
Budapest University of Technology and Economics
Faculty of Electrical Engineering and Informatics

Department of Measurement and Information Systems

Matrix-Based Analysis of Multiplex Graphs

Scientific Students’ Association Report

Author:

Petra Várhegyi

Advisor:

Gábor Szárnyas

2018



Contents

Kivonat i

Abstract ii

1 Introduction 1

2 Preliminaries 2
2.1 Network science . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1.1 Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1.2 Clustering coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.3 Applications of network science . . . . . . . . . . . . . . . . . . . . . 4

2.1.4 Network topologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Representing graphs as matrices . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Basics of linear algebra . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.2 Adjacency matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Advanced graph data models . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.1 Multiplex graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.2 Property graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Investigative journalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Multiplex Graph Metrics 12
3.1 Typed local clustering coefficient . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2 Edge overlap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Implementation 18
4.1 Matrix libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.2 Clustering coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.2.1 Parallelization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2.2 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2.3 Visualization and loading the graph . . . . . . . . . . . . . . . . . . 22



5 Evaluation 23
5.1 Performance and scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.1.1 Performance measurement setup . . . . . . . . . . . . . . . . . . . . 23

5.1.2 Typed clustering coefficient 1 . . . . . . . . . . . . . . . . . . . . . . 23

5.1.3 Typed clustering coefficient 2 . . . . . . . . . . . . . . . . . . . . . . 24

5.1.4 Edge overlap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.1.5 Loading the graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.2 Multiplex Graph Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.2.1 Typed clustering coefficient . . . . . . . . . . . . . . . . . . . . . . . 27

5.2.2 Edge overlap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6 Related Work 30
6.1 Multiplex networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6.2 Graph analytics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

7 Conclusion and Future Work 31
7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Bibliography 33

Appendix 36
A.1 Edge overlap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36



Kivonat

A gráfok és gráfalgoritmusok az informatika több területén is használatosak. Gráfalgo-
ritmusokat alkalmaznak például a routerek hálózati forgalomirányításhoz, az operációs
rendszerek folyamatok ütemezéséhez, és a logisztikában is jelentős szerepük van. Ezen túl
gráfalgoritmusok segítségével számos olyan probléma megoldható, amely a tudomány több
területén (pl. biológia, társadalomtudományok) is felmerülnek.

Viszonylag újabb kutatási terület a hálózatkutatás, amely a gráfok topológiai sajá-
tosságaival foglalkozik. Gráfok jellemzésére számos metrika létezik, amelyek segítségével
jobban megérthetjük a gráfreprezentáció alapjául szolgáló rendszereket is. Hagyományosan
a hálózatkutatás homogén, típus nélküli gráfokkal foglalkozik, nem különbözteti meg egyes
csomópontok és élek típusát. Kevésbé kutatott terület az ún. multiplex gráfok (más néven
heterogén hálózatok) vizsgálata. Ezek többféle típusú élt különböztetnek meg lehetősé-
get adva komplexebb szemantikai kapcsolatrendszerek modellezésére és a gráfok mélyebb
elemzésére.

A metrikák egy csoportja a gráf klaszterezettségét írja le, amelyhez háromszögek
keresésére van szükség. Ez típus nélküli gráfok esetén is számításigényes művelet, amely
nem skálázódik jól, típusok bevezetése pedig még komplexebbé teszi a számításokat. Ennek
egy lehetséges megoldása az lehet, ha a gráfok szomszédossági mátrixát használjuk és
ezeken definiáljuk a metrikákat.

Dolgozatomban célom, hogy a szomszédossági mátrixokat felhasználva hatékonyabbá
tegyem néhány számításigényes multiplex metrika számítását. Ehhez implementáltam őket
a gráfok szomszédossági mátrixán mátrixműveleteket végezve, majd oknyomozói újságírók
által közzétett adathalmazokból (pl. Panama-iratok) származó gráfokon kiszámíttattam
őket.
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Abstract

Graphs and graph algorithms are used in many areas of computer science. Applications of
graph algorithms include routing in computer networks, scheduling processes in operating
systems, and they also play a major role in logistics planning. Furthermore, they solve
several problems that appear in other fields such as biology and social sciences.

Network science, which is a relatively recent area of research, targets the in-depth topolog-
ical analysis of graphs. Several metrics are defined to characterize graphs and to provide
a better understanding of the underlying systems represented by these graphs. Tradi-
tionally, network science studies exclusively homogeneous, untyped graphs and does not
distinguish between different types of nodes and edges. There is significantly less research
that involves multiplex graphs (also known as edge-labelled graphs, heterogeneous net-
works). These graphs can contain different types of edges, which makes it possible to
represent more complex systems of semantic connections and to conduct a deeper analysis
of the given graph.

A class of metrics aim to capture the clusteredness of graphs, which necessitates counting
the triangles in the graph. This is a resource-intensive operation and does not scale well
even in case of homogeneous graphs, and introducing types brings along additional com-
plexity. One possible solution to this problem is to use the adjacency matrix representation
of the graphs and define metrics using matrix operations.

In this report, my goal is to make the computation of some multiplex metrics more efficient.
For this, I implemented them using matrix operations on the adjacency matrices of these
graphs and evaluated them on graph datasets published by investigative journalists (e.g.
the Panama papers).
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Chapter 1

Introduction

Graphs are ubiquitous in many aspects of our lives today. For an example, we should
look no further than the internet, which uses graph algorithms in order to connect users
and transmit data between any two of its endpoints. Our social connections, the public
transportation system, the power grid, and even our brains can all be represented with
graphs. Therefore, understanding these systems and having techniques for analyzing them
has huge potential benefits. By being able to describe real-life networks accurately, we
can understand how they emerge and use the techniques to conduct predictive analysis on
them, e.g. forecast how communities form in social networks.

In the traditional approach of network science, systems are modelled as homogeneous
networks, consisting of a single node and edge type. However, real-life networks are often
more complex than this, as they tend to have different types of nodes and edges. Therefore,
a new body of research models systems as multiplex graphs and attempts to develop
techniques to analyze them. As this field is relatively new, there are no out-of-the-box
tools to carry out such analyses. Additionally, implementing such a tool poses a non-trivial
challenge as some of the metrics defined in multiplex networks have a high computational
complexity and are difficult to scale for large graphs.

During our work, we selected some promising multiplex graph metrics [32]. Then, we
translated them to the language of linear algebra. We experimented with different matrix
libraries and used them to implement the selected metrics. We then parallelized some
of these implementations and integrated them with the Graph Analyzer framework. To
conclude the work, we evaluated our implementations on a data set taken from the field
of investigative journalism and analyzed the scalability of the different approaches. The
structure of this report is as follows:

• In Chapter 2, we introduce the concepts that underpin our framework and present
some advanced graph data models, as well as the selected data set.

• In Chapter 3, we study the typed metrics selected for analysis and translate them
to the language of linear algebra.

• In Chapter 4, we present the technologies used for the implementation and how they
were used to compute the previously defined metrics.

• In Chapter 5, we analyze the results of the performance experiments.

• In Chapter 6, we present scientific studies related to our work.

• Chapter 7 concludes the report and provides plans for future work.
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Chapter 2

Preliminaries

2.1 Network science

In this section we introduce the basic concepts of graph theory as well as the foundations
of network science. Finally, we enumerate some of the fields of science in which network
science is commonly used.

2.1.1 Graphs

A graph or network, denoted G is a catalog of a system’s components which are called
nodes or vertices, denoted V , and the connections between them, named links or edges,
denoted E. These edges can be directed or undirected. A graph is directed if all of its edges
are directed and undirected if all of its edges are undirected. In both cases, an edge is
defined as (v, w) ∈ E where v, w ∈ V . In directed graphs v is the source node and w is the
target node of the edge.

Each node can be characterized by the number of nodes that it is connected with, which is
called its degree. In directed graphs, each node has an in-degree and out-degree, meaning
the number of incoming and outgoing edges of the given node.

We can also calculate the average degree of the nodes of each graph, which is defined as:

〈k〉 = 2e
n

where 〈...〉 denotes the average.

For directed graphs, the average in-degree and the average out-degree are the following:

〈kin〉 = 〈kout〉 = e

n

The degree distribution pk is defined as the probability that a randomly selected node in
the graph has degree k. As pk is a probability, it must be normalized:

∞∑
k=1

pk = 1

2



Figure 2.1: An example of a wedge Figure 2.2: An example of triangle

Network science is a field of research which focuses on understanding the graphs or net-
works in real-life systems and aims to model them through various structural properties.
In this report we will use the terms network and graph interchangeably.

2.1.2 Clustering coefficient

One of the important properties of graphs is how much their nodes tend to cluster together.
One way to measure this in simple graphs is through their clustering coefficient. In order
to define this metric, we first introduce two concepts: triangles and wedges.

A wedge is a set of three nodes of which two are connected to the third, and they may or
may not be connected to each other. If they are, they also form a triangle. Examples are
shown in Figure 2.1 and Figure 2.2, respectively.

Figure 2.3: An example graph for illustrating the calculation of
the clustering coefficient

In a simple untyped graph, the global clustering coefficient is defined in the following way:

CC = 3×Number of triangles in the graph
Number of wedges in the graph ,

where a wedge is a set of two edges that have a node in common. For the graph shown in
Figure 2.3,

CC = 6
9 = 2

3

3



In a simple graph, the local clustering coefficient LCC(v) measures the probability for a
given node in the graph, that the neighbours of a node v ∈ V are also connected to each
other. It is defined as the ratio of triangles containing a given node and the number of
wedges that are centered around the node. In the untyped case it can be calculated using
the following formula:

LCC(v) = 2ev
kv(kv − 1) ,

where ev denotes the number of connected pairs among the neighbours of v (each pair
counts once, i.e. (a, b) and (b, a) count as a single pair), and kv denotes the degree of v.
For the graph in Figure 2.3,

LCC(n1) = 2 · 2
4 · 3 = 1

3 , LCC(n2) = LCC(n3) = LCC(n4) = LCC(n5) = 1

2.1.3 Applications of network science

One of the most well-known examples of a network is the internet. It is an undirected
graph, with machines (such as routers, switches or servers) represented as nodes and
internet connections represented as links. Another common example is the WWW [14]
with webpages as vertices and links from one website to another as directed edges.

Networks can also be used to model the interactions and acquaintances between people.
With people represented as nodes, the links may be professional connections, friendships,
relationships or family connections. Social networks can be used to map these connections
and help us understand our social behaviour better.

Network Science

Physics

communities

citation 
networks

large-scale 
networks statistical 

mechanics

financial 
networks

WWW

internet human brain

spread of 
viruses

graph theory

route 
problems

Sociology

Banking and 
finance

Computer 
science

Sociology

Biology

Figure 2.4: Some applications of network science

Networks are very common in biology, too. An example of this is the human brain, which
consists of hundreds of billions of neurons which are connected to each other, but the
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links between them have not yet been mapped. For this reason, the human brain is one
of the least understood networks. Detailed maps of the human brain could allow us to
understand and cure numerous brain diseases, which would be a major scientific advance.

Network science plays a significant role in fighting terrorism [6, 29], one of the biggest
problems of the 21st century. Network thinking is used by various law-enforcement agencies
whose goal is to act against terrorist activities. Network representations are used to disrupt
the financial chains of such organizations as well as to understand the connections between
members and uncover their roles and capabilities.

In organizations, management tends to traditionally rely on the official chain of command
when making decisions. However, there is a growing recognition that informal networks
within an organization are worth taking into consideration as well. By mapping these
informal networks, and using them in management decisions, the organizations are able
to work more efficiently in several cases.

2.1.4 Network topologies

In this, we introduce some of the most well-known network topologies [6] that attempt
to model some of the networks that occur in real life, as well as describe the degree
distribution that they follow.

Random networks

A random network is a network in which the probability of any given pair of nodes being
connected is characterized by p, a probability that is uniform throughout the whole net-
work. One of the ways such a network can be obtained is by first starting with n isolated
nodes and iterating through each pair of nodes. For each pair, a random number between
0 and 1 is generated, and if this number is smaller than p, a link is created between them.
This model was introduced by Gilbert [17] in 1959. Another definition, used by Erdős and
Rényi [15] a year later, is that there is a given N number of nodes and a given L number
of links, which are placed between the nodes randomly.

Since in an actual real-life network the number of links rarely remains the same, and most
of the characteristics are easier to grasp using fixed probability, we chose to present the
former model.

The degree distribution pk of a random network follows the binomial distribution:

pk =
(
N − 1
k

)
pk(1− p)N−1−k.

Since real networks are sparse, meaning that 〈k〉 � N (where 〈k〉 is the average degree of
the network, as defined previously), the degree distribution is well-approximated by the
Poisson distribution:

pk = e−〈k〉
〈k〉k

k! .

The two distributions have a similar shape. One of the biggest advantages of using the
Poisson distribution as an approximation is that in this case, the degree distribution does
not depend on the size of the network, but only on the average degree of the network.

In real-life, networks often exhibit the so-called small-world phenomenon. This is a concept
that if we choose any two people on Earth, they can be connected by a path of six

5



acquaintances at most. In networks, this property means that if we pick two nodes from
the network, the path between them is always relatively short. This property tends to be
true for random networks as if we consider one node from the network, we can say that
there are 〈k〉d nodes at most at a distance d away. This means that for 〈k〉 = 1000, which is
a good estimation for the number of direct acquaintances an individual has, at a distance
of 3, there are already about a billion people.

To calculate the clustering coefficient of one node in such a network, we need to estimate
the expected number of links between the node’s ki neighbors. There are ki(ki − 1)/2
possible links between the neighbors of node i, so that the expected value of Li is the
following:

〈Li〉 = p
ki(ki − 1)

2 .

where p is the characterization probability.

Using this formula and the definition of clustering coefficient, the expected clustering
coefficient is

Ci = p = 〈k〉
N
.

This means that for a random network, the clustering coefficient is independent of the
given node’s degree, and also that the bigger the network is, the smaller the local clustering
coefficients of the nodes are.

By observation, the clustering coefficients are generally higher in real networks than this
formula predicts. This is one of the factors that motivates the Watts-Strogatz Model.

Watts-Strogatz Model

The model proposed by Watts and Strogatz [36] is an extension of the random network
model. In this model, we initially start with a ring of nodes, each node connected with
their immediate and next neighbor. With a probability p each link is rewired to a randomly
chosen node. The greater this probability is, the closer the network is to a random network.
At the start of the generation with a p = 0, 〈C〉 = 3/4 where p denotes the probability
that a given edge is rewired compared to the starting construction and C denotes the
average clustering coefficient in the graph. The clustering coefficient generally decreases
with a greater p, and the values seem to be more realistic than the random network model.

Scale-Free Networks

The scale-free network model [7, 3], introduced by Barabási and Albert in 1999, addresses
the observation that in real networks (unlike in random networks) it is a common phe-
nomenon that some of the nodes have a significantly larger degree than the average in the
network. These nodes are often referred to as hubs.

Scale-free networks follow a power-law distribution, which means the following:

pk ∼ k−γ

where γ is the degree exponent. If we take the logarithm of this formula, we get

ln pk ∼ γ ln k.

6



From this, the formula for the degree distribution of a scale-free network is the following:

pk = Ck−γ ,

where the constant C is determined so that the normalization condition
∞∑
k=1

pk = 1

holds.

2.2 Representing graphs as matrices

Graphs can be represented as matrices which are used by several graph algorithms and
can be used to perform various calculations. In this section, we present the basic concepts
of linear algebra and how graphs can be represented with matrices.

2.2.1 Basics of linear algebra

A matrix [26] S that has n rows and m columns and stores real numbers is denoted as:

S ∈ Rn×m

A square matrix is a matrix that has the same number of rows as columns i.e. n = m.

A vector is a matrix which has one column, i.e. m = 1.

In order to express graph operations in the language of linear algebra, we first summarize
the definitions of basic matrix operations. Addition of two matrices Q and R of the same
size n×m, denoted with S = Q+R is defined as the following:

Sij = Qij +Rij

for i = 1, ... , n and j = 1, ... ,m.

We define subtraction, denoted with S = Q−R, similarly:

Sij = Qij −Rij

Multiplying a matrix Q of size n×m by a scalar c, denoted with P = c ·Q is defined as:

Pij = c ·Qij

for i = 1, ... , n and j = 1, ... ,m.

For a matrix Q of size n×m, its transpose is denoted with Qᵀ and is defined as a matrix
of size m× n in which:

Qᵀ
ji = Qij

for i = 1, ... , n and j = 1, ... ,m.

For matrices Q of n × m elements and R of m × o elements, the matrix multiplication
operation (also known as the matrix multiplication) is denoted with P = Q · R and is

7



defined as:
Pij =

m∑
k=1

Qik ·Rkj ,

for i = 1, ... , n and j = 1, ... , o. The resulting matrix P has a dimension of n×m. A special
case of matrix product is multiplying a matrix by a column vector of ones, which results
in a vector containing the sum of each row.

The matrix power operation denoted Am where m ∈ N, is defined as A multiplied by itself
m times. Because of the nature of matrix multiplication, for m ≥ 2, this operation is only
applicable to square matrices.

The element-wise multiplication (also known as the Hadamard-product) of two matrices Q
and R both of size n×m, is denoted with H = Q�R and defined as:

Hij = Qij ·Rij

for i = 1, ... , n and j = 1, ... ,m. We define element-wise division, denoted with Q � R
similarly to element-wise multiplication.

The diagonal vector of a matrix is defined the following way. Given a square matrix M of
n× n elements, function diag−1 (M) returns a vector of n elements, containing the values
of the main diagonal of M .

2.2.2 Adjacency matrices

Let G be a graph with a set of nodes V and set of edges E of sizes |E| = e and |V | = n
respectively, that does not contain any multiple edges. If G is undirected, its adjacency
matrix A is defined as a square matrix of size n where the rows and columns correspond
to the nodes of the graph and:

aij = 1

if there is an edge between nodes i and j in the graph, aij = 0 otherwise. In this case the
matrix is symmetrical, meaning that aij = aji for ∀i, j ∈ V and Aᵀ = A.

In case of directed graphs, the rows of A represent the source nodes and the columns
correspond to the target nodes. In this case,

aij = 1

if there is a directed edge with a source node i and target node j in the graph, aij = 0
otherwise.

As we are generally working with simple graphs, meaning that they are undirected and
do not contain any loop or multiple edges, their adjacency matrices are symmetrical and
diag−1 (A) = #»0 generally holds for them. They are also generally sparse matrices as the
number of edges in these graphs are comparable to the number of nodes.

2.3 Advanced graph data models

As we saw in the previous sections, graph theory and network science with the traditional
graph model approach can successfully model concepts and real-life systems. In real-life
networks, however, there are concepts that these approaches are unable to grasp. As an

8



attempt to model these concept, we introduce two more advanced graph data models:
multiplex graphs and property graphs.

2.3.1 Multiplex graphs

Multiplex graphs are graphs in which edges have types. Multiplex graphs are defined as
G = (V,E, T ) where V denotes the set of nodes, E denotes the set of edges and T denotes
the set of types. An edge can be defined with (v, w, α) ∈ E, where v, w ∈ V , α ∈ T .

This construction can be thought of as a graph having different layers, as shown in Fig-
ure 2.5.

Figure 2.5: A multiplex graph with two edge types

Similarly to the traditional graph model, multiplex graphs can be directed or undirected.
One of the most essential ones is the typed degree, which is defined as the number of
neighbors of a given node with respect to a given type. Formally:

Degree (v, α) =
∣∣{w ∈ V | Cd(v, w, α)

}∣∣ .
where Cd(v, w, α) means that v and w are connected through an edge typed α, i.e.
(v, w, α) ∈ E.

We can represent multiplex graphs with a set of adjacency matrices, each matrix corre-
sponding to a type of the graph. Each of these matrices Aα is defined similarly to the
untyped case:

aαij = 1

if there is an edge of type α between nodes i and j in the graph, aαij = 0 otherwise, where
α ∈ T .

2.3.2 Property graphs

Property graphs are a generalized variant of the multiplex graph model. In property graphs,
similarly to the traditional graph concept, there are nodes and edges connecting them.
Both edges and nodes may have properties, i.e. a set of key-value pairs to characterize
them in more detail. In this model, edges are generally directed.
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Property graphs can be stored in graph databases. As of 2018, Neo4j1 is arguably the most
widely used of such databases2.

2.4 Investigative journalism

Investigative journalism has been gaining increasing attention in the recent years with
the leak of millions of offshore documents, first in 2015, called the Panama Papers. This
leak consisted of 11.5 million documents containing detailed financial and client-attorney
information about over 200 000 offshore entities. Some of these documents date back to
the 1970s and are taken from the Panamanian law firm and corporate service provider
Mossack Fonseca. The records were obtained from an anonymous source by the German
newspaper Süddeutsche Zeitung, which shared them with the International Consortium of
Investigative Journalists (ICIJ) [21]. The ICIJ then shared them with a large network of
international partners, including the Guardian [18] and the BBC [1]. They then carried out
investigations that revealed information about many world leaders and their connection to
offshore entities which were mostly used for tax avoidance. New stories about the content
of these papers are continuously being released ever since.

Another notable data leak which also involves a large amount of data, happened two
years later, in 2017. This set of documents are called the Paradise Papers. They originate
from legal firm Appleby, the corporate services providers Estera and Asiaciti Trust, and
business registries in 19 tax jurisdictions and is composed of 13.4 million documents with
a volume of approximately 1.4 terabytes. They were also acquired by Süddeutsche Zeitung
and are also a source of many news stories about famous individuals and numerous large
corporations and their connections to offshore entities.

Both the Panama and the Paradise Papers are available in a property graph representation
on Neo4j’s website3, with a schema shown in Figure 2.6. The former consists of approx.
560k nodes and 670k edges, while the latter is a considerably larger data set consisting of
approx. 1.9 million nodes and 3.2 million edges.

Figure 2.6: Common graph schema for the Panama and the Par-
adise Papers

1https://neo4j.com/
2https://db-engines.com/en/ranking_trend/graph+dbms
3https://neo4j.com/blog/icij-releases-neo4j-desktop-download-paradise-papers/
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The nodes of the graph represent 5 different concepts:

• Officer: a person or company who plays a role in an offshore entity.

• Intermediary: go-between for someone seeking an offshore corporation and an off-
shore service provider — usually a law-firm or a middleman that asks an offshore
service provider to create an offshore firm for a client.

• Entity: The offshore legal entity. This could be a company, trust, foundation, or
other legal entity created in a low-tax jurisdiction.

• Address: postal address as it appears in the original databases.

• Other: additional information items.

The possible edges between these nodes can be found in the schema graph. All of these
edges are directed. In Figure 2.7 there is an example for a graph that follows the schema

Figure 2.7: Example graph using the schema of the Panama and
Paradise data sets

of the data set. This graph is not actually a subset of the data set, but is a simplification
of parts of the original graph, for the sake of demonstration. It contains 8 nodes with 10
directed edges connecting them. In order to be able to carry out an analysis, we treat the
graph as an undirected multiplex graph, i.e. omit the directions of the edges and the types
of nodes, along with the properties of both nodes and edges.
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Chapter 3

Multiplex Graph Metrics

In this chapter we introduce some metrics for multiplex graphs. We present the naïve
approach to computing them and translate them to the language of linear algebra. Addi-
tionally, we discuss the related performance considerations.

3.1 Typed local clustering coefficient

Clustering coefficient, defined previously, when calculated for multiplex graphs does not
fully capture the nature of emerging clusters in the graph, as there could be an added
meaning in the types of the edges in a triangle and whether they are the same or not. For
this reason, we study two variants of the typed clustering coefficient [8, 32].

Typed clustering coefficient 1

The first variant considers the triangles which have a wedge of two edges of one type
centered around the given node and a third edge that has a different type. Formally:

TCC1(v) =

∣∣∣u,w, α, α′ | Cd(v, u, α) ∧ Cd(v, w, α) ∧ Cd(u,w, α′) ∧ α 6= α′
∣∣∣∣∣u,w, α | Cd(v, u, α) ∧ Cd(v, w, α)

∣∣∣
In the example graph, Figure 3.1 which consists of five nodes (n1, ... , n5), connected by
edges of three types (type1, ... , type3):

TCC1(n1) = 0.5,

As the only wedge consisting of edges of the same type, containing node n1 is (n1, n2, n3)
which could be closed with an edge with a type of either type2 or type3, with one of which
it is closed.

When calculating this metric for each node of a graph, the naïve approach is to iterate
through the nodes and for each node, check for every pair of neighbours that are connected
to the node with a given type of edge, if they are connected with an edge that suits the
definition. For larger graphs, this has a large computational complexity.

12



Figure 3.1: Example graph for demonstrating the calculation of
the typed clustering coefficient

We can also define this metric using the adjacency matrix representation. The adjacency
matrices of the graph in Figure 3.1 are the following:

Atype1 =


0 0 1 1
0 0 0 0
1 0 0 0
1 0 0 0

 , Atype2 =


0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0

 Atype3 =


0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0


For node vi, which corresponds to the ith row and column of the adjacency matrix, in
terms of the elements of the adjacency matrices, the definition is as follows [8]:

TCC1(vi) =
∑
α

∑
α′ 6=α

∑
i 6=j,m6=i

(
a

[α]
ij a

[α′]
jm a

[α]
mi

)
(M − 1)

∑
α

∑
i 6=j,m6=i

(
a

[α]
ij a

[α]
mi

) =
∑
α

∑
α′ 6=α

∑
i 6=j,m6=i

(
a

[α]
ij a

[α′]
jm a

[α]
mi

)
(M − 1)

∑
α k

[α]
i

(
k

[α]
i − 1

)
where k[α]

i denotes the typed degree of node i with respect to type α and M denotes the
number of types in the graph. k[α]

i ·
(
k

[α]
i − 1

)
is essentially the number of ways two edges of

the given type (i.e. wedges), connected to a given node can be selected, each pair counted
twice.

k
[α]
i ·

(
k

[α]
i − 1

)
= 2 ·

(
k

[α]
i

2

)
For each of these variants, if the calculations involve division by zero, the corresponding
node’s clustering coefficient is regarded as 0.

From this, a vector containing the clustering coefficient for every node in the graph can
be obtained with the following formula:

TCC1 =
∑
α′ 6=α diag−1 (Aα ·Aα′ ·Aα)

(M − 1) ·
∑
α

[(
Aα ·

#»1
)
�
((
Aα ·

#»1
)
− #»1

)]

13



where
(
Aα ·

#»1
)
is essentially a vector containing the degree of each node with respect to

type α.

Let’s discuss the numerator first. For the example in Figure 3.1:

Atype1 ·Atype2 ·Atype1 =


2 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 , Atype1 ·Atype3 ·Atype1 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0



Atype3 ·Atype1 ·Atype3 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 , Atype2 ·Atype3 ·Atype2 =


0 1 0 0
1 0 1 0
0 1 0 0
0 0 0 0



Atype2 ·Atype1 ·Atype2 =


0 0 0 0
0 2 1 1
0 1 0 0
0 1 0 0

 , Atype3 ·Atype2 ·Atype3 =


0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0


The sum of their diagonal vectors is the following:∑

α′ 6=α
diag−1 (Aα ·Aα′ ·Aα) =

[
2 2 0 0

]ᵀ

Calculating the product of three adjacency matrices, however, is computationally complex.
The reason for this is that although all of them are generally sparse matrices, the product
of two of them can already get quite dense and multiplying that by a third one can
involve many arithmetic multiplication operations. Intuitively, it also seems unnecessary
to calculate the whole matrix when only its diagonal is needed. It can also be obtained
the following way, using element-wise multiplication:

diag−1 (Aα ·Aα′ ·Aα) = Aα ·Aα′ �Aα ·
#»1

In this formula, the element-wise product is essentially a masking as all of the elements of
adjacency matrices are binary. The multiplication with #»1 sums the elements of each row.
The interpretation of this formula is that we obtain the wedges for each node with the
first multiplication, then filter out the ones that are closed by a third edge, by masking
with the third adjacency matrix [5].

For the example graph:

Atype1 ·Atype2 �Atype1 ·
#»1 =

[
2 0 0 0

]ᵀ
, Atype1 ·Atype3 �Atype1 ·

#»1 =
[
0 0 0 0

]ᵀ
Atype3 ·Atype1 �Atype3 ·

#»1 =
[
0 0 0 0

]ᵀ
, Atype2 ·Atype3 �Atype2 ·

#»1 =
[
0 0 0 0

]ᵀ
Atype2 ·Atype1 �Atype2 ·

#»1 =
[
0 2 0 0

]ᵀ
, Atype3 ·Atype2 �Atype3 ·

#»1 =
[
0 0 0 0

]ᵀ
which are the same values as we obtained in the diagonals of the matrices computed with
two matrix multiplications.

In the denominator:

Atype1 ·
#»1 =

[
2 0 1 1

]ᵀ
Atype2 ·

#»1 =
[
1 2 2 1

]ᵀ
Atype3 ·

#»1 =
[
1 1 0 0

]ᵀ
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After performing the operations given in the formula, the final result is:

TCC1 =
[
0.5 0.5 0 0

]ᵀ
Typed clustering coefficient 2

The second variant of typed clustering coefficient considers triangles that have three dif-
ferent types of edges. Formally:

TCC2(v) =∣∣∣u,w, α, α′, α′′ | Cd(v, u, α) ∧ Cd(v, w, α′) ∧ Cd(u,w, α′′) ∧ α 6=α′ ∧ α′ 6=α′′ ∧ α 6=α′′
∣∣∣∣∣∣u,w, α, α′ | Cd(v, u, α) ∧ Cd(v, w, α′) ∧ α 6=α′

∣∣∣
For the example graph in Figure 3.1:

TCC2(n1) = 1
4 = 0.25,

as there is only one triangle with three different edges, while the edges of n1 could be
completed into one in four possible ways.

The formula for each node vi in terms of adjacency matrix elements is the following [8]:

TCC2(vi) =
∑
α

∑
α′ 6=α

∑
α′′ 6=α,α′

∑
i 6=j,m6=i(a

[α]
ij a

[α′′]
jm a

[α′]
mi )

(M − 2)
∑
α

∑
α′ 6=α

∑
i 6=j,m6=i(a

[α]
ij a

[α′]
mi )

Translating this to operations with the whole adjacency matrices, the numerator can
easily be interpreted similarly to the first definition. However, the denominator cannot be
simplified as in the first case. This is because we are not looking for wedges consisting of
edges of the same type. This way, we cannot calculate the number of these wedges just
using the typed degrees, as unlike edges of the same type, edges of different types may
overlap. To work around this issue we can calculate the number of wedges in a similar way
as the first definition, then subtract the ones where there is an overlap, determined with
the expression

(
Aα �Aα′ · #»1

)
. From this, the formula is the following:

TCC2 =
∑
α

∑
α′ 6=α

∑
α′′ 6=α,α′ diag−1 (AαAα′Aα′′)

(M − 2) ·
∑
α

∑
α′ 6=α

[((
Aα ·

#»1
)
�
(
Aα′ · #»1

))
−
(
Aα �Aα′ · #»1

)]
Similarly to the first definition, we can substitute the expression in numerator to a form
that uses element-wise multiplication.

TCC2 =
∑
α

∑
α′ 6=α

∑
α′′ 6=α,α′ Aα ·Aα′ �Aα′′ · #»1

(M − 2) ·
∑
α

∑
α′ 6=α

[((
Aα ·

#»1
)
�
(
Aα′ · #»1

))
−
(
Aα �Aα′ · #»1

)]
Using this formula for our example graph, we get the following results:

TCC2 =
[
0.25 1 0.5 0

]ᵀ
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This result shows that while there is a correlation between TCC1 and TCC2 values, they
uncover different types of structural features. For example, the TCC1 value of node n3 is
0, but its TCC2 value is 0.5.

Performance considerations

The calculation of clustering coefficients is quite a challenging task. Based on the clas-
sification of [19], our approach falls under the umbrella of exact counting of triangles,
performing local counting for each node in the graph.

In order to grasp the complexity of calculating this metric, we need to look at the multitude
of problems that it is related to, some of them already posing a challenge. The most
basic problem in this group is globally counting triangles in a graph, without any kind
of enumeration, which is already challenging [19], and is often calculated for large graphs
using approximation. Local triangle counting brings added complexity, as it introduces
the need for triangle enumeration. The calculation of the local clustering coefficient is
even more complex as it requires local triangle count as well as counting the possible
triangles (wedges) in a graph. Introducing types poses a different kind of complexity, as
it necessitates to enumerate triangles with a specific property, therefore both of the typed
clustering coefficient definitions are complex operations, the second one being slightly more
problematic with the combination of 3 types in a triangle.

3.2 Edge overlap

Edge overlap is the conditional probability of the existence of an edge between nodes vi
and vj of type α′, given that there is and edge between these two nodes of type α. Formally,
the definition is the following [8]:

P
(
α′
∣∣∣α) =

∣∣∣a, b | Cd(a, b, α) ∧ Cd(a, b, α′)
∣∣∣∣∣∣a, b | Cd(a, b, α)

∣∣∣
This metric can directly be translated to operations with the elements of the adjacency
matrices:

P
(
a

[α′]
ij

∣∣∣a[α]
ij

)
=
∑
ij a

[α′]
ij a

[α]
ij∑

ij a
[α]
ij

)

where aαij denotes the existence of an edge between ai and aj of type α. We refer to α as
the conditional type. Clearly, edge overlap is only defined for multiplex graphs.

As we are working with undirected graphs, the adjacency matrices are symmetrical, mean-
ing that a[α]

ij = a
[α]
ji , therefore the formula can be expressed in the following way:

P
(
a

[α′]
ij

∣∣∣a[α]
ij

)
=

(
(Aα ·Aα′) · #»1

)ᵀ
· #»1(

Aα ·
#»1
)ᵀ
· #»1

which is essentially the sum of all elements in the product of the two matrices, divided by
the sum of all of the elements of Aα.
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For the graph in Figure 3.1, the only overlap that ever occurs is between type2 and type3,
between the nodes n1 and n2. For these two types:

P
(
v

[type3]
ij

∣∣∣v[type2]
ij

)
= 1

3

and
P
(
v

[type2]
ij

∣∣∣v[type3]
ij

)
= 1.

Between every other pair, the edge overlap values are 0.

Performance considerations

In terms of performance, as we will demonstrate in Chapter 5, the calculation of edge
overlap with the naïve approach is relatively quick, therefore it might not be efficient to
introduce matrix multiplications.

17



Chapter 4

Implementation

For the implementation of the different algorithms for the selected metrics, we used Graph
Analyzer1 [32], which was developed at the Department of Measurement and Information
Systems and the MTA-BME Lendület Research Group on Cyber-Physical Systems.

For the naïve implementation the edges and nodes of the graph are stored in Java Col-
lections. For each type, all of the edges are stored in an ArrayListMultiMap from the Google
Guava library2. These data structures are stored in a HashMap, where the keys are the types
of the graph.

4.1 Matrix libraries

UJMP ojAlgo EJML
License LGPL MIT Apache
Version 0.3.0 46.3.0 0.36

Latest release 2015 2018 2018
Stores sparse matrices in CRS/CCS 7 7 3

Stores sparse matrices in LIL 7 3 7

Stores sparse matrices in DOK 3 3 7

Table 4.1: Comparison of matrix libraries for Java

In general, the adjacency matrix of graphs is quite sparse, hence, a crucial prerequisite
for the implementation is to use a library that is able to efficiently store and perform
operations on large sparse matrices.

Matrix density is defined in the following way:

Density = Number of non-zero elements
n ·m

where n and m denote the number of rows and columns of the matrix. In the Paradise
Papers, the most dense adjacency matrix has a density of approximately 10−6, while the
sparsest type has an adjacency matrix with a 10−10 density.

1https://github.com/ftsrg/graph-analyzer/
2https://github.com/google/guava
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For the algorithms using adjacency matrices, the following open-source libraries were used:
Universal Java Matrix Package (UJMP)3, Optimatika Java Algorithms (ojAlgo)4 and
Efficient Java Matrix Library (EJML)5. Table 4.1 shows a comparison of the selected
libraries. It is worth pointing out that out of the three selected libraries, only EJML
has support for advanced sparse matrix storage formats such as CRS (Compressed Row
Storage) or CCS (Compressed Column Storage) [30], while the other libraries use the basic
LIL (List of Lists) and DOK (Dictionary of Keys) representations. It is also worth noting
that the UJMP library is no longer maintained and its latest version was released more
than 3 years ago.

4.2 Clustering coefficient

In this section we present the details of the different implementations of typed clustering
coefficient along with code snippets that demonstrate how the chosen libraries were used.
The code snippets of the edge overlap implementations can be found in Section A.1. These
examples are taken from the implementation of the first definition and they mainly focus
on the way that the wedges and triangles in the graph are counted, as those are the main
challenges. For the sake of simplicity, in these snippets some variable initializations are
not detailed but are required in order to understand the algorithms. These variables are
the following:

• types: List of types in the graph

• adjacencyMatrices: A map of types and adjacency matrices (the appropriate type
for the implementation in each example)

• n: The number of nodes in the graph

• types: Collection of types in the graph

• typePairs: Collection of all of the possible pairs of the types in the graph (excluding
pairs of identical types)

ojAlgo In the ojAlgo implementation of TCC1, shown in Listing 2, we can see that
some of the matrices are stored as dense matrices (in this example the vectors are stored
this way), the adjacency matrices are stored as sparse matrices. It can also be noted
that some of the operations provide the result as the return value of the method that
it is performed by (e.g. in line 18), while some of them require an empty matrix to be
initialized beforehand and when the operations are defined, they are explicitly passed on
to the previously initialized empty matrix. This makes it possible to chain operations and
evaluate them in a lazy way, and not to occupy space unnecessarily.

UJMP In the UJMP example in Listing 3 we can see that the only way to perform
operations is by calling the corresponding method on the matrix object and the result is
given by the return value. This way of computation makes the API more intuitive and the
code more readable.

3https://ujmp.org/
4http://ojalgo.org/
5http://ejml.org/
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1 long numberOfPossibleConnections = 0;
2 for (T type1 : getTypes(node)) {
3 numberOfNeighbors = getNeighbors(node, type1).size();
4 numberOfPossibleConnections += numberOfNeighbors * (numberOfNeighbors - 1);
5 for (N neighbor1 : getNeighbors(node, type1)) {
6 for (N neighbor2 : getNeighbors(node, type1)) {
7 if (neighbor1 != neighbor2) {
8 Set<T> types = getTypes(neighbor1);
9 for (T type2 : types) {

10 if (type1 != type2) {
11 if (isAdjacentUndirected(neighbor1, neighbor2, type2)) {
12 interConnected++;
13 }
14 }
15
16 }
17 }
18 }
19 }
20 double tcc1 = (double) interConnected / (double) numberOfPossibleConnections;
21 }

Listing 1: Naïve implementation of TCC1 using the edge list representation

1 MatrixStore triangles = PrimitiveDenseStore.FACTORY.makeZero(n, 1);
2 PrimitiveDenseStore wedges = PrimitiveDenseStore.FACTORY.makeZero(n, 1);
3
4 PrimitiveDenseStore ones = PrimitiveDenseStore.FACTORY.makeZero(n, 1);
5 ones.operateOnAll(ADD, 1).supplyTo(ones);
6
7 for (T type1 : types) {
8 SparseStore<Double> A = adjacencyMatrices.get(type1);
9 for (T type2 : types) {

10 if (type1 != type2) {
11 SparseStore<Double> B = adjacencyMatrices.get(type2);
12 SparseStore<Double> C = SparseStore.PRIMITIVE.make(n, n);
13
14 SparseStore<Double> AB = SparseStore.PRIMITIVE.make(n, n);
15 A.multiply(B).supplyTo(AB);
16
17 AB.operateOnMatching(MULTIPLY, A).supplyTo(C);
18 triangles = C.multiply(ones).add(triangles);
19 }
20 }
21 }

Listing 2: ojAlgo implementation of TCC1

EJML Contrary to the other two matrix libraries, in the EJML example shown in
Listing 4, a matrix with the appropriate size and type needs to be pre-initialized and
there are interfaces dedicated for performing operations, where both the operands and the
empty matrix to be filled with the results are provided. It is also interesting to note that
sparse matrices are initially stored in a data structure that only makes it possible to build
up the matrix from triples of the following format: 〈row, column, value〉. Once all of the
elements have been added, it can be converted to a type which does not allow any further
modifications. The reason for this is so that it can build up the data structure efficiently
in a compressed format, to be used for performing operations. An example can be seen in
Listing 5, where an identity matrix of size n = 1000 is created and is then converted from
triplets to a sparse matrix and is multiplied by itself.
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1 Matrix triangles = SparseMatrix.Factory.zeros(n,n);
2 Matrix wedges = SparseMatrix.Factory.zeros(n, 1);
3 for (T type1 : types) {
4 Matrix A = adjacencyMatrices.get(type1);
5 for (T type2 : types) {
6 if (type1 != type2) {
7 Matrix B = adjacencyMatrices.get(type2);
8 triangles = triangles.plus(A.mtimes(B).mtimes(A));
9 }

10 }
11 Matrix degreeVector = A.sum(Calculation.Ret.NEW, 1, false);
12 wedges = wedges.plus(degreeVector.times(degreeVector.minus(1)));
13
14 }

Listing 3: UJMP implementation of TCC1

1 SimpleMatrix triangles = new SimpleMatrix(n, 1);
2 SimpleMatrix wedges = new SimpleMatrix(n, 1);
3 for (T type1 : types) {
4 DMatrixSparseTriplet tripletsA = adjacencyMatrices.get(type1);
5 DMatrixSparseCSC A = ConvertDMatrixStruct.convert(tripletsA, (DMatrixSparseCSC) null);
6 for (T type2 : types) {
7 if (type1 != type2) {
8 DMatrixSparseTriplet tripletsB = adjacencyMatrices.get(type2);
9 DMatrixSparseCSC B = ConvertDMatrixStruct.convert(tripletsB, (DMatrixSparseCSC) null);

10 DMatrixSparseCSC AB = new DMatrixSparseCSC(n, n, 0);
11 DMatrixSparseCSC ABA = new DMatrixSparseCSC(n, n, 0);
12 ImplSparseSparseMult_DSCC.mult(A, B, AB, null, null);
13 CommonOps_DSCC.elementMult(AB, A, ABA, null, null);
14 DMatrixRMaj rowSum = new DMatrixRMaj(n, 1);
15 CommonOps_DSCC.sumRows(ABA, rowSum);
16 triangles = triangles.plus(SimpleMatrix.wrap(rowSum));
17 }
18 }
19 DMatrixRMaj degreeVector = new DMatrixRMaj(n, 1);
20 CommonOps_DSCC.sumRows(A, degreeVector);
21 SimpleMatrix simpleDegreeVector = SimpleMatrix.wrap(degreeVector);
22 wedges = wedges.plus(simpleDegreeVector.elementMult(simpleDegreeVector.minus(1)));
23 }

Listing 4: EJML implementation of TCC1

4.2.1 Parallelization

To parallelize the computation, we used the list of types and type pairs. The number of
wedges are calculated for each type, the number of triangles are calculated for pairs of
types. The fact that these calculations are done by types and type-pairs and they do not
rely on each other or modify any of their common resources, made it possible to parallelize
the computation. It was implemented using the Stream API of Java 8 [20].

For the second variant of the typed clustering coefficient, the parallelization is done along
sets of three types for triangle calculation and type pairs for wedge calculation.

4.2.2 Testing

To test the different approaches, we implemented unit tests on 27 different graphs, which
include various typed graph motifs. All implementations presented in this report success-
fully pass all tests.
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1 int n = 1000;
2 DMatrixSparseTriplet triplets = new DMatrixSparseTriplet(n, n, n);
3 for (int i = 0; i < n; i++) {
4 triplets.addItem(i, i, 1);
5 }
6 DMatrixSparseCSC M = ConvertDMatrixStruct.convert(triplets, (DMatrixSparseCSC) null);
7 DMatrixSparseCSC MM = new DMatrixSparseCSC(n, n, 0);
8 ImplSparseSparseMult_DSCC.mult(M, M, MM, null, null);

Listing 5: Building a matrix in EJML

1 SimpleMatrix wedges = typeList.stream().parallel().map(x -> countWedgesEjmlEw(x, adapter))
2 .reduce(new SimpleMatrix(n,1),(a, b) -> a.plus(b));
3 SimpleMatrix triangles = typePairs
4 .stream().parallel().map(x -> countTrianglesEjmlEw(x.get(0), x.get(1), adapter))
5 .reduce(new SimpleMatrix(n,1), (a, b) -> a.plus(b)
6 );

Listing 6: Parallelized EJML implementation using the Stream API

4.2.3 Visualization and loading the graph

To load the graphs stored in comma-separated values (CSV) into the Graph Analyzer,
we used the Super CSV6 library. After the execution of the implementations, we used the
same library to output both the performance results and the metric values to CSV files.
We then implemented a tool in R, using the ggplot27 library to visualize the results, as it
is shown in Figure 4.1.

Graph Analyzer

graph.csv

perf-metrics.csv

graph-metrics.csv

Performance 
visualization

Metric 
visualization

Figure 4.1: Workflow of the analysis

6http://super-csv.github.io/
7https://ggplot2.tidyverse.org/
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Chapter 5

Evaluation

In this chapter we present a comparison of the different implementations in terms of
performance and scalability, as well as analyze the data set using these calculated metrics.

5.1 Performance and scalability

First, we present the setup of performance experiments that we carried out to benchmark
different approaches.

5.1.1 Performance measurement setup

For the evaluation of performance, the computations were run on 10 subsets of the data
and the whole data set. The sampling was done in terms of the number of the edges.
To obtain the subsets, the number of edges was divided by exponents of 2, the number
obtained this way was the number of edges randomly selected to be a part of the subset.
The set of nodes were obtained by including all the nodes that were parts of the selected
edges. In total, this resulted in 11 graphs which we denote by the scale factor, −10 ... 0,
referring to the exponent of 2 that was used as the ratio of the subset and the original
graph. For instance, the subset with a scale factor of −10 has approximately 5000 nodes
and 3000 edges, the one of scale factor −5 has approx. 105 000 nodes and 100 000 edges,
and the whole data set (with a scale factor of 0) has around 1.9 million nodes and 3.2
million edges.

Each configuration was executed 3 times, of which the median was used for the analysis.
The execution times were measured using Java’s System.currentTimeMillis() method.
All of the computations were performed with 64 GB of heap memory and 24 CPU cores
of an Intel Xeon Platinum 8167M CPU running at 2.00GHz. The system was running the
Ubuntu 18.04.1 operating systems and Oracle JDK 8 (version 1.8.0u181).

5.1.2 Typed clustering coefficient 1

For this metric, in addition to the naïve edge-list approach, we implemented two matrix-
based algorithms for each of the matrix libraries: one that uses two matrix multiplications
to count triangles (denoted with MMM ), and one that uses one matrix multiplication and
one element-wise multiplication (denoted with EW ).
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Figure 5.1: TCC1 performance results

In Figure 5.1 it can be seen that the implementations using EJML had the best perfor-
mance at every scale factor and they both also scaled well, with no significant difference
between the element-wise version and the one with two matrix multiplications. They were
also the only two single-threaded implementations where the calculations did not exceed
the timeout.

Interestingly, the ojAlgo implementations seemed to scale well for smaller subsets but
began to significantly degrade for scale factors larger than −3 and exceeded the timeout
at scale factor −1.

The implementations using UJMP had the worst performance, the execution time for the
smallest subset is comparable of that of the EJML implementations for the whole data
set. It is worth pointing out that UJMP implementation is most out-of-date of the three
Java libraries (see Section 4.1).

For the parallel implementations of the metric, we used the element-wise definition and
the two better-performing matrix libraries from the single-threaded one. As it is shown
in Figure 5.2, parallelization made an improvement in both of them, however, the ojAlgo
implementation still became significantly worse in terms of scalability for scale factors
larger than −3.

The improvement is not as significant as we might expect it to be when switching from
one single thread to multiple threads. One of the reasons for that is that there are types
which are more sparse in general and pairs of types which have less edges in common.
For these, the threads finish quickly while for more dense and overlapping types, matrix
multiplications are more time consuming. Therefore, these calculations are unable to utilize
the CPU cores to their full capacity.

5.1.3 Typed clustering coefficient 2

For this metric, we again used the edge list implementation as a baseline and took the
two better-performing matrix libraries and implemented a version that uses element-wise
multiplication (EW ) and one that uses two matrix multiplications (MMM ) for each of
them.
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Figure 5.2: TCC1 parallel implementation performance results
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Figure 5.3: TCC2 performance results

The results are shown in Figure 5.3. Similarly to TCC1, there was no significant difference
in terms of performance between the MMM and the EW implementations. Also similarly
to TCC1, the EJML implementations had the best performance by far.

Interestingly, in this case, the edge list implementation performed slightly better than
for TCC1. This might be because the wedges that the first definition considers are more
common in this data set than the ones counted by the second definition.

The ojAlgo implementations are comparable to the UJMP implementations and seem to
scale well for smaller subsets but similarly to the first definition, after the computations
on the scale factor −3 data set, the execution time significantly increases.

5.1.4 Edge overlap

The results of the performance experiments of the edge overlap are shown in Figure 5.5.
It is clear that neither of the implementations using matrix libraries was able to signifi-
cantly outperform the edge-list implementation used as a baseline. Although the EJML
implementation was slightly better in some cases, it might not be worth trading off the
simplicity of the algorithm for a minor performance improvement.
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Figure 5.4: TCC2 parallel implementation performance results

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●
●

10

100

1000

10000

100000

−10
5k
3k

−9
10k
6k

−8
17k
12k

−7
29k
25k

−6
53k
50k

−5
105k
100k

−4
222k
200k

−3
456k
399k

−2
709k
798k

−1
1.3M
1.6M

0
1.9M
3.2M

Scale factor [number of nodes/edges]

R
un

tim
e 

[m
s] Library

●

●

●

EDGELIST

EJML

OJALGO

Figure 5.5: Edge overlap performance result

5.1.5 Loading the graphs
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Figure 5.6: Load times of the graph with different libraries
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We performed measurements on how much time it took for each of the graph represen-
tations to load each of the subsets of the graph separately. Similarly to the previous
performance tests, this measurement has been carried out 3 times and the median time of
each of the runs were used for assessment. The results are shown in Figure 5.6. For most
of the cases it can be observed that there is a trade-off between the load times and the
performance of the matrix operations, as the better-performing libraries take more time to
store the matrices and vice versa. This is not surprising, as it adds complexity to building
the matrices, to store them in a way that makes it possible to perform operations efficiently
on them. For this reason, there is not a clear best among these libraries and depending
on the properties, the size of the data set and the nature and number of operations to
perform, the ideal choice can vary.

Highlights of observations

One of the main findings is that the matrix-based technique for calculating graph metrics
is a feasible approach. However, there are certain trade-offs to take into consideration,
such as the load time of the matrices. Another factor is the development effort, as the
edge-list representation is trivial while the linear algebraic approach is not intuitive. The
lack of all-around high-performing libraries for Java is also a key issue.

5.2 Multiplex Graph Analysis

In this section we present the results of the calculated metrics and carry out an analysis
based on them.

5.2.1 Typed clustering coefficient

The typed clustering coefficient values of our data set are shown on a histogram in Fig-
ure 5.7. In this chart we can see that for both of the variants, for the significant majority
of nodes the value is 0. This means that there are not many triangles in the graph that
consist of two or three different types.

We can also observe that the values for typed clustering coefficient 2 tend to be lower
than the values of the first variant, meaning that there are probably more triangles of two
different types in the graph than triangles of three different types. This is especially true
considering that a triangle of three different types increases the TCC2 of all three nodes
that it involves, unlike a triangle of two different types which only increases the TCC1
value of one node, the node which the wedge of two identical types is centered around.

5.2.2 Edge overlap

The result of the edge overlap calculations is shown as a heat map in Figure 5.8. The
conditional types, which were previously introduced in Section 3.2 can be found on the x
axis. The colour of each square is determined by the probability that on condition that
there is an edge between two nodes of the conditional type, there is also one of the given
type.

The figure shows that many of the types have very few or no overlapping edges. In the
diagonal, trivially all of the elements has a value 1, as every type perfectly overlaps with
itself.
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Figure 5.7: Metric values for typed clustering coefficients 1 and 2

One interesting result to be observed is the relationship between types SAME_NAME_AS
and SAME_INTERMEDIARY_AS. At the point where the latter is the conditional type,
the corresponding square indicates that the edge overlap is 1. If we swap their roles, how-
ever, we see that the edge overlap is very small. This means that wherever there is an edge
of type SAME_INTERMEDIARY_AS, there is certainly an edge of type SAME_NAME_AS
too, but not vice versa. This means that the type SAME_INTERMEDIARY_AS is a sub-
set of the type SAME_NAME_AS. This is a functional redundancy in the data set. For
types OFFICER_OF and INTERMEDIARY_OF, however, the connection seems to be more
balanced, as these conditional probabilities are close to each other in value.
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Chapter 6

Related Work

In this chapter we present some of the related scientific research in connection with network
science, multiplex graphs, and related results in high-performance computing.

6.1 Multiplex networks

In [8] the authors defined a set of multiplex graph metrics, such as the typed clustering
coefficient used in this report. Their metrics were validated on a real multiplex data set
of Indonesian terrorists, a system with 78 nodes and four types.

In [10] the authors express the importance of multiplex network analysis and define a
number of real-life multidimensional networks, such as Flickr and QueryLog. In [28] the
authors investigated and characterized correlations between the different layers of a multi-
dimensional network. They found instances in which two layers of the same network were
positively correlated in terms of node degrees, while two others were negatively correlated.

A multiplex network is defined in [12], where the neighbourhood and centrality analysis
of the Polish social network is presented. Another study involving multiplex networks is
[24], which is a relevance and correlation analysis of different dimensions in Flickr. In
[4], the authors present some of the theoretical background behind simple graphs and
multiplex networks, and the transition between them. There are other studies that involve
community detection in the network of YouTube [33], analysis of co-authorship in the
DBLP network using shortest path [11] and the analysis of transportation networks such
as the European Air Network in [13], and a network of cargo ship movements in [23].

In [22], the authors studied the effect of graph metrics on query performance. In particular,
they calculated the correlation between graph metrics, result set size and the shape of the
graph query, concluding that different engines affected by different input parameters.

6.2 Graph analytics

There are two key programming models used for graph analytics. The first one is the
vertex-centric programming model which defines the computation as an iterative process
between communicating vertices in the graph [27]. This model is used in the Apache Spark
GraphX and the Apache Giraph frameworks. The second one is the linear algebra-based
approach which defines the computation with matrix operations. This model is specified
in the GraphBLAS standard [25], but is only available as a C library.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

In this report, I studied a set of multiplex graph metrics [8, 32] and presented perfor-
mance optimizations, validated on a real-life data set. In particular, I made the following
contributions:

• I formalized a set of multiplex graph metrics (TCC1, TCC2 and edge overlap) in the
language of linear algebra.

• I optimized the TCC1 and TCC2 formalizations using element-wise matrix multipli-
cation to decrease their computational complexity.

• I implemented the defined approaches using different libraries, studied their scala-
bility and visualized the results. I wrote over 1400 lines of Java code to implement
the analysis and over 150 lines of R code for the visualization.

• I identified the trade-offs that are involved in implementing linear algebra-based
approaches.

• I evaluated the results on a real data set from the field of investigative journalism.

• I integrated my implementation to the open-source Graph Analyzer framework.

7.2 Future Work

First and foremost, I plan to study the original Paradise papers data set with respect to
the derived multiplex graph metrics values. My goal is to understand the semantics and
implications of a given clustering coefficient value, e.g. what does a high typed clustering
coefficient value mean for a node in the graph and how can this be used for achieving
greater insight to the significance of offshore entities?

As this work presents a step towards the efficient calculation of complex multiplex graph
metrics, it hopefully opens up the possibility to use these metrics to characterize large
graph instances with millions of nodes. Such analyses have numerous application areas,
e.g. detecting fraud triangles in financial transaction graphs [35], studying the emergence
of cooperating people in society [9] or spotting the collaboration between scientists [2]. Ad-
ditionally, multiplex metrics can been used to distinguish real graphs from fake ones [32],
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similarly to how other multiplex graph metrics such as the multiplex participation coeffi-
cient and the pairwise multiplexity have been used in [34] to differentiate real graph models
from generated ones.

To improve the analysis, I plan to extend the typed local clustering coefficient metrics
to include not only triangles, but also k-cycles and k-cliques. This will require a com-
mon generalization of the TCC and the k-local clustering coefficient [16] metrics. I also
plan to experiment with the concept of meta-paths used in heterogeneous information
networks [31], which look for paths containing a given sequence of node and edge types.
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Appendix

A.1 Edge overlap

The implementations of the edge overlap using the edge list representation and EJML are
shown in Listing 7 and Listing 8 respectively. It is clear that the former is significantly
more intuitive and easier to implement and read than the latter.

1 double intersection = 0.0;
2 for (N node1 : edgesInCondType.keySet()) {
3 Collection<N> nodes = edgesInCondType.get(n);
4 for (N node2 : nodes) {
5 if (edgesInType.containsEntry(node1, node2) | edgesInType.containsEntry(node2, node1)) {
6 intersection += 1;
7 }
8 }
9 }

10 return intersection/numberOfEdgesCondType;

Listing 7: Edge overlap implementation with edge list representation

1 for (T condType : types) {
2 DMatrixSparseTriplet tripletsB = adjacencyMatrices.get(condType);
3 DMatrixSparseCSC B = ConvertDMatrixStruct.convert(tripletsB, (DMatrixSparseCSC) null);
4 DMatrixRMaj rowSumB = new DMatrixRMaj(n, 1);
5 CommonOps_DSCC.sumRows(B,rowSumB);
6 double d = SimpleMatrix.wrap(rowSumB).elementSum();
7 for (T type : types) {
8 if (type != condType) {
9 DMatrixSparseTriplet tripletsA = adjacencyMatrices.get(type);

10 DMatrixSparseCSC A = ConvertDMatrixStruct.convert(tripletsA, (DMatrixSparseCSC) null);
11 DMatrixSparseCSC C = new DMatrixSparseCSC(n, n, 0);
12 CommonOps_DSCC.elementMult(A,B,C, null, null);
13 DMatrixRMaj rowSum = new DMatrixRMaj(n, 1);
14 CommonOps_DSCC.sumRows(C,rowSum);
15 double n = SimpleMatrix.wrap(rowSum).elementSum();
16 }
17 }
18 }

Listing 8: Edge overlap implementation with EJML
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