but a state should satisfy the formula:
J[φ]KFOL = φ ∧

∧
x∈V x = x′;

• After an assignment, the value of assigned variable should be equal to the assigned
value: Jx := φKFOL = (x′ = φ) ∧∧

y∈V \{x} y
′ = y;

• A havoc operation binds all variables in the successor except the argument of the
havoc operation to their current values: Jhavoc(x)KFOL = ∧

y∈V \{x} y
′ = y;

• A no-op binds all variables in the successor to their current values: JskipKFOL =∧
x∈V x

′ = x;

• For the FOL representation of sequences we introduce the notation JopKi
F OL that

represents JopKF OL with primed variables replaced by their indexed versions with
index i, and non-primed variables replaced by their indexed versions with index
i− 1. Then Jop1, op2, . . . , opnKFOL = (∧n

i=1JopiKi
F OL) ∧ (∧x∈V x = x(0) ∧ x′ = x(n)).

• Conditional operations can be represented by a FOL formula as a disjunction where
only one of the two operands can hold, selected by the condition of the operation:
Jif(φ) then {op1} else {op2}KFOL = (φ ∧ Jop1KFOL) ∨ (¬φ ∧ Jop2KF OL)

• The FOL representation of a non-deterministic choice consists of a disjunction of
the FOL representation of its branches, with a new variable a ∈ N introduced
to ensure that no more than one operand of the disjunction can evaluate to true:
J{op1} or {op2} or . . . or {opn}KFOL = ∨n

i=1(a = i ∧ JopiKFOL)

Loops do not have a closed FOL representation. With some constraints and additional
steps, however, they can be reduced to a sequence of other operations that can already be
represented by a FOL formula (see loop unfolding in section 5.2.1).

7

Let (val, val′) |= φ denote that assigning values from val to the non-primed variables and
assigning values from val′ to the primed variables in φ evaluates to true. A valuation val′
is a successor of the valuation val if and only if (val, val′) |= JopKFOL.
In the following we will write O to denote the set of operations regardless of the used
modeling formalism, and JopK(val) to denote the result of applying op ∈ O on a concrete
state val.

2.3 Abstract domains

The state spaces of models involved in verification tasks are usually large, often infinite.
Abstractions replace concrete states with a finite, tractable representation to enable veri-
fication [14].

Definition 3 (Abstract domain). An abstract domain is a tuple D = ⟨V,S,⊑, γ, T ⟩,
where

• V is the set of concrete states;

• S is the set of abstract states;

• ⊑ ⊆ S × S is a preorder, i.e. it is a reflexive and transitive binary relation;

• γ : S → 2V is the concretization function that maps an abstract label to the cor-
responding set of concrete states, such that s1 ⊑ s2 implies γ(s1) ⊆ γ(s2) for all
s1, s2 ∈ S,

• T : S × O → 2S is the (abstract) transition function that maps an abstract state
s ∈ S to its successor states s′ ⊆ S with respect to an operation op ∈ O, such that⋃

val∈γ(s)JopK(val) ⊆
⋃

s′∈T (s,op) γ(s′) for all s ∈ S. �

The transition function T is often associated with a precision π describing the information
retained by the abstraction [10]. In this case, we will write T π(s, op) for the successors at
precision π.
In most abstract domains, abstract states can be represented as FOL formulas. We write
JsKFOL to denote the FOL representation of an abstract state s ∈ S. The transition func-
tions often utilize an SMT solver to compute successor states, using FOL representations
of states and operations.

2.3.1 Explicit value abstraction

In explicit value abstraction [4] the values of some subset of data variables are explicitly
tracked, while the rest of the variables may take any value. The precision is defined by
the variables tracked, i.e. π is a set of variables, π ⊆ V where V is the set of variables in
the model.
The abstract states are partial valuations that map variables x ∈ π to a value in their
corresponding domains. E.g., an abstract state representing the set of concrete states
{{x1 7→ 1, x2 7→ 0, x3 7→ n} | n ∈ Z} with precision π = {x1} is a partial valuation
pval = {x1 7→ 1}. The FOL representation of an abstract state pval is the formula
JpvalKFOL = ∧

x∈π x = pval(x).

8

For two abstract states the preorder relation pval1 ⊑e pval2 holds if and only if pval2(x) ∈
{pval1(x),⊤} for all x ∈ π. E.g., {x1 7→ 1, x2 7→ 0} ⊑e {x1 7→ 1} and {x1 7→ 1, x2 7→ 0} ⊑e

{x1 7→ 1, x2 7→ ⊤}, but {x1 7→ 1} ̸⊑e {x1 7→ 1, x2 7→ 0}.
The concretization function γe(pval) yields all valuations val such that val(x) = pval(x)
for all variables x ∈ π. E.g., for a set of variables V = {x1, x2} with domains D1 = D2 = Z
and an abstract state pval = {x1 7→ 1}, γe(pval) = {val | val(x1) = 1, val(x2) ∈ Z}.
The abstract transition function Te assigns values to variables in π according to the oper-
ation op executed on pval where it can be evaluated and assigns ⊤ to all other variables
in π. E.g., for a precision π = {x1}, an abstract state pval and a compound operation
op = (havoc(x1), [−180 ≤ x1 ≤ 180]), T π

e (pval, op) = {{x1 7→ ⊤}}.
We can also define an alternate transition function Te,n (n ∈ N) that tries to enumerate
the possible values for variables in π that cannot be evaluated in an exact manner, and
assigns ⊤ to the variable only if there are more than n possible values. Otherwise, multiple
successor states are included in the result, with all possible values for the variable. For
the same precision, abstract state and compound operation as in the previous example,
T π

e,400(pval, op) = {{x1 7→ −180}, {x1 7→ −179}, . . . , {x1 7→ 180}}.

2.3.2 Predicate abstraction

In predicate abstraction [27], the abstract states are defined by predicates instead of explicit
value assignments to variables. The precision π is a set of first order logic predicates, e.g.
π = {p1, p2} where p1 = (x1 ≥ 0) and p2 = (x1 = x2).
There are multiple approaches to representing states using predicates, here we describe
Cartesian predicate abstraction [1] and Boolean predicate abstraction [1] with predicate
splitting [22]. We also include examples, where S denotes the set of concrete states {{x1 7→
1, x2 7→ 0, x3 7→ n} | n ∈ Z}, the used precision is the above example precision π = {p1, p2},
and op denotes a compound operation havoc(x1), [−180 ≤ x1 ≤ 180].
Cartesian predicate abstraction represents states as a conjunction of positive or negative
forms of some of the tracked predicates, the representation of S is sCart = {p1 ∧ ¬p2}.
The transition function T π

p,Cart yields only one state, which is the strongest conjunction
of predicates that is entailed by the state and operation. In our example both p1 and ¬p1
may hold in the successor, as well as both p2 and ¬p2, therefore T π

p,Cart(sCart, op) = {∅}.
Boolean predicate abstraction represents states as a Boolean combination of the positive or
negative form of each tracked predicate, the representation of S is again sBool = {p1∧¬p2}.
With predicate splitting, the transition function T π

p,Bool enumerates multiple successors
when both the positive and negative form of a predicate may hold in a successor, hence
T π

p,Bool(sBool, op) = {{p1 ∧ p2}, {p1 ∧ ¬p2}, {¬p1 ∧ p2}, {¬p1 ∧ ¬p2}}.
In both cases the abstract states are already FOL formulas: JpKFOL = p.
The preorder relation ⊑p of predicate abstraction corresponds to implication, i.e. s1 ⊑p s2
if and only if s1 =⇒ s2. The concretization function γp(sp) yields all valuations that
satisfy the predicates in sp, e.g. γp({p1 ∧ ¬p2}) = {val | val(x1) ≥ 0 ∧ val(x1) ̸= val(x2)}.

2.3.3 Zone abstraction

Zone abstraction [2] is used for time abstraction. Zone abstraction represents sets of
clock valuations as zones. A zone is described by a conjunction of clock constraints, e.g.

9

z = (c1 ≥ 0) ∧ (c2 ≥ 0) ∧ (c1 − c2 ≤ 2). Let Z denote the set of zones. Zones can also be
represented as FOL formulas, in fact, a zone is already a FOL formula: JzKFOL = z.
The preorder relation ⊑Z corresponds to the implication of zones, e.g. (c ≥ 1)∧(c ≤ 4) ⊑Z
(c ≥ 0). The concretization function γZ yields all clock valuations satisfying the zone.
The transition function TZ of zone abstraction produces at most one successor state,
such that it does not introduce unreachable states, i.e. all concretizations of the successor
states are reachable from some concretization of the source by the given operation: if
TZ(z, op) = {z′}, then γZ(z′) = ⋃

valC∈γZ (z)JopK(valC).

2.3.4 Product abstraction

Product abstraction combines multiple abstractions into one abstract domain. It is es-
sential when working with systems that contain both data and clock variables, e.g. timed
automata with data variables, but it also enables using more elaborate abstractions, e.g.
we might use explicit value abstraction for the control variables of an XSTS model, and
predicate abstraction for all other variables. Here we describe product abstraction for two
domains, but this abstraction can be easily generalized for more abstract domains as well.
The product of two abstract domains D1 = ⟨V1,S1,⊑1, γ1, T1⟩ and D2 = ⟨V1,S2,⊑2, γ2, T2⟩
is the abstract domain Prod(D1,D2) = ⟨V1×V2,S1×S2,⊑×, γ×, T×⟩, such that

• ⟨s1,1, s1,2⟩ ⊑× ⟨s2,1, s2,2⟩ if and only if s1,1 ⊑1 s2,1 and s1,2 ⊑2 s2,2;

• γ×(⟨s1, s1⟩) = γ1(s1)× γ2(s2);

• T×(⟨s1, s2⟩, op) = T1(s1, op)× T2(s2, op).

The FOL representation of an abstract state in product abstraction exists if the FOL
representation of both components exists: J⟨s1, s2⟩KFOL = Js1KFOL ∧ Js2KFOL.

2.4 Abstract reachability graphs

The reachability algorithms discussed in this work represent the state space of the model
as an abstract reachability graph (ARG).
Definition 4 (Abstract reachability graph). An abstract reachability graph using an
abstract domain D = ⟨V,S,⊑, γ, T ⟩ for a model with operations O is a tuple ARG =
⟨N,E,C, Ln, Le⟩, where

• ⟨N,E⟩ is a finite directed tree with nodes N and edegs E rooted at n0 ∈ N ;

• C ⊆ N ×N is the set of covered-by edges;

• Ln : N → S is the node labeling by abstract states of D;

• Le : E → O is the edge labeling by operations of the model. �

A node n ∈ N is expanded if and only if for all operations op ∈ O enabled from Ln(n) there
is an outgoing edge from n labeled with op. A node n is covered if and only if ⟨n, n′⟩ ∈ C
for some node n′. A node is pending if and only if it is not expanded and not covered. An
ARG is complete, if and only if all its nodes are either expanded or covered.
We require the following properties of ARGs:

10

1. Initiation: if val is an initial state of the model, then val ∈ γ(Ln(n0)).

2. Inductive labeling: for each expanded node n ∈ N and operation op ∈ O enabled
from Ln(n) there exists a node n′ ∈ N and an ARG edge (n, n′) ∈ E for each
s′ ∈ T (Ln(n), op) such that s′ ⊑ Ln(n′).

3. Coverage: Ln(n) ⊑ Ln(n′) for each ⟨n, n′⟩ ∈ C.

When performing reachability analysis, we seek an abstract run n0
op1−−→ n1

op2−−→ · · · opk−−→ nk

such that ni ∈ N for all 0 ≤ i ≤ k, ⟨ni−1, ni⟩ ∈ E and Le(⟨ni−1, ni⟩) = opi for all
1 ≤ i ≤ k that can be concretized into a run with γ(Ln(nk)) containing the target state
of the reachability analysis. If such abstract run exists, then the target state is reachable,
otherwise, if the ARG becomes complete without containing such abstract run, then the
target state is unreachable.

2.5 CEGAR

Counterexample-guided abstraction refinement (CEGAR) [4, 3, 28, 29, 42] is an
abstraction-based model checking technique. The idea of the CEGAR approach is to
start with a very coarse initial abstraction (e.g. a precision of no tracked variables in ex-
plicit value abstraction, or no tracked predicates in predicate abstraction), then refine it
iteratively in alternating abstraction and refinement steps.
Algorithm 1 shows a CEGAR algorithm where a state is a target state if and only if it
satisfies the target predicate φt. The CEGAR algorithm utilizes an abstractor providing
the Build algorithm that returns the abstractor result Ra, and a refiner providing the
Refine algorithm that returns the refiner result Rr.

Algorithm 1 CEGAR algorithm
1: function Check(M: XSTS model, D= ⟨V,S,⊑, γ, T ⟩: abstract domain, φt: target

predicate, π0: initial precision)
2: π ← π0
3: arg ← ⟨∅, ∅, ∅, Ln, Le⟩
4: loop
5: Ra, arg ← Build(M, D, φt, arg, π)
6: if Ra = unreachable then
7: return unreachable, arg
8: else
9: Rr, arg, π ← Refine(arg, π)

10: if Rr = reachable then
11: return reachable, arg

CEGAR is a suitable algorithm for the verification of XSTS models. The nodes of the ARG
are labeled by abstract states: in the case of XSTS models we use a product domain as the
abstract domain, where the first domain is an arbitrary abstract domain suitable for the
abstraction of valuations over data variables. The second abstract domain explicitly tracks
the transition sets to be executed next, for this purpose we define an XSTS-specific abstract
domain Dτ = ⟨T , T ,=, idT , Tτ ⟩, where idT is the identity function of T , Tτ (init) = {env},
Tτ (env) = {tran} and Tτ (tran) = {env}, in accordance with the semantics of the XSTS
formalism.

11

2.5.1 The CEGAR abstractor

The abstractor builds the ARG and determines whether the target is reachable in the
abstract state space. The algorithm of the abstractor is shown in Algorithm 2. It initializes
the ARG if necessary, using an initialization function Init that conforms to the initiation
property of ARGs. The abstractor maintains a waitlist of nodes to be processed. The main
loop of the algorithm takes a node from the waitlist and checks if the node is a target. If
it is not a target, then the algorithm continues with attempting to cover the node by an
already reached node. If no such coverage is possible, then the node is expanded, i.e. a
new node is created for each successor of the abstract state represented by the node.

Algorithm 2 Constructing an ARG in CEGAR
1: function Build(M: XSTS model, D = ⟨V,S,⊑, γ, T ⟩: abstract domain, φt: target

predicate, arg=⟨N,E,C, Ln, Le⟩: ARG, π: precision)
2: N ← N∪ Init(M, D, π)
3: waitlist← {n ∈ N | n is not covered and not expanded}
4: while n ∈ waitlist for some n do
5: waitlist← waitlist\{n}
6: if Ln(n) satisfies φt then
7: return reachable, arg
8: if Ln(n) ⊑ Ln(n′) for some n′ ∈ N then
9: C ← C ∪ {⟨n, n′⟩}

10: else
11: ⟨s, τ⟩ ← Ln(n)
12: for all op ∈ τ do
13: for all s′ ∈ T π(Ln(n), op) do
14: Ln(n′)← s′

15: Le(⟨n, n′⟩)← op
16: N ← N ∪ {n′}
17: E ← E ∪ {⟨n, n′⟩}
18: waitlist← waitlist ∪ {n′}
19: return unreachable, arg

2.5.2 The CEGAR refiner

The refiner is called if the abstractor deems the target reachable. It determines whether
the abstract run is concretizable, and thus reachable in the concrete state space. If it is
concretizable, then it proves the reachability of the target. Otherwise, more information
has to be included in the precision to exclude the infeasible abstract run from the next
iteration. Then, the ARG has to be pruned to allow rebuilding it with the new, stronger
precision. Algorithm 3 shows a high-level pseudocode for the refinement algorithm.

2.6 Lazy abstraction

Lazy abstraction [24, 25, 30, 38, 40] is an other technique for abstraction-based model
checking. The lazy abstraction algorithm does not use fixed precisions, instead, it stores
more information in the ARG in the form of an additional labeling, and occasionally
modifies the Ln labeling of some nodes.

12

Algorithm 3 Abstraction refinement in CEGAR
1: function Refine(arg=⟨N,E,C, Ln, Le⟩: ARG, π: precision, φt: target predicate)
2: Nt ← {nt | nt ∈ N, Ln(nt) satisfies φt}
3: ψ ← abstract run to some nt ∈ Nt

4: if Concretize(ψ) = infeasible then
5: π, i← Refine(arg, π, ψ)
6: arg ← Prune(arg, i)
7: return infeasible, arg, π
8: else
9: return reachable, arg, π

The additional labeling maintained by the lazy abstraction algorithm is the concrete
node labeling Lconcr : N → Sconcr that maps nodes to abstract states in the domain
Dconcr = ⟨V,Sconcr,⊑concr, γconcr, Tconcr⟩. The concrete labels sconcr ∈ Sconcr are also ab-
stract states, but restricted to only represent actually reachable states (val ∈ γ(Lconcr(n))
is a reachable state for all n ∈ N), hence the name concrete label. For the concrete labeling
of the ARG we require some additional properties to hold besides the usual properties of
ARGs:

1. Concrete initiation: Val0 = γ(Lconcr(n0)) where Val0 is the set of initial states of
the model.

2. Concrete inductive labeling: T (Lconcr(n), Le(⟨n, n′⟩)) = {Lconcr(n′)} for each
⟨n, n′⟩ ∈ E.

3. Simulation: for each expanded node n ∈ N and operation op ∈ O it holds that
Tconcr(Lconcr(n), op) = ∅ =⇒ T (Ln(n), op) = ∅.

Lazy abstraction can handle zone abstraction efficiently, and with some constraints we can
also use lazy abstraction for the verification of timed automata with data variables. For
both D and Dconcr we use product abstraction combining two abstract domains: one for
the locations of the automaton, and a second product domain for the combination of data
abstraction and time abstraction.
The locations of the automaton are tracked explicitly, the purpose of the location abstrac-
tion is to be able to store location information in the nodes of the ARG: DL = ⟨L,L,=
, idL, TL⟩ where L is the set of locations of the model, idL is the identity function of L and
TL(l, op) is the set of locations l′ ∈ L such that ⟨l, op, l′⟩ ∈ E .
For data abstraction different abstract domains may be used in D and Dconcr, since
the efficiency of the algorithm is heavily dependent on interpolation in D, while Dconcr

should be suitable for representing states with the required granularity. Let Dconcr =
⟨ValD,Sconcr

D ,⊑concr
D , γconcr

D , T concr
D ⟩ denote the data abstraction used in D, and Dabstr =

⟨ValD,Sabstr
D ,⊑abstr

D , γabstr
D , T abstr

D ⟩ denote the data abstraction used in Dconcr.
The zone domain DZ = ⟨ValC ,Z,⊑Z , γZ , TZ⟩ is a suitable and commonly used choice for
time abstraction in both D and Dconcr.
Thus, lazy abstraction for the verification of timed automata with data vari-
ables uses the abstract domains D = Prod(DL,Prod(Dabstr,DZ)) and Dconcr =
Prod(DL,Prod(Dconcr,DZ)). We denote the abstract transition function for
Prod(Dabstr,DZ) by Tabstr and the abstract transition function for Prod(Dconcr,DZ) by

13

Tconcr. The interpolation algorithms currently used in lazy abstraction require that the
transition functions Tabstr and Tconcr produce at most one successor state.
Algorithm 4 shows lazy abstraction for a timed automaton with data variables. The
algorithm uses an initialization function InitLazy to initialize the ARG if necessary,
that conforms to the initiation properties of both node labelings. Lazy abstraction also
maintains a waitlist of nodes to be processed, as well as a set of expanded nodes.
The possibility of coverage is checked on the concrete label of the potentially covered
node and the abstract label of the covering node candidate. To be able to compare these
abstract states, the algorithm uses the γabstr : Sconcr → S operator that maps a concrete
label to its representation in D. When a new covered-by edge is added to the ARG, Cover
is called to ensure that the coverage property of the ARG holds, the abstract label of the
covered node may have to be refined to ensure this.
When expanding a node, the successors on the concrete node labeling domain are computed
by the transition function, while abstract data and time states of the abstract node labels
are initially set to ⊤. In case an operation cannot be fired from the concrete state (Tconcr

returns ∅), then Disable is called to ensure the simulation property of the ARG by refining
the abstract node labeling.

Algorithm 4 Lazy abstraction algorithm
1: function Check(M: model, D = ⟨V,S,⊑, γ, T ⟩: abstract domain, Dconcr =
⟨V,Sconcr,⊑concr, γconcr, Tconcr⟩: concrete domain, φt: target predicate, arg =
⟨N,E,C, Ln, Le⟩: ARG)

2: N ← N∪ InitLazy(M, D, Dconcr)
3: waitlist← {n ∈ N | n is not covered and not expanded}
4: expanded← {n ∈ N | n is expanded}
5: while n ∈ waitlist for some n do
6: if Ln(n) satisfies φt then
7: return reachable, arg
8: if γabstr(Lconcr(n)) ⊑ Ln(n′) for some n′ ∈ expanded then
9: C ← C ∪ {⟨n, n′⟩}

10: Cover(n, n′)
11: if n is not covered then
12: ⟨l, ⟨sd, sc⟩⟩ ← Lconcr(n)
13: for all ⟨l, op, l′⟩ outgoing edge from l in M do
14: if Tconcr(⟨sd, sc⟩, op) = {⟨s′

d, s
′
c⟩} then

15: Lconcr(n′)← ⟨l′, ⟨s′
d, s

′
c⟩⟩

16: Ln(n′)← ⟨l′, ⟨⊤,⊤⟩⟩
17: Le(⟨n, n′⟩)← op
18: N ← N ∪ {n′}
19: E ← E ∪ {⟨n, n′⟩}
20: waitlist← waitlist ∪ {n′}
21: else
22: Disable(n, op)
23: expanded← expanded ∪ {n}
24: return unreachable, arg

Procedures Cover and Disable use interpolation to refine the abstract node labeling.
However, to maintain the inductive labeling property of the ARG, it is often not enough

14

to refine the label of a single node, instead, the labels are refined on the backwards path
towards the root of the ARG. These interpolation algorithms are further detailed in [40, 16].

2.7 Related work

Timed automata are widely used for the modeling and verification of timed systems,
despite being a simpler, less expressive formalism than XSTS models. For this reason,
models are usually manually developed by experts in the literature. An overview of the
state-of-the-art in zone-based verification of timed automata is provided in [5]. Several
methods have been proposed for the SMT-based analysis of timed systems. Sorea [37]
proposed a model checking algorithm for timed automata extended with integer variables
using Bounded Model Checking (BMC). Chen et al. [9] investigated several potential im-
provements for this approach. K-induction has also been employed for the verification of
timed automata [18, 39]. An IC3-based [7] verification approach was proposed for timed
automata in [26]. Learning-based timed automata verification was proposed in [36]. Our
approach extends the ideas of these papers to iteratively verify timed behaviour and we
also employ abstract domains to efficiently represent data valuations, as a significant al-
gorithmic contribution.
Lazy abstraction for model checking was introduced in [24]. McMillan [30] proposed a
modified version of the lazy algorithm using interpolants. Herbreteau et al. [25] adapted
this approach to timed automata and introduced Adaptive Simulation Graphs (ASG) as the
abstraction built during state-exploration. The results of [38] improves [25] by generalizing
the abstraction to DBMs. In [40], ASG-based lazy abstraction was extended with explicit
value abstraction of data variables. These approaches are efficient for timed behaviour,
but their efficiency to handle data-dependent behaviour is limited.
CEGAR [10] has proven its efficiency for the verification of software-based, data intensive
systems [28]: various abstract domains [4], refinement strategies [29, 22, 42] and tools [3]
were introduced. Theoretical background for the applicability of CEGAR with predicate
abstraction to clock variables was provided in [31], but without directions to implement
the verification in practice. The algorithm proposed in [35] can be considered an imple-
mentation of this framework. Apart from a direct explicit implementation using DBMs,
the authors also provide a version based on decision diagrams. However, this requires
specialized data structures and variable ordering information for efficiency. In addition
to running in a CEGAR loop, [35] also presents a lazy version similar to [38]. CEGAR
for UPPAAL models with explicit value abstraction was implemented in [17]. Instead of
creating a direct abstraction-based model checker, they use UPPAAL to check abstract
UPPAAL models derived from the original ones by ignoring variables. These approaches
uses coarser abstractions for the timed domains than our solution.
Functional verification of timed engineering models are often solved by transforming the
engineering models into the timed automata formalism, such as it is done in Gamma [20].
However, using timed automata as the background formalism restricts the expressiveness
of the timing operations of the high-level formalism. To the best of our knowledge, no
other timed formalisms are used as an intermediate language in the literature that has
higher expressiveness than timed automata [20].

15

Chapter 3

Overview

In this section, an overview of the novel verification process is given. The details of the
steps are given in the latter sections.

Engineering model

Timed behavior
model Composition

High-level formal model

Timed XSTS
Transformation

Formal model

XSTS

Extended combined verification algorithm

Control flow
abstracted XSTSControl state

Control flow
abstraction

Combined
verifcation

CEGAR

Encoding

Abstract domain Abstract time
domain

Analysis result

Trace back
to high-level

result

Figure 3.1: Overview of the proposed approaches

Figure 3.1 shows the architecture of the proposed abstraction-based verification approach
for timed software-intensive systems.
The inputs of our approach are the engineering models describing the system to verified,
i.e.,

• the timed behavior models corresponding to software and platform components,

16

• the composition models describing the instances and connections of the components,
and

• the property of the system to be verified.

We use the Gamma Statechart Composition Language (GSCL) [32] both as a modeling
language for the component models, as well as for the composition models.
We consider reachability properties, where a either a given state of the system should be
unreachable (e.g., an unsafe situation in the case of safety properties), or contrariwise a
given state should be reached (e.g., for generating test cases).
We propose Timed XSTS, and extension to the XSTS [33] formal modeling language as
a high-level formal model for real-time software-intensive systems. The TXSTS model
is derived from the GSCL models in the Gamma framework by model transformations.
Likewise, the property specification of the engineering model can be formalized as a target
predicate in the XSTS language.
We propose two abstraction-based verification approaches for TXSTS models:

1. encoding into an XSTS model without timing information, and verifying the model
using CEGAR [23], or

2. an extended combined verification algorithm that combines CEGAR with lazy timed
abstraction [40].

The parameters of our approach are

• whether to use encoding or extended combined verification,

• the abstract domain (section 2.3) to employ for data abstraction, and

• in the latter algorithm, the configuration for the abstract domain for time abstrac-
tion (section 2.3.3).

Both algorithms provide an analysis result: a trajectory if the state encoded by the target
formula is reachable, or a proof of unreachability. Therese results can be interpreted in the
context of the engineering property (i.e., as a proof of safety/unsafety, or as a generated
test case).

3.1 Gamma Statechart Composition Language

Statecharts are an expressive formalism widely used in engineering applications. The
Gamma Statechart Composition Framework supports the automatic import of models de-
fined in integrated modeling front-ends [21], such as Yakindu, UML, SCXML and SysMLv2
models. The Gamma Statechart Composition Language offers powerful constructs, such
as

• Composition: various types of composition are supported [21], including

– Synchronous composition, where all system components are executed in re-
sponse to ticks emitted by a clock (not to be confused with clock variables),

17

– Asynchronous composition, where components communicate with each other
using message queues,

– Cascade composition, where components are executed one after another in a
specific order, in a cycle initiated by a tick.

• Hierarchical state refiement, with transition priorities according to the state hierar-
chy (following the transition priorities of UML);

• Transition timeouts for modeling timed behavior.

• Ports for the communication of components, using messages with data.

• Environment model providing non-deterministic input for representing the behavior
of the environment of the system.

The above constructs make statechart-based modeling highly expressive, suitable for the
modeling of complex real-time software-intensive systems. However, the cost of easier
modeling is more difficult analysis. An example of the challenges in analysis posed by
statechart-based modeling is handling priorities and timeouts in an asynchronous environ-
ment.

a/

b/
Q1 Q2

a/

Q3
after 500

Q4

Figure 3.2: Hierarchical state refinement

Example 1. Figure 3.2 is a schematic example of hierarchical state refinement in
Gamma. To illustrate the difficulties of the verification of these models, consider the
possible transitions executions triggered by a in an asynchronous composition:

if (a) then
if ((timeout ≥ 500 ∧ state = Q2) ∨ state = Q3) then
{state := Q1}

else
if (state = Q1 ∨ state = Q2 ∨ . . .) then
{state := Q4}

else
{skip}

The order of the conditions follows the transition priorities of UML: the transition from
the inner state Q2 gets priority over the transition from the outer state containing Q1 and
Q2 among other states. Note that the next state of the model cannot be determined by
considering data and time successors independently. E.g., if timeout < 500, the transition

18

to Q1 may still be executed if state = Q3, however, if state ̸= Q3, then the transition to
Q4 is executed. From an other point of view, if state = Q2, then the transition to Q1
is executed if timeout ≥ 500, otherwise the transition to Q4 is taken. Now consider the
case when timeout < 500 and state = Q2. The transition to Q1 can not be executed in
this case, even though it is in the intersection of transitions that can be executed from the
current data state and the current time state.

3.2 Proposed algorithms

In the encoding approach, n XSTS formal model may be derived from TXSTS by encoding
timed behaviors as data variables. This apporach can exploit existing abstraction-based
techniques for verifying data-intensive behaviors, but cannot take advantage of algorithms
for verifying timed systems. In particular, we use the CEGAR [23] algorithm for perform-
ing the analysis.
We also propose extended combined verification algorithm to exploit verification techniques
for both data-intensive and timed systems. Control flow abstraction based on the control
state of the XSTS model produces a control flow abstracted TXSTS. The abstracted model
can be analyzed by a combined verification algorithm proposed in our previous work [15]
that relies on CEGAR for data-intensive behavior and lazy timed abstraction [38] for timed
behavior. Newly discovered control states are used to further expand the abstracted model.

19

Chapter 4

The timed XSTS formalism

Complex engineering models are easier mapped to more high-level modeling formalisms,
such as the extended symbolic transition system formalism. However, the verification of
real-time systems requires using modeling formalisms with the ability to represent timed
behavior. We propose an extension to the XSTS formalism that enables using clock
variables and operations affecting clock variables.
We explicitly reuse existing XSTS semantics (section 2.2.2 for behaviors concerning data
variables. As a benefit, transformations that already produce XSTS formal models (e.g.,
the transformation from GCSL implemented in the Gamma framework [33, section 5.2])
can be easily extended to take timed behavior into account using the appropriate TXSTS
constructs.

Definition 5 (Timed extended symbolic transition system). A timed extended
symbolic transition system is a tuple TXSTS = ⟨VD, VC , Vctrl, val

0, init, env, tran⟩ where

• VD and VC are finite sets of data variables and clock variables;

• Vctrl ⊆ VD is a set of control variables;

• val0 is the initial valuation over VD that maps each variable x ∈ VD to the initial
value of the variable, or ⊤ if unknown;

• init, env, tran ⊆ OTXSTS are sets of operations representing the initialization, envi-
ronmental and internal transition sets of the system. �

A state of a TXSTS model is a tuple ⟨⟨valD, valC⟩, τ⟩, where valD ∈ ValD is a data
valuation, valC ∈ ValC is a clock valuation and τ is a transition set, which is the only
transition set that can be executed in this state. We will continue using T to denote the
set of transition sets {init, env, tran}. However, in TXSTS models, the transition sets in
T take their contained operations from an extended operation set OTXSTS .
We use JopKTXSTS(⟨⟨valD, valC⟩, τ⟩) to denote the result of applying the operation op ∈
OTXSTS on a TXSTS state. We also use the same notation for the result of applying op
on some components of a state, e.g. JopKTXSTS(⟨valD, valC⟩) denotes applying op on the
pair of valuations ⟨valD, valC⟩.
The semantics of TXSTS models regarding the τ component of states is the same as
with XSTS models, JopKTXSTS(τ) = ∅ if op ̸∈ τ , otherwise JopKTXSTS(init) = {env},
JopKTXSTS(env) = {tran} and JopKTXSTS(tran) = {env}.

20

The set of operations OTXSTS is a superset of OXSTS , it contains operations that affect
clock variables as well. In OTXSTS , assumptions are extended so that they may contain
clock constraints as well. We also introduce two new basic operations, clock resets and
delays. The semantics of basic operations inOTXSTS regarding the ⟨valD, valC⟩ component
of TXSTS states is given as follows:

• Assumptions have the form [φ], where φ is a Boolean combination of predi-
cates over VD and clock constraints over VC . For an assumption g = [φ],
JgKTXSTS(⟨valD, valC⟩) = {⟨valD, valC⟩} if ⟨valD, valC⟩ satisfies φ, otherwise
JgKTXSTS(⟨valD, valC⟩) = ∅.

• Data assignments of the form x := φ assign the value of an expression φ evaluated
on ⟨valD, valC⟩ to the data variable x ∈ VD with domain D. The presence of
clock variables in φ is restricted to clock constraints, e.g. the concrete value of
a clock cannot be assigned to a data variable, but a data variable can be set to
a Boolean value representing whether the value of a clock is more than a given
integer value. Jx := φKTXSTS = {⟨val′D, valC⟩} such that val′D(x) = φ(⟨valD, valC⟩),
φ(⟨valD, valC⟩) ∈ D, and ∀x′ ∈ VD\{x} : val′D(x′) = valD(x′).

• Clock resets have the form c := n, they set the value of a clock c ∈ VC to a value
n ∈ N0, Jc := nK(⟨valD, valC⟩) = {⟨valD, val′C⟩} such that val′C(c) = n and ∀c′ ∈
VC\{c} : val′C(c′) = valC(c′).

• A havoc operation denoted by havoc(x) is a non-deterministic assignment to a data
variable x ∈ VD. The semantics of havoc operations is the same as in XSTS
models, Jhavoc(x)KTXSTS(⟨valD, valC⟩) = {⟨val′D, valC⟩ | val′D(x) ∈ D, ∀x′ ∈
VD\{x} : val′D(x′) = valD(x′)}.

• Delay operations are denoted simply by delay. A delay increments all clocks,
JdelayKTXSTS(⟨valD, valC⟩) = {⟨valD, valδC⟩ | δ ∈ R≥0} where valδC(c) = valC(c) + δ
for all clocks c ∈ VC .

• A no-op operation is denoted by skip, it has the same semantics as in XSTS models,
JskipKTXSTS(⟨valD, valC⟩) = {⟨valD, valC⟩}.

Compound operations in OTXSTS are the same as compound operations in OXSTS : se-
quences, non-deterministic choices, conditional operations, and loops. They have the same
semantics as well, with valuations val substituted by pairs of valuations ⟨valD, valC⟩.
Based on the variables affected, data assignments and havoc operations are data oper-
ations, while clock resets and delays are clock operations. Assumptions and compound
operations clearly fall into both categories.
A run of a TXSTS is an alternating finite sequence of states and operations
σTXSTS = ⟨⟨val0D, val0C⟩, init⟩

op1−−→ · · · opk−−→ ⟨⟨valkD, valkC⟩, τk⟩, with ⟨⟨valiD, valiC⟩, τ i⟩ ∈
JopiKTXSTS(⟨⟨vali−1

D , vali−1
C ⟩, τ i−1⟩) for all 1 ≤ i ≤ k. A state ⟨⟨valD, valC⟩, τ⟩ is reachable

in the model if there exists a run σTXSTS such that valkD = valD, valkC = valC , and τk = τ .

21

Chapter 5

Verification of timed XSTS models

With the inclusion of timed behavior in the newly defined TXSTS formalism, the model
checking algorithms discussed in sections 2.5 and 2.6 cannot be used without modifications.
The possible interdependence of data and timed behavior in the composite operations of
TXSTS models makes it impossible to determine successors of a state on the data domain
and time domain independently, e.g. as in a product domain that then takes the Cartesian
product of independently computed data and time successors.
We propose two approaches to handle the interdependence of clocks and data in TXSTS
models. The first one transforms TXSTS models to the XSTS formalism by encoding
clock variables and operations using data variables only, thus eliminating timing. Our
second, more refined method transforms the operations and uses an SMT solver to obtain
and enumerate purely sequential control flows without branching, where data and time
successors can be computed independently, while using a combined abstraction algorithm
for the verification. In the following sections, we present these two approaches in more
detail.

5.1 Encoding timed behavior using data variables

We define a transformation that transforms a TXSTS model to an XSTS model. This
transformation takes place as a preprocessing step, the verification is then run on the
resulting XSTS model. This way, the CEGAR algorithm discussed in section 2.5 can be
used without any modification.
The transformation is done by replacing clock variables with data variables and encoding
clock operations of the TXSTS as data operations of the XSTS. Since clock variables are
continuous variables, they are mapped to rational variables to avoid discretization errors.
Let rat(c) denote the rational data variable that corresponds to c ∈ VC in the transformed
model. The mapping R : OTXSTS → OXSTS maps operations to their corresponding re-
placements, e.g. R(c := 0) = (rat(c) := 0). In the following, we define the precise semantics
of these replacements for a TXSTS model with clock variables VC .

• Assumptions: R([φ]) = [φ′], where φ′ is φ with each clock variable c ∈ VC appearing
in φ replaced by rat(c) in φ′. Since clock variables are restricted in OTXSTS to
appear only in clock constraints, only these clock constraints are transformed, to
expressions of the form rat(ci) ∼ k or rat(ci)− rat(cj) ∼ k, where ci, cj ∈ VC ,

22

∼ ∈ {<,≤,=,≥, >}, and k ∈ Z. E.g., for variables x ∈ VD and c1, c2 ∈ VC ,
R([(x = 0) ∨ (c1 − c2 < 2)]) = ((x = 0) ∨ (rat(c1)− rat(c2) < 2)).

• Data assignments: The assigned expression may contain clock constraints, therefore
the assigned expression also has to be transformed. If R([φ]) = [φ′], then R(x :=
φ) = (x := φ′) for any x ∈ VD.

• Clock resets: The clock is replaced by the corresponding rational variable, the re-
sulting operation is a data assignment R(c := n) = (rat(c) := n) for any c ∈ VC and
n ∈ N0.

• Delays: We introduce a new rational variable δ, which can be the same variable for
all delay operations. To this new variable we assign a non-negative value using a
havoc operation followed by an assumption, then each clock variable replacement is
incremented by this non-deterministically chosen value: R(delay) is a sequence of
havoc(δ), the assumption [δ ≥ 0], and the data assignments rat(c) := rat(c) + δ for
each clock variable c ∈ VC .

• Havoc and no-op operations are left unmodified: R(havoc(x)) = havoc(x) for any
x ∈ VD, and R(skip) = skip.

In composite operations, all components are transformed individually:

• Sequences: R(op1, op2, . . . , opn) = R(op1), R(op2), . . . , R(opn)

• Non-deterministic choices: R({op1} or {op2} or . . . or {opn}) =
{R(op1)} or {R(op2)} or . . . or {R(opn)}

• Conditional operations: if R([φ]) = [φ′], then R(if(φ) then {op1} else {op2}) =
if(φ′) then {R(op1)} else {R(op2)}

• Loops: R(for i from φa to φb do {op}) = for i from φa to φb do {R(op)}

Given a TXSTS modelM = ⟨VD, VC , Vctrl, val
0, init, env, tran⟩, the transformed model is

the XSTSM′ = ⟨V ′, Vctrl, val
′
0, init

′, env′, tran′⟩, where V ′ = VD∪{rat(c) | c ∈ VC}∪{δ},
val′0(x) = val0 for each x ∈ VD, val′0(rat(c)) = 0 for each c ∈ VC , init′ = {R(op) | op ∈
init}, env′ = {R(op) | op ∈ env}, and tran′ = {R(op) | op ∈ tran}.

Example 2. Consider the TXSTS model M = ⟨VD, VC , Vctrl, val
0, init, env, tran⟩, where

• VD = Vctrl = {state},

• VC = {c1, c2},

• val0 = {state 7→ Q0},

• init = env = {skip}, and

• tran consist of the following single sequence operation:
delay,
if ((c1 ≥ 500 ∧ state = Q2) ∨ state = Q3) then
{state := Q1, c2 := 0}

else
. . .

23

Then, in the transformed model, the clock c1 is replaced by a rational variable r1 = rat(c1)
and c2 is replaced by the rational variable r2 = rat(c2). The transformed model is the
XSTS M′ = ⟨V ′, Vctrl, val

′
0, init

′, env′, tran′⟩.

The sets of data and clock variables VD = {state} and VC = {c1, c2} are merged into one
set of data variables with the additional variable for delays: V ′ = {state, c1, c2, δ}. The set
of control variables is unchanged: Vctrl = {state}. The initial valuation is extended with
the new rational variables. In accordance with the properties of clock variables, they are
initialized to zero: val′0 = {state 7→ Q0, r1 7→ 0, r2 7→ 0, δ 7→ ⊤}.
In our example, the init and env transition sets consist of a simple skip operation, therefore
the init′ and env′ sets of the transformed model stay the same. The delay operation in the
tran set of the TXSTS is replaced by a sequence of data operations. First the δ variable is
set: havoc(δ), [δ ≥ 0]. Then r1 and r2 are incremented: r1 := r1 + δ, r2 := r2 + δ. In other
sub-operations the clocks c1 and c2 are replaced by r1 and r2, changing clock operations
into data operations without syntactical changes. The whole transformed operation forming
tran′ can be seen below:
havoc(δ),
[δ ≥ 0],
r1 := r1 + δ,
r2 := r2 + δ,
if ((r1 ≥ 500 ∧ state = Q2) ∨ state = Q3) then
{state := Q1, r2 := 0}

else
. . .

The transformed model has the same semantics as the original model but does not contain
any clock variables. It can be verified the same way with CEGAR as described in section
2.5, although the verification may take longer, as zone abstraction is usually more effi-
cient for representing timed behavior than abstractions using rational variables with SMT
solvers.

5.2 Control flow splitting with Boolean flags

In our previous work [15], we proposed a novel algorithm combining CEGAR and lazy
abstraction for the verification of timed automata with data variables. This combined al-
gorithm preserves the advantages of both approaches, it allows the use of non-deterministic
data operations, as well as efficient data abstractions of CEGAR, while using the more ef-
ficient time abstraction of lazy abstraction. Despite its efficiency, the combined algorithm
still requires data and clock operations to be independent in the analyzed models.
We propose a novel method that splits the control flow of the operations of transition
sets into operations without branching, where data and time behavior are independent.
With a slight modification that utilizes our control flow splitting method, our combined
abstraction algorithm can be adapted to verify TXSTS models.
The main steps of our control flow splitting method are presented in Algorithm 5. In the
following, we give a detailed explanation of each step, then show how control flow splitting
can be incorporated in the combined verification algorithm.

24

Algorithm 5 Control flow splitting
1: function CfSplit(op: operation, s: abstract state)
2: op′ ← Simplify(op, s) ▷ variable inlining, loop unfolding, etc.
3: root← SelectFrom(VB) ▷ select one from the set of unused Boolean flags VB

4: ⟨op′′, A⟩ ← F (op′, root) ▷ get transformed operation and a FOL formula over VB

5: flags← VB ∩Vars(op′′) ▷ collect Boolean flags of the transformed operation
6: φ← SmtFormula(root, A, s, op′′) ▷ create formula for the SMT solver
7: M ← AllSat(φ, flags) ▷ get all flag assignments satisfying the formula
8: Op← {Simplify(op′′,m) | m∈M} ▷ extract ctrl flows for satisfying assignments
9: return Op

5.2.1 Operation simplification by substitution

The first step of our control flow splitting algorithm is operation substitution [34].
This means that the explicitly tracked variables in the abstract state s are inlined in
the operation op, as well as loops with known bounds are unfolded, i.e. for a loop
for i from φa to φb do {op}, if the values of φa and φb are known, then the loop
is substituted by a sequence where op is repeated the correct number of times and the
loop variable i is assigned to the correct value before each instance of op in the sequence
operation. The variable inlining may also simplify some control flows, e.g. conditional op-
erations with the condition true or false can be substituted by the corresponding branch
operation.

Example 3. For a sequence of a loop and a conditional operation
for i from 0 to x do {y := y + 1},
if(x < 5) then {x := x+ 5} else {y := y/2}

the result of the substitution with the abstract state {x 7→ 2} is the following sequence:
i := 0,
y := y + 1,
i := 1,
y := y + 1,
x := 7

Since the bound of the loop x is an explicitly tracked variable in this example, the loop could
be unfolded, eliminating the loop operation from the result. Furthermore, as the condition
x < 5 evaluates to true, the conditional operation can be substituted by its x := x + 5
branch, which can be further simplified to x := 7.

5.2.2 Operation transformation with Boolean flags

The next step of the algorithm further transforms the operations, including introducing
new Boolean variables in the operation. The two main objectives of the transformation
are that each satisfying assignment to these Boolean flags should determine a sequen-
tial control flow where data and clock operations are independent, and secondly, given
the transformed operation and a satisfying flag assignment, the corresponding sequential
control flow can be extracted.
The transformation is denoted by F : OTXSTS × VB → OTXSTS × Φ, where VB is the set
of Boolean variables not contained by the model (VD ∩ VB = ∅) and Φ is the set of first
order logic formulas over VB.

25

The input of the transformation is the operation and a parent flag. The value of the parent
flag is unknown at the time of the operation transformation, in a resulting flag assignment
it evaluates to true if and only if the operation is on an active branch, i.e. it is contained by
the control flow selected by the given flag assignment. This enables handling compound
operations.
The root flag is the Boolean flag that the transformation of a separate operation (as
opposed to sub-operations of a compound operation) is parameterized with, the transfor-
mations of its sub-operations are parameterized with other Boolean flags. The root flag
always evaluates to true.
The output consists of the transformed operation and a FOL formula, which is the con-
junction of the flag constraints that should hold.
In the following, we specify the transformation F for each type of operation, starting with
composite operations. Of course, the operations not containing any clock operations can
be left unmodified to optimize the algorithm, in these cases F (op, p) = ⟨op,⊤⟩.

5.2.2.1 Sequences

A sequence is transformed by transforming all its sub-operations, while all flag con-
straints entailed by the individual transformations should hold: F ((op1, op2, . . . , opn), p) =
⟨(op′

1, op
′
2, . . . , op

′
n), (A1 ∧A2 ∧ · · · ∧An)⟩ if F (opi, p) = ⟨op′

i, Ai⟩ for all 1 ≤ i ≤ n.

5.2.2.2 Conditional operations

Conditional operations may directly introduce cases where timing and data state have to
be considered simultaneously to determine control flows, e.g. if a condition is (x = 0∧ c ≤
5)∨x = 1 where x ∈ VD and c ∈ VC , it cannot be determined whether the clock constraint
c ≤ 5 holds in the executed branch without taking into consideration the data state as
well.
To avoid these cases, a new conditional operation is created for both first and second
branch of the original conditional operation, where the conditions are newly introduced
Boolean flags. For better understanding of the transformation, we show it decomposed into
multiple steps, starting from the original conditional operation if(φ) then {op1} else {op2}:

1. the operation is replaced by a sequence of two operations:

• if(b1) then {op1} else {skip}
• if(b2) then {op2} else {skip},

2. in the result, op1 is extended by an assumption of the original condition φ:
if(b1) then {[φ], op1} else {skip},

3. the sequence of [φ], op1 is replaced by its transformation, with b1 as the parent flag:
if F (([φ], op1), b1) = ⟨op′

1, A1⟩, then [φ], op1 is replaced by op′
1,

4. similarly, op2 in the result of the first step is extended by the negation of the original
condition: if(b2) then {[¬φ], op2} else {skip}

5. finally, the sequence of [¬φ], op2 is transformed with b2 as the parent flag: if
F (([¬φ], op2), b2) = ⟨op′

2, A2⟩, then [¬φ], op2 is replaced by op′
2.

26

With the above steps put together, given a conditional operation
if(b1) then {op1} else {skip}, such that F (([φ], op1), b1) = ⟨op′

1, A1⟩ and
F (([¬φ], op2), b2) = ⟨op′

2, A2⟩, the transformed operation is the sequence of the
following two operations:

• if(b1) then {op′
1} else {skip}, and

• if(b2) then {op′
2} else {skip}.

To ensure that the transformation allows the same control flows as the original operation,
we introduce constraints on the new Boolean flags:

• A1 and A2, resulting from transforming op1 and op2;

• p ⇒ (b1 ̸⇔ b2), which intuitively means that exactly one branch of the original
operation is executed (by b1 ̸⇔ b2), if this operation is the active branch (i.e. if p
is true); selecting exactly one branch, even though the original condition and its
negation are still present in the operations as assumptions, ensures that a satisfying
flag assignment identifies a single control flow;

• ¬p⇒ ¬b1 and ¬p⇒ ¬b2, to optimize the algorithm by ensuring that if this operation
is not on the active branch, then only one satisfying flag assignment exists for the
flags of this operation (that sets both flags to false).

The resulting flag constraint of the transformation is the conjunction of the above expres-
sions.

Example 4. The transformation of the conditional operation
if (state = Q2) then

state := Q1
else

if (state = Q3) then
state := Q4

else
skip

with the parent flag p yields the operation
if (b1) then

[state = Q2]
state := Q1

if (b2) then
[state ̸= Q2]
if (b3) then

[state = Q3]
state := Q4

if (b4) then
[state ̸= Q3]
skip

and the flag constraint (p ⇒ (b1 ̸⇔ b2)) ∧ (¬p ⇒ ¬b1) ∧ (¬p ⇒ ¬b2) ∧ (b2 ⇒ (b3 ̸⇔
b4)) ∧ (¬b2 ⇒ ¬b3) ∧ (¬b2 ⇒ ¬b4).
The satisfying assignments for the flag constraint such that p = true are the following:

27

• b1 7→ true, b2 7→ false, b3 7→ false, b4 7→ false, which corresponds to the control
flow [state = Q2], state := Q1,

• b1 7→ false, b2 7→ true, b3 7→ true, b4 7→ false, corresponding to the control flow
[state ̸= Q2], [state = Q3], state := Q4,

• b1 7→ false, b2 7→ true, b3 7→ false, b4 7→ true, corresponding to [state ̸=
Q2], [state ̸= Q3], skip.

5.2.2.3 Non-deterministic choices

The transformation of non-deterministic choices is similar to conditional choices. For
each branch of the non-deterministic choice, a new conditional operation is created, where
the condition is a new Boolean flag. The flag constraints that accompany the transformed
operation must ensure that exactly one branch of the non-deterministic choice is executed,
i.e. exactly one of the Boolean flags serving as conditions may evaluate to true.
For a non-deterministic choice {op1} or {op2} or . . . or {opn}, the resulting operation is a
sequence of operations of the form if(bi) then {op′

i} else {skip}, where bi ∈ VB is a new
Boolean flag, and op′

i is determined by the transformation of opi: F (opi, bi) = ⟨op′
i, Ai⟩.

The required expression are the following, their conjunction forming the resulting flag
constraint of the transformation:

• A1, A2, . . . , An, resulting from transforming op1, op2, . . . , opn;

• p ⇒
∨

i∈N (bi ∧
∧

j∈N\{i} ¬bj), where N = {1, 2, . . . , n}, to ensure that exactly one
branch is executed;

• ¬p⇒ ¬bi for all 1 ≤ i ≤ n, to optimize the algorithm by ensuring that all flags are
always set to false if the non-deterministic choice is not on the active branch.

Example 5. The transformation of the non-deterministic choice
{x := 0, c := 0} or {y := 5} or {y := 6}

produces the operation
if (b1) then {x := 0, c := 0}
if (b2) then {y := 5}
if (b3) then {y := 6}

where branches that contain only a skip operation were omitted.

With a parent flag p, the resulting flag constraint is (p ⇒ (b1 ∧ ¬b2 ∧ ¬b3) ∨ (¬b1 ∧ b2 ∧
¬b3) ∨ (¬b1 ∧ ¬b2 ∧ b3)) ∧ (¬p ⇒ ¬b1) ∧ (¬p ⇒ ¬b2) ∧ (¬p ⇒ ¬b3). In the satisfying flag
assignments such that p = true, exactly one of b1, b2, b3 evaluates to true, corresponding
to exactly one branch of the non-deterministic choice operation.

5.2.2.4 Loops

F is not defined for loops; after loop unfolding, the resulting operation should not contain
any loop operations.

28

5.2.2.5 Assumptions

Given an assumption [φ], the formula φ is first transformed so that the only logical connec-
tives that may appear in it are ¬, ∧ and ∨, and its negated subformulas do not contain any
logical connectives. E.g., p⇒ (¬(q∧r)∧(c > 0)) is transformed to ¬p∨((¬q∨¬r)∧(c > 0)).
If φ in the here described form does not contain any logical connectives except for negation,
then data and clock interdependence is not possible, therefore F ([φ], p) = ([φ],⊤).
An assumption, where the assumed formula is the conjunction of some subformulas, is
equivalent to the sequence of separate assumptions with those subformulas. Therefore, the
transformation of these assumptions can be reduced to the transformation of a sequence:
F ([∧n

i=1 φi], p) = F (([φ1], [φ2], . . . , [φn]), p).
If the assumed formula is the disjunction of some subformulas, then the assumption is
equivalent to a non-deterministic choice between the assumptions of the subformulas, so
the transformation can be reduced to the transformation of a non-deterministic choice:
F ([∨n

i=1 φi], p) = F ({[φ1]} or {[φ2]} or . . . or {[φn]}, p).
Note that the assumptions that should be further transformed (as parts of a sequence
or non-deterministic choice) contain smaller formulas that the original assumption. This
ensures that the transformation of assumptions does not get stuck in an infinite loop.

Example 6. We show the transformation of the assumption [(timeout ≥ 500 ∧ state =
Q2) ∨ state = Q3]. First it is transformed to a non-deterministic choice {[timeout ≥
500 ∧ state = Q2]} or {[state = Q3]}, which transforms to

if (b1) then {op′
1}

if (b2) then {op′
2}

such that F ([timeout ≥ 500 ∧ state = Q2], b1) = ⟨op′
1, A1⟩ and F ([state = Q3], b2) =

⟨op′
2, A2⟩, with the flag constraint (p⇒ (b1 ∧¬b2)∨ (¬b1 ∧ b2))∧ (¬p⇒ ¬b1)∧ (¬p⇒ ¬b2)

if the parent flag is p.

The assumption [timeout ≥ 500 ∧ state = Q2] is transformed to [timeout ≥ 500], [state =
Q2] without introducing any flag constraints, and the assumption [state = Q3] is not
transformed further, it is already in the desired form.

With the substeps of the transformation put together, the transformation of the assumption
[(timeout ≥ 500 ∧ state = Q2) ∨ state = Q3] is the operation

if (b1) then [timeout ≥ 500], [state = Q2]
if (b2) then [state = Q3]

with the flag constraint (p ⇒ (b1 ∧ ¬b2) ∨ (¬b1 ∧ b2)) ∧ (¬p ⇒ ¬b1) ∧ (¬p ⇒ ¬b2) if the
parent flag is p.

5.2.2.6 Data assignments

A data assignment may contain both data and clock variables only if an expression con-
taining a clock constraint is assigned to a Boolean variable. In that case, the trans-
formation is reduced to the transformation of a conditional operation: F (x := φ, p) =
F (if(φ) then {x := true} else {x := false}, p). Otherwise, the assignment is left unmodi-
fied: F (x := φ, p) = ⟨x := φ,⊤⟩.

29

5.2.2.7 Other basic operations

All other basic operations are left unmodified, and consequently there are no flag con-
straints: for an operation op that is either a havoc, no-op, clock reset or delay, F (op, p) =
⟨op,⊤⟩.

5.2.3 Using an SMT solver to determine control flows

We provide two different methods for obtaining assignments for the Boolean flags intro-
duced in the operation transformation. In both cases, the flag constraints have to be
satisfied and the root flag should evaluate to true. The first variant uses the SMT solver
to solve an all solutions SAT problem for the above constraints. The second variant also
solves an all solutions SAT problem, but includes the FOL representations of the abstract
state and the transformed operation in the SMT query as well (in this case, the trans-
formation R is applied to the operation, since the delay operation does not have a FOL
representation). This approach leaves out results representing control flows that are in-
feasible from the current abstract state, although the SMT solver has to handle larger
formulas with more variables.
The control flow splitting transforms operations in such manner, that all branching that
remains in the operation comes from conditional operations with a single Boolean flag as
its condition. This way, substituting the values to these Boolean flags from a satisfying flag
assignment results in an operation where each condition of conditional operations evalu-
ates to either true or false. Therefore, variable inlining and control flow simplification
described in section 5.2.1 yields a sequential control flow without branching. It should
also be noted that none of the operations in this purely sequential control flow contains
data and clock variables simultaneously, since that can only occur in assumptions, and
assumptions are also split during the control flow splitting transformation.
Extracting all control flows identified by the satisfying Boolean flag assignments in the
above described way concludes our control flow splitting algorithm.

5.2.4 Soundness of control flow splitting

To prove the soundness of our control flow splitting algorithm, we have to show that each
satisfying Boolean flag assignment where the root flag evaluates to true identifies a control
flow of the original operation, and that for each control flow of the original operation there
exists a Boolean flag assignment that identifies that same control flow.
It is easy to see that all transformations satisfy the above two statements using structural
induction with the induction hypothesis that the statements hold for transformations of
sub-operations. As an example, we show the correctness of the transformation of condi-
tional operations.
The only satisfying assignment of the flags of this operation where p = false is {p 7→
false, b1 7→ false, b2 7→ false}, and it identifies the control flow where this operation
is not executed. The second statement also holds, as for any control flow that does not
contain this operation, {p 7→ false, b1 7→ false, b2 7→ false} is a satisfying flag assignment
of the flags of this operation.
There are two satisfying flag assignments where p = true, it is either {p 7→ true, b1 7→
true, b2 7→ false} or {p 7→ true, b1 7→ false, b2 7→ true}. In the first case inlining the
flags results in a sequence [φ], op′

1 where φ is the condition of the original conditional

30

operation and op′
1 is the transformed operation of its first branch. This corresponds to

the control flow of the original operation where the condition evaluates to true and the
first branch is executed. The second case after variable inlining is the sequence [¬φ], op′

2,
which corresponds to the control flow where the condition evaluated to false and the
second branch is taken. Only these two control flows are possible in the original operation
if it is on the active branch (the condition either holds or not), therefore the second
statement also holds.

5.3 Verification of timed XSTS with combined abstraction

Combined abstraction, presented in our previous work [15], utilizes lazy abstraction for the
zone abstraction of timed behavior, while still using CEGAR for efficient data abstraction.
The principle idea of the combined algorithm is to use lazy abstraction as the abstraction
step of CEGAR instead of the usual CEGAR abstractor. On the level of the CEGAR loop
only the data projection of the model is taken into consideration. In the lazy abstractor,
data are not included in the concrete labeling, only in the abstract labeling. The data
component of abstract labels is computed the same way as in CEGAR, with the given
precision. Conversely, the time projection of the model is only considered inside the lazy
abstractor, where time abstraction is handled the same way as in pure lazy abstraction,
as described in section 2.6.
States of TXSTS models consist of a data component, a clock component, and the next
transition set to be executed. The ARG being built by the combined algorithm contains
information about all three state components in its abstract labels, but only clock infor-
mation is necessary to include in the concrete labels, since lazy abstraction is run only
on the time projection. Therefore, the abstract labeling domain is a product domain of
a data domain Ddata = ⟨V,Sdata,⊑data, γdata, Tdata⟩, the zone domain DZ used for time
abstraction, and the Dτ domain introduced in Section 2.5 for preserving information about
which transition set should be executed next. The concrete labeling domain is the simple
zone domain DZ .
We use the notation DCEGAR to refer to Prod(Ddata,Dτ), which is the abstract domain of
the components handled by CEGAR in the combined algorithm, with its corresponding
transfer function TCEGAR and preorder operator ⊑CEGAR. For simplicity, we will refer to
this domain as the data domain. For a node n with abstract label Ln(n) = ⟨sdata, szone, τ⟩,
sdata ∈ Sdata, szone ∈ Z, τ ∈ T , we use d(n) to refer to ⟨sdata, τ⟩, i.e. the components
handled by CEGAR. We also use za(n) and zc(n) to refer to the abstract and concrete
zone of n, i.e. szone and Lconcr(n).
The adaptation of the combined algorithm to TXSTS models, completed with control flow
splitting is shown in Algorithm 6, and its abstraction substep in Algorithm 7.
The main loop of the combined algorithm is the well-known CEGAR loop, however, the
ARG is built by a different abstractor. The abstractor, in contrast with lazy abstraction,
is parameterized by a precision π, however, this is a data precision, relevant only for the
data abstraction.
The combined abstractor checks the possibility of coverage on the data domain in the
same way as in CEGAR, by checking the preorder relation between the two abstract
labels, while on the time domain it checks the preorder relation between the concrete
and abstract zones, as in lazy abstraction. The interpolation algorithm Cover is also

31

Algorithm 6 Combined algorithm main loop
1: function Check(M: TXSTS model, DCEGAR: abstract data domain, DZ : abstract

time domain, φt: target predicate, π0: initial precision)
2: π ← π0
3: arg ← ⟨∅, ∅, ∅, Ln, Le⟩
4: loop
5: Ra, arg ← BuildCombined(M, Ddata, DZ , φt, arg, π)
6: if Ra = unreachable then
7: return unreachable, arg
8: else
9: Rr, arg, π ← Refine(arg, π)

10: if Rr = reachable then
11: return reachable, arg

Algorithm 7 Combined abstractor
1: function BuildCombined(M: TXSTS model, DCEGAR: abstract data domain, DZ :

abstract time domain, φt: target predicate, arg = ⟨N,E,C, Ln, Le⟩: ARG, π: preci-
sion)

2: N ← N ∪ InitCombined(M,DCEGAR,DZ ,DZ)
3: waitlist← {n ∈ N | n is not covered and not expanded}
4: expanded← {n ∈ N | n is expanded}
5: while n ∈ waitlist for some n do
6: if Ln(n) satisfies φt then
7: return reachable, arg
8: if d(n) ⊑CEGAR d(n′) and zc(n) ⊑Z za(n′) for some n′ ∈ expanded then
9: C ← C ∪ {⟨n, n′⟩}

10: Cover(n, n′)
11: if n is not covered then
12: ⟨sdata, τ⟩ ← d(n)
13: for all op ∈ τ do
14: for all op′ ∈ CfSplit(op, s) do
15: if TZ(zc(n), op′) = {s′

zone} then
16: for all ⟨s′

data, τ
′⟩ ∈ T π(⟨sdata, τ⟩, op′) do

17: Lconcr(n′)← s′
zone

18: Ln(n′)← ⟨s′
data,⊤, τ ′⟩

19: Le(⟨n, n′⟩)← op′

20: N ← N ∪ {n′}
21: E ← E ∪ {⟨n, n′⟩}
22: waitlist← waitlist ∪ {n′}
23: else
24: Disable(n, op′)
25: expanded← expanded ∪ {n}
26: return unreachable, arg

32

called when adding a covered-by edge, as in lazy abstraction, however, here only the time
abstraction has to be refined.
The combined algorithm determines the successors of a state in a more complex way. The
operations contained by the correct transition set are first processed by our control flow
splitting algorithm, yielding a new set of operations that are already compatible with the
abstraction algorithms using product abstraction. The successor on the time domain is
computed the same way as in lazy abstraction: it is computed from the concrete zone,
while the abstract zone of the new node is ⊤. If the successor on the concrete labeling
domain does not exists, the Disable method of lazy abstraction is called, again refining
only the time abstraction. Otherwise, the data successors are computed, on the abstract
data domain with the current data precision π, as in CEGAR.
In contrast with lazy abstraction, reachable result in the combined abstractor does not
mean that the target is actually reachable. It only indicates that it is reachable on the
concrete time domain and the abstract data domain. Therefore, the Refine method of
CEGAR is called to check the feasibility of the abstract path to the target state on the
data domain, and refine the data precision π if needed.

33

Chapter 6

Evaluation

We implemented our proposed solutions in the Theta open source configurable model
checking framework [41]. Theta has already supported the XSTS formalism, and the CE-
GAR algorithm for the verification of XSTS models, among other formalisms (non-timed
formalisms and timed automata). We extended the XSTS language to support TXSTS.
We also implemented the transformation of TXSTS models to XSTS. Theta has already
supported the combined abstraction algorithm as the result of our previous work. We
implemented the control flow splitting algorithm, including the operation transformation,
to adapt the combined algorithm for verifying TXSTS models directly.
We evaluated our approaches on two TXSTS models automatically exported from state-
chart models using Gamma. The first one is a model of a crossroad1 with traffic lights,
a controller, and an interrupted mode that may be triggered by the police, inspired by
industrial system models and demonstrating the capabilities of Gamma. The other model
is a subsystem of two antivalence checkers and a signaller, taken from a railway-related
industrial case study [19].
We used BenchExec2 to execute measurements on virtual computers, with each task lim-
ited to 3 CPU cores, 15 GB memory, and 20 minutes of runtime. By executing the
measurements, we aim to answer the following research questions:

1. How does the performance of the proposed verification approaches compare for check-
ing reachability properties?

2. How does the performance of the proposed approaches compare for checking timed
reachability, i.e. reachability of states under a given time limit in the analyzed model?

The first question targets the reachability of various properties. Some of the considered
properties are safety properties, where deciding reachability is the main objective. In other
cases the reachability of the state is known, still we might be interested in a trajectory
leading to the given state, as it comes useful in test generation applications.
Even though all analyzed models contain timing, the reachability of states is not always
dependent on both timing and data flow, in many cases reachability can be decided without
taking timing into consideration. To better assess the future applicability of our solutions,
we also examined performance for the timed versions of the properties, as our second
research question. To answer this, we introduced a new clock in each model, and checked

1https://github.com/ftsrg/gamma/tree/master/tutorial
2https://github.com/sosy-lab/benchexec

34

https://github.com/ftsrg/gamma/tree/master/tutorial
https://github.com/sosy-lab/benchexec

the same reachability properties as before, but under a given time limit, represented by
the newly introduced clock. We set a time limit uniformly for all properties checked on
the crossroad model, and a different time limit uniformly for all properties checked on the
model of the antivalence checker, based on the values appearing in clock constraints in the
models.

6.1 Configurations

In the measurements we compare our two main approaches for verifying TXSTS models,
with two main configurations of the second approach:

• rat-encode: encoding as XSTS models by replacing clocks with rational variables
and the corresponding data operations,

• cf-split-all: applying control flow splitting, keeping all control flows, and

• cf-split-filter: applying control flow splitting, with filtering out infeasible control
flows (see 5.2.3).

For all mentioned approaches we consider two different abstract domains for the data
abstraction that usually perform well on XSTS models:

• expl: explicit value abstraction with transition function T π
e,250 (see explicit value

abstraction in 2.3.1),

• expl-pred: product domain of explicit value abstraction with T π
e,250 and predicate

abstraction with predicate splitting (see predicate abstraction in 2.3.2).

The strategy used for pruning the ARG at the end of the CEGAR refinement step produces
quite different runtimes in the results, therefore we run the measurements with two ARG
pruning strategies:

• prune-full: the ARG is completely discarded,

• prune-lazy: only a subtree of the ARG is removed, depending on where the abstract
path becomes infeasible in the ARG (lazy pruning is discussed in more detail in [22]).

6.2 Results and discussion

Table 6.1 shows an overview of our benchmarking results. For each configuration the
upper number shows the number of tasks the configuration completed in the given category
(checking reachability or timed reachability properties), and the lower number shows the
number of cases where the given configuration performed best regarding runtime.
Overall, control flow splitting without infeasible control flow filtering could solve the most
tasks: all reachability tasks and 18 out of 30 timed reachability tasks, which is also the
maximum of solved timed reachability tasks among all configurations.
We further inspected the results of benchmarking for configurations that performed best.
Our main objective is the number of verification tasks a given configuration can solve,

35

method parameters reachability timed
reachability total tasks

rat-encode

expl, prune-lazy 26
2

12
1

38
3

expl, prune-full 27
6

12
3

39
9

expl-pred, prune-lazy 29
0

10
1

39
1

expl-pred, prune-full 30
3

10
3

40
6

cf-split-all

expl, prune-lazy 27
0

16
3

43
3

expl, prune-full 29
11

17
1

46
12

expl-pred, prune-lazy 30
0

17
1

47
1

expl-pred, prune-full 30
1

18
2

48
3

cf-split-filter

expl, prune-lazy 29
0

13
1

42
1

expl, prune-full 29
3

13
3

42
6

expl-pred, prune-lazy 30
0

14
0

44
0

expl-pred, prune-full 30
4

15
1

45
5

total number of tasks: 30 30 60

Table 6.1: Number of solved tasks and number of fastest results by each configuration
for reachability and timed reachability tasks

therefore we select the configurations with the most solved tasks, and in case of a tie, we
choose depending on the number of tasks where the given configuration performed best.
We inspected these configurations separately for the categories of reachability and timed
reachability. We also made sure to include at least one configuration of both our main
approaches: encoding with rational variables and control flow splitting.
In general, configurations using the product domain and full pruning solved the most
verification tasks for reachability properties without a given time limit. It is worth noting
that although the cf-split-all method with explicit abstraction and full pruning could not
check one of the properties, it is the fastest configuration, producing the shortest runtime
in 11 out of 30 cases.
Reachability properties with time limits (timed reachability) proved to be more difficult
to check. The control flow splitting method with keeping all control flows (cf-split-all)
produced the best results, verifying up to 18 properties out of 30, with all configurations
outperforming the rat-encode and cf-split-filter methods.
Table 6.2 shows the detailed results produced by the best configurations for reachability
without time limits in the properties: the rat-encode and cf-split-filter methods using the
explicit-predicate product domain for data, and full pruning.

36

Both approaches could verify all properties, with similar runtimes. Since they completed
the same verification tasks, we can also compare the average CPU time needed for the two
methods to complete a task, where encoding with rational variables slightly outperforms
control flow splitting, with an average runtime of 7.477 seconds, against the average of
11.089 seconds by control flow splitting.
This result indicates that the efficient time abstraction provided by the zone domain in the
combined algorithm does not improve the result significantly for the properties analyzed
here. A probable cause of this is that the reachability of the states given in the properties
is not dependent of time, and therefore control flow splitting unnecessarily introduces
some overhead, while the simplicity of the encoding method turns into an advantage in
this case.
Table 6.3 shows detailed results produced by the best configuration of both main ap-
proaches for timed reachability properties: the encoding method with explicit value ab-
straction for data, and control flow splitting with keeping all control flows, using the
product domain for data.
Although both are the best among configurations of one of the main approaches, these
two configurations produce quite different results, which means that extending the models
and properties to check reachability under a given time limit indeed necessitated checking
behavior that is dependent on both data and timing. In many cases, timing could not be
handled by rational variables, pointing out the need for handling time in a more refined
way.
Control flow splitting enabled the verification of 50 percent more properties than rational
variable encoding. Moreover, control flow splitting could verify each one of these properties
in less than 3 minutes, as opposed to rational variable encoding exceeding the 20 minutes
time limit.
The overall results show that the proposed approaches can provide a solution for verifying
real-time software-intensive systems. Encoding TXSTS models in the XSTS formalism
using rational variables is most suitable for verifying less time-dependent reachability
properties and generating trajectories to given states, while control flow splitting provides
a method for handling more complex verification tasks.

37

property
CPU time in seconds

by rat-encode
(expl-pred, prune-full)

CPU time in seconds
by cf-split-filter

(expl-pred, prune-full)
crossroad-1 1.601 2.142
crossroad-2 1.866 1.789
crossroad-3 20.402 19.545
crossroad-4 2.861 2.275
crossroad-5 6.742 6.342
crossroad-6 1.815 1.514
crossroad-7 1.868 2.034
crossroad-8 1.724 1.582
crossroad-9 1.859 1.880
crossroad-10 2.436 2.422
crossroad-11 5.416 2.972
crossroad-12 3.156 3.040
crossroad-13 1.778 1.879
crossroad-14 2.541 3.696
crossroad-15 2.736 1.802
crossroad-16 2.183 1.874
crossroad-17 2.235 1.955

crossroad-safety 10.620 9.269
antivalence-1 2.396 2.064
antivalence-2 6.233 7.642
antivalence-3 3.464 5.773
antivalence-4 19.198 20.281
antivalence-5 1.804 1.813
antivalence-6 3.224 2.726
antivalence-7 3.932 7.850
antivalence-8 2.119 2.174
antivalence-9 4.028 4.910
antivalence-10 6.931 6.732

antivalence-safety-1 29.734 182.484
antivalence-safety-2 67.419 20.210

average runtime: 7.477 11.089

Table 6.2: CPU time in seconds for reachability properties by the best configuration of
both main approaches for reachability

38

property
CPU time in seconds

by rat-encode
(expl, prune-full)

CPU time in seconds
by cf-split-all

(expl-pred, prune-full)
crossroad-timed-1 1.697 1.840
crossroad-timed-2 timeout 126.777
crossroad-timed-3 timeout 151.514
crossroad-timed-4 timeout 136.996
crossroad-timed-5 timeout 153.888
crossroad-timed-6 1.910 1.906
crossroad-timed-7 timeout timeout
crossroad-timed-8 1.789 2.243
crossroad-timed-9 1.824 2.140
crossroad-timed-10 timeout timeout
crossroad-timed-11 timeout timeout
crossroad-timed-12 timeout 4.162
crossroad-timed-13 1.999 2.157
crossroad-timed-14 2.099 3.852
crossroad-timed-15 2.060 2.686
crossroad-timed-16 1.946 2.324
crossroad-timed-17 1.664 2.236

crossroad-timed-safety timeout timeout
antivalence-timed-1 timeout timeout
antivalence-timed-2 timeout timeout
antivalence-timed-3 timeout timeout
antivalence-timed-4 timeout timeout
antivalence-timed-5 2.191 2.287
antivalence-timed-6 3.255 6.315
antivalence-timed-7 4.724 23.083
antivalence-timed-8 timeout timeout
antivalence-timed-9 timeout timeout
antivalence-timed-10 timeout timeout

antivalence-timed-safety-1 timeout timeout
antivalence-timed-safety-2 timeout 111.407

number of solved verification tasks: 12 18

Table 6.3: CPU time in seconds for timed reachability properties by the best configura-
tion of both main approaches for timed reachability

39

Chapter 7

Conclusion

The verification of timed engineering models, that are used for the modeling of real-time
software-intensive critical systems, is a challenging task. Various techniques are introduced
in the literature to verify either software systems, or timed automata models and some
approaches can also handle engineering models with limited time-dependent properties.
Our goal was to introduce a formalism to support the formal description of high-level en-
gineering models of software-intensive real-time systems. In addition, efficient algorithms
are needed to solve the verification problem. So, we devised a combined algorithm by
integrating eager and lazy abstraction into a verification framework, and a novel iterative
exploration is used to provide a step-wise refinement of the verification problem.
The theoretical contributions of the paper:

• We defined an extension to the XSTS formalism used as an intermediate formal
model in the Gamma statechart-based modeling toolchain to represent timed sys-
tems. The formalism can serve as a general intermediate language between high-level
engineering modeling languages and low level verification tools.

• We defined a mapping from timed XSTS models to XSTS models to exploit existing
verification tools in the analysis.

• We developed a novel algorithm to iteratively explore complex control flows in timed
XSTS models caused by component communication and hierarchical modeling.

• We introduced abstraction-based model checking approaches for the verification of
timed XSTS models. The new methods are able to handle the data and time aspects
of engineering models efficiently.

The engineering contributions of the paper:

• We integrated the timed XSTS formalism in the open-source Theta verification
framework.

• We implemented the proposed mapping as a transformation of timed XSTS to XSTS
in the Theta framework.

• We implemented the proposed control flow splitting algorithm in Theta and inte-
grated it into an existing verification algorithm.

40

7.1 Future work

In the future, we plan to further evaluate the approach on more engineering models from
other domains. In addition, the proposed integrated approach is a good candidate for
temporal logic model checking. This could further help engineers to analyze even complex
temporal properties. Our fine-grained abstraction techniques can also be used to analyze
parameterized timed properties; in the future we plan to explore this research direction as
well.

41

Bibliography

[1] Thomas Ball, Andreas Podelski, and Sriram K Rajamani. Boolean and cartesian
abstraction for model checking c programs. In TACAS, pages 268–283. Springer,
2001.

[2] Johan Bengtsson and Wang Yi. Timed Automata: Semantics, Algorithms and Tools,
pages 87–124. Springer, 2004. DOI: 10.1007/978-3-540-27755-2_3.

[3] Dirk Beyer and M. Erkan Keremoglu. CPAchecker: A tool for configurable software
verification. In Ganesh Gopalakrishnan and Shaz Qadeer, editors, CAV, pages 184–
190. Springer, 2011.

[4] Dirk Beyer and Stefan Löwe. Explicit-state software model checking based on CEGAR
and interpolation. In FASE, pages 146–162. Springer, 2013.

[5] Patricia Bouyer, Paul Gastin, Frédéric Herbreteau, Ocan Sankur, and B. Srivathsan.
Zone-based verification of timed automata: Extrapolations, simulations and what
next? In FORMATS, volume 13465 of LNCS, pages 16–42. Springer, 2022. DOI:
10.1007/978-3-031-15839-1_2.

[6] Patricia Bouyer, Paul Gastin, Frédéric Herbreteau, Ocan Sankur, and B Srivath-
san. Zone-based verification of timed automata: extrapolations, simulations and
what next? In International Conference on Formal Modeling and Analysis of Timed
Systems, pages 16–42. Springer, 2022.

[7] Aaron R. Bradley. Sat-based model checking without unrolling. In VMCAI, volume
6538 of LNCS, pages 70–87. Springer, 2011. DOI: 10.1007/978-3-642-18275-4_7.

[8] Jerry R Burch, Edmund M Clarke, Kenneth L McMillan, David L Dill, and Lain-
Jinn Hwang. Symbolic model checking: 1020 states and beyond. Information and
computation, 98(2):142–170, 1992.

[9] Zuxi Chen, Zhongwei Xu, Junwei Du, Meng Mei, and Jing Guo. Efficient encoding for
bounded model checking of timed automata. IEEJ Tran. Electrical Electronic Eng.,
12(5):710–720, 2017. DOI: 10.1002/tee.22457.

[10] Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.
Counterexample-guided abstraction refinement. In CAV, pages 154–169. Springer,
2000.

[11] Edmund Clarke, Armin Biere, Richard Raimi, and Yunshan Zhu. Bounded model
checking using satisfiability solving. Formal methods in system design, 19:7–34, 2001.

[12] Edmund M Clarke, Orna Grumberg, and David E Long. Model checking and abstrac-
tion. ACM transactions on Programming Languages and Systems (TOPLAS), 16(5):
1512–1542, 1994.

42

http://dx.doi.org/10.1007/978-3-540-27755-2_3
http://dx.doi.org/10.1007/978-3-031-15839-1_2
http://dx.doi.org/10.1007/978-3-642-18275-4_7
http://dx.doi.org/10.1002/tee.22457

[13] Edmund M. Clarke, Thomas A. Henzinger, and Helmut Veith. Introduction to Model
Checking, pages 1–26. Springer, Cham, 2018. DOI: 10.1007/978-3-319-10575-8_1.

[14] Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lattice model
for static analysis of programs by construction or approximation of fixpoints. In
Proceedings of the 4th ACM SIGACT-SIGPLAN symposium on Principles of pro-
gramming languages, pages 238–252, 1977.

[15] Dóra Cziborová and Béla Ákos Vizi. Abstraction-based model checking techniques
for real-time systems. Scientific students’ association report, Budapest University of
Technology and Economics, 2022.

[16] Dóra Cziborová. Generalizing lazy abstraction refinement algorithms with partial
orders. Bachelor’s thesis, Budapest University of Technology and Economics, 2021.

[17] Henning Dierks, Sebastian Kupferschmid, and Kim Guldstrand Larsen. Automatic
abstraction refinement for timed automata. In FORMATS, volume 4763 of LNCS,
pages 114–129. Springer, 2007. DOI: 10.1007/978-3-540-75454-1_10.

[18] Bruno Dutertre and Maria Sorea. Modeling and verification of a fault-tolerant real-
time startup protocol using calendar automata. In FORMATS, volume 3253 of LNCS,
pages 199–214. Springer, 2004. DOI: 10.1007/978-3-540-30206-3_15.

[19] Bence Graics, Vince Molnár, and István Majzik. Integration test generation for state-
based components in the gamma framework.

[20] Bence Graics, Vince Molnár, András Vörös, István Majzik, and Dániel Varró.
Mixed-semantics composition of statecharts for the component-based design
of reactive systems. Softw. Syst. Model., 19(6):1483–1517, 2020. DOI:
10.1007/s10270-020-00806-5.

[21] Bence Graics, Vince Molnár, András Vörös, István Majzik, and Dániel Varró. Mixed-
semantics composition of statecharts for the component-based design of reactive sys-
tems. Software and Systems Modeling, 19:1483–1517, 2020.

[22] Ákos Hajdu and Zoltán Micskei. Efficient strategies for CEGAR-based model check-
ing. J. Autom. Reasoning, 64(6):1051–1091, 2020.

[23] Ákos Hajdu, Tamás Tóth, András Vörös, and István Majzik. A configurable cegar
framework with interpolation-based refinements. In Formal Techniques for Distributed
Objects, Components, and Systems: 36th IFIP WG 6.1 International Conference,
FORTE 2016, Held as Part of the 11th International Federated Conference on Dis-
tributed Computing Techniques, DisCoTec 2016, Heraklion, Crete, Greece, June 6-9,
2016, Proceedings 36, pages 158–174. Springer, 2016.

[24] Thomas A Henzinger, Ranjit Jhala, Rupak Majumdar, and Gregoire Sutre. Lazy
abstraction. In POPL, pages 58–70, 2002.

[25] Frédéric Herbreteau, B. Srivathsan, and Igor Walukiewicz. Lazy abstractions for
timed automata. In CAV, volume 8044 of LNCS, pages 990–1005. Springer, 2013.
DOI: 10.1007/978-3-642-39799-8_71.

[26] Tobias Isenberg and Heike Wehrheim. Timed automata verification via IC3 with
zones. In ICFEM, volume 8829 of LNCS, pages 203–218. Springer, 2014. DOI:
10.1007/978-3-319-11737-9_14.

43

http://dx.doi.org/10.1007/978-3-319-10575-8_1
http://dx.doi.org/10.1007/978-3-540-75454-1_10
http://dx.doi.org/10.1007/978-3-540-30206-3_15
http://dx.doi.org/10.1007/s10270-020-00806-5
http://dx.doi.org/10.1007/978-3-642-39799-8_71
http://dx.doi.org/10.1007/978-3-319-11737-9_14

[27] Ranjit Jhala, Andreas Podelski, and Andrey Rybalchenko. Predicate Ab-
straction for Program Verification, pages 447–491. Springer, 2018. DOI:
10.1007/978-3-319-10575-8_15.

[28] Martin Leucker, Grigory Markin, and Martin R. Neuhäußer. A new refinement strat-
egy for CEGAR-based industrial model checking. In Hardware and Software: Verifi-
cation and Testing, pages 155–170. Springer, 2015.

[29] K. L. McMillan. Applications of Craig interpolants in model checking. In TACAS,
pages 1–12. Springer, 2005.

[30] Kenneth L McMillan. Lazy abstraction with interpolants. In CAV, pages 123–136.
Springer, 2006.

[31] M. Oliver Möller, Harald Rueß, and Maria Sorea. Predicate abstraction for
dense real-time system. In Theory and Practice of Timed Systems, volume 65
of Elec. Notes Theor. Comput. Sci., pages 218–237. Elsevier, 2002. DOI:
10.1016/S1571-0661(04)80478-X.

[32] Vince Molnár, Bence Graics, András Vörös, István Majzik, and Dániel Varró. The
gamma statechart composition framework: design, verification and code generation
for component-based reactive systems. In Proceedings of the 40th International Con-
ference on Software Engineering: Companion Proceeedings, pages 113–116, 2018.

[33] Milán Mondok. Extended symbolic transition systems: an intermediate language for
the formal verification of engineering models. Scientific students’ association report,
Budapest University of Technology and Economics, 2020.

[34] Milán Mondok. Efficient abstraction-based model checking using domain-specific in-
formation. Scientific students’ association report, Budapest University of Technology
and Economics, 2021.

[35] Victor Roussanaly, Ocan Sankur, and Nicolas Markey. Abstraction refinement algo-
rithms for timed automata. In CAV, volume 11561 of LNCS, pages 22–40. Springer,
2019. DOI: 10.1007/978-3-030-25540-4_2.

[36] Ocan Sankur. Timed automata verification and synthesis via finite automata learn-
ing. In TACAS, volume 13994 of LNCS, pages 329–349. Springer, 2023. DOI:
10.1007/978-3-031-30820-8_21.

[37] Maria Sorea. Bounded model checking for timed automata. In MTCS@CONCUR,
volume 68 of Elec. Notes Theor. Comput. Sci., pages 116–134. Elsevier, 2002. DOI:
10.1016/S1571-0661(04)80523-1.

[38] Tamás Tóth and István Majzik. Lazy reachability checking for timed automata using
interpolants. In FORMATS, volume 10419 of LNCS, pages 264–280. Springer, 2017.
DOI: 10.1007/978-3-319-65765-3_15.

[39] Tamás Tóth, András Vörös, and István Majzik. K-induction based verifica-
tion of real-time safety critical systems. In DEPCOS, volume 224 of Advances
in Intelligent Systems and Computing, pages 469–478. Springer, 2013. DOI:
10.1007/978-3-319-00945-2_43.

[40] Tamás Tóth and István Majzik. Configurable verification of timed automata with
discrete variables. Acta Informatica, 2020. DOI: 10.1007/s00236-020-00393-4.

44

http://dx.doi.org/10.1007/978-3-319-10575-8_15
http://dx.doi.org/10.1016/S1571-0661(04)80478-X
http://dx.doi.org/10.1007/978-3-030-25540-4_2
http://dx.doi.org/10.1007/978-3-031-30820-8_21
http://dx.doi.org/10.1016/S1571-0661(04)80523-1
http://dx.doi.org/10.1007/978-3-319-65765-3_15
http://dx.doi.org/10.1007/978-3-319-00945-2_43
http://dx.doi.org/10.1007/s00236-020-00393-4

[41] Tamás Tóth, Ákos Hajdu, András Vörös, Zoltán Micskei, and István Majzik. Theta:
A framework for abstraction refinement-based model checking. In FMCAD, pages
176–179, 2017. DOI: 10.23919/FMCAD.2017.8102257.

[42] Yakir Vizel and Orna Grumberg. Interpolation-sequence based model checking. In
FMCAD, pages 1–8. IEEE, 2009. DOI: 10.1109/FMCAD.2009.5351148.

45

http://dx.doi.org/10.23919/FMCAD.2017.8102257
http://dx.doi.org/10.1109/FMCAD.2009.5351148

	Kivonat
	Abstract
	Introduction
	Preliminaries
	Model checking
	Modeling formalisms
	Timed automata with data variables
	Extended symbolic transition systems

	Abstract domains
	Explicit value abstraction
	Predicate abstraction
	Zone abstraction
	Product abstraction

	Abstract reachability graphs
	CEGAR
	The CEGAR abstractor
	The CEGAR refiner

	Lazy abstraction
	Related work

	Overview
	Gamma Statechart Composition Language
	Proposed algorithms

	The timed XSTS formalism
	Verification of timed XSTS models
	Encoding timed behavior using data variables
	Control flow splitting with Boolean flags
	Operation simplification by substitution
	Operation transformation with Boolean flags
	Sequences
	Conditional operations
	Non-deterministic choices
	Loops
	Assumptions
	Data assignments
	Other basic operations

	Using an SMT solver to determine control flows
	Soundness of control flow splitting

	Verification of timed XSTS with combined abstraction

	Evaluation
	Configurations
	Results and discussion

	Conclusion
	Future work

	Bibliography

