
New Algorithm for Biased Load
Balancing with Graceful Shutdown

Author:

István Bakos1

Loránd Nagy1,2

Consultants:

Gábor Járó, Ph.D.2

Dr. Tien Van Do3

1 Institute of Mathematics, Faculty of Natural Sciences, Budapest

University of Technology and Economics

2 Nokia Hungary Ltd., Budapest

3 Department of Networked Systems and Services, Budapest University of

Technology and Economics

October 27, 2015

Contents

1 Introduction 2

2 Problems and Real-life Examples 4

2.1 The Core Network . 4

2.2 Load from a real network . 5

2.3 Problems with Round-Robin . 7

3 New algorithm for Biased Load Balancing with Graceful Shutdown 9

3.1 Advantages of Load Balancers . 9

3.2 Priority-based Horizontal Scaling Algorithm 9

3.3 HSA in practice . 12

4 Comparison of Round-Robin and the new algorithm 16

4.1 Results for Round Robin based decision . 16

4.2 Results for HSA . 17

4.3 Di�erences between the results . 19

4.4 Suddenly growing load . 20

5 Conclusion 21

5.1 Development history . 22

5.2 Improvement ideas for the logic . 22

5.3 Improvement ideas for the simulation . 22

Acknowledgements 23

References 24

List of Abbreviations 26

Appendix 28

1

1 Introduction

In traditional telecommunication networks, network elements are permanently available

independently of the part of the day and actual tra�c. This means they constantly re-

serve hardware (HW) and consume energy. Furthermore, in most cases these (physical)

elements can not be used for tasks other than their designated ones.

In several telecommunication networks, Round-Robin algorithm is used for 'resource man-

agement' and load distribution but � as we will see later � it is not so e�ective (especially

for our purpose). First, it does not take into account the actual CPU load of the (inter-

nal) functional units (FU). Second, it assumes that every FU has the same capacity and

performance in the system. That is why we have to �nd a solution that considers the

foregoing ideas and is able to achieve the later-described horizontal scaling.

However, it is important to notice that Round-Robin, Weighted Fair Queueing and their

variants have been used (for load balancing) for a long time in practice and of course,

many results have already been achieved in dynamical load balancing [1], [2]. Further-

more, e.g. SIP (Session Initiation Protocol) based services are very well-investigated [3].

Applying these is common practice in distributed systems. So, the scalability in Cloud

has been investigated almost since it's �rst appearrance.

Development in 'Telco' network solutions enables almost all core network elements � which

can be seen in Figure 1 (light blue colored, like TAS, MSS, MME, HLR, HSS, etc.) � to

run on Cloud-based environment [4]. At this point, horizontal scalability of distributed

systems (such as core network) becomes a very important requirement, as it practically

allows to add or remove resources (henceforth functional units) anytime to or from the

system. Removal of a functional unit shall be `graceful' in the sense that it cannot cause

performance degradation and ongoing processes must not be interrupted.

Therefore an algorithm is needed which uses only certain (higher order) functional units

continuously. The main idea of the new algorithm is that it just starts loading additional

(lower order) FUs if the load of the higher order units reaches a pre-de�ned level (upper

threshold). Thereby, in Cloud-based environment, tra�c could be concentrated on a few

functional units and further FUs are loaded only if it is necessary. So, this (kind of) algo-

rithm enables a much more dynamic resource management in Cloud.

Our goal is to provide a method which loads the available (internal) functional units within

a single network element (whether TAS or MSS) according to the above-mentioned logic.

In this way, the operation of a network can be energy-e�cient and cost e�cient as not

2

used FUs can actually be shut down depending on the real-time tra�c. It has to be high-

lighted that our solution is applicable in any 'Cloud-based' distributed telecommunication

system, hence, it is independent from any protocol (i.e. SIP, H.248, M3UA). In addition,

the unknown length of the running processes, which makes the seamless removal of func-

tional units harder, is not a problem for this algorithm (typically, the length of calls has

an unknown probability distribution). It is very crucial in call handling, as even very long

calls must not be terminated by removal of that FU which controls them.

Henceforth, in section 2, we describe the problem in details and show some related exam-

ples from real networks. In section 3, we interprete our solution in both theoretical and

practical point of view. In section 4, we compare Round-Robin and the new algorithm

and in section 5, we summarize the results so far.

3

2 Problems and Real-life Examples

Before we describe the problem in details, we take a closer look at the core network which

is in the scope of our investigation and introduce how it can be moved on to the Cloud.

2.1 The Core Network

Figure 1 presents TAS and MSS in mobile (and IMS) network

The Core Network (Figure 1) has four main parts:

1. Packet Core;

2. Services Domain which includes e.g. MSS (Mobile Switching Center Server), TAS

(Telecommunication Application Server) and the IMS (IP Multimedia Subsystem);

3. Registers (HLR or HSS) that are common for the Packet Core and the Services

Domain;

4. OSS (Operations Support System) which oversees all of the network elements, in-

cluding the radio network (2G, 3G, 4G/LTE) too.

4

The same resources (CPU, memory, storage, IP interfaces and networking) must be pro-

vided for (core) network elements in order to be able to operate in Cloud based environ-

ment (just as in traditional, e.g. ATCA, environment) [5].

On Cloud, storage capacity is given by SAN (Storage Area Network) and network con-

nections are provided by SDN (Software-De�ned Networking). As it can be seen in Figure

2, telecommunication applications (which are SW applications) are located on the top

of Cloud. Similarly, OSS and CAM (Cloud Application Management which controls the

horizontal scalability of certain network elements) can run on Cloud.

Figure 2 presents the core network elements in Cloud based environment [6]

Based on ETSI NFV architecture [5], MSS and TAS are virtualized network functions

(VNFs) [6], [7]. The function of MSS and TAS in mobile and IMS network is de�ned

in detail by the following 3GPP technical standars: TS 23.002 [8], TS23.218 [9] and TS

23.228 [10].

2.2 Load from a real network

We collected data from several mobile network operators1. First of all, it can be observed

that the load of the functional units �uctuate signi�cantly both daily and weekly basis. It

1We do not name speci�c operators for con�dentiality reasons, so from now on, we indicate every

operator as unknown.

5

can be seen in Figure 3 how steeply the load changes between night hours and (daytime)

busy hours. It is also clearly shown in the same �gure that people make less phone call on

weekend (red circle) compared to weekdays. Moreover, sudden big load can occur anytime,

even during busy hours (green circle).

Figure 3 presents the average load of some FUs in the same network element

(Operator 2), one week measurement, and one hour resolution

Of course, tra�c also �uctuates at the level of the entire network (Figure 4) which foresees

the possibility of switching functional units o�. For example, if we take a closure look at

daytime and nighttime tra�c in the network, then �uctuations can be measured up to

60%. This means less functional units would be needed in nighttime than during the busy

hours. (Currently, all the resources are used continuously.)

These analysis show that the utilization of the resources does not often reach even the

35% level which is far from the recommended 60 or 70% level. So, better utilization is one

of the aims because it leads to an optimized resource management and helps to decreasing

the energy consumption of the system.

6

Figure 4 presents the average (red) and peak (green) load of a single FU compared to

the total call (purple) and sms (blue) number, three days measurement

2.3 Problems with Round-Robin

As we mentioned earlier, Round-Robin (scheduling) is used widely for call-handling (or

call distribution) in telecommunication networks. Let's see the following simple example

to this algorithm.

If urns represent the functional units and balls represent the calls the algorithm works

in the following way: we throw the balls one-by-one into the urns consequently in arrival

time and if we run out of empty urns, then we start again. This process is quite simple

and easy to implement, but not appropriate for several reasons.

First of all, it cannot be used for priority-based or biased load balancing. It can be seen

in Figure 5 that the average load of the functional units are not really balanced. This is

due to the fact that we mentioned in the introduction: Round-Robin does not take into

account the actual CPU load of the (internal) functional units and assumes that every

FU has the same capacity and performance in the system.

The second problem is its deterministic behaivour. It is shown in Figure 6 that CPU usage

of a single call is not continuous (control plane): there are a setup and an end phase. Based

on the elapsed time between the two phases (T, distribution of T is unknown), we can

7

talk about short and long calls. Since, we do not know the real distribution of the call

lengths, we cannot predict the end of a call. This causes the problem that there are FUs

with higher load levels because of the many short calls. The others get more long calls,

so they are less loaded.

Figure 5 presents the e�ect of calls (blue columns) and messages (yellow columns) to the

load of FUs

Let's assume we have twenty urns and blue ball represents the long call. We also assume

that every twentieth call is long call. Then the twentieth urn contains all the blue balls

(i.e. long calls).

Figure 6 presents the CPU and memory usage of a call

8

Considering these observations, the analysis and the properties of Round-Robin, this kind

of call-handling is really far from optimal. So, we have to handle these problems with a

more sophisticated algorithm.

3 New algorithm for Biased Load Balancing with Grace-

ful Shutdown

In our solution, one of the most important aspects is to use as many functional units as

the current tra�c needs at most. I.e. we do not endeavour to use all of the functional

units at the same time or load them evenly. The other one is that we can add or remove

FUs to or from the system based on the current tra�c. (That is why there will be periods

when the load of the units can be very di�erent.)

3.1 Advantages of Load Balancers

Application of Load Balancers (LB) is inevitable in any distributed systems. With their

help, incoming requests can be easily distributed among the internal functional units of

the network element. Furthermore, the inner architecture, complexity and operation of

the system can be hidden by Load Balancers, i.e. the outside world can communicate only

the LBs (Figure 7).

3.2 Priority-based Horizontal Scaling Algorithm

From now on, we always assume that the system contains at least one LB. Due to redun-

dancy and resiliency reasons, this means minimum 2 LBs. Our algorithm, called Horizontal

Scaling Algorithm (HSA), is located in LBs.

a) The invention has four key parts. First of all, we organize FUs into groups or sets (Si,

i = 1, . . . , n). Such a group can contain any number of FUs (at least one, at most as

much as total available). On one hand, we can minimize the chance (using groups)

that a newly activated FU is overloaded immediately after switching on. On the

other hand, we can manage more CPU resource at once. This kind of con�guration

can be seen on Figure 7.

9

Figure 7 presents the planned network element con�guration, where FUs are in sets

b) The second step is: we �x an upper threshold (e.g. 65%) for the average target load

of the groups (or sets). What we want to achieve with this is that we load the groups

as long as the average load of the groups reaches the given upper threshold. If the

target load is exceeded, a new group is placed into operation (Figure 8). Hereby we

force the system to activate a new set if and only if it is needed based on the current

tra�c.

Similarly, we �x the same lower threshold (e.g. 20%) for the average load of the FUs

within each group. This is useful, since when the last active group's average load is

under the threshold we can deactivate that group.

c) In addition, each group gets a preference number for which the followings are true:

• Each FU has the same preference number within its group;

• If a FU is switched o� (or in idle mode), its preference number is zero;

• If a group's load reaches the upper threshold, its preference number is maximum

(M);

• If a new group is loaded, its preference number is dynamically changed between

0 and M (depending on tra�c).

10

We use these to make resource handling and load distribution between groups adap-

tive in case of tra�c changes.

Figure 8 presents the bucket chain model

d) Finally, we randomize the call distribution. The process can be seen on Figure 9.

The top line shows the incoming calls. The arrival of calls can be modeled with a

Poisson process [11] (although some results yield that in fact this is not the most

accurate model [12]). Such subdivision of [0, 1] interval can be seen on the lower part

of Figure 9 in which each subinterval belongs to di�erent FU. The colour of the FUs

indicates the group they belong to. The length of the subintervals is determined in

real time by the following formula:

length of subinterval =
preference number of FU belonging to the subinterval

the sum of all preference numbers

The bigger the FU's preference number is, the bigger the subinterval is which belongs

to the FU. The call distribution is random, because every call gets a random number

from [0, 1]. The call is sent to that FU, which belongs to the subinterval that contains

the generated random number.

If we recall the urn model and the problems that appeared during the Round Robin

it seems to be a logical choice to randomize call distribution.

11

Figure 9 presents the conceptual illustration of the randomization

3.3 HSA in practice

As this research is motivated by telecommunication business needs, the �rst approach

on HSA was to present a proof-of-concept simulation. Therefore we needed to create a

computer program that can simulate calls and units to process them.

To create the simulation we created a simple c++ console application. The program used

a simple representation of every element as a custom type:

call: an integer for id, and double precision �oating point numbers (doubles) for start

time, end time and length (in seconds)

functional unit: an integer for id and a vector of calls, with methods to measure load

(the program setup de�ned the maximal number of half-calls2 for a unit to represent

load as percentage) at given time and accept calls (or reject in case of overload)

2Half-call: a call in setup or end phase.

12

group of FUs: boolean �ags to indicate status of activation, graceful shutdown, an ar-

ray of FU types and an integer storing the last used FU index (for Round-Robin

simulation) with additional doubles to store relevant history data (past load, time

of activation), methods to process arriving calls for both Round-Robin and HSA, to

measure load and free capacity

With these element the simulation program used a �le input to simulate call data, than

used that data to �rst simulate the system's response �rst using the Round-Robin algo-

rithm than the HSA. The Round-Robin was started with all groups activated, however

the HSA just used one group at the start. In every case we used �ve groups of six FUs.

Both methods stopped at every second to evaluate status but while the Round-Robin

algorithm just removed unused data and wrote active call number and average load for

FUs in each group, the HSA evaluated if the current state and intervened in case. The

logic of the decision is described on a �owchart in the appendix section (this �owchart

served as implementation strategy during development).

The reason for simulating calls instead of using measurement data is:

• key use-cases in proving the method's usability can be easily created;

• exact measurements containing call start and call end times with precision to the

second are not available and even if such data existed the simulation would need to

change the simulated processing units' speci�cations to create all needed scenarios.

However a later goal is to create simulations with real life measurement data to compare

the simulated results to the measured values. To do this we needed to create a model for

calls that can be de�ned through total call numbers during prede�ned time periods.

It is a commonly accepted model for independently arriving requests (like customers ar-

riving in a shop, or calls started through a network etc.) to use Poisson distribution for

the number of total requests [11]. The Poisson distribution has a great advantage, namely

that we know exactly the distribution of the time between two events (arrivals or call

starts) which is the exponential distribution. Therefore if we have the number of calls

arriving in a period we can create a model that provides us with a total call number

for that period as a random variable that follows Poisson distribution and its expected

value is the given number of calls. More generally we can say that the total number of

calls follows an inhomogeneous Poisson process and we are using a rate function that is

piecewise constant.

13

If we accept the Poisson process we only need to create a function in the simulation

that gives us random numbers with exponential distribution with the given parameter.

Generating genuine random numbers is a popular topic among programmers and math-

ematicians as well. There are many algorithms to create numbers that follow certain

distributions, but in fact most methods can not generate real randomness, that is usually

achieved by seeding the random number generating algorithms with some random mea-

surement data (with known distribution of course). The random numbers, our simulation

used, were generated with functions provided by the program language's <random> ex-

tension. These functions needed some seeding which was provided as the sum of a number

obtained from the system clock, another from the program's time variable and �nally

a number generated by another built-in random number generator. This allowed us to

create pseudo-random numbers with the needed distributions. Pseudo-randomness means

in our case that the probability density functions (PDF) of the generated numbers do not

match exactly the desired distributions' PDFs. For example the uniform random number

is not uniform, functions like the one the simulation uses has a small skewness, meaning

that it favors one side of the interval. This could indeed cause a problem, but the e�ect of

it can be dramatically reduced by using a small interval, where the skewness is virtually

undetectable. For other distributions we can generate lots of numbers and than examine

the di�erence between theoretical and empirical moments. In our simulations all gener-

ated distributions had error for the �rst two moments under 0.05%.

Our modeling of calls now has a method to create call starts at a de�ned rate (or following

a rate function). To complete it we also need a model to terminate these calls. The �rst

idea is to use some exponential distribution for it is now already implemented. In fact

the �rst simulations that we did used this method. The reason why we accepted a �bad�

model is that our simulation focuses on the load created by the start of a call, termination

has much smaller e�ect and we did not consider ongoing calls as relevant load inducing

parts (Figure 6).

Also simulating the length of calls is not as easy as the call starts. The reason is simple;

while even complicated call number pro�les can be simulated correctly with a well-chosen

rate function, call length is much more random and there is no result accepted widely

like the Poisson process in the other case. One solution could be that we suppose that

like for call starts it is impossible that two calls start/end at the same time (technically if

two calls were to start at the very same moment on the same unit one of those would be

stalled for a short time) and we could use a queuing model. Imagine the calls as customers

14

at a post o�ce. There are di�erent rows for di�erent kinds of transactions and the time

required for a customer is a random variable with a distribution also depending on the

desired action. This is an appealing model since it can be realized with a model for a

multidimensional Poisson process. Another possibility is to say that a call can end during

any time period. If we are measuring the load after every second for example, than we only

need to know if calls were ended during that second. Suppose that there is a coin-toss at

the beginning of every second of a call that decides if the call would end in that following

second. Of course the coin ought to be really unfair otherwise calls would not last for long.

The probability of ending can be a function that depends on the call length and the time

(can be a call's start time or the current time as well). Since we only need this function

evaluated at selected points no continuousness or monotonicity is required only that the

function should take strictly positive values smaller than one (actually much smaller). For

simplicity though we can say that the probability should be a continuous and monotone

function of call time and for large call times the ending probability should converge to

some constant (not even depending on the time). The good thing about this method is

that after successfully creating a function we can adjust average times with only changing

one multiplier and also coin-tosses are easily implemented. Another advantage is that we

can create a simulation where calls behave like in the real world, after they are started

there is no way to know when will they be terminated if ever.

Although these new models are tempting, unfortunately they ought to be validated before

usage and since the creation of new call modeling is not among the main goals at this

point therefore we used a simpler model where call length was de�ned as a log-normally

distributed random variable. We chose this speci�c model although there is no intuitive

explanation for the results in [12]. During the simulations, we used log-normal distribution

with expected value: 90 (sec) and standard deviation: 50 (sec).

With these decisions for modeling we could start the implementation of the simulation.

This article in fact describes the second phase of the simulation where phase one was the

�rst implementation of the logic and concentrated all e�orts on creating a code that can

show the behavior of the logic in basic use-cases. For this �rst simulation we used the

exponential call length model and data tailored for speci�c situation and all parameters

were set alike this method.

After the �rst simulations we had results proving that further investigation is needed,

mainly since the results only told us that the idea for the new algorithm is viable though

it did not provide any information about the comparison between the new and the old

15

logic. Therefore the main goal was to create a better simulation that can simulate calls

and provide this data set for the call distribution algorithm which should be able to run

both based on the Round-Robin method and the HSA.

This sets the basic requirements for the program, these three features were needed.

4 Comparison of Round-Robin and the new algorithm

During the comparison we used data based on measurements from real operators. Initial

testing ran with arbitrary data that we created. The real results came from two methods,

where the �rst was to take data that represents some sort of periodicity and investigate

the load results of that with 15 minutes sampling for the Poisson process' rate. The second

approach was to get data from operator measurements and create a new set of data with a

better � one minute � resolution. We used a standard spline3 interpolation for the original

points and evaluated the function at each minute. This method does not change the call

numbers by which we de�ne the rate of the Poisson process, but it reduces the time

interval with the number should be normalized for one second, therefore if we want to

keep the same rates we need to divide the received numbers.

In fact for some performance considerations and to keep program setting the same for

most cases we divided the data numbers so that the result would be around one million

call per hour.

4.1 Results for Round Robin based decision

In all scenarios the algorithm did exactly like one would expect (Figure 10), the load gen-

erated by the calls was equally distributed among groups of FUs (also referred to as sets).

This result shows how this concept is working if there is just one loop of Round-Robin,

however in real realizations there are concurring loops and that causes the load di�erences

on the presented measurements. However the average load of the groups indicates that

there is constantly huge free capacity for each group.

3Approximation for the joining curve with qubic polynomials on each interval with continuous �rst

and second derivatives between intervals.

16

Figure 10 presents the simulation result of Round-Robin, 3 hours resolution

These results con�rm the original assessment of the problem that even if the groups of

functional units are in balance (as a result of circumstances or active load balancing) the

e�ciency of this setup is not ideal (Figure 11). For example one could suggest that decreas-

ing the FU number would increase the average load and decrease resource consumption.

However the resulting load shown above gives a perfect example why the problem cannot

be solved only with this idea. The busy hours during the day generate signi�cantly bigger

load and operators should scale their networks to be able to handle these situations which

gets us to the hours outside busy hours, where the system that was able to handle much

bigger load can not save resources causing resource wasting.

Figure 11 presents the simulation result of Round-Robin, 2 hours resolution

4.2 Results for HSA

In this case, we are able to see that the algorithm works as planned (Figure 12). In every

situation, there are three states a set can assume:

1. inactive,

17

2. activated and working with load under the design level,

3. activated and working on the design level.

However the second state which is the less desired state for a set is always unique in the

sense that at any time only one group of FUs can assume that state, the others are either

inactive or working at the design limit.

Figure 12 presents the simulation result of HSA, 3 hours resolution

This provides us with sets operating mostly around the design limit which was set to be

60%4. There are a few situations we should investigate each one associated with a typical

change in load. This �rst result presents the quick responses the system gives since the

data resolution was low thus the changes were sudden.

The �rst case we should take a closer look at is when the load of groups passes the upper

threshold. Take the �rst occurrence for example when the load suddenly grows high, push-

ing the �rst group of FUs over the threshold which triggers the activation of a second set.

After this we can see that both sets' load �uctuates with a higher amplitude. Knowing

the algorithm this is caused by the fact that the lower set's load was around the lower

threshold which makes the pair of sets to trade a part of their priority numbers back and

forth. In fact this is not a problem though since the load of the �rst set is in close range

to the design level and no increase in load goes beyond 70%.

In the next interval the load decreases causing the second set to operate under the lower

threshold but it remains active and it even decreases the load �uctuations. This is again

a consequence of the circumstances, basically the same happens as before with the di�er-

ence that now the second set gets changed into inactive and back to active repeatedly.

4This is not a setting though it can be achieved by setting the upper threshold to 65%.

18

The other interesting case is when the load is growing or decreasing very suddenly (Fig-

ure 12). In the �rst case multiple sets are activated but the sudden increase creates a

rapid overload in some of those. But the activation of sets and increasing the preference

number solves the problem. This is a problem that did not appear with the Round-Robin

algorithm. The second case where the load drops suddenly the logic turns all but one to

inactive without any problem.

In the case of smaller load, only fewer sets are activated (Figure 13) which provides a bet-

ter utilization of resources: Set 1 (blue line) is loaded until it reaches the upper threshold;

Set 2 (red line) is activated only after Set 1 passes the threshold.

Figure 13 presents the simulation result of HSA, 2 hours resolution

4.3 Di�erences between the results

The results presented above show that the new algorithm has a real potential for allowing

certain groups of FUs to become gracefully shut down. The main reason for that is the

fact that without the need they will not even be started. The sets which are activated and

later deactivated will not automatically reach the graceful state since they can contain

ongoing calls and those can not be terminated. In the simulations calls of extreme length

did not occur therefore in most cases inactive sets reached the graceful state.

As it was already explained, most of the results show that the new algorithm is more

e�ective and it meets the criteria that we set as our goals at the beginning. The only

questionable area is overload handling where the Round-Robin algorithm seems more

capable but in fact that is the case only because in the simulations loads while Round-

Robin distribution was applied were very low. In fact most of the time the groups of FUs

did not even reach the other algorithm's lower threshold. So the question remains what

could be the di�erence when the load problem's origin is the fact that the number of

19

requests is too high? If we have all of our available sets around the maximally approved

load level5 than the Round-Robin algorithm would choose target without considering the

availability of the possibilities. However in this case the HSA algorithm has groups with

identical preference numbers. To avoid the problem that appeared in the Round-Robin

case we can add additional weighting to the preference numbers using the free capacity

rate of the targets. With this the chance of being able to receive a call and the chance of

getting a call request will be correlated. This means that in a constant big load situation

the HSA algorithm would still perform better than the Round-Robin.

4.4 Suddenly growing load

Figure 14 presents data for overload situation � many call rejected in both cases

Above we present the results of an arti�cially created situation (FUs can only handle 30

half-calls at the same time), where suddenly growing load drives the system into severe

overload. As Figure 14 shows, the number of rejected calls is higher for the HSA algo-

rithm. This is not suprising though we expected that the overload handling needs further

investigation. The problem here is that while the Round-Robin algorithm behaves like a

system with groups of FUs that have the same preference number (Figure 15), for the

HSA driven system (Figure 16) it takes some time to assume that state6.

5In our setting it was the load level above which the FUs or groups of FUs had to refuse call requests.

This value was set as 95%.
6Call number on the �gures represents only the accepted calls (teal line).

20

Figure 15 presents the simulation result of Round-Robin during overload

The solution could be that when a call is rejected and not all sets are activated or their

preference number is not the same the decision algorithm should intervene to make the

system more susceptible for the load.

Figure 16 presents the simulation result of HSA during overload

Although the call rejection rate was higher for the HSA, it is also visible that in the

overload section the two sytems behave very similarly.

5 Conclusion

The authors would like to emphasize that the newly developed Horizontal Scaling Algo-

rithm (HSA) is planned to be implemented in all Nokia Application Server in the future.

21

5.1 Development history

The idea of Biased Load Balancing was presented at HTE Infokom 2014 (Kecskemét,

Hungary, http://www.hte.hu/web/infokom2014) [13]. A patent was also �led by Nokia

in November 2014 [14]. Than there was a proof-of-concept simulation in June 2015.

5.2 Improvement ideas for the logic

There are a few points where the HSA could be improved, the �rst one is the problem of

changing active statuses and preference numbers back and forth for a longer time period.

This is a performance issue for the possible application since no action needed is more

e�cient than any kind of action being executed. We believe that improvements are pos-

sible by changing the thresholds and the associated logic. The e�ect of this issue however

is lower than the importance of the next ones.

The second problem is that extremely long calls could prevent groups reaching the grace-

fully shut down state. There are some ideas for the solution, where the most likely can-

didate is a two solutions in one good solution type. First of all the virtualization allows

the handling of FUs independently therefore it would be natural to apply the same de-

cision logic for the functional units in a group this combined with being able to transfer

ongoing calls between FUs could also improve e�ciency by helping more units to reach

the graceful state.

The third problem is the overload caused by sudden load growth. The idea for this one

is rather straightforward, there should be a selected watcher that could trigger the re-

evaluation of the preference numbers on the right level (for FUs in the group or for

groups depending on the level of the problem). The watcher could be waiting for call

rejection, or a breach of a threshold.

5.3 Improvement ideas for the simulation

The simulation's main problems are performance concerns which did not receive our fullest

attention since the main goal was to create a working simulation. The remaining tasks

are linked to the investigations concerning the aforementioned problems. like obtaining

even more data from each simulation (like graceful �ag data) and creating simulations for

interesting use-cases. The only big improvement remaining is the realization of the other

call length models, however that should not change the basic behavior of the algorithms.

22

Acknowledgements

The authors would like to thank Gábor Járó, Ph.D. and Dr. Tien Van Do for their help

and useful comments.

The authors also acknowledge employees of Nokia Hungary Ltd.: Attila Hilt, Ph.D., Lás-

zló Jánosi, Gergely Csatári and Gyula Bódog for their kind help and useful comments.

In addition, authors also thank Attila Heged¶s (also from Nokia) for his help with the

compiling of the simulation's source code.

23

References

[1] Sagar Dhakal, Majeed M. Hayat, Jorge E. Pezoa, Cundong Yang, David A. Bader:

"Dynamic Load Balancing in Distributed Systems in the Presence of Delays: A

Regeneration-Theory Approach", IEEE TRANSACTIONS ON PARALLEL AND

DISTRIBUTED SYSTEMS, VOL. 18, NO. 4, April 2007

[2] Parveen Jain, Daya Gupta: "An Algorithm for Dynamic Load Balancing in Distributed

Systems with Multiple Supporting Nodes by Exploiting the Interrupt Service", Inter-

national Journal of Recent Trends in Engineering, Vol 1, No. 1, May 2009

[3] Nico Janssens, Xueli An, Koen Daenen, Claudio Forlivesi: "Dynamic Scaling of Call-

Stateful SIP Services in the Cloud", Lecture Notes in Computer Science Volume 7289,

pp 175-189, 2012

[4] Gergely Csatári, Tímea László: "NSN Mobile Core Network Elements in Cloud, A

proof of concept demo", Proc. Of IEEE International Conference on Communications,

Budapest, Hungary, 9-13 June 2013

[5] ETSI GS NFV 002, Network Functions Virtualisation (NFV), Architectural Frame-

work, V1.1.1, 10. 2013

http://www.etsi.org/deliver/etsi_gs/NFV/001_099/002/01.01.01_60/gs_

NFV002v010101p.pdf

[6] Nokia Solutions and Networks: "Open Telecom Application Server", Product Descrip-

tion, DN09141866, 11. 2013

[7] Nokia Solutions and Networks: "Telco Cloud Operation and Maintenance", System

Description, DN09157808, 2014

[8] 3GPP, TS 23.002, 3rd Generation Partnership Project, Technical Speci�cation Group

Services and System Aspects, Network architecture, Release 12, V12.5.0, 06. 2014

[9] 3GPP, TS 23.218, 3rd Generation Partnership Project, Technical Speci�cation Group

Core Network and Terminals, IP Multimedia (IM) session handling, IM call model,

Stage 2, Release 12, V12.3.0, 09. 2013

24

[10] 3GPP, TS 23.228, 3rd Generation Partnership Project, Technical Speci�cation Group

Services and System Aspects, IP Multimedia Subsystem (IMS), Stage 2, Release 12,

V12.5.0, 06. 2014

[11] Athanasios Papoulis, S. Unnikrishna Pillai: "Probability, Random Variables and

Stochastic Processes", 4th edition, McGraw Hill, 2002

[12] Pedro O.S. Vaz de Melo, Leman Akoglu, Christos Faloutsos, Antonio A.F. Loureiro:

"Surprising Patterns for the Call Duration Distribution of Mobile Phone Users", Ma-

chine Learning and Knowledge Discovery in Databases, Lecture Notes in Computer

Science Volume 6323, pp 354-369, 2010

[13] István Bakos, Gyula Bódog, Attila Hilt, László Jánosi, Gábor Járó: "Resource and

call management optimization of TAS/MSS in Cloud environment (in Hungarian),

Infokom'2014 Conference, Hungary, Oct. 2014

[14] István Bakos, Gyula Bódog, Attila Hilt, László Jánosi, Gábor Járó: "Optimized re-

source management in core network element on Cloud based environment", Patent

PCT/EP2014/075539, Nov. 2014

25

List of Abbreviations

2G 2nd Generation Mobile Network

3G 3rd Generation Mobile Network

3GPP 3rd Generation Partnership Project

AS 3rd Application Server

ATCA Advanced Telecommunication Computing Architecture

ATCF Access Transfer Control Function

BCF Border Control Function

BGW Border Gateway

BSC Base Station Controller, 2G Base Station Controller

BTS Base Transceiver Station, 2G Base Station

CAM Cloud Application Manager

CPU Central Processing Unit

CSCF Call Session Control Function

FU Functional Unit

FCAPS Network management model categorizing:

Fault, Con�guration, Accounting Performance and Security

GPRS General Packet Radio Service

HLR Home Location Register

HSA Horizontal Scaling Algorithm

HSS Home Subscriber Server

HW Hardware

I-CSCF Interrogating�CSCF

IMS IP Multimedia Subsystem

IP Internet Protocol

IP BB IP BackBone, IP network with high bandwidth

LB Load Balancer

LBing Load Balancing

LTE Long Term Evolution, 4th Generation Mobile Network

MGW Media Gateway

MME Mobility Management Entity

MRF Media Resource Function

MSC Mobile Switching Center

MSS MSC Server

26

NB Node-B, 3G Base Station

NE Network Element

OSS Operations Support Systems

PCRF Policy and Charging Rules Function

P-CSCF Proxy�CSCF

PDF Probability Density Function

P-GW Packet Data Network Gateway

PSTN Public Switched Telephone Network

RNC Radio Network Controller, 3G Base Station Controller

SAE-GW System Architecture Evolution Gateway

SAN Storage Area Network

SDN Software�De�ned Networking

S-CSCF Serving�CSCF

SGSN Serving GPRS Support Node

S-GW Signaling Gateway

SIP Session Initiation Protocol

SMS Short Message Service

SR Site Router

SW Software

TAS Telecommunication (earlier Telephony) Application Server

UE User Equipment

VoLTE Voice over LTE

27

Appendix

Figure 17 presents the �owchart of the algorithm for the scaling logic

28

Figure 18 presents the theoretical �owchart of the algorithm for the scaling logic

29

