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Chapter 1

Introduction

Node embedding is the process of mapping nodes of a graph to a vector space such that it
preserves structural and positional information of the nodes. Node embedding has many
real world applications, for example it is used extensively in recommendation systems,
natural language processing, or even for modeling protein-protein interactions.

In our work we focus on the recommendation problem only, specifically the real-time
collaborative filtering. The recommendation task can be formulated as a link prediction
problem in a bipartite graph with node types user and item. In real-time collaborative
filtering task recommendations must be made for users at the time the user interacts with
the application. Capturing changes in user behavior real-time poses a great challenge. Not
only accurate model learning is important, but adapting the model to changes quickly and
fast inference are also important aspects. In production environments the number of items
and users in the system often is in the million or even billion scale.

1.1 Real-time collaborative filtering

Traditional (transductive) collaborative filtering approaches like matrix factorization
[18][3] or latent semantic analysis [16] are widely used in large scale recommendation
systems however, they are not directly applicable in the real-time personalization task. If
enough data is collected these methods can accurately model user behavior in the global
scale - recommendations are generally accurate - but for the individual users it can be-
come less and less accurate as changes in user behavior occur. These approaches require
re-learning the latent representations every once in a while to adapt to behavior shifts, but
because the training process is computationally expensive it can not be done real-time.

Adaptation to continuous change in user behavior is a challenging task. Usually, in ma-
chine learning there is a trade-off between model accuracy and computational cost. This is
no different in real-time recommendation systems. In the real-time setting pre-computing
recommendations is not an option, since we want our model to capture changes in user
behavior (which is observed through interactions). Evaluation of a complex scoring model
is not feasible for each user-item pair in real-time. Thus, in such scenarios the recom-
mendation process is decomposed to two phases, candidate generation and scoring. In the
candidate generation phase a fast algorithm is used to narrow down the set of possibly rel-
evant items to several hundred or thousand. Then a more complex model can be evaluated
on the candidate pool to select the top-k items that are most likely to be relevant for the
user. In this current work we only discuss research to improve the candidate generation
phase.
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There are two main challenges in the candidate generation process. Firstly, it is necessary
to have a fast model that can retrieve relevant items real-time. Secondly, the selected
items must maximize recall. No matter how accurate the scoring model is, a relevant item
that is not included in the candidate pool will not appear in the recommendation (in the
scoring phase only items from the candidate pool are considered).

1.1.1 Fast candidate generation

Modeling user-item interactions by the dot product or cosine-similarity of their latent rep-
resentations is a proven method in collaborative filtering [3]. Fast approximate and exact
algorithms exist for finding vectors that maximize dot product (or cosine similarity) for a
given query vector [17]. These algorithms can be easily integrated with node representa-
tion learning techniques that model node proximity as dot product of their representations
for the candidate generation task.

1.1.2 Own contribution

In our work we aim to build a real-time collaborative filtering algorithm on implicit feed-
back data that can scale to large user and item bases. We employ transductive node
representation learning techniques to obtain meaningful initial representations and use
them to train an inductive representation learning model [11] that we can continuously
use to update representations as new observations are streaming in. Our algorithm takes
the latest observations into consideration when generating recommendations, the items
shown to users reflect their latest actions as well as their earlier behavior.

2



Chapter 2

Theoretical background

2.1 Definitions and notation

To introduce the concepts and algorithms we first declare some necessary definitions and
notations.

Let G = (Vuser ∪ Vitem, E) be a simple undirected bipartite graph with two node types
user and item, also referred as user-item interaction graph. If an interaction is observed
between user u and item i, then (u, i) ∈ E.

N (z) is the set of neighboring nodes of node z in graph G.

Adjacency matrix AG is a binary square matrix that represents the connections of the
graph G:

AG[u, i] =
{

1, if(u, i) ∈ E

0, otherwise
(2.1)

Usually we omit G from the notation as the graph we are referring is known from the
context, we simply write A.

As in the recommendation task the graph is bipartite, the adjacency matrix can be con-
structed as a block matrix:

A =
[

0 R
RT 0

]
(2.2)

where R is a |Vusers| × |Vitems| binary matrix called interaction matrix in the literature.
Ru,i = 1 if user u has interacted with item i or 0 otherwise.

Node degree matrix D is a diagonal square matrix with node degrees in the diagonal:

D[i, j] =
{
|N (i)|, ifi = j

0, otherwise
(2.3)

Graph Laplacian L matrix is defined as D − A. Usually a normalized version of the
Laplacian is used since it has nicer mathematical properties [14]: L = D− 1

2 (D −A) D− 1
2

Node representation matrix. The node representation matrix X ∈ R|V |×k holds k
dimensional representations for each node in the graph. For simplicity we refer to the
representation of node z as xz = X[z]T for convenience.
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2.2 Node representation learning

Node representation learning or node embedding is a mapping from nodes in a graph to
dense vector representations (embeddings) such that structural and positional information
is encoded in the embeddings. Node embedding can be used in downstream machine
learning tasks in which relational information is important in the modeling process.

There are three main node representation learning approaches: factorization based, ran-
dom walk based and deep learning based approaches [29]. Furthermore, algorithms can be
either inductive or transductive. With transductive algorithms one can obtain embeddings
for a static graph however, if the graph is dynamic - nodes and edges are inserted by time
- it is hard to adapt the embeddings to capture these changes. Usually a training process
must be performed to obtain the updated embeddings. Inductive approaches on the other
hand can easily adapt to these changes.

In our work we experimented with the following node representation learning algorithms:

Table 2.1: Node representation learning algorithms covered in this work.

Algorithm Approach Inductive
GraphFactorization factorization ✗

RandNE factorization ✗

Node2Vec random walk ✗

GraphSAGE deep learning ✓

2.2.1 Factorization based approaches

Factorization based node representation learning algorithms either factorize a polynomial
function of the graph Laplacian or directly the adjacency matrix [4].

Graph Factorization

Simple Graph Factorization [2] (GF) factorizes the adjacency matrix - or equivalently GF
models user-item interactions as dot-product of their latent representations. The objective
function is as follows:

min
X

1
2
∑

(u,v)∈E

(Au,v − ⟨Xu, Xv⟩)2 + λ

2
∑

i

||Xi||2 (2.4)

where λ is a regularization constant. The rows of X ∈ R|V |×k are dense vector repre-
sentations of nodes and each column corresponds to one latent feature. Here k is the
dimensionality of our latent representations. Non-zero entries of A are approximated with

XXT , where X can be constructed as X =
[
U
I

]
, U holds representations of nodes with

type user and I holds item type node representations (this composition requires us to sort
rows of A so that each n1 ∈ Vuser proceeds n2 ∈ Vitem). Using this notation the objective
function (Equation 2.4) can be rewritten as:

min
U,I

1
2
∑

(u,i)∈E

(Ru,i − ⟨Ii, Uu⟩)2 + λ

2

(∑
x

||Ux||2 +
∑

y

||Iy||2
)

(2.5)
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If we fix U , then the objective function is a convex function of I and vice versa. This
allows us to find the optimum analytically by setting the gradient to 0. We can compute
optimal U with fixed I, then fix U and find optimal I, repeat until convergence. This
algorithm is called Alternating Least Squares [8] (ALS):

Algorithm 1 Alternating Least Squares
1: Initialize U with small random values
2: repeat
3: for i ∈ Vitem do ▷ Fix U and solve for I

4: Ii ←
( ∑

u∈N (i)
UuUT

u + λI
)−1 ∑

u∈N (i)
Ru,iUu

5: end for
6: for u ∈ Vuser do ▷ Fix I and solve for U

7: Uu ←
( ∑

i∈N (u)
IiI

T
i + λI

)−1 ∑
i∈N (u)

Ru,iIi

8: end for
9: until convergence

where I is the identity matrix. This algorithm can be easily parallelized and is often used
due to its fast convergence and numerical stability [28].

Iterative Random Projection Network Embedding

The problem with graph factorization is that it only considers first order node proximities.
Previous works [7][27] have shown that high-order proximities are essential to be preserved
in network embedding, which can be formulated as a polynomial function of the adjacency
matrix or the graph Laplacian:

S = α0I + α1A + α2A2 + ... + αqAq (2.6)

where S is the high-order proximity matrix and α0, α1, ..., αq are pre-defined weights.
In [30] the authors propose a method which learns node embeddings by optimizing the
following objective function:

min
X
||SST −XXT ||2 (2.7)

where X ∈ R|V |×k holds representations for each node in the graph. To minimize the
objective function the authors use Gaussian random projection:

X = SP (2.8)

where P ∈ R|V |×k is a Gaussian random matrix (each element of P follows an i.i.d normal
distribution). It can be proven that Gaussian random projection can efficiently minimize
the objective function in Equation 2.7 [26]. The problem with factorizing a high-order
proximity matrix is that it is no longer sparse, making it impossible to store in memory
for larger graphs. The authors suggest an iterative approach to avoid explicitly calculating
higher powers of the adjacency matrix. X can be decomposed as:

X = α0X0 + α1X1 + α2X2 + ... + αqXq (2.9)
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where Xi = AiP . This way each Xi can be calculated iteratively, using only Xi−1 (which
is |V | × k) and A (which is sparse):

Xi = AXi−1 (2.10)

Algorithm 2 Iterative Random Projection Network Embedding [30]

1: Generate P ∈ R|V |×k; Pi,j ∼ N (0, 1
k )

2: Perform Gram Schmidt orthogonalization on P to obtain the orthogonal projection
matrix X0

3: for i in 1..q do
Xi = AXi−1

4: end for
5: X = α0X0 + α1X1 + α2X2 + ... + αqXq

Orthogonality of the projection matrix is necessary to more accurately approximate opti-
mal solutions for the objective function [30].

2.2.2 Random walk based approaches

Random walk based approaches covered in this work use noise contrastive estimation [12]
to learn high-order node representations.

DeepWalk

DeepWalk [19] generalizes language modeling and unsupervised feature learning from se-
quences of words to graphs. It does so by sampling random walks from the graph and
treating them as sentences where the nodes correspond to words. It applies the Skip-
Gram with Negative Sampling (SGNS) algorithm on random walk samples to learn node
embeddings. SGNS is a language model that maximizes the co-occurrence probability
p (w1, w2|X) = σ

(
xT

w1xw2

)
among the words that appear within a specified context win-

dow in a sentence:

max
X

E
(w,c)∼ξ

log(σ(xT
wxc)) + E

(w,c)∼ξ′
log(σ(−xT

wxc)) (2.11)

where w is a word and c is its context, ξ is the training distribution, ξ′ is the noise
distribution. DeepWalk implicitly factorizes the following matrix [20]:

log
(

vol(G)
(

1
T

T∑
k=1

(
D−1A

)k
)

D−1
)
− log(β) (2.12)

where vol(G) =
∑

i Di is the volume of graph G, D−1A is the row normalized adjacency
matrix, T is the context window size and β is the number of negative samples used in NCE.
Although directly factorizing the proximity matrix can result in a more accurate repre-
sentation [5], for large graphs the low memory footprint of random walk based methods is
well-founded [29].
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Algorithm 3 DeepWalk [19]
1: Initialize X with random values
2: for i in 0..γ do
3: O = Shuffle(V )
4: for v ∈ O do
5: Wvi = RandomWalk(G, vi, t)
6: for vj ∈ Wvi do
7: for uk ∈ Wvi [j − T : j + T ] do
8: J (X) = − log σ

(
xT

vj
xuk

)
9: X ← X − α∇XJ

10: end for
11: end for
12: end for
13: end for

where γ is te number of walks per node, t is the walk length and RandomWalk(G, v, t)
samples a random walk (sequence of nodes) in G starting from node v and with length
t. The loss function can be extended with negative sampling in line 8 as J (X) =
− log σ

(
xT

vj
xuk

)
− log σ

(
−xT

n1xn2

)
where n1 and n2 are negative samples.

Node2Vec

Node2Vec [9] uses a similar approach as DeepWalk, it differs only in the sampling strategy.
Node2Vec samples second order (also referred as biased) random walks parameterized by
p and q parameters. The unnormalized transition probabilities are defined as:

αp,q (t, x) =


1
p , if dtx = 0
1, if dtx = 1
1
q , if dtx = 2

(2.13)

where dtx denotes the length of the shortest path between nodes t and x.

Figure 2.1: The walk just transitioned from t to v and is now evaluating its next step
out of node v. Edge labels indicate search biases α.

Figure and caption taken from [9]

With the selection of p (also referred as return parameter) we can control the likelihood of
immediately returning to a previous node in the walk. With high p values we can achieve
exploration and avoid 2-hop redundancy, while lower values encourage more localized
walks. The parameter q (also referred as in-out parameter) allows us to differentiate
between "inward" and "outward" nodes.
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The Node2Vec algorithm is mostly similar to Algorithm 3 with the only difference that it
samples biased random walks instead of first order random walks at step 5 (RandomWalk).

2.2.3 Deep learning based approach

GraphSAGE

GraphSAGE [13] is an inductive node representation learning algorithm that uses graph
neural networks to learn a mapping from nodes in the graph to the embedding space.
To decouple computational complexity from node degree, GraphSAGE uses stochastic
neighbor sampling. This enables GraphSAGE to be used on large graphs with high node
degree. The GraphSAGE layer is defined as:

hk
v ← σ

( 1
Q

W
[
hk−1

v ∥mk
N (v)

])
(2.14)

mk
N (v) =

∑
u∼N (v)

hk−1
u (2.15)

where mk
N (v) is the message vector [15], ∥ is the concatenation operator, σ is a nonlinear

activation function, W is a learnable parameter of the layer and Q is the number of
sampled neighbors. The initial representation h0

v can be any feature vector that describes
node v.

The algorithm optimizes a similar objective function as DeepWalk in Equation 2.11 but
instead of optimizing with regard to x we optimize for θ, the model parameters:

max
θ

1
|E|

Σ
(p1,p2)∈E

log σ
(
fT

θ (vp1)fθ(vp2)
)

+ E
(n1,n2)∼Ec

log σ
(
−fT

θ (vn1)fθ(vn2)
)

(2.16)

where E is the set of edges in G, Ec is a distribution over the complement of E in G. The
expectation is approximated using sampling. The authors of [13] also suggest to normalize
model outputs to unit length.

Figure 2.2: Illustration of the sampling and aggregation process used by GraphSAGE.
Figure taken from [13]
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Chapter 3

Own approach to real-time
collaborative filtering

To build a scalable model for real-time collaborative filtering we use a two-stage recom-
mendation framework [31]. The first stage is called candidate generation, in which a fast
algorithm is used to construct a smaller set of items (called candidate pool). The size of
the candidate pool is in the range of several hundreds. The second stage applies a more
complex model to assign scores for each item given a user - model the probability that the
user would interact with the given item - and select the most relevant ones from the pool.
Quality of the candidate pool predetermines the performance of the recommendations;
no matter how accurate the scoring model is, if relevant items are not included in the
candidate pool, they can not make it to the final recommendation (only items from the
candidate pool can be selected as the final recommendation). In this current work we aim
to improve the candidate generation stage.

The input for our approach is a user-item interaction graph G = (V, E), and Xbase repre-
sentations for nodes in G. In this work we experimented with representations mentioned
in Section 2.2.

Our approach first constructs a representation ru for user u and uses that representation to
build the candidate pool - the top-K closest items are selected in terms of cosine similarity
(item representations are drawn from Xbase).

In this section we propose multiple ways how one can obtain user representations starting
from simple, non parametric methods to using graph neural networks.

Lookup

The simplest way of constructing ru is to just look it up from the node representation
matrix: ru = Xbase[u]. The problem with this is that ru does not contain any information
regarding new edges in the graph, adaptation to changes in user behaviour is not possible.

Neighbor aggregation

To build user representation ru we can average its neighbors. In this representation we
can include all the observed edges (even the ones that were not present when Xbase was
constructed).

ru = 1
|N (u)| Σ

i∈N (u)
xbase

i (3.1)
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Here N contains all the latest observed edges. Note that ru does not depend on the
original representation of the user xbase

u , which means that we can construct candidate
pools for new users that were not present in the graph when Xbase was learned.

Neighbor aggregation with importance scores

The importance method was inspired by the attention mechanism [24]. We use the orig-
inal user representation xbase

u to compute importance scores for each item the user has
interacted with.

ru = Σ
i∈N (u)

α(u, i)xbase
i (3.2)

α(u, i) = exT
u xi

Σ
j∈N (u)

exT
u xj

(3.3)

This way we can reduce the effect of interactions that are not typical for the user. For
example let’s say we have a user u that mostly consumes action movies. Then his original
representation xu will be similar to the movies he watches. Once he watches a romantic
movie however, since the original representation xu is closer to action movie represen-
tations, we will give more weight in the aggregation to the action movies - one highly
unlikely, dissimilar neighbor can not alter the representation.

The drawback of this method that it only can be used on users that have representations
in Xbase.

Graph Neural Network

We can use a graph neural network to construct ru based on representations of surrounding
nodes in the graph:

ru = fθ(G, Xbase)u (3.4)

where fθ is a graph neural network with parameters θ and G is the user-item interac-
tion graph. Using transductive embeddings as input in inductive representation learning
algorithms can improve link prediction performance according to [11].

Before using this approach, we have to learn the network parameters first. We train the
network by maximizing Equation 2.16 on graph G using Xbase representations as input to
the network. It is important that we must use the representations learned by the network
instead of Xbase for similarity search, since the representation space is different to the
original representation space. We construct node representations Xind = fθ(G, Xbase)
and use them in to find top-K similar items to ru.

Continous representation update

Since the network is not computationally expensive to evaluate (especially if it is shallow)
we can use it to update representations in Xind to reflect new observations. This can be
done efficiently in batch updates, first a given number of interactions Enew is collected
and they are included in the graph: G ← (V, E ∪ Enew). We refer this update strategy
as continuous representation update. Our intuition is that we this strategy can improve
performance, since not only the user representation will contain information of the latest
edges but all the other nodes will have representations that encode new behavior.
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Chapter 4

Empirical results

4.1 Details

In this section we present the architecture of the used SAGE model and document param-
eter values that we used to learn embeddings.

All embedding spaces were 64 dimensional. For the Node2Vec embeddings we used a
context window size of 10, we set p = q = 1 and sampled 10 walks per node. For RandNE
we used αi = 1

7 and the order of the polynomial was 7.

The SAGE network consisted of 3 layers - that means information from 3-hop can be
included in the constructed representations. All layers transform 64 dimensional inputs to
64 dimensional outputs and each layer contains a bias parameter (b) aside W , the weight
matrix:

hk
v ← σ

( 1
Q

W
[
hk−1

v ∥mk
N (v)

]
+ b

)
(4.1)

The network consists of 33088 learnable parameters at total - which considered the scale
of the problem is not large.

In this section we compare all the approaches from Section 2.2 to construct user repre-
sentations ru. We denote the lookup method (ru = Xbase[u]) with Lookup, the method
described in Equation 3.1 is denoted with Neighbor, the one in Equation 3.2 with Impor-
tance and lastly, the one using a GraphSAGE network is denoted with SAGE. Additionally,
we denote the SAGE variant that uses continuous representation updates as SAGE+.

4.2 Datasets

We evaluated our approach on two different e-commerce recommendation datasets:

Table 4.1: E-commerce datasets used for evaluation.

Dataset Users Items Edges
H&M [1] 1.37 · 106 0.11 · 106 3.18 · 107

RetailRocket [21] 1.41 · 106 0.47 · 106 2.76 · 106
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We filtered the graphs to exclude nodes with low degree, and due to limited hardware
resources. Nodes with interactions less than 30 were excluded from the H&M graph and
this limit was 5 for the RetailRocket data.

Next the edges in the graphs were split into 3 different sets A, B and C. Each edge in A
proceeds all edge in B (in time) and each edge in B was observed before all edge in C as
illustrated in Figure 4.1.

Figure 4.1: Illustration of the decomposition of edges in the graph for training, recom-
mendation and evaluation.

The graph GA = (V, A) was used for learning transductive representations. The graph
GB = (V, A ∪ B) was used for generating user representations and constructing candi-
date pools (in the neighborhood aggregation and other approaches that rely on neighbor
sampling). Finally, a graph GC = (V, C) was used to evaluate the performance of each
method.

Table 4.2: Sub-graphs of original datasets used in evaluation.

Dataset Graph Users Items Edges

H&M
GA 306490 55631 1.99 · 107

GB 306490 55631 2.17 · 106

GC 163083 28760 1.11 · 106

RetailRocket
GA 60648 35601 703367
GB 60648 35601 742443
GC 9658 16083 39076

4.3 Quality of candidate pool

As already mentioned in Section 1.1 when constructing a candidate pool Recall needs
to be maximized (the ratio of retrieved relevant elements to all relevant elements). We
measured Recall on both datasets using different node representation learning methods
from Section 2.2 to construct Xbase. We also perform paired Student’s t-test [23] to
support our statements.

Regardless the method, Node2Vec seems to be the best representation for candidate pool
generation out of the three considered approach. We performed t-test with p ≤ 0.01 on
the RetailRocket dataset, Node2Vec significantly outperformed the other two represen-
tations learned with other embedding algorithms in all scenario. The reason for this is
that Node2Vec considers high order node proximities while GF only captures first order
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Table 4.3: Recall@500 values on the RetailRocket dataset with different node representa-
tions. The best results per representation are highlighted in boldface. Superscripts denote
significant differences in paired Student’s t-test with p ≤ 0.05.

# Model RandNE GF Node2Vec
a Importance 0.326bc 0.324bc 0.415de

b Lookup 0.256 0.287 0.410de

c Neighbor 0.318b 0.296 0.415de

d SAGE 0.331bc 0.315bc 0.382
e SAGE+ 0.345abcd 0.335bcd 0.391d

Table 4.4: Recall@50 values on the H&M dataset with different node representations.
The best results per representation are highlighted in boldface. Superscripts denote sig-
nificant differences in paired Student’s t-test with p ≤ 0.05.

# Model RandNE GF Node2Vec
a Importance 0.037bde 0.018 0.100bde

b Lookup 0.001 0.017 0.011
c Neighbor 0.049abde 0.020abd 0.099bde

d SAGE 0.013be 0.018 0.020b

e SAGE+ 0.012b 0.021abcd 0.023bd

connections. RandNE also works with higher order polynomial of the Laplacian but it
sacrifices the optimality of the solution for scalability by using random projections [6].

Using continuous representation update (SAGE+) results in significantly better perfor-
mance than using the initial embeddings Xind created with the inductive model (SAGE).
This supports our intuition in Section 3. For "weaker" embeddings (GF and RandNE)
on the smaller dataset the SAGE+ model (with updated embeddings) significantly out-
performs other non-parametric methods in terms of Recall. Even though SAGE (and
SAGE+) perform better with Node2Vec embeddings than with any other embedding, the
performance of the parametric method is significantly worse than other non-parametric
methods. One explanation for this phenomenon can be the strong regularization we em-
ploy in the network. The SAGE layer can not distinguish between representations of
different neighbors (Equation 2.14). It uses summation as the aggregation function, all
neighbors are similarly important - this way we lose the ability to distinguish between
more and less important neighbors. One solution to this problem could be to use a layer
that employs the attention mechanism to generate importance weights for neighbors, for
example the Graph Attention Network layer [25] or UniMP [22], a Transformer layer for
GNNs. This is a promising future direction in our research.

For RandNE and GF embeddings using importance scores (Importance method) improved
the performance compared to the simple averaging approach (Neighbor) on the smaller
dataset while on the bigger dataset the completely different behavior was observed. On
the Node2Vec embeddings importance and Neighbor methods performed similarly, there
seems to be no advantage of using one over the other.
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Average cosine similarity on the RetailRocket dataset

We measured the average cosine similarity per user to neighboring nodes (relevant items)
and to randomly selected nodes (not relevant items) and plotted the distribution of these
average similarity values. Average cosine similarity to its neighbors per user for user u:

1
|N (u)| Σ

i∈N (u)
cos(ru, xi) (4.2)

where cos(a, b) = aT b
|a||b| is the cosine similarity. Average cosine similarity per user to random

items:
E

i∼Vitem\N (u)
cos(ru, xi) (4.3)

where Vitem \N (u) is a distribution over item type nodes in the graph with the neighbors
of u excluded. We approximate the expectation with sampling.

On the RetailRocket dataset we have experienced that the cosine similarity of ru to repre-
sentations of N (u) are significantly higher than the similarity to randomly selected nodes
for some users. The distribution of similarities can be seen on Figure 4.2 for the Importance
method on the RetailRocket dataset with Node2Vec embeddings. Other non-parametric
methods also produced quite similar distributions.

We have measured even higher seperation using the SAGE embeddings, illustrated on
Figure 4.3.

Figure 4.2: Average cosine similarity of ru to representations of neighboring nodes (blue)
and randomly selected nodes (orange) on the RetailRocket dataset using Importance
method with Node2Vec embeddings.

On both Figure 4.2 and Figure 4.3 we can observe that the overlap of neighboring and
randomly selected nodes is quite small. This means users that lie in the higher average
neighbor cosine similarity region are more likely to have their actual neighbors selected
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Figure 4.3: Average cosine similarity of ru to representations of neighboring nodes (blue)
and randomly selected nodes (orange) on the RetailRocket dataset using SAGE method
with Node2Vec embeddings.

in the candidate pool - similarity to neighboring nodes is significantly higher than to
randomly selected nodes, the top-k selected items will be neighbors with high probability.

Explaining peaks on Figure 4.2 and 4.3

Peaks at 1.0 on Figure 4.2 and Figure 4.3 are users that have either only one or very few
interaction in GC and some of those interactions are also present in GB - if user u has one
neighbor n in both GC and GB then its representation ru will be exactly the representation
of that specific neighbor resulting in 1.0 cosine similarity on GC (using Equation 3.2):

ru = Σ
i∈N (u)

α(u, i)xbase
i (4.4)

Since u has one neighbor n:
N (u) = {n} (4.5)

Softmax for one item is 1:

α(u, n) = exT
u xn

exT
u xn

= 1 (4.6)

ru = 1xbase
n = xbase

n (4.7)

The cosine similarity of a vector to itself is 1:

cos(ru, xbase
n ) = cos(xbase

n , xbase
n ) = 1 (4.8)
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Figure 4.4: Average cosine similarity of ru to representations of neighboring nodes (blue)
and randomly selected nodes (orange) on the H&M dataset using Importance method with
Node2Vec embeddings.

Average cosine similarity on the H&M dataset

On Figure 4.4 the separation observed on the smaller dataset is not present, the overlap
between similarity to random items and neighbors is much higher. Our intuition is that
the dimensionality of the embeddings (64) is not enough for the larger problem, 3 million
nodes can not be mapped in 64 dimensions such that all similar nodes are close in this
space (in terms of cosine similarity) and dissimilar ones are placed farther apart. Finding
the appropriate value for embedding dimensions is an open question, we have to balance
between information loss and efficiency [10].
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Chapter 5

Conclusion

In our work we have proposed parametric and non-parametric approaches for construct-
ing user representations efficiently to generate candidate pools in real-time collaborative
filtering. We have compared these methods on two datasets, where we measured Recall
to evaluate the quality of the candidate pool and cosine similarity on neighboring vs ran-
domly selected items to verify if the learned representations are good for distinguishing
relevant and not relevant items.

We have shown that incorporating new interactions in the representations is necessary to
improve recommendation quality and adapt to changes in user behavior.

Our proposed graph neural network based approach can achieve superior performance on
lower quality embeddings than other, non-parametric methods however, on high quality
representations non-parametric methods seem to perform better. We used statistical tests
to support our statements.

We recognized the weakness of the GraphSAGE graph neural network layer, that it does
not differentiate important and not important neighbors. We plan to do research on layers
that assign importance scores to neighbors in the aggregation phase like UniMP and Graph
Attention Networks.

We have came to a conclusion that the dimensionality of representations was not sufficient
on the larger dataset. In the future we will continue research using higher dimensional
embeddings.
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