
Budapest University of Technology and Economics
Faculty of Electrical Engineering and Informatics

Department of Telecommunications and Media Informatics

Ákos Jakub

APPLICATION OF MULTI-AGENT DEEP
REINFORCEMENT LEARNING TO

MICROSERVICE RESOURCE MANAGEMENT

Scientific Students’ Association Report 2022

Consultants:

Dr. Balázs Sonkoly

Dr. Gábor Szűcs

Balázs Fodor



Contents

1. Introduction 4

2. Reinforcement learning 7
2.1. Basics 7

2.1.1. Markov property 7
2.1.2. V function 8
2.1.3. Q value 8
2.1.4. Bellman equation 9
2.1.5. Bellman equation of optimality 10

2.2. Q learning 10
2.3. Policy Gradient Methods 11
2.4. Actor critic methods 12
2.5. Multiagent systems 14

3. Review of possible solutions 16
3.1. Related work 16
3.2. My approach 20

4. Modeling the microservice execution environment 21
4.1. The environment 21

4.1.1. Modeling details 21
4.1.2. Implementation 24

4.2. Training 25

5. Proposed RL models 28
5.1. MADDPG 28
5.2. SEMADDPG 31
5.3. Horizontal Pod Autoscaling as a baseline algorithm 33

6. Evaluation 35

7. Summary 39

8. Bibliography 40

2



Abstract

Microservice applications are software systems whose components exist separately and
communicate with each other through well-defined interfaces. One of the biggest challenges
when running software following a microservice architecture in an environment is the scaling
of the application components, i.e. the dynamic change of resources depending on the
incoming traffic. On the one hand, we don't want to assign too many resources to the
application, because in a cloud environment you have to pay for the resource used, and on the
other hand, we do not want low resource utilization, because this leads to the deterioration of
the application's performance, which can cause the loss of users. A big challenge is how to
coordinate the management of microservices, where the components also affect each other,
but the resources are specified per component.

In my thesis, I offer a potential solution to this problem with multi-agent deep reinforcement
learning-based algorithms, which can be used to cost-effectively manage the resource
demand of large-scale microservice applications in real time. To solve the task, I use the
actor-critic, off-policy, model-free artificial intelligence system developed by Open AI, the
Multiagent Deep Deterministic Policy Gradient (MADDPG) algorithm. One of the central
elements of the MADDPG is that the model determines the quality of the actors' decisions
taking into account the current state of the entire system, which requires a complex structure.
As a result, depending on the field of application, even in the case of 10-12 agents, we run
into serious scaling limitations, which makes it impossible to effectively train large-scale
microservice applications - sometimes consisting of a few dozens of microservices. In order
to eliminate this problem, in my thesis I also present an improved algorithm in the form of the
State Encoded Multi Agent Deep Deterministic Policy Gradient (SEMADDPG) algorithm,
which, compared to its predecessor, is supplemented with a new architectural element in the
form of an autoencoder. The new structure allows critics to have a more compact and smaller
representation of their inputs, thereby ensuring that the model learns efficiently even with a
large number of microservices. The task of the agents is to scale cooperatively in a simulated
environment - taking into account the load from the microservices directly connected to them and
managed by other agents - so that all services can function without problems, with minimal resource
use. When evaluating the performance of the models, I take into account the learning time of the
models, their resource management, and their robustness, for which I use the Kubernetes Horizontal
Pod Autoscaling procedure as a benchmark. Both reinforcement learning algorithms manage to
outperform the horizontal pod autoscaling, while the SEMADDPG approach could provide a faster
converging multiagent system compared to simple MADDPG.

3



1. Introduction
Software applications were traditionally built as monolithic pieces of software, and adding

new features requires reconfiguring and updating everything from processes and

communications to security within the application. Traditional monolithic applications have

long life cycles, are updated infrequently and the changes in the code usually affect the entire

application. This costly and cumbersome process delays advancements and updates in

enterprise application development. The microservice cluster architecture was designed to

solve this problem. This design was built in order to create distributed applications which

consist of smaller independent components that communicate with each other through

well-defined interfaces. Each function of the application operates as an independent service.

This architecture allows each service to scale or update without disrupting other services in

the application. With the help of microservices, we can build a massively scalable and

distributed system, which avoids the bottlenecks of a central database and improves business

capabilities, such as enabling continuous delivery/deployment applications and modernizing

the technology stack.

Microservice architecture has the following main attributes:

• Application is broken into modular, loosely coupled components

• Application can be distributed across clouds and data centers

• Adding new features only requires those individual microservices to be updated

• Network services must be software-defined and run as a fabric for each microservice

to connect to

Despite their robustness there are various challenges when it comes to implementing and

maintaining microservice systems. Drifting away from the monolithic perspective the

problems of architecture planning arise in various forms, such as the management of a

complex system and their mostly codependent microservices. Application performance

monitoring tools that collect various measures are used to collect performance-relevant

runtime data of the entire system, starting from low-level measures such as CPU and memory

usage, virtualization layers and middlewares. Most of these tools collect historical data from

a microservice and try to model the normal behavior. The goal of these models are to detect

anomalies, such as exceptionally high response times or resource usage. Performance

4



relevant data in microservice architectures can be collected from the microservice inside a

container, from the container, and from interrelated microservices. However, this poses

several additional challenges.

- Problem of autoscaling: In order for most model to up- or downscale a microservice,

fist have to collect data from the environment

- Problem of normal behavior: It is often hard to determine what behavior of the

microservice can be considered normal. Most of these applications face frequent

changes, since there are various updates, scaling events, virtualizations and code

changes in the lifecycle of a microservice.

- Classic auto scaling solutions lack robustness: Existing techniques for performance

anomaly detection may therefore raise many false alarms. Most of the classical

algorithms struggle to deal with sudden resource spikes.

- Single focus only: Many autoscalers can scale only one service and therefore do not

take into account the dependencies between services. This can lead to a locally

optimal, but globally suboptimal scaling solution for the whole microservice.

Despite these problems, there are applications for design-time performance modeling

emerging in new areas, such as reliability and resilience engineering and the design of

runtime adaptation strategies. Some new applications require changes to the scaling

algorithms themselves. This means that new ways of representing the data are needed to

capture the recent advances in technology. For example, in settings where there are lots of

machines that are constantly being added or removed (like in Amazon Lambda), traditional

models based on the notion of distinct (virtual) machines are inadequate. New modeling

strategies must be found to accurately represent such structures and the behavior of the

automated infrastructure components. Another question arises from the size of the models, as

large microservice installations may consist of tens of thousands of service instances. We

expect that it will be necessary to reduce the level of detail to be able to cope with such

models in a timely fashion. To tackle these problems a variety of machine learning

approaches can be useful to experiment on. During my thesis I researched various

reinforcement learning based scaling solutions. I have developed a C++ based framework that

enables us to model simple and complex microservice environments down to request

handling mechanics, and also implemented two multiagent deep reinforcement learning

algorithms to manage microservice resources, namely the MADDPG algorithm originally

developed by OpenAI and a slightly extended variation of the algorithm, the SEMADDPG.

5



In my thesis, after a review of reinforcement learning and multiagent solutions in Section 2, I

analyze several such machine learning approaches for resource management and study their

strengths and weaknesses in Section 3. I present the environment I have developed, its

properties and constraints in Section 4. In Section 5, I detail the implemented models, as well

as their advantages and disadvantages. In Section 5.2, I present and analyze the SEMADDPG

algorithm, which is my structurally expanded version of the previous multi-agent deep

learning approach. Finally in Section 6 I compare the approaches above.

6



2. Reinforcement learning

2.1. Basics

Situated in between supervised learning and unsupervised learning, the paradigm of

reinforcement learning deals with learning in sequential decision making problems in which

there is limited feedback. Reinforcement learning differs from supervised learning in not

needing labeled input/output pairs to be presented, and in not needing sub-optimal actions to

be explicitly corrected. For an RL algorithm the focus is on finding a balance between

exploration (of uncharted territory) and exploitation (of current knowledge). Reinforcement

learning is the closest thing to real life learning in terms of continuous exploration and

exploitation of an unknown environment, since most RL algorithms do not assume

knowledge of an exact mathematical model of the Markov Decision Process (MDP) relating

to the environment. Also there are problems, where the target MDPs are so complex that

exact methods with basic dynamic programming become infeasible.

The Markov Decision Process provides a mathematical framework for solving the RL

problem, since almost all RL problems can be modeled as an MDP. All states in an MDP that

come in between an initial-state and a terminal-state. The agent’s goal is to maximize the total

reward it receives during an episode which starts at the initial state and ends at the terminal

state. There are two main concepts relating to Markov decision processes.

2.1.1. Markov property

The Markov process consists of a sequence of states that strictly obey the Markov property,

which states that the future depends only on the present and not on the past. When an RL

problem satisfies the Markov property, i.e., the future depends only on the current state and

an action, but not on the past, it is formulated as a Markov Decision Process (MDP).

The goal of a reinforcement learning model (from now on: agent) is to find a sequence of

actions that will maximize the sum of future rewards. We have to put emphasis on the fact

that the further the future reward is for the agent, the less it has to take into account, since it

seems an unsure outcome from the current state. For this reason we use discounting during an

episode or the entire life of the agent, depending on the task.

7



Equation 2.1: Sum of all future rewards denoted as G

In Equation 2.1 represents the reward at time t+1 while represents the discounted𝑟
𝑡+1

γ 𝑟
𝑡+2

reward at the next timestep. Even though the sum of the future rewards can be infinite (if we

are talking about a continuous problem) according to the equation above, if γ<1, then G will

have a finite value. If γ=0, the agent is only interested in the immediate reward and discards

the long-term return. Conversely, if γ=1, the agent will consider all future rewards equal to

the immediate reward. In short, the Agent must be able to exploit this information that we

have been able to express with this return G to make their decisions. We refer to the above

expression as a discounted return.

2.1.2. V function

Generally speaking, the V-function answers the question of “What reward can the agent

expect from here?”. More formally, the V-function, also referred to as the state-value

function, measures the goodness of each state. In other words, how good or bad it is to be in a

particular state according to the return G when following a policy 𝜋. That is, we can define

the V-function as an expected total reward (discounted or undiscounted — depending on the

value of gamma) that is obtainable from the state. In a formal way, the value of is:𝑉
π
(𝑠)

Equation 2.2: Value function of a policy given a state expressed with discounted rewards

Equation 2.2 describes the expected value of the total return G, at time step t starting from the

state s at time t and then following policy 𝜋. It is used expectation 𝔼[.] in this definition

because the environment transition function might act in a stochastic way.

2.1.3. Q value

Q-function or simply Q defines a value for each state-action pair, which is called the

action-value function. It represents the value of taking action a in state s under a policy π,

8



denoted by , as the expected Return G starting from s, taking the action 𝑎, and𝑄
π
(𝑠,  𝑎)

thereafter following policy π

Equation 2.3: Q-value function of a policy given a state, and an action expressed with discounted rewards

In Equation 2.3 expected value 𝔼[.] is used again because the environment transition function

might act in a stochastic way. There is also a strict relationship between the Q value and the

V value. We denote with π(𝑎|𝑠) the probability that a policy, π, selects an action, 𝑎, given a

current state, 𝑠. Note that the sum of probabilities of all outbound actions from s is equal to 1

as it can be seen in Equation 3.4:

Equation 2.4: Sum of action probabilities over a state

We can assert that the state-value function is equivalent to the sum of the action-value

functions of all outgoing (from s) actions a, multiplied by the policy probability of selecting

each action:

Equation 2.5: Value function expressed with Q value

What Equation 2.5 essentially represents is that we can write the value function of a policy in

state s if we weight all possible actions in state s (according to the policy) with the Q values

of that policy in state s with respect to the action.

2.1.4. Bellman equation

Almost all Reinforcement Learning algorithms executed by the Agents involve estimating

value functions of states or of state-action pairs. These are the so-called Value-based Agents.

The Bellman equation simplifies the computation of the value function, such that rather than

summing over multiple time steps, we can find the optimal solution of a complex problem by

breaking it down into simpler, recursive subproblems and finding their optimal solutions.

9



2.1.5. Bellman equation of optimality

Bellman proved that the optimal state value function in a state s (denoted by ) is equal𝑉
*
(𝑠)

to the action a, which gives us the maximum possible expected immediate reward, plus the

discounted long-term reward for the next state s’, as it is denoted in Equation 2.6

Equation 2.6: Bellman optimality equation for V value

Bellman also proved that the optimal state-action value function in state s and taking action a

is:

Equation 2.7: Bellman optimality equation for Q value

The Bellman equation is a keystone to find the optimal values of the value functions to obtain

an optimal policy for any type of agent.

2.2. Q learning

Based on the Bellman equation, Q-learning is an off policy reinforcement learning algorithm

that seeks to find the best action to take given the current state. It’s considered off-policy

because the Q-learning function learns from actions that are outside the current policy, like

taking random actions, and therefore a policy isn’t needed. Q-learning seeks to learn a policy

that maximizes the total reward.

For any finite Markov decision process (FMDP), Q-learning finds an optimal policy in the

sense of maximizing the expected value of the total reward over any and all successive steps,

starting from the current state. Q-learning can identify an optimal action-selection policy for

any given FMDP, given infinite exploration time and a partly-random policy.

"Q" in this setting refers to the function that the algorithm computes – the expected rewards

for an action taken in a given state. There are various solutions regarding this type of

reinforcement learning, like tabular methods, such as Q-table or function estimation

solutions, such as Deep Q learning. The main task of these types of algorithms is to estimate

a proper Q value for each state action pair, and it works quite well for finite action spaces

10



with finite state spaces, and sometimes continuous action spaces can as well, especially with

Deep Q learning.

The main drawback of Q-learning is that the learning process is expensive for the agent,

mainly in the beginning steps. Because, every state-action pair should be visited frequently in

order to converge to the optimal policy. If this part of the training process is missing, we

might arrive at a suboptimal/partially optimal solution to the problem. The other main

drawback is that it is very hard to apply classic Q learning to continuous action spaces.

2.3. Policy Gradient Methods

Policy gradient methods are a type of reinforcement learning techniques that rely upon

optimizing parametrized policies with respect to the expected return (long-term cumulative

reward) by gradient descent. They do not suffer from many of the problems that have been

present in traditional reinforcement learning approaches such as the lack of guarantees of a

value function, the intractability problem resulting from uncertain state information and the

complexity arising from continuous states & actions.

Most traditional reinforcement learning methods have no convergence guarantees and there

exist even divergence examples. Continuous states and actions in high dimensional spaces

cannot be treated by most RL approaches.

Policy gradient methods differ significantly as they do not suffer from these problems. For

example, uncertainty in the state might degrade the performance of the policy (if no

additional state estimator is being used) but the optimization techniques for the policy do not

need to be changed. Continuous states and actions can be dealt with in exactly the same way

as discrete ones while, in addition, the learning performance is often increased. Convergence

at least to a local optimum is guaranteed.

The advantages of policy gradient methods for real world applications are numerous. Among

the most important ones are that the policy representations can be chosen so that it is

meaningful for the task and can incorporate domain knowledge, that often fewer parameters

are needed in the learning process than in value-function based approaches and that there is a

variety of different algorithms for policy gradient estimation in the literature which have a

rather strong theoretical underpinning. Additionally, policy gradient methods can be used

either model-free or model-based as they are a generic formulation of solving the Bellman

equation. Despite their usefulness and elegance, policy gradient methods also have significant

11



problems. They are by definition on-policy and need to forget data very fast in order to avoid

the introduction of a bias to the gradient estimator. Hence, the use of sampled data is not very

efficient. In tabular methods such as Q-table, value function methods are guaranteed to

converge to a global maximum while policy gradients only converge to a local maximum and

there may be many maxima in discrete problems. Policy gradient methods are often quite

demanding to apply, mainly because one has to have considerable knowledge about the

system one wants to control to make reasonable policy definitions. Finally, policy gradient

methods always have an open parameter, the learning rate, which may decide over the order

of magnitude of the speed of convergence; these facts have led to new approaches inspired by

expectation-maximization approaches which later became known as actor critic solutions.

2.4. Actor critic methods

There are various algorithms that can tackle the challenges of resource management, but

reinforcement learning approaches prove to be pioneers in the field of controlling dynamic

systems. In the last few years, the development achieved in the field of neural networks has

helped the field to flourish, as many algorithms based on deep reinforcement learning have

been developed, the structure and complexity of which is close to human real-time

decision-making [11], but in some cases it exceeds it by a lot. Considering the problems of

resource management, an algorithm is needed that can handle a large complex state space and

also a large and continuous action space. It is not possible to straightforwardly apply

Q-learning to continuous action spaces, because in continuous spaces finding the greedy

policy requires an optimization of at every timestep; this optimization is too slow to be

practical with large, unconstrained function approximators and nontrivial action spaces.

Timothy P. Lillicrap et al. [6] presented an actor-critic, model-free algorithm based on the

deterministic policy gradient that can operate over continuous action spaces. This model-free

approach is called Deep Deterministic Policy Gradient (DDPG). A key feature of their

approach is its simplicity: it requires only a straightforward actor-critic architecture and

learning algorithm with very few “moving parts”, making it easy to implement and scale to

more difficult problems and larger networks. Interestingly, DDPG can sometimes find

policies that exceed the performance of the planner, in some cases even when learning from

low dimensional state representations.

The DDPG algorithm maintains a parameterized actor function which specifies theµ(𝑠|θµ)

current policy by deterministically mapping states to a specific action. The critic Q(s, a) is

12



learned using the Bellman equation as in Q-learning. The actor is updated by following the

applying the chain rule to the expected return from the start distribution J with respect to the

actor parameters as it can be seen in the Equation 2.8.

Equation 2.8:  Gradient update of the actors

Silver et al. [6] proved that this is the policy gradient, the gradient of the policy’s

performance. As with Q learning, introducing non-linear function approximators means that

convergence is no longer guaranteed. However, such approximators appear essential in order

to learn and generalize on large state spaces. NFQCA [7] which uses the same update rules as

deterministic policy gradients (DPG) but with neural network function approximators, uses

batch learning for stability, which is intractable for large networks. A minibatch version of

NFQCA which does not reset the policy at each update would be required to scale to large

networks. Lillicrap’s contribution here is to provide modifications to the vanilla DPG,

inspired by the success of DQN, which allow it to use neural network function approximators

to learn in large state and action spaces online. One challenge when using neural networks

for reinforcement learning is that most optimization algorithms assume that the samples are

independently and identically distributed. Obviously, when the samples are generated from

exploring sequentially in an environment this assumption no longer holds. Additionally, to

make efficient use of hardware optimizations, it is essential to learn in mini batches, rather

than online. As in DQN, they used a replay buffer to address these issues. The replay buffer is

a finite sized cache. Transitions are sampled from the environment according to the

exploration policy and the current state, current action, next state, and reward were stored in

the replay buffer. When the replay buffer is full the oldest samples are discarded. At each

timestep the actor and critic are updated by sampling a minibatch uniformly from the buffer.

Because DDPG is an off-policy algorithm, the replay buffer can be large, allowing the

algorithm to benefit from learning across a set of uncorrelated transitions.

Another large problem present in Q learning was the divergence of efficient actions. Directly

implementing Q learning with neural networks proved to be unstable in many environments.

Since the network Q(s, a| ) being updated is also used in calculating the target value, the Qθ𝑄

13



update is prone to divergence. Their solution was to use ”soft” target updates, rather than

directly copying the weights. They created a copy of the actor and critic networks that are

used for calculating the target values. The weights of these target networks are then updated

by having them slowly track the learned networks, as denoted by Equation 2.9.

Equation 2.9:  Target network update for critic and actor networks

This means that the target values are constrained to change slowly, greatly improving the

stability of learning. This simple change moves the relatively unstable problem of learning

the action-value function closer to the case of supervised learning, a problem for which

robust solutions exist. This may slow learning, since the target network delays the

propagation of value estimations. However, in practice their findings suggested that this was

greatly outweighed by the stability of learning [6].

2.5. Multiagent systems
Multiagent Reinforcement Learning (MARL) algorithms are designed to deal with systems

consisting of multiple agents who are interacting with each other within a shared

environment. Each agent makes a decision in each timestep, working towards an individual

predetermined goal, while also trying to help the other agents achieve their goals. The goal of

MARL algorithms is to learn a policy for each agent such that all of the agents working

together can achieve the goal of the system. The agents are learnable units that aim to learn

an optimal policy on the fly in order to maximize the long-term cumulative discounted

reward from interacting with the environment. However, due to the complexities of the

environments or the combinatorial nature of the problem, training the agents is typically a

challenging task. MARL deals with several problems that are categorized as NP-Hard, such

as manufacturing scheduling, the vehicle routing problem, and some multi-agent games [12].

A multiagent system is often exceedingly complicated, making preprogramming the system

unfeasible for practical reasons. Additionally, learning and adaptation are necessary since the

dynamics of the agents and their surroundings are subject to change over time. It was

acknowledged in the early work on MARL for stochastic games that no agent operates in a

vacuum. The learning agent may come across completely competitive, zero-sum games,

14



among other scenarios and game types. There are also general-sum cooperative games, in

which players work together to maximize their rewards. In a multiagent system, the agents

typically need to monitor the actions of the other agents so that a coherent behavior emerges.

We also need to think about the scalability issue. The agents have a huge number of potential

states and coordinated activities to keep track of. It is possible to formalize learning in

stochastic games as a MARL issue. At the present state, agents simultaneously choose

actions, and at the following state, they are rewarded. The goal of a multiagent reinforcement

learning algorithm is to learn equilibrium strategies through interaction with the environment

and also other agents. Generally, in a MARL problem, agents may not know the transition

function or the reward function from the environment. Instead, agents are required to select

actions and observe the received reward and the next state in order to gain information of the

transition function or the reward function. Rationality and convergence are two desirable

properties for multiagent learning algorithms in stochastic games. When we say that an agent

is rational, we mean that, if the other agent’s policies converge to stationary policies, then the

learning algorithm will converge to a policy that is the best response to the other agent's

policies. In the stochastic learning algorithms, we also have the idea of convergence: if all the

agents use rational learning algorithms and their policies converge, then they must have

converged to an equilibrium. Each agent will make the best response to all other agents [8].

15



3. Review of possible solutions

3.1. Related work
Quality of Service violation is a very important topic when it comes to developing and

deploying microservice applications. Many algorithms exist for the sole purpose of managing

microservice instances and/or to suggest resource allocation for the services. Autoscaler

solutions are mostly categorized by their underlying theoretical models [15], [16]. Such

solutions can be:

- Threshold-based: these solutions use a set of predefined rules to scale microservices.

Such an algorithm was proposed by Khazaei [17], where he implemented

auto-scalability and monitoring-as-a-service for any type of cloud software system,

making scaling decisions based on an adjustable linear combination of CPU, memory,

and network utilization.

- Queuing model-based: these scalers use queueing models, which can determine the

number of servers based on the length of the queue. A good example for such an

approach was created by Kaboudan [18]. He presented a discrete-time queuing model

with a dynamic number of servers using a threshold-based scaling policy.

- Control theory-based: the goal of the controller is to align resources to the services

in a way that makes the output approximate a reference value. Ali-Eldin implemented

such an algorithm based on control theory [19], which was used to design a

reactive-adaptive proportional controller that acted based on the load dynamics, and

could respond to sudden changes in it.

- Reinforcement learning-based: using machine learning algorithms to control

dynamic systems in real time. A good example for such a solution was developed by

Haoran Qiu and Subho S. Banerjee [3], where they used an ensemble technique in

order to categorize and eliminate service level objective violations.

- Performance prediction-based: various regression oriented models can be used to

predict the response time or the latency of the application. Wajahat et al. [24]

proposed such a neural network (NN)-, and regression-based application agnostic auto

scaling solution [20].

- Demand forecast-based: first predict the possible demand for specific services, and

after that scale the resources accordingly. A good example would be Chen’s dynamic

16



server provisioning technique [21] which was able to minimize the energy

consumption of data centers

Due to the complexity of the issue most of the researches use machine learning approaches.

Such was the work of Yanqi Zhang and Weizhe Hua [1]. Their system the Sinan was one of

the first complex resource allocation frameworks to introduce ensemble learning approaches.

The system simultaneously used convolutional neural networks to extract latent variables and

to predict the end-to-end latency of each microservice, while an XGBoost algorithm used the

latent variables and the resource allocation and tried to predict the possibility of QoS

violation. While this approach is way more robust than classic algorithms such as Horizontal

Pod Autoscaling (HPA), being a static model it requires retraining over time, and some

background knowledge about the nature of the microservice cluster to scale, which are

common challenges when implementing scaling algorithms. The current methods for

performance modeling or heuristic-based approaches are not effective because they do not

take into account the dynamically changing status of the system. The interactions between

microservices can also be complex and cause cascading effects when provisioning resources

for interrelated microservices. This approach would potentially consume a tremendous

amount of resources. Although one workflow has a fixed microservice set and microservice

composition structure, the processing time of each microservice is not fixed, due to variant

sizes of input data. Some simple policies, e.g., Earliest Deadline First, might mitigate this

unpredictability, but such solutions are not able to adapt quickly to vast condition changes,

and thus perform poorly on variant environment conditions which is often the real-world

scenario. They also require a lot of knowledge and effort to implement and validate.

However, reinforcement learning (RL) is a good option for learning how to provide resources

because it does not rely on inaccurate assumptions and can directly learn from the workload

and operating conditions online. The resource adaptation algorithm needs to consider

operation cost and not use more consumers than what is allocated to them. It also requires

training data obtained from giving the microservice workflow system control inputs and

receiving feedback in order to profile the microservice system, but such an algorithm has

access to a limited number of such interactions.

Due to the sequential nature of the decision-making process, RL is especially well-suited for

resource management problems and it has been shown that deep neural networks can express

the complex dynamics and decision-making policies in such a system-application

17



environment. The FIRM framework developed by Haoran Qiu and Subho S. Banerjee [3] was

a much advanced approach to efficiently tackle most of the problems presented above with an

advanced RL approach. They also used ensemble technique in order to categorize and

eliminate service level objective violations. The first part of the structure was a support

vector machine that identifies critical paths in the microservice dependency graphs, while an

actor-critic reinforcement learning approach, named Deep Deterministic Policy Gradient

(DDPG) is responsible for the reprovisioning decisions regarding resource utilization and

scaling the number of instance replicas to optimize the workload. While this approach is

more robust than a pure supervised learning solution, it still heavily relies on the fact that the

SVM has to have some form of prior knowledge on the microservice system itself, in the

form of a service dependency graph. Creating such a graph might be sustainable for a smaller

microservice system, but for a full scale industry level application, structuring such a graph

might be infeasible - also we would have to train a supervised model to identify the Service

Level Objective (SLO) violation points in the whole system.

Despite the question of scalability, the FIRM system efficiently established that the use of

reinforcement learning to solve dynamic problems might be the best course of action for such

a task. Using an actor-critic model free model such as DDPG, FIRM can estimate and control

a fine-grained set of resources, including CPU time, memory bandwidth and network

bandwidth. Since it is a high complexity deep reinforcement solution, it can deal with large,

and complex state spaces, and equally large and complex continuous action spaces, therefore

it has the capacity to utilize resources on a granular level, further elevating the possibilities of

creating an optimal management policy.

- Model-free RL does not need the ergodic distribution of states or the environment

dynamics (i.e., transitions between states), which are difficult to model precisely.

When microservices are updated, the simulations of state transitions used in

model-based RL are no longer valid.

- The Actor-critic framework combines policy-based and value-based methods, and that

is suitable for continuous stochastic environments, converges faster, and has lower

variance.

Despite that, model free approaches also have some shortcomings when it comes to the real

life applicability. DDPG as a temporal difference method requires large amounts of episodes

18



to train efficiently, and therefore their use is heavily bound to the available training data for a

microservice. In a simulated environment this is not a challenge, but if we do not possess the

necessary historical request loads about our microservice, the pure online training on

incoming data might take a long time.

A possible good approach for the problem might be to incorporate model based techniques,

as did Zhe Yang, Phuong Nguyen and Klara Nahrstedt [4] when they proposed a model based

variant of the DDPG, realizing the limitations of model free approaches. Their framework,

the MIRAS, combined two main concepts: environment model learning and policy

optimization. In model learning a network tries to capture the behavior of the microservice

infrastructure using sample collected from real interaction between RL agent and the

environment, and in policy optimization another network tries to learn on both real world

samples and samples provided by the environment modeling network. Throughout the

learning the algorithm alternates between these two approaches.

Such a technique provides a good solution for the lack of available information regarding our

microservice system, yet a single RL agent still lacks the robustness that is required for a

system with few dozens of microservices. The more parts we have in the system, the higher

the complexity of the action space becomes. While neural networks can deal with such

problems, the increase in the number of possible actions makes the training process slow,

and/or it would require a large neural network model. A good heuristic might be to train

separate models on each microservice, but it brings even deeper challenges. A serverless

FaaS platform is multi-tenant where heterogeneous functions from all customers compete for

shared resources in a cluster. Multi-tenancy makes the environment non-stationary from each

agent’s own perspective, as it is also affected by the actions of other agents, which breaks the

standard assumption that underpins single agent reinforcement learning algorithms. Since the

transitions and rewards depend on the joint actions of all agents, whose decision policies keep

changing in the learning process, each agent can enter an endless cycle of adapting to other

agents in the shared environment.

To tackle this problem Haoran Qiu, Weichao Mao and Chen Wang proposed a multiagent

proximal policy optimization method [5]. Compared to classic single agent Proximal Policy

Optimization (PPO), in the system each model treats the other models like they are also part

19



of the environment. This implementation is agnostic to the order or the size of the agent

group, and therefore provides a feasible solution for microservice resource management.

3.2. My approach
Based on the approaches found during the literature research, I came to the conclusion that I

must solve the problem of resource management with deep reinforcement learning, and I

must choose a model that tries to estimate the resource needs of individual microservices as

efficiently as possible in a model-free approach. Given that we want to find an optimal

solution for the entire microservice system on a global level, I found the multiagent approach

inevitable. Most of the previous approaches in the literature used information collected from

other existing microservices in some form, but this type of training has both advantages and

disadvantages. On the one hand, it is beneficial to be able to model real systems by using real

measurement data, but if we only rely on the use of external data, it limits the measurement

of the real capabilities of the implemented models, so in my thesis I present a framework that

simultaneously supports existing microservices and integration of new stochastic heuristic

microservice models into a reinforcement learning environment and conversion into a

Markov decision process. Despite the fact that the environment can receive external data,

during my thesis I only trained models on simulated microservice systems, because I did not

have such data at my disposal.

As a reinforcement learning algorithm, I chose the MADDPG model developed by OpenAI

[14], because it is a robust model in which the training is centralized, while the production

level execution is decentralized. This can be practical from a production point of view,

because only the relatively smaller actors need to be deployed at the end of the training for

the purpose of microservice management. Unfortunately, the model has a strong shortcoming,

which can be seen in scaling limitations. Given that all critics belonging to each actor must

simultaneously see and take into account the entire environment as all states belonging to all

actors, the introduction of new actors not only increases the size of the entire model

drastically, but also the time for individual models to converge increases. In order to

eliminate this problem, I implemented a structural modification in the MADDPG algorithm,

with the help of which I can increase the speed of the convergence of the model and reduce

the complexity of critic networks.

20



4. Modeling the microservice execution environment

4.1. The environment
Given the complexity of both the task and the approaches to be implemented, I have

developed a modeling environment that can also be used to model:

- the properties of the microservices in a cluster

- the relationships between the services

- the resource usage of individual microservices

- the load of the microservices on each other

- external requests

The MicroserviceGym library allows us to model any clusters of microservices. Structurally,

the environment can be represented as a directed acyclic graph. The nodes in the graph

represent each microservice (later in the documentation, nodes and microservices are used

interchangeably, denoting the same concept), while the edges between them are intended to

show the relationship between said microservices. A microservice has the ability to send

requests to another microservice, providing an extra load for that node. From a hierarchical

point of view, this is how we distinguish three types of nodes in the system:

- Chief node: In the case of a chief node, we are talking about a service that has only

workers, since it is not used by another service during its operation; such services are

only and exclusively get requests from outside the system.

- Worker node: Worker nodes are located at the bottom of the system usage hierarchy

graph, they do not use any other services, but they also serve one or more other

services.

- Basic microservice: every other microservice that is not a chief or a worker node, can

be considered a simple microservice that can send and receive requests from other

microservices.

4.1.1. Modeling details
Connections may occur between each node if one microservice uses the resources of another.

The weights of each edge are represented with linear regression: the value of the stress

currently on the chief node will be passed to the workers with a weighting of as it can be seen

in Equation 4.1.

21



Equation 4.1:  Simplified notation of load computing on an edge

While x is the number of requests sent from one node to another, m is a random number

sample from a uniform distribution between 0.75 and 1.2 and b is a random number that is

sampled from a normal distribution which parameters can be set. This implementation is

advantageous from the point of view that it is possible for a system to model a certain level of

stochasticity. From now on the load from microservice x to microservice y in iteration i will

be denoted with such asλ
𝑥, 𝑦
𝑖

Equation 4.2:  Load from microservice x to microservice y in the i’th sequence

represents a random value sampled from a normal distribution in the i’th iteration, while𝑏𝑖 λ
𝑦
𝑖

denotes the full load on node y in the i’th iteration as it can be seen in Equation 4.2. To get its

value let’s denote the chief nodes of microservice y with . That means that all nodes inΓ

gamma propagate request loads toward node y, as presented in Equation 4.3.

Equation 4.3:  Full load on node y in the i’th sequence

To further elevate the environment close to life in terms of complexity the instance handling

also has a stochastic behavior. Each service node has an instance container for horizontal

scalability. These instances represent at a low level the resources behind a given

microservice: each instance has an instance capacity that shows how many requests that

instance can handle. Considering this, and the number of instances, we can determine how

many requests we can handle at a given time for a given microservice. Assuming that we

cannot increase the number of these instances indefinitely in a real environment, each node

has a single maximum instance number. Of course, with the horizontal increase in the number

of individual instances, the overall request handling capabilities of said microservices scale

non-linearly in real life, so I introduce a stochastic polynomial term to artificially modify the

performance of the microservice. This kind of randomness between microservices elevates

the environment closer to a life situation in terms of complexity, however this solution does

not perfectly match with a real life architecture. The request handling capacity of instances,

22



denoted by also varies stochastically for each different microservice and it can beω
𝑦
𝑖

computed as in Equation 4.4.

Equation 4.4:  Request handling capacity of microservice y in the i’th sequence

The request handling capacity of microservice y in the i’th sequence will be calculated by the

actual utilization percentage in the i’th sequence, multiplied by the maximum available

microservice number, and the instance capacity on service y. This whole term is taken to the

power of a random number sampled from a uniform distribution between 0.8 and 1 specific

for the microservice y.

The resource usage of microservice y at i’th iteration can be described as the fraction of the

incoming loads and the request handling capacity, as presented in Equation 4.5.

Equation 4.5:  Usage percentage of microservice y in i’th sequence

The usage of the nodes will be the key metric that determines how stable the system will be.

Between 0 and 1, the microservice has more resources than it needs to serve incoming

requests, in which case usage shows how much of the resources the microservice uses. If it is

greater than 1, the application is overloaded and QoS violation might happen.

The task of the agents was to estimate the number of instances belonging to each

microservice. Reflecting on the fact that even in real life we ​​are not able to scale resources to

infinity, a maximum instance number is defined for each microservice, which is automatically

calculated by the environment before the agents are taught: with the predefined maximum

load, the system runs 100 test episode, with 300 steps per episode and examines the

maximum loads that can come to each microservice. Taking into account the request handling

capacity of each node, the system retrospectively calculates the amount of instances that

would be needed to fully serve all incoming requests under maximum load. It is important to

emphasize that with this approach we also assume that the load of our system has/may have a

maximum upper limit, above which no more requests are received. Although resource scaling

in real life is a never-ending dynamic system control problem, on the contrary, during

23



teaching, the number of steps during one episode had to be maximized. An episode consists

of a fixed number of steps and ends when the maximum number of steps is reached or if a

QoS violation occurs in the case of any microservice within the system. A step represents a

time resolution with arbitrary granularity, but it reflects a state where all requests received in

the microservice system have been propagated through all the codependent microservices.

During training, each agent receives a reward depending on how well they were able to guess

a usage of the microservice in the i’th iteration.

4.1.2. Implementation

The logical part of the library's code is written entirely in C++ in order to train the agents

managing microservices as quickly as possible, and during the process the vast majority of

the time is spent on backpropagation of the neural network. In order to be able to interact

smoothly with the developed system, and so that Python-specific libraries can also use the

system, I used a library called Cython which is an optimizing static compiler for both the

Python programming language and the extended Cython programming language. With this

tool I created a library that has the speed of a pure C++ program with capability to interact

with it through Python.

Figure 4.1:  Usage percentage plot of microservice y in i’th sequence

Additional feature of this solution is that other Python packages can be used in Cython.

Leveraging this I also created a monitoring dashboard for evaluation purposes as it can be

seen in Figure 4.1 using Seaborn and Matplotlib packages.

24



4.2. Training
Throughout the training process I tried to present various levels of environment complexity

for the models to learn on. The difference between each environment complexity level was

presented both in the number of microservices within the environment and in the values ​​of

the noise factors and multipliers found on the edges for the microservices. During the running

simulations 3 levels were separated, in the form of small, medium and complex microservice

systems, which had the following properties:

- Small environment: 4 microservices, strictly linear connections with small noise

between the nodes, linear request handling on each node, the states are the previous

incoming global request values

- Medium environment: 6 microservices, simple linear or 0.5 multiplicated edges

between nodes with medium noise, polinomial request handling, the states are the

previous incoming request values from the chief node of each microservice

- Complex environment: 15 microservices, random linear multiplication on each edge

between nodes, polinomial request handling, the states are the previous incoming

request values from the chief node of each microservice

As I highlighted earlier, both models were evaluated at these 3 levels of complexity. At all

three levels, during each episode, the models could take a maximum of 2000 steps and during

these steps the models must collect as much reward as possible. In each case the training

lasted for 10,000 episodes. At the beginning of each episode, the loads of chief nodes

changed in each case following a random Brownian motion. At the end of each training

episode, an evaluation episode was also run, which serves the purpose of determining the

change in the performance in the set of actors.

The goal of the artificial intelligence approaches are to manage the resources of the

microservices by adding or removing instances so that it approaches a predefined utilization

level, similar to the operation of the HPA algorithm [13]. HPA helps provide seamless

service by dynamically scaling up and down the number of resource units, called pods,

without having to restart the whole system. It supports high availability by adjusting the

number of execution and resource units, known as pods (the terms pod and instance are

interchangeable throughout the thesis), based on various requirements. When triggered, HPA

25



creates new pods to share the workloads without affecting the existing ones currently running

inside the cluster, however this process takes time and while it happens performance

degradation and QoS violations may occur.

An important difference compared to previous solutions is that, since there is only one

learning approach for both models, which does not contain a separate QoS violation detection

structure, during the training, efforts must be made to prevent such a case from occurring. I

was able to force this behavior out of the models by simply disallowing them to violate QoS,

meaning that if any microservice overloaded in any system, the episode would end. The idea

would give itself, that ideally we would like our resources assigned to microservice to always

be at 100% utilization, because this is not the situation where a QoS violation occurs, but

resource management is the most economically efficient at this point. It is important in what

direction we are willing to be permissive during the training: if avoiding overutilization is a

higher priority, we should be more permissive with QoS violations, if the loss of our

customers is a bigger threat to us than the potential additional costs resulting from

overutilization, then more emphasis should be placed for the stability of the system. During

the training of the models, more emphasis is placed on the latter aspect, because for providers

operating larger microservice systems such as Amazon Prime or Netflix the primary value is

the user. There are many solutions for mitigating the additional technical costs that such a

company can live with, and hard churn of users is a problem that can directly and drastically

affect financial security in the long term. Due to this consideration, I preferred maintaining

the stability of the entire system during the creation of the reward function, where the reward

is based on the usage percentage of specific microservices regarding the utilized instances, as

can be seen in equation 4.6, where x is the usage percentage of the microservice.

Equation 4.6: Reward function

Given that we are talking about a highly stochastic environment, where not only the number

of incoming requests but also the relationships between microservices can change, a safe

approach for the model is to choose either the suboptimal solution or end the episode quickly,

thus eliminating any penalties that may arise later. I designed the function above, such that

26



the custom reward function gives the biggest possible reward at 90% utilization which

happens to be 1. As we get closer to a possible quality drop, the reward becomes miniscule in

order to prevent the end of the episode, as presented in figure 4.2. I choose 90% utilization

since it is relatively close to perfect instance utilization, however it leave some wiggle room

for the RL algorithms to not automatically end the episode if there would be a smaller spike

in the incoming load.

Figure 4.2: Reward function visualization

27



5. Proposed RL models

5.1. MADDPG
The simplest approach to learning in multi-agent settings is to use independently learning

agents. This was attempted with Q-learning, but it does not perform well in practice.

Independently-learning policy gradient methods also perform poorly. One issue is that each

agent’s policy changes during training, resulting in a non-stationary environment and

preventing the naive application of experience replay. Previous work has attempted to address

this by inputting other agent’s policy parameters to the Q function in the work of Tesauro [9],

explicitly adding the iteration index to the replay buffer, or using importance sampling. The

nature of interaction between agents can either be cooperative, competitive, or both and many

algorithms are designed only for a particular nature of interaction. The goal of the OpenAI-s

team [14] was to build a model that works in all of these cases. However, they provided

additional constraints: the learned policies can only use local information at execution time,

no differentiable model of the environment dynamics, no particular structure on the

communication method between agents (we don’t assume differentiable communication).

Algorithm 5.1: MADDPG algorithm

28



Fulfilling the above constraints they created a general-purpose multi-agent learning algorithm

that could be applied not just to cooperative games with explicit communication channels, but

competitive games. The canonical form of the original algorithm can be read as in Algorithm

5.1. A new approach was also presented in terms of centralized training with decentralized

execution. For MADDPG the policies use extra information to ease training, so long as this

information is not used at test time. It is unnatural to do this with Q-learning, as the Q

function generally cannot contain different information at training and test time. Here the

critic is augmented with extra information about the policies of other agents.

Figure 5.1: MADDPG model structure

Here, as it can be seen on figure 4.1 is a centralized action-value𝑄(π)
𝑖
(𝑥,  𝑎

1
,  ...,  𝑎

𝑁
)

function that takes as input the actions of all agents, , in addition to some state 𝑎
1
,  ...,  𝑎

𝑁

information and outputs the Q-value for agent i. In the simplest case, x could consist of the𝑥,

observations of all agents, , but we could also include additional state𝑥 = (𝑜
1
,  ...,  𝑜

𝑁
)

information if available - the former approach was used for my MADDPG implementation.

Since each is learned separately, agents can have arbitrary reward structures, including𝑄(π)
𝑖

conflicting rewards in a competitive setting. Each actor takes into account its specific state

and tries to make an action based on that, however every critic takes into account the actions

of all actors, and all the states, and tries to evaluate one actor based on the whole system. The

29



separation of critics per actor is necessary, since if we had used only one critic, we would

trade the size of the whole network to complexity of Q value approximation for all of the

actors. The model as can be seen in Figure 5.1 can be interpreted as an ensemble of

reinforcement learning algorithms.

Similar to the simple DDPG, MADDPG is an actor-critic approach, where the actor's task is

to determine the ideal action based on the state, while the critic's task is to determine the Q

value based on the state and the action given by the actor, and all both the critic network and

the actor network have a target network to avoid divergence in learning and more stable

learning. Thus, in total, an agent is composed of 4 neural network-based approximators, in a

multiagent approach this is multiplied by the number of agents. As with centralized training

in the past, it is important to emphasize that in a multi-agent approach, each critic network

must have access to the state seen by all other agents and the actions of the agents. This is

necessary so that the critic network can evaluate the action given by the actor for each agent

based on the corresponding reward function, so that in the long run all the agents can

cooperate with each other in synchronism. I grouped the multi-agent model into a

SuperAgent class to make the code clearer and to unify the MADDPG algorithm. A primary

motivation behind MADDPG is that, if we know the actions taken by all agents, the

environment is stationary even as the policies change, since:

Equation 5.1: Environment stationarity

for any . This is not the case if we do not explicitly condition on the actions of otherπ
𝑖

≠ π'
𝑖

agents, as done for most traditional RL methods [10]. I chose this algorithm, because it is

based on a robust actor critic method which can efficiently map large state spaces to

continuous actions. The model is expected to determine as accurately as possible how much

resources each microservice needs. Although the task could have been approached with

discrete action spaces, in the long run I found it more advantageous to use an algorithm that

can handle more refined actions. It is the job of the actors of each agent to estimate the

utilization of microservices as a percentage. Given that each microservice has a maximum

instance size, agents need to estimate what percentage of that instance size should be used.

Every actor has to output a value between 0 and 1, which represents the percentage of used

instances compared to the maximum available instances in the microservice. For example if

a microservice has a maximum instance size of 100 and the actor predicts utilization

30



percentage 0.31, then 31 instances will be started for the service (rounded up to the nearest

integer).

Both the actor structure, and the critic network were simple fully connected neural networks,

with five layers and ReLu activations, however the critic network was slightly larger in terms

of neuron number. The learning rate of the critic was set to 0.0075, while the learning rate of

the actor was 0.0003. The buffer had a batch size of 1200 and 6000 as maximal size.

5.2. SEMADDPG
The classic MADDPG algorithm is a robust model that can cope with training in both

cooperative and competitive environments, but it has minor shortcomings. One such problem

is the lack of scalability. The curse of dimensionality that occurs in the case of critical

networks not only increases the training time, but also slows down the convergence of the

model towards the optimal policy. Inspired by model-based approaches, I argue that the

training time could be reduced here as well, because each critic sees the same values ​​in their

input, which includes the states seen by all the actors and the actions taken by the actors. As

we saw earlier, the purpose of this model element is for each critic to have access to the

current state of the entire environment, and in light of this, the individual actors are evaluated.

Each critic provides the evaluation of the Q value only to the corresponding actor, which

means that although the entire system can converge faster than in the case of a single critic,

this implementation increases the model size - which is made worse by the fact that, similarly

to the plain DDPG algorithm, the targets are also present here networks to stabilize training.

To eliminate this problem, I introduced a special state encoding procedure into the algorithm,

the purpose of which is that with the help of an autoencoder, each critic receives only a

compressed vector of the current states of the actors, which gives a smaller and more compact

picture of the current state of the system. Recently, a variety of (unsupervised) representation

learning algorithms have been proposed based on the idea of ​​autoencoding where the goal is

to learn a mapping from high-dimensional observations to a lower-dimensional representation

space such that the original observations can be reconstructed (approximately) from the

lower-dimensional representation. During teaching, the task of an encoder decoder structure

will be to develop a latent representation for each state that is identical to the original state

vector in terms of information content, but much smaller in terms of size. The degree of

compression is indicated by a new parameter, which is a fractional number between 0 and 1

31



and denoted by . If a compact state vector is with 10 elements and = 0.7, only 7 elementsχ χ

will be included in the latent representation.

Figure 5.2: SEMADDPG model structure

I had several model design attempts, where I tried to compress not only the states, but also

the corresponding actions, but at the same time, these trainings were not successful, the

system diverged strongly, and it was not possible to create or maintain optimal policies. A

similar result was shown when, during the training of the encoder, I not only took into

account the reconstruction loss, but also back propagated the loss coming from each critic.

The intuition behind my idea was that regardless of the fact that the autoencoder strives for

the most efficient compression of the states, it is not a guarantee that it will retain the features

of the latent representation that mostly determined the learning ability of each critic. When I

also propagated this error vector in addition to reconstruction loss, the performance of the

autoencoder started to deteriorate drastically, and with it the entire reinforcement learning

performance dropped, so I used a simple reconstruction loss for the final model, as can be

seen in the Algorithm 5.2. Compared to the base MADDPG, I not only used encoder decoder

helper structure, but also used Prioritized Experience Replay (PER) in order to enhance the

performance of the model. This addition was not applied in the MADDPG algorithm since

the original implementation had a simple replay buffer implementation only. The final

structure of the model can be seen in Figure 5.2.

32



Algorithm 5.2: SEMADDPG algorithm

5.3. Horizontal Pod Autoscaling as a baseline algorithm
Kubernetes is a portable, extensible, open source platform for managing containerized

workloads and services, that facilitates both declarative configuration and automation. It has a

large, rapidly growing ecosystem. Kubernetes services, support, and tools are widely used by

big tech companies, and engineers. Kubernetes implements horizontal pod autoscaling as a

control loop that runs intermittently. Horizontal Pod Autoscaling is a scaler algorithm which

automatically updates a workload resource, with the aim of automatically scaling the

workload to match demand, which periodically adjusts the desired scale of its target to match

observed metrics such as average CPU utilization, average memory utilization, or any other

custom metric we specify. The dynamic of the algorithm is straightforward. Based on metrics

collected in the microservice environment, the algorithm finds the accurate number of

instances to utilize for a microservice, based on predefined preferences, such as utilization

percentage, and the intermission time. According to the literature review most big companies

33



use more advanced approaches for the scaling of microservice resource handling, however

this built-in algorithm is still commonly used, despite its shortcomings:

- Lacks robustness: This algorithm may be useful for small microservice systems but

it is not designed to handle a huge number of microservices

- Takes time to make changes: There is a lag between detection and scaling in the

environment. For the auto scaling solution to be effective, a key requirement is to

have the auto scaling lag be less than the maximum time available to autoscale

- Fail to detect workload spikes: There might be huge intraday spikes for the usage of

microservice systems which the HPA cannot detect in time which leads to QoS

violations

In order to be able to effectively and realistically measure the performance of the horizontal

pod autoscaling algorithm, we must make various compromises to it from the point of view

of the environment, and the operation of the algorithm must be adjusted to the conditions of

the environment. Given that the developed MDP system represents a time resolution of

arbitrary granularity, for benchmarking purposes the HPA takes into account the loads

belonging to the previous time window and predicts the utilization required for the next time

slot. With this, we achieve that the trailing effect of the HPA is represented in the modeled

system at the same time, and that we get a realistic basis of comparison compared to the

multiagent algorithms implemented later. It is important to point out that we are more

permissive in a couple of aspects compared to the HPA algorithm: while reinforcement

learning approaches are not allowed to overload the system, in the case of HPA it must be

enabled for individual microservices to be overloaded.

34



6. Evaluation
In the course of my work, I trained both algorithms under almost identical conditions, so that

the differences between the State Encoded MADDPG and the plain MADDPG models could

be validated as much as possible. In the figures below, I present the training that took place in

environments of different complexity based on this evaluation score. In order to be able to

interpret the values ​​shown in the figures in a comprehensive way, I divided the value of the

scores achieved in each episode uniformly by the number of nodes in the microservice

system, so that the maximum number of points available during each episode will be the

same as the maximum number of steps - since the maximum available reward for each

microservice is 1 in each episode.

Figure 6.1: Level 1 environment validation scores

I started each level of training with the MADDPG algorithm as an RL baseline and then

proceeded with the SEMADDPG training. The first evaluation scores of the 1st level training

can be seen in Figure 6.1. It became clear already during the first training that both

approaches were able to create a suboptimal policy quite quickly - roughly around the 2000th

episode - with the help of which it achieved around 1250-1350 points per episode. Although

here MADDPG started to converge somewhat faster, later on there was a drop in reward. The

initial high score of the SEMADDPG could be attributed to lucky random initialization, as

this phenomenon did not occur in any other training. In contrast, SEMADDPG was able to

35



maintain this suboptimal policy. Given the highly stochastic nature of the underlying

environment, it is not surprising that the multi-agent models show a highly fluctuating

behavior instead of a clear and consistent reward increase, as can be seen in Figure 6.1.

Figure 6.2: Level 2 environment validation scores

Although the training on the second complexity level did not contain many more

microservices (only six in total), the number of codependent relationships in the system was

higher, because more microservices burden other microservices with loads. On Figure 6.2 one

of the strengths of SEMADDPG can be observed much more significantly: although in the

initial episodes the individual models managed to collect approximately the same amount of

rewards, as the encoder belonging to the critics starts to converge, the critics are able to guide

the actors towards an optimal policy more and more quickly and efficiently. This

phenomenon also appeared during two further re-trainings, also in the case of a more

complex state. Similarly to the environment of individual complexity, SEMADDPG is able to

approach a strategy with a relatively good score several times, and is able to maintain this

strategy with a good score. In contrast, MADDPG converges somewhat more slowly, but it is

important to point out that when it converges, it outperforms the SEMADDPG model in the

vast majority of cases.

36



Figure 6.3: Level 3 environment validation scores

Even in the case of teaching in the most complex environment, it can be observed that

SEMADDPG is able to develop a policy that can be considered optimal, but presumably due

to the strong stochastic nature of the system, it cannot maintain the score associated with this

policy later on as it can be seen on Figure 6.3. Regardless, MADDPG produces a much

slower but more stable convergence, which ultimately results in a higher aggregate score.

Table 6.1: Comparison of models

Table 6.1 shows a comparison of each model and training. It is clear that the reinforcement

learning-based approaches were able to outperform the HPA algorithm in all cases without

exception. On average, HPA's scaled score was 903.9 points lower than that of the best

performing MADDPG algorithm during all training, while it was 629.8 points behind the

SEMADDPG algorithm on average. Although 90% load was set as the ideal value for HPA,

in many cases the algorithm still struggled with this task. It was a general observation that

37



HPA scaled relatively well in less complex microservice systems and in the case of nodes

with fewer chief nodes - in some cases outperforming RL approaches. Nevertheless, in the

case of microservices of greater complexity or a stronger stochastic nature, the algorithm

struggled to create an allocation that meets the predefined requirements. Considering that

during the development of the reward function, I primarily sought to maintain the stability of

microservice systems; based on the results it can be said that in critical QoS violation

intolerant systems, Reinforcement Learning-based approaches can dominate classical scaling

solutions.

Based on table 6.1, the figures and the measurement results, it can be concluded that the

SEMADDPG algorithm can be an effective solution for managing a more complex

microservice system, as it is able to create a suboptimal policy in a shorter time. On average,

it took 18.86% less time to teach SEMADDPG, but in my opinion, this value can be

improved with further implementation optimization. However, it is important to take into

account that the policy created in this way cannot achieve perfect results, and due to the

compression of the states, this globally optimal policy cannot necessarily be approached. At

the same time, we can move forward on this problem thanks to the robustness of MADDPG:

since the model enables centralized training, at the same time, the execution is decentralized,

we will only use the actors in our final deployed system. This also means that our actors with

suboptimal policies trained with state encoded critics can be further trained with critics

processing the entire state space used in the classic MADDPG. Presumably, not only the time

required for convergence to be improved, but also the performance of the final actors could

approach the accuracy of MADDPG. This combined approach is an aspect that is definitely

worth investigating.

38



7. Summary
Resource management in microservices is still a highly complex issue to this day. During my

thesis, I addressed this topic through multiagent deep reinforcement learning. I have

developed an artificial modeling environment that allows us to model microservice clusters at

a low level together with the connections found between services. The library-like

environment lets us set the number of external requests as well as the number of request

sources. For the developed interface, I implemented the MADDPG algorithm detailed in the

OpenAI publication, and tried to improve it. The new SEMADDPG algorithms turned out to

be a lighter structure in terms of dimensions regarding the critic networks, and converged

faster to a suboptimal global policy, however it still has limitations when it comes to real

world applicability. As a result, during the continuation of the research, great emphasis must

be placed on the design and development of small, fast-learning and efficient models. Despite

this both models were able to outperform Horizontal Pod Autoscaling, indicating that

machine learning algorithms - especially multiagent reinforcement learning algorithms can be

a gamechaning solution when it comes to scaling robust microservice systems.

39



8. Bibliography

[1] Robert Heinrich, André van Hoorn, Holger Knoche, Fei Li, Lucy Ellen
Lwakatare, Claus Pahl, Stefan Schulte, and Johannes Wettinger. 2017.
Performance Engineering for Microservices: Research Challenges and Directions.
In Proceedings of the 8th ACM/SPEC on International Conference on
Performance Engineering Companion (ICPE '17 Companion). Association for
Computing Machinery, New York, NY, USA, 223–226.
https://doi.org/10.1145/3053600.3053653

[2] Zhang, Yanqi, Hua, Weizhe, Zhou, Zhuangzhuang, Suh, Ed, and Delimitrou,
Christina. Sinan: Data-Driven Resource Management for Interactive Multi-tier
Microservices. Retrieved from https://par.nsf.gov/biblio/10188080. Workshop on
ML for Computer Architecture and Systems (MLArchSys)

[3] QIU, Haoran, et al. {FIRM}: An Intelligent Fine-grained Resource Management
Framework for {SLO-Oriented} Microservices. In: 14th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 20). 2020. p. 805-825.

[4] Z. Yang, P. Nguyen, H. Jin and K. Nahrstedt, "MIRAS: Model-based
Reinforcement Learning for Microservice Resource Allocation over Scientific
Workflows," 2019 IEEE 39th International Conference on Distributed Computing
Systems (ICDCS), 2019, pp. 122-132, doi: 10.1109/ICDCS.2019.00021.

[5] Haoran Qiu, Weichao Mao, Archit Patke, Chen Wang, Hubertus Franke,
Zbigniew T. Kalbarczyk, Tamer Başar, and Ravishankar K. Iyer. 2022.
Reinforcement learning for resource management in multi-tenant serverless
platforms. In Proceedings of the 2nd European Workshop on Machine Learning
and Systems (EuroMLSys '22). Association for Computing Machinery, New
York, NY, USA, 20–28. https://doi.org/10.1145/3517207.3526971

[6] Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., ... &
Wierstra, D. (2015). Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971.

[7] Hafner, R., Riedmiller, M. (2011) Reinforcement learning in feedback control.
Mach Learn 84, 137–169

[8] H. M. Schwartz (2020) “Multi-Agent Machine Learning: A Reinforcement
Approach”

[9] Gerald Tesauro. 2003. Extending Q-Learning to general adaptive multi-agent
systems. In Proceedings of the 16th International Conference on Neural
Information Processing Systems (NIPS'03). MIT Press, Cambridge, MA, USA,
871–878.

40



[10] Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Pieter Abbeel, and Igor Mordatch.
2017. Multi-agent actor-critic for mixed cooperative-competitive environments.
In Proceedings of the 31st International Conference on Neural Information
Processing Systems (NIPS'17). Curran Associates Inc., Red Hook, NY, USA,
6382–6393.

[11] Mnih, V., Kavukcuoglu, K., Silver, D. et al. Human-level control through deep
reinforcement learning. Nature 518, 529–533 (2015)

[12] Oroojlooy Jadid, Afshin & Hajinezhad, Davood. (2019). A Review of
Cooperative Multi-Agent Deep Reinforcement Learning.

[13] Nguyen, Thanh Tung et al. “Horizontal Pod Autoscaling in Kubernetes for Elastic
Container Orchestration.” Sensors (Basel, Switzerland) 20 (2020): n. pag.

[14] Lowe, Ryan, et al. "Multi-agent actor-critic for mixed cooperative-competitive
environments." Advances in neural information processing systems 30 (2017).

[15] T. Lorido-Botran, J. Miguel-Alonso, and J. A. Lozano, “A review of auto-scaling
techniques for elastic applications in cloud environments,” J. Grid Comput., vol.
12, no. 4, pp. 559–592, 2014.

[16] Y. Al-Dhuraibi, F. Paraiso, N. Djarallah, and P. Merle, “Elasticity in cloud
computing: State of the art and research challenges,” IEEE Trans. Services
Comput., vol. 11, no. 2, pp. 430–447, Mar./Apr. 2018.

[17] H. Khazaei, R. Ravichandiran, B. Park, H. Bannazadeh, A. Tizghadam, and A.
Leon-Garcia, “Elascale: Autoscaling and monitoring as a service,” in Proc. 27th
Annu. Int. Conf. Comput. Sci. Softw. Eng. (CASCON), 2017, pp. 234–240.

[18] M. A. Kaboudan, “A dynamic-server queuing simulation,” Comput. Oper. Res.,
vol. 25, no. 6, pp. 431–439, 1998.

[19] A. Ali-Eldin, M. Kihl, J. Tordsson, and E. Elmroth, “Efficient provisioning of
bursty scientific workloads on the cloud using adaptive elasticity control,” in
Proc. ACM 3rd Workshop Sci. Cloud Comput. (ScienceCloud), 2012, pp. 31–40.

[20] M. Wajahat, A. Gandhi, A. A. Karve, and A. Kochut, “Using machine learning
for black-box autoscaling,” in Proc. IEEE 7th Int. Green Sustain. Comput. Conf.
(IGSC), 2016, pp. 1–8.

[21] G. Chen, “Energy-aware server provisioning and load dispatching for
connection-intensive Internet services,” in Proc. 5th USENIX Symp. Netw. Syst.
Design Implement. (NSDI), 2008, pp. 337–350.

41


