

Budapesti Műszaki és Gazdaságtudományi Egyetem

Villamosmérnöki és Informatikai Kar

Méréstechnika és Információs Rendszerek Tanszék

Tesztkörnyezetek generálása és monito-

rozása autonóm robotok teszteléséhez

Készítette

Hajdu Csaba

Konzulens

Vörös András, Dr. Majzik István

2

HALLGATÓI NYILATKOZAT

Alulírott Hajdu Csaba, hallgató kijelentem, hogy ezt a dolgozatot meg nem engedett se-

gítség nélkül, saját magam készítettem, csak a megadott forrásokat (szakirodalom, esz-

közök stb.) használtam fel. Minden olyan részt, melyet szó szerint, vagy azonos értelem-

ben, de átfogalmazva más forrásból átvettem, egyértelműen, a forrás megadásával meg-

jelöltem.

Hozzájárulok, hogy a jelen munkám alapadatait (szerző(k), cím, angol és magyar nyelvű

tartalmi kivonat, készítés éve, konzulens(ek) neve) a BME VIK nyilvánosan hozzáférhető

elektronikus formában, a munka teljes szövegét pedig az egyetem belső hálózatán keresz-

tül (vagy hitelesített felhasználók számára) közzétegye. Kijelentem, hogy a benyújtott

munka és annak elektronikus verziója megegyezik. Dékáni engedéllyel titkosított diplo-

matervek esetén a dolgozat szövege csak 3 év eltelte után válik hozzáférhetővé.

Kelt: Budapest, 2017. 10. 29.

 ...

 Hajdu Csaba

3

Table of Contents

Table of Contents .. 3

Absztrakt ... 6

Abstract ... 8

1. Introduction ... 9

1.1. General introduction .. 9

1.2. Problem definition ... 10

1.3. Goals .. 10

1.3.1. Contribution .. 11

2. Background ... 12

2.1. Autonomous systems ... 12

2.1.1. Robot software components .. 12

2.1.2. Definition of a mission ... 13

2.2. Testing ... 13

2.3. Monitoring ... 14

2.4. Case study .. 15

2.5. Used technologies .. 15

2.5.1. Robot Operating System (ROS) ... 15

2.5.2. Gazebo .. 16

2.5.3. WAMP .. 16

2.5.4. EMF .. 17

2.5.5. VIATRA Query .. 18

2.5.6. VIATRA-CEP ... 18

2.5.7. MATLAB .. 18

2.5.8. Acceleo ... 18

3. Approach for the analysis of autonomous systems ... 20

3.1. Overview of the approach .. 20

3.1.1. Use case description .. 20

3.2. Architectural concept ... 21

3.2.1. Conceptual architecture .. 22

3.2.2. Detailed architecture ... 22

4. Testing based on simulation ... 26

4

4.1. Testing functionality .. 26

4.1.1. Process .. 26

4.1.2. Test environment description .. 28

4.1.3. Mapping abstract test environment description to the input of the simulator

 .. 30

4.2. Simulating moving objects .. 32

4.2.1. Mathematical background ... 32

4.2.2. Approaches to movement ... 33

4.3. Mission execution .. 34

4.3.1. Mission description ... 34

4.3.2. Mission execution component .. 35

5. Monitoring .. 37

5.1. Overview .. 37

5.1.1. Concepts .. 37

5.1.2. High-level requirements ... 38

5.1.3. Process .. 39

5.1.4. Observer component ... 41

5.1.5. Runtime model component ... 41

5.1.6. Pattern matcher ... 42

5.2. Evaluating the events ... 47

5.2.1. Utility assignment ... 47

6. Implementation ... 50

6.1. Interconnection of components .. 50

6.1.1. Hive implementation ... 50

6.1.2. Data collector .. 51

6.1.3. Observer .. 52

6.1.4. Mission executor component .. 54

6.1.5. Evaluation component .. 55

6.2. Abstract test case artifacts perspective .. 55

6.2.1. Test room generation tool ... 55

6.2.2. Animator component .. 56

6.2.3. Mission executor component .. 56

5

7. Evaluation ... 57

7.1. Evaluation context ... 57

7.2. Simple test scenarios .. 57

7.2.1. Toolset .. 57

7.2.2. Simple translation scenario ... 58

7.2.3. Circular movement scenario ... 58

7.3. Simple navigation scenario .. 58

7.4. Generated test scenarios ... 62

7.4.1. Scenario template .. 62

7.4.2. Toolset .. 62

7.4.3. Expected outcome ... 62

7.4.4. Small and dense rooms ... 62

7.4.5. Medium rooms .. 63

7.4.6. Large rooms .. 65

7.4.7. Summary ... 65

7.5. Testing error prone proximity sensor ... 66

7.5.1. Low error .. 67

7.5.2. Effect of high error ... 68

7.5.3. Low error in dynamic environment .. 68

8. Summary ... 70

8.1. Brief summary ... 70

8.2. Future work .. 70

9. Appendix ... 72

9.1. Geometric format ... 72

9.1.1. Pose ... 72

9.1.2. Twist ... 72

9.1.3. Geometric state ... 72

9.2. Implementation details ... 72

9.2.1. VIATRA-CEP as standalone application ... 72

9.2.2. VIATRA-CEP temporal patterns .. 72

10. References ... 75

6

7

Absztrakt

Napjainkban kiemelt figyelmet érdemelnek a robotok, mint jellegzetes kiber-fizikai rend-

szerek. Korábban főleg az ipari és kutatási területeken voltak jelen, ahol jól meghatározott

és könnyen megfigyelhető környezetben működtek. Ahogy felhasználási módjuk széle-

sedik, úgy az emberek és autonóm robotok interakciója, illetve kooperációja is megjele-

nik. A robotok az emberekkel és környezettel való interakció során egyre biztonságkriti-

kusabb szituációkba kerülhetnek. A robotok működésének biztonságosságát így valami-

lyen módon ellenőrizni, tesztelni kell.

A kiber-fizikai rendszerek, következtetésképpen a robotok tesztelése is bonyolult feladat.

Ezek a rendszerek komplex, környezetfüggő funkcionalitással rendelkeznek, amelyet

szükségszerűen le kell tesztelni üzembe helyezés előtt. További nehézséget jelent, hogy

a működési környezetük, a fizikai valóság alapvetően dinamikus és sokszor kooperatív.

Így az elterjedt komponens- és integráció tesztelési módszerek nem megfelelőek a kör-

nyezetfüggő biztonságos működés vizsgálatához. A valós környezetben történő, prototí-

pusokon végzett tesztelés viszont költséges és időigényes feladat.

Dolgozatom célja egy olyan módszert adni, amivel lehetségessé válik a valós környezet

egy szimulációjában lefuttatni az egyes teszt forgatókönyveket (robot missziókat). Ezzel

a valós tesztkörnyezet berendezése és a fizikai prototípus megvalósítása nélkül elvégez-

hető a tesztelés. Továbbá a szimuláció megfigyelhetővé tételével az eredményeket és a

tesztelés során létrejött eseményeket rögzíteni lehet, így a teszt lefutása precízen kiérté-

kelhető. Továbbá a rögzített adatok felhasználhatók további tesztkörnyezetek és forgató-

könyvek előállítására.

Dolgozatomban bemutatok egy olyan, általam fejlesztett keretrendszert, amely alkalmas

robotok vezérlő komponenseinek tesztelésére. Az új eredmény elsősorban a robot szá-

mára megfelelő környezet legenerálása és az ebben futó forgatókönyv megfigyeléséhez

szükséges monitorozó komponensek kialakítása. Egy olyan rendszert kellett megvalósí-

tani, amelyben szétcsatolható a monitor a szimulációtól, ezek egymástól függetlenül fej-

leszthetők. Alkalmas fejlett modellgenerátorok felhasználásával különböző teszt-környe-

zet elrendezések (pl. terem berendezések) szisztematikus előállítása lehetséges. Emellett

egy olyan megfigyelő alrendszert készítettem, amely a bejövő adatokból egy megfigye-

lési modellt épít fel (EMF technológiával), ezáltal detektálhatóvá válik egy esetleges hiba

a robot vezérlőrendszerében. Ezen a modellen futásidőben futtathatók modell lekérdezé-

sek, amelyek alapján azonosíthatók hibaesemények és ezekre végrehajtható szabályok

definiálhatók (a VIATRA-CEP technológiával). A monitor által előállított jelzések fel-

használhatók a teszt kiértékeléshez. A teszt rendszer tehát magába foglalja a környezet és

robotkomponensek szimulációját, a megfigyelési alrendszert és a kiértékelő motort is. A

keretrendszerben számos meglévő technológiát felhasználtam (pl. ROS). A feladat kidol-

gozásához a motivációt az ARTEMIS R5-COP európai projekt adta.

A rendszer segítségével fizikai implementáció nélkül is végrehajthatók és megfigyelhetők

a robotok különböző tesztforgatókönyvei. Ezáltal már a fejlesztés korai fázisában detek-

tálhatók olyan hibák, amik máskülönben a fizikai megvalósítás után derülnének ki. Így

8

összességében olcsóbban és gyorsabban fejleszthetők a robotok, ezek biztonságos műkö-

dése pedig alaposabban ellenőrizhető.

9

Abstract

Nowadays robotic systems deserve special attention as typical Cyber-Physical systems.

Until now robots were more present in special industrial and scientific applications where

they operated in well-controlled and fully observable environments. As their use extends

the human-robot interactions (possibly their cooperation) becomes more frequent. During

their interactions with humans and environments, robots may cause safety-critical situa-

tions. Therefore, the safe operation of the robots must be verified.

The testing of cyber-physical systems, thus also robotic systems, is a complex task. These

systems are attributed with complex context-dependent functionality which must be

tested before deployment. Robots operate in the physical reality which is nondeterminis-

tic and often cooperative. Therefore, the widely used methods of component and integra-

tion testing cannot be used. On the other hand, executing realistic testing scenarios on

robot prototypes is costly and time-consuming.

The goal of my work is offering a method which allows the execution of realistic testing

scenarios in a simulation of the physical environment. With this method, each robot task

(mission as a test case) can be executed without the setup of a real test environment.

Besides that, enabling monitoring on the simulation the results and events can be identi-

fied and stored to evaluate the execution of the test case. Moreover, the acquired data can

be used to generate new testing environments and scenarios.

In my work I present a framework developed by myself which enables testing of the con-

trol components of robotic systems. The main contribution is the development of compo-

nents to generate appropriate test environments and to monitor the test case under execu-

tion. The monitor had to be loosely coupled with the simulator. With the use of appropri-

ate model generators diverse test rooms and environments can be generated systemati-

cally. Besides, I developed a monitoring subsystem which converts the incoming data to

an observation model (EMF based) which enables to detect runtime errors in the robot

control. Model queries can be executed runtime which can be the basis of monitoring

events and executable rules can be defined (using VIATRA-CEP technology). The signals

generated by this component can be used for evaluation of the test. In summary, the sim-

ulation-based test framework encapsulates the simulation of robotic components and en-

vironment, the monitoring subsystem and the evaluation engine. In the framework I used

available technologies (e.g., ROS). The motivation for developing this solution came

from the European R&D project ARTEMIS R5-COP.

With the help of the system, context-dependent missions of autonomous robots can be

tested and observed in the early development phase even without physical implementa-

tion. This enables the detection of errors which would normally be detected after physical

implementation. Consequently, development of robots can be more efficient regarding

time and efforts, and their safe operation can be checked more precisely.

10

1. Introduction

In this section I introduce the context and the goal of my work.

1.1. General introduction

Nowadays robotic systems started to gain special attention as typical autonomous Cyber-

Physical systems. Autonomous agent systems are such systems which operate without or

with very limited external control, only based on their own perceptions and beliefs.

Cyber-physical Systems are defined by NIST [1] as “smart systems that include engi-

neered interacting networks of physical and computational components”. Until now ro-

bots were more present in special scientific and industrial applications and operated in

limited, well-controlled and fully observable environments. Even their autonomy was not

a requirement, teleoperation was sufficient enough. Besides, mobile robots existed to op-

erate in a hostile environment through teleoperation (space missions, volcano/submarine

exploration, nuclear meltdown sites).

Figure 1. A complex robotic test scenario setup involving human and a complex ro-

bot (PR21)

The endowment of robots with autonomy seems to be an obvious choice. Currently there

is a growing demand for full automation in the industrial sectors, consequently existing

industrial manipulators shall gain some degree of autonomy. Additionally, autonomous

vehicles (which can be viewed as a special case of autonomous mobile robots) and other

new applications (nursery robots, airport assistants) started to gain attention. During their

operation, robots may participate in safety-critical situation, thus these autonomous sys-

tems become critical. Therefore, the safe operation of the autonomous systems must be

1 PR2 is a registered trademark of Willow Garage

11

ensured. The widely used traditional test methods shall be improved to test autonomous

robotic systems, thus enabling the development of safer robots in shorter time.

1.2. Problem definition

Various problems arise from the autonomous operation of robots. Robots are autonomous

mechatronic systems with complex functionality which operate in the real physical world.

These functionalities and their outcomes must be exhaustively tested, as these use cases

of autonomous robots are usually related to safety-critical operation, as faults can lead to

catastrophic consequences (injury, damage to property). Also, autonomous systems

should be aware of their environment and handle unexpected hazardous situations. Au-

tonomous agents are usually does not exist alone, there are other agents (such as robots),

with similar or different goals. Their interaction or cooperation should also be tested.

Generally speaking, the physical world can be described as a difficult environment from

the viewpoint of rational agents.

The naïve method of component- and integration tests are usually considered inefficient.

The conventional way of testing of basic robot functionality essentially contains the fol-

lowing steps:

- Setting up a test environment and

- Observe the test execution by human inspector(s) who also evaluates the test ex-

ecution.

This way of testing is a time consuming, expensive and human resource exhaustive pro-

cess. Also, it is difficult to automatize the test execution process, even by using automated

observation or execution methods. Moreover, these test cases cannot always guarantee

the correct behavior of the system in unforeseen situations.

1.3. Goals

The goal of my work is to enhance the testing process by introducing a testing and mon-

itoring framework. The main purpose of this framework is to create a simulator-based

testbed for robotic systems whose behavior can be monitored and evaluated by the com-

ponents of the proposed framework. The testbed should enable the automation of text

execution process. These steps include the setup of the test environment, configuration

for the automatic execution of robot tasks and automatic movement of environment ob-

jects. The monitoring framework should access all information regarding the run of test

execution through software components and analyze events occurring at runtime.

To make the environment fully observable to the monitor, the physical environment can

be simulated. Using a physical simulator, virtual mockups of the physical objects appear-

ing in real situations can be populated in simulation providing this way the test setup.

Nowadays physical simulators are widely available which can be configured with an ex-

ternal description. After the setup of the simulation and starting the robot mission, the

current state of the simulation must be regularly extracted and forwarded to the monitor

components.

12

After the data has been received by the monitor, it should process the data and generate

significant events based on the observed data. The monitoring framework also should

construct a runtime model capturing the important aspects of the system. This model can

be serialized at any time during test execution and used for further evaluation.

As it was mentioned, the framework should support other tasks like robot mission execu-

tion. To construct a robot mission, sequence of tasks can be composed, which might be

executed at a certain point of time during test execution. The purpose of the framework

is to interpret the high-level descriptions of tasks and execute the tasks in the simulated

world. Also there are objects in the simulated environment which are in movement, the

framework should allow the definition of different movement scenarios.

In summary, the ultimate goal of this framework is not only to make the test execution

process less exhaustive but to support the development of safer robotic systems and com-

ponents even before the construction of the prototype.

The motivational background of this work is based on the results of the European ARTE-

MIS project R5-COP [2].

1.3.1. Contribution

In this work, I introduce a methodology to support the verification of autonomous robotic

systems. The methodology is implemented in a framework to support the developers an-

alyzing the behavior of robotic systems at the design phase of the development.

I propose to combine simulation-based verification with runtime monitoring to evaluate

the behavior of autonomous robot systems.

- I developed a method to transform the abstract test cases into concrete test

scenarios that provide a dynamic environment for the tested robot to perform its

mission. These concrete scenarios are defined in the input language of a simula-

tion tool. Note that this method is built upon an existing solution for generating

the abstract test cases using models of the robot context and models of the require-

ments. The novelty of my method is that the test scenarios allow the verification

of the robot behavior in case of a robot mission in dynamic environment with

moving objects and obstacles.

- I developed a model-based approach for the monitoring and evaluating the behav-

ior of the simulated robotic system in the dynamic test environment. The novelty

of my approach is the use of runtime models and high-level graph-queries and

temporal specifications for evaluation purposes, avoiding this way the implemen-

tation of low-level event processing and test evaluation functions.

- I have implemented the transformations that support the automatic generation of

concrete test scenarios from the input abstract test description, and also imple-

mented the monitoring infrastructure to support the test engineers.

13

2. Background

This section describes the conceptual and technological background of this framework.

2.1. Autonomous systems

The motivating example of this framework was to test autonomous mobile robot systems.

These systems can be considered as a subset of autonomous agent systems with special

requirements and complex environments. This document uses the terms established in

[3].

Autonomous robotic systems operate in the real physical world that is typically charac-

terized as a partially observable, nondeterministic, sequential, dynamic, continuous and

multi-agent (adversarial) environment. Also, faults of operation even with the most basic

functionalities robot actuation may cause serious damage to property and/or threaten hu-

man health. There exists standards currently, which describes the safety requirements for

industrial robotic applications [4] [5]. Moreover, when a robotic system is mobile, more

complex functionalities arise to enable robust mobility and the purpose of operation (see

[6]). Mobility and complex functionalities yield new hazards during robot operation.

Safety requirements of mobile robots are also addressed in recent standards [7].

Consequently, the driving motivation of this framework is to support the development of

mobile robots which operate safely and with an ability to cooperate with humans and each

other. The need for such a system arises as the use-cases of autonomous mobile robots

extends to the daily life. The appearance of (semi-)autonomous vehicles is a prime exam-

ple of the daily usage of autonomous mobile robots. Safety features are still in an imma-

ture stage [8] and the risk of a traffic incident is still significant. An automatized testing

framework could check the safe operation even for more complex evading scenarios in

the context of autonomous vehicles.

2.1.1. Robot software components

The following subsection identifies the main robotic components to be considered

throughout the test of robotic systems. My work uses the terminology introduced in [6].

Autonomous mobile robot systems can be modeled through an abstract control scheme.

The robot is embedded into an environment (real or simulated), which is percepted

throughout the use of sensors. From the raw data generated by the sensors, information

is interpreted and extracted by filters. This information can be used to construct the en-

vironment model of the robot, sometimes a local map can be gained. The environment

model and the local map is used by the localization and map building components of

the robot, which then extracts a believed position and a global map of the environment.

These components might be augmented by an external knowledge base. The cognition

(path planning) components additionally receives mission commands to generate a path

(which might be a series of low-level commands other than a trajectory of mechanical

14

movement). This path is executed by the path execution component, which extracts di-

rect actuator commands to the actuators of the system. The actuators are inherently

changes the state of the system.

2.1.2. Definition of a mission

This section proposes the definition of a mission and a task in the context of autonomous

systems. An autonomous system is expected to perform numerous tasks, or collection of

tasks with different constraints, which form a mission. For the full functionality of a test

framework, to define a mission it has to forward a series of input actions to the cognitive

components of the autonomous system.

Task is a concrete command, which the system executes with optional parameters defined

in the description. While they are usually composing a high-level action, they are de-

scribed in a concrete format understandable for the autonomous system. All actions must

be valid within the scope of the autonomous system. A task is, for example, a navigation

goal which tells the robot to move from its current position to another in the environment.

The task is usually parameterized with some constraints regarding the execution of the

system. The task succeeds if the state is changed to the desired state and no global or local

constraints have been violated. Otherwise, the task fails.

Mission is a sequence of tasks with predefined starting and ending state. A mission de-

scribes from what starting state should reach an ending state through a series of tasks to

be completed. The mission usually describes the system constraints which should not be

violated. The outcome of a mission depends on some tolerance on the completed mission

goals. The mission succeeds if all tasks have been completed. The mission fails if im-

portant tasks could not be completed, or any global constraint has been violated.

2.2. Testing

The following section introduces the definition used for testing throughout this document.

Figure 2. Brief description of the testing process

Generally speaking, testing is an essential but complex and resource-consuming task to

verify system operation against requirements [9]. IEEE defines this process as an activity

of the target system or one of its components. The target is executed under specified con-

ditions and the results are observed or recorded, and an evaluation is made regarding the

test target [10]. The draft description of the process (Figure 2) identifies the basic ele-

ments of a typical test scenario. Test cases are created from the specification of the sys-

tem, which are executed and verdicts are assigned describing the outcome of the test case

(GO/NO GO).

Test execution Verdicts Test cases
Specification,
requirements

15

More specifically, going into the details of the whole testing process, additional test arti-

facts must be identified to precisely evaluate the high-level stakeholder requirements. The

specification of the system (test requirements) is derived that define the system behavior

in a certain situation (should/should not). The Test approach collects how and when the

testing should be conducted, e.g. what processes, techniques, test levels and tools should

be used. Test purposes describe what part or functionality of the system should be covered

by testing. Test case specifications are created in which the inputs, predicted results and

set of execution conditions are specified. The expected output for a given input is obtained

from a test oracle. The test cases are implemented with the help of test adapters and

executed in a test execution environment (which contains the system under test and po-

tentially some test doubles). Possible verdicts are usually pass, fail or error during exe-

cution. All of these concepts are combined into a test framework.

This document presents a test framework for robotic systems, focusing on test adapters,

test oracles, test trace generation and test execution. The document follows the terminol-

ogy described in [10] and [11] onwards.

2.3. Monitoring

The following section introduces the definition of monitoring used throughout this docu-

ment. As this document presents a test framework along with a test case observer (moni-

tor), the definition of monitoring is required. Regarding monitoring this document uses

the taxonomy described in [12], but changing the context from software systems to mobile

robots.

Runtime software monitoring has been used for software fault-detection, diagnosis and

recovery. Fault detection provides evidence that program behavior complies or does not

comply. The intention of runtime software-fault monitoring is to determine whether the

current execution preserves specified properties (e.g. the robot does not collide). Thus

monitoring can be used to support testing by exposing state information. Execution failure

can be defined as a deviation between the observed behavior and the required behavior

of a task. A fault occurs during execution of the task and results in an incorrect state that

may or may not lead to a failure. An error is a mistake made by human that leads to fault

that may result in a failure. Software requirements are implementation-independent de-

scriptions of the external behavior of computation, and can be used to construct system

properties for the monitor. System Properties are relations within and among state of the

execution (set of sequences of states).

The monitor can be defined, as a system that observes the behavior of another system and

determines if it behaves consistently with a given specification. A monitor takes a system

execution scenario and a specification of system properties, in order to check that the

properties hold for the given execution. The current work proposes a monitor that ob-

serves the system properties and analyzes these system properties. The monitor uses this

analysis to capture and process events and delegates the event data to other components

of the system. These events are composed into a structured runtime model, which contains

16

the current snapshot of the environment. The pattern matcher part of the monitor queries

this model and tries to match the extracted events with different patterns.

2.4. Case study

The following subsection describes a concrete use case of robotic testing, which serves

as a motivating example used also in the later sections.

Consider a scenario, in which robots operate in an industrial environment. The purpose

of these robots is to deliver packets from a given section of the plant to another. During

their operation they may encounter humans and other robots as well. Otherwise, the en-

vironment elements are considered static or unreachable by the robot. The robots used in

this scenario are predominantly wheeled robots (differential- or omnidirectional robots).

It is obvious that we want to test critical interactions of the robot with its environment in

this scenario. The robot should reach from its (arbitrary) starting location a goal location

in the plant. The satisfaction of this requirement would ensure that the robot is able to

deliver packets. During reaching its goal, the robot must not collide with any other mobile

or static target since collision often causes serious health injury and damage to property.

Besides, the robot should reach its goal with minimal manoeuvring and in the possible

shortest time. The observations also verify that the sensors are working properly and feed

the robot with correct data.

With the available graphical model of the industrial plant and the robot itself, the envi-

ronment can be simulated and the behavior of the robot can be evaluated in this simulated

environment - instead of building the robot and trying it in the physical world. Also, there

is no need to construct a physical mockup or prototype to run the test cases.

2.5. Used technologies

Many technologies had to be integrated together in the framework. This section describes

the most important properties of these frameworks and the main reason behind their se-

lection for use.

2.5.1. Robot Operating System (ROS)

Robot Operating System (ROS) is a robotic middleware embedded into a general operat-

ing system [13]. Its purpose is to support robotic software development by providing an

extensible and versatile communication framework for the internal communication of

software components. It also provides a huge selection of predefined data structures and

libraries to simplify software development.

From the monitoring point of view, the most important property of ROS is its communi-

cation model. ROS provides both remote procedure calls (RPC) and Publisher/Subscriber

model. An application can use both depending on the use case. All components are con-

nected through a master process. Publisher/Subscriber model is useful for monitoring

purposes, as it provides data continuously.

17

Currently, ROS is a popular general robotic framework used for a large set of tasks. It is

not only supported by the closely related applications, but more general applications such

as MATLAB and even Android wrappers do exist. One of the ROS design principles were

the reusability of components. ROS also provides a huge library with solutions of the

most frequent robotic problems, or at least an interface to develop the control of compo-

nents.

The only drawback of ROS is that it does not currently provide real-time communication

between components. This is addressed by other frameworks such as OROCOS [14], RT-

middleware implementations [15], which focuses more on robotic control rather than the

interoperation of software components and can be easily interfaced with ROS. ROS is

somewhat resource consuming, so it cannot be functionally installed on an embedded

device with limited resource. ROS currently does not address the security issues.

The upcoming successor, ROS 2 tries to resolve the issues regarding security, real-time

operation and embedded installation [16].

2.5.2. Gazebo

Gazebo is a physical simulation application with close connection to ROS, currently de-

veloped by Open Robotics Software Foundation (OSRF) [17].

The main purpose of Gazebo is to provide mechanical simulation between mesh models.

The simulated mesh models use visual mesh for appearance and collision model (which

is usually coarser than the visual mesh). Meshes can be connected through links and joint,

to allow forward/inverse kinematic calculations. These chains can be used to populate the

simulation with simple objects or robot physical descriptions. Additionally, Gazebo ena-

bles the simulation of sensors such as cameras, proximity sensors and GPS localization.

The object properties are described in a semi-structural file with well-defined format

called Simulation Description Format (SDF) [18]. To interface with the simulation, the

input file must comply with this format. Given a model of the test environment, a descrip-

tion shall be generated fitting into this specification.

One defining advantage of Gazebo is, that it is able to broadcast Pub/Sub channels and

RPC services to ROS, enabling middleware applications to read geometric and kinematic

states, the simulated sensor reads. This data can be used to compare monitored robot state

supplied by the simulator (i.e. actual state) and robot belief state. Moreover, objects can

actuate geometric state, enabling the control of robots and animate objects with different

scenarios.

2.5.3. WAMP

WAMP is a relatively new communication protocol enabling (soft) real-time communi-

cation between application endpoints in a loosely coupled distributed system [19]. This

protocol is used to forward ROS based communication to platform-independent remote

applications, such as the monitor. Onwards the WAMP-based communication network of

the system will be referred as hive. The choice was to use this protocol, while other alter-

natives were considered such as MQTT.

18

There are some very significant advantages of WAMP over MQTT and competent pro-

tocols [20] [21]. WAMP enables the usage of both RCP calls and the Pub/Sub model.

This can be significant from a viewpoint of performance, as there are many use cases in

this system, when some information is needed by a node at a single time point but not

continuously (e.g.: configuration of the monitor). Also this model is the most similar to

ROS which also enables the usage of both communication models, which can effectively

mean that the delegation of information flow can be done simply in further applications.

The reason of the construction of this whole system is given by the main disadvantages

of ROS. ROS does not handle security issues well, as it was stated by many authors.

Moreover, ROS is not platform-independent, Microsoft Windows and some Linux distri-

butions are not supported. Most of the libraries are written in C++, with Python wrappers,

sometimes Java wrappers. Considering this, a platform independent interconnection is

reasonable.

WAMP also focuses heavily on security. Further work can lead to a secure interconnec-

tion between components. There are many possible workarounds for this, such as

WAMP-CRA, WAMP-TLS, etc. WAMP is also a web native language, which means that

any system, which is authorized to connect to the WAMP network and uses Websocket

protocol, is able to access the data feed provided by the components. MQTT uses a broker

to connect other devices in a P2P manner, this can be useful on a large sensor network,

the WAMP implementation is more reasonable in this case. WAMP uses a delegated soft-

router to handle connections between components. This can eventually lead faster and

more reliable communication between components. Drawbacks arises from the fault tol-

erance measures of the soft-router, as this single component may has to be redundant

which has to be addressed during operation.

2.5.4. EMF

Eclipse Modeling Framework (EMF) is a modeling framework and code generation fa-

cility first appeared alongside with Eclipse [22]. The framework allows the construction

of tools and runtime support to produce a set of Java classes for the model along with a

set of adapter classes (which enables viewing and command-based editing of the model),

and a basic reflective editor. The model specification is described in XMI.

Our framework relies heavily on EMF. Many tools, extensions and derivation had been

created on top of EMF. A common use of EMF is to create tools based on Eclipse. Our

framework employs model based text editors (Xtext2 based) and graphical editors (Sirius3

based) to create configurations and descriptions. Besides creating the tools to create new

artifacts, the EMF allows the use of models runtime. The observation model is con-

structed during observation.

2 Xtext is developed by Itemis AG.
3 Sirius is an Eclipse plugin developed by Obeo.

19

2.5.5. VIATRA Query

VIATRA Query is the successor of EMF-IncQuery4. It is mainly used to query EMF in-

stance models to extract information matching to predefined rules or to transform instance

models into another model.

This framework employs both typical use cases of this tool. During the construction of

the test room environment description, the well-formed constraints are checked by this

tool. When creating ROS launch files, the instance model of the test environment room

is transformed into the launch file domain using model transformation.

2.5.6. VIATRA-CEP

VIATRA-CEP is an experimental framework developed as a plugin to VIATRA Query

project [23]. This framework proposes complex event processing (CEP) on EMF based

instance models. The pattern matching is tightly integrated with VIATRA Query engine.

As the basic query engine is able to match queries on dynamically changing models (in-

cremental query), the changes in the model can be evaluated efficiently.

Besides providing a relatively fast processing engine, a considerable advantage of VIA-

TRA-CEP is the ability of the description of event patterns at a high-level with a provided

tool (VIATRA Event Processing Language – VEPL). This language is based on a special

event algebra which relies on temporal logic and automaton theory.

The framework I introduce in this paper employs this tool in the monitor component to

realize the analysis and event handling components of the monitor described in 2.3.

2.5.7. MATLAB

MATLAB 5is a widely used application framework frequently used for prototyping and

research. With its extension, SIMULINK, control systems can be designed fast.

During the development of this framework, there were many cases, when a simple con-

troller had to be designed and deployed to verify the correct operation of the monitor

(Section 7.2). With the help of MATLAB and its Robotics toolbox these controllers can

be easily designed [24]. Such simple controllers are realizing forward-backward moving,

simple teleoperation and circular movement.

2.5.8. Acceleo

Acceleo [25] is a Model-To-Text (M2T) framework for Eclipse. Its main purpose is to

generate text from arbitrary model realizing a metamodel.

Acceleo is the pragmatic implementation of the Object Management Group (OMG) MOF

Model to Text Language (MTL) standard. It can be used to write generators without spe-

cial knowledge of code generators.

4 VIATRA Query is developed by IncQuery labs.
5 MATLAB is a trademark of Mathworks Inc.

20

This framework employs generated codes from metamodels, mostly configuration read

stubs and nested class initializers. Each use case is solved through the use of Acceleo.

21

3. Approach for the analysis of autonomous systems

The following section proposes our approach used to construct a framework to analyze

autonomous systems.

3.1. Overview of the approach

This subsection provides information of the design approach and the corresponding ar-

chitectural choices.

The conceptual process, i.e., operation flow of using the whole framework is depicted on

Figure 3. Rounded rectangles depict artifacts, while simple rectangles depict processes.

Figure 3. Overview of the process

The whole process begins with generating an environment description – possibly with the

help of a tool. The result is the Abstract test case. Next, this description should be used to

populate the simulated environment with objects and the robot(s) and embed the tested

robot components into the environment. This is done by mapping the elements of the

abstract test case into a concrete test case description.

The abstract test case description is also used to animate some subset of objects periodi-

cally, this way providing a dynamic environment for the tested robot. The mission con-

tains the related tasks limited to the space of the generated environment.

The monitor observes and analyzes the data incoming from the environment simulation

and the robot control components. The monitor should construct the observation model

from the intercepted data, then run queries to analyze and extract events. The extracted

events should be matched with the runtime model (knowledge base), which is represented

by the graph model constructed runtime.

After the events are matched, the event patterns should be evaluated. The evaluation pro-

cess should be able to calculate mission scores based on the incoming events (each event

should be associated with an arbitrarily defined utility value). The historical data may be

stored for further analysis of the monitored data.

3.1.1. Use case description

The main functionalities described in previous sections can be translated to high-level

use-cases (Figure 4). This is useful to overview the expected functionalities of the frame-

work. The context in this setup is the simulated environment and the computational

Abstract
test case

Concrete
test case

Specification
(Correctness

criteria)

Results Simulator Monitor

22

backend running the simulator. The actors are those who somehow interacts with the sim-

ulated environment. The User (Test engineer) ultimately wants to access information the

belief state and control model of the robot (which is part of the Simulator) and its com-

ponents embedded into the simulation. All geometric information is provided by the sim-

ulator itself.

Figure 4. Overview of basic use-cases

There are some use cases which comes obviously from the high-level proposal of the

solution of the testing problem. First the test engineer generates test environments with

the help of a tool. As the description of the environment is now available, the user loads

it to the simulator by transforming it to a concrete description. The user may specify the

trajectory of dynamic object. These steps should setup the simulated environment and the

robot itself. As the simulator is up and running, along with the robot components embed-

ded to it, the user wants to monitor the actual state of the robot and access its belief state,

gaining information about its operation continuously. The user may associate the cur-

rently running test case with a sequence of tasks, and execute them at some point of time.

3.2. Architectural concept

This section provides information about the framework architecture, identifies the com-

ponents and gives the detailed conceptual description of each component.

23

3.2.1. Conceptual architecture

Given the basic use cases of this framework, a high-level description of the architecture

can be described. The main purpose of this framework is to connect to a robotic system,

with limited access to internal information to outside. The Simulator provides the envi-

ronment and the robot components. Data Collector collects all data of interest from the

simulator and forwards them to the Monitor component for further analysis. On a wider

perspective, other components might be connected to these mandatory components. One

very useful component is an evaluator component. This subscribes to monitoring events

and uses some additional information of the robotic system, such as navigation compo-

nent settings and initial room properties. Onwards, the framework shall be called Robotic

Event Interceptor (short: REI6). Figure 5 summarizes these ideas and shows the compo-

nents in the context of the system.

Figure 5. High-level architecture

Another useful component might be a filter component. This reduces the computational

load of the monitor component by calculating some required data for the monitor compo-

nent.

A different aspect can be also used to extend the testing environment with some function-

alities. The simulation is defined with a test room description. The room description con-

tains information about the setup of the room. This includes the static construction of a

room, dynamic objects initial positions and the used robot in the simulation. The test room

description is tightly attached to those components which initializes the test environment

and actuates some of its components (6.2.2).

3.2.2. Detailed architecture

This subsection describes in detail the identified components and artifacts which they use

and their interaction with each other.

3.2.2.1. Artifacts

In our definition, the abstract test case is the main input of the framework. It contains all

information required to construct a simulation of an environment and feeds the framework

with actions.

6 A reference to the common Japanese given name (Rei).

Simulator Data Collector Monitor

24

Figure 6. Abstract test data parts

It consists two parts (Figure 6). The context model describes the structure of the test en-

vironment, and the mission describes the test execution tasks in the context. The abstract

test data is used to generate input for components described in 3.2.2.

- Environment description (concrete model): this artifact describes the environ-

ment simulation interpretable by the simulator. This description is also used by

some other components of the framework. For example the animator component

(Section 6.2.2) uses this description to animate a subset of objects that exists in

the simulation. This description must be generated by an external tool.

- Monitor configuration: The configuration contains the connection information

to the data source. This defines the data and targets to be collected and shares the

information among other components. The data collector provides this configura-

tion to other components.

- Mission description: this artifact describes the mission to be performed by the

robot itself. It is mapped from the mission defined in the abstract test case embed-

ded into its context model. It contains a series of actions and might contain the

global constraints of the mission. While it is essentially used by the mission exec-

utor, it might be used by the evaluator component as well.

- Robot component launch: this artifact starts up the software components of the

robot used in the abstract test data. This can also be generated, from the abstract

test case description.

3.2.2.2. Components

In the previous section we identified the high-level components needed to realize the

functionality of the test framework. Now high-level components are resolved to more

components, as it is depicted on Figure 7. Each component might be configured through

a configuration and there are some shared artifacts between components.

Context model Mission

Abstract test case

25

Figure 7. Detailed architecture of high-level components in depth

The framework is composed of the following components:

- Simulator: the simulator is a mandatory component of the framework. Every data

is based on the actual state of the simulation besides the obvious geometric state

(including sensor data and indirectly the robotic components). Also basic external

control (like animation of objects) is exerted on simulated objects provided by the

simulation. The simulator uses

o Animator: this component exerts external control based on a spline tra-

jectory on a subset of objects in the simulation. This models real situations,

where the movement of physical objects can be modeled through a trajec-

tory – which is stored as a part of the abstract test case. This component is

closely attached to the simulation, and there is no purpose of running this

component without an appropriate simulation.

- Mission Executor: this component reads a mission and executes it by following

each task. This component fetches new tasks to the action execution component

of the robot, so it is closely related to robotic components – especially to robotic

planning components. It can be interpreted as the component which feeds the cog-

nition component of the robot (section 2.1.1) with mission commands.

- Middleware: the middleware provides a common communication interface be-

tween components and external applications. The main function is, therefore, to

connect closely connected external components. The monitoring components

should connect the simulator through a middleware.

- Data Collector: a mandatory component which connects to the simulated envi-

ronment using the middleware and establishes interconnection between other

loosely attached components. The main and only purpose of the component is to

forward and optionally filter data collected from the whole simulation. This com-

ponent reads the monitor configuration and shares it between other components.

o Observer: the observer component is closely attached to the middleware,

as this directly reads data from middleware interfaces.

Middleware

Mission Executor

Observer

Filters

Monitor

Runtime
Model

Pattern
Matcher

Evaluator

Data Collector

Animator

Simulator

26

o Filters: an optional component of the system and closely attached to the

functionality of the data collector. It filters data generated by the data col-

lector and forwards this resulting data to the monitor component. Its re-

sponsibility should be limited to simple tasks (such as filtering laser data

based on a filter model). It is not depicted, but a filter component might be

loosely detached and distributed in the WAMP hive (2.5.3). This compo-

nent uses the monitor configuration shared by the data collector.

- Monitor: a mandatory component which subscribes to data forwarded by the data

collector and constructs an observation model. The observation model can be used

to match events interactively. The

o Runtime Model: as part of the monitor, this component analyzes incom-

ing data. It processes messages and constructs the runtime observation

model of the simulation. The component should be designed in an exten-

sible manner to enable the extension of the processing model with new

robot component events and environment data.

o Pattern Matcher: part of the monitor, this component provides essential

functionality. As the observation model is constructed incrementally (as

new data is fetched, parts of the model is added, changed or removed by

this data), new events are generated as a result of query matches. A pattern

match should occur, if the newly generated events appear in specified or-

der. The event handler should also send signal messages about the occur-

rence of new events externally.

- Evaluator: also part of the monitor. This should fetch the signals generated by

the event handler. The purpose of this component is to evaluate the execution of

the test case based on the occurring events. This is solved through a simple utility

model, as each signal has a corresponding utility value.

27

4. Testing based on simulation

This subsection describes the simulation process and the operation of components realiz-

ing this functionality of the framework.

4.1. Testing functionality

This segment describes the conceptual ideas and some details behind the testbed func-

tionality of the framework.

Figure 8. High-level description of the functionality

Figure 8 describes the high-level functionality of testing. The abstract test case and its

parts are transformed into configurations compatible with other parts of the framework,

the concrete test data (Section 3.2.2.1). The generation is supported by a catalogue of

object mappings (Section 4.1.3). The artifacts are processed by the simulated components

and evaluated with the help of the monitor.

4.1.1. Process

As the definition of testing was presented in section 2.2, the terms used in the definition

has to be identified and assigned to a component.

- Test Framework: the whole system, Robotic Events Interceptor.

- Test Oracle: the evaluator component, which evaluates constraints and correct-

ness criteria.

- Test execution environment: the whole simulator environment, including the ro-

botic middleware.

- System Under Test: the simulated robot and its components embedded into the

physical simulator.

Abstract Test Data

Context

Mission

Catalogue

Concrete Test Data

Environment de-
scription

Goal description for
the autonomous

system

Tr
an

sf
o

rm
at

io
n

Simulation

Evaluation

28

The overview of the whole testing and simulation process is summarized on Figure 9.

The main functionalities of the testing process are identified on this diagram. After the

successful startup of the simulation the test case must be processed to populate the simu-

lation with objects from an environment description. As the environment is ready, the

robot components must be initialized, to test their functionality in the embedded environ-

ment.

Figure 9. Overview of testing and simulation

As all components are initialized, some objects in the simulation should be animated to

provide dynamic test contexts.

The test input is fed through mission execution, which is only consistent in the environ-

ment loaded to the simulation. Each mission contains a collection of tasks, which are

executed one-by-one. The execution of the test shall be monitored in parallel of the pre-

viously described processes. More details on the process of monitoring are described in

section 4.2.

29

4.1.2. Test environment description

In realistic scenarios, the test environment is composed of realistic inanimate objects,

such as furniture, decoration objects, etc. The test environment is also constructed from

building elements, such as floor, wall. The terrain is modeled through geometric models.

For simplicity, the scope of this work is limited to buildings. The structure of the abstract

test case is described through a metamodel (Figure 10).

Figure 10. Metamodel description of the abstract test case

The environment is therefore composed of the following types of objects.

- Building elements (BuildingBlock): the elements which are used to construct the

environment. Examples include wall- and floor block elements. These elements

are modeled as mechanically static objects. Therefore, these objects may interact

30

with other objects, but their state is not changed through collisions. These type of

elements are referred as building blocks onwards.

o Floor: floor elements are special building elements The floor is modeled

as a rectangle each side is connecting to other building element (from di-

rections: TOP, RIGHT, BOTTOM, LEFT). The floor is associated with

a non-building element which is placed on the planar face center of the

floor. Also floors can be the control vertex of an animation trajectory of a

dynamic object (see below). A floor might also be the target of a naviga-

tion task.

o Wall: the wall element limits the environment and might be connected to

the floor element as their neighbor element. It has perpendicular extent to

the floors.

- Non-building objects: these type of objects should not be used to construct the

environment. They can be generalized as primitive objects (visual appearance can

be easily generated by series of mathematical functions) or mesh objects (their

visual appearance is modeled by external tools). These type of objects are referred

onwards as physical objects. From the viewpoint of testing and monitoring, their

movement classification is more informative:

o Static objects: the elements which populates the environment. Objects of

this type do not exert movement by themselves, only through interaction

with other mechanical objects. Examples of static objects include furni-

ture.

o Dynamic objects: the elements which populates the environment. Object

of this type exert movement by themselves. Also they should interact with

other objects, at least by exerting force on interacting objects.

 Human: in this context, the human is modeled as a dynamic ob-

ject. The movement of humans might be modeled as a trajectory

of predefined goal points or random models of long paths.

- Robot: the robots are special populating objects. They have no predefined move-

ment scenario but perform mechanical interaction based on its own perception-

actuator model. A robot should also interact with other objects.

o Mission: the robot is associated with a mission (moving tasks), with start-

ing and goal points (or more point between them). In this context, each

goal endpoint may be represented with a floor element. This is required to

generate mission scenarios.

The environment is therefore composed of building elements and depending on the scope

the initial list of building elements While environments can be constructed with the help

of a tool these might be also generated. Some constraints must be maintained to help the

creation of valid test environments.

- Each object must have a unique name.

- Any objects other than floor blocks must be associated with a floor.

o If the object is a building block, it must be the neighbor of the floor.

o If not, it must be placed in the center a floor block.

31

- The trajectory control vertex must be placed on a floor block.

- The robot must be placed on a floor block element.

- The environment must have at least two goals (start and final place).

4.1.3. Mapping abstract test environment description to the input of the sim-

ulator

In 4.1.2, we introduced the abstract model of the test environment. This subsection de-

scribes the solution of loading the abstract model to a running simulation.

The first problem is that this abstract description does not contain any geometric infor-

mation. All simulators await some information about the geometric pose of objects to

populate the simulation. This problem can be resolved by using graph traversal in the

abstract model. The nodes of this graph are the floors and the edges are the neighboring

connections. So the floor elements are mapped to geometric coordinates, when all floors

are mapped to a corresponding coordinate. Other objects are added incrementally.

Figure 11. Catalogue object representation

32

Another problem arises from the fact, that this abstract model does not describe the visual

appearance and the mechanical properties of the object. Both are mandatory for a valid

simulation. This can be resolved by constructing a catalogue of geometric objects which

contains additional information about the mapping of objects into the simulation scope.

Each object stored in this catalogue contains the visual appearance as the coarse collision

mesh description and mechanical properties (such as mass, inertia, etc.). Abstract descrip-

tion of the environment must be mapped to the elements of this catalogue. From this

mapping, a description compatible with the simulation can be generated. Each object is

identified in this catalogue by the object type.

The structure of a mapped object is summarized on Figure 11. The following subsections

describe the tool using this mapping method and a brief introduction to all artifacts gen-

erated from abstract test data.

4.1.3.1. Environment description tool

An editor tool was created to support the description of abstract test environments. This

tool is used by the test engineer and outputs the abstract description of the abstract test

environment using the basic set of elements defined in 4.1.2.

Figure 12. Example of generated and mapped environment

Besides creating the abstract model of a test environment, the tool must transform the

abstract model into the concrete description of the environment (the format interpretable

by the simulator). The editor needs a catalogue of objects as input to perform this opera-

tion. It then outputs a format readable by the simulator, resulting of simulation with ele-

ments (Figure 12).

33

4.1.3.2. Artifacts generated from environment description

The environment description may contain additional information for other processes of

the testing and simulation, which can also be generated with the help of the tool. The

artifacts that the tool might generate are depicted on Figure 13. Gray rectangles indicate

artifacts that are generated from the abstract test data. Other rectangles indicate artifacts

created by the user. This diagram does not depict processes rather the resulting artifacts

from the generation process.

Figure 13. Artifacts generated by the Test environment description tool

Animation scenarios may be assigned to some objects of the simulation. Eventually, the

animation scenario should not be detached from the environment description. The anima-

tion scenario is described in detail in Section 4.2.

To generate mission, another intermediate model is required whose structure is described

in 4.3.1.

4.2. Simulating moving objects

This section describes the application which animates simulator objects of running simu-

lation. This enables the creation of realistic simulations of a dynamic and adversarial con-

text.

4.2.1. Mathematical background

The most effective method to construct a trajectory based on given set of geometric points

is to interpolate a Catmull-Rom spline (Hermite cubic spline). This type of spline is

widely used in the field of computer graphics and robotic applications due its simplicity

(therefore low computational overhead) and its relatively low interpolation error. The

Catmull-Rom spline can be easily constructed with the method commonly used in CG

animation [26]. As a reminder, the Catmull-Rom spline is defined by Hermite interpola-

tion, with using a sequence of geometric points as control points, with the following co-

efficients (𝑝𝑖 are control points). The coefficients used to calculate the spline is summa-

rized in Table 1.

Test environment
description tool

Concrete Envi-
ronment

Description

Animation sce-
nario

Mission Descrip-
tion

< < g e n e r a t e s > >

Object Descrip-
tion

Catalogue

Abstract test
data

34

𝑎𝑖 =
𝑣𝑖+1 + 𝑣𝑖

(𝑡𝑖+1 − 𝑡𝑖)2
−

2(𝑝𝑖+1 − 𝑝𝑖)

(𝑡𝑖+1 − 𝑡𝑖)3
 𝑏𝑖 =

3(𝑝𝑖+1 − 𝑝𝑖)

(𝑡𝑖+1 − 𝑡𝑖)2
−

𝑣𝑖+1 + 2𝑣𝑖

𝑡𝑖+1 − 𝑡𝑖

𝑐𝑖 = 𝑣𝑖 𝑑𝑖 = 𝑝𝑖

Table 1. Catmull-Rom spline coefficients

As a Hermite interpolation, the velocity component has to be defined. The simplest way

to calculate the velocity of one control point is to consider the two neighboring points,

using the following velocity function,

𝑣𝑖 =
1

2
(

𝑝𝑖 − 𝑝𝑡−1

𝑡𝑖 − 𝑡𝑖−1
+

𝑝𝑖+1 − 𝑝𝑖

𝑡𝑖+1 − 𝑡𝑖
)

At arbitrary point of time, the current position on the [𝑡0; 𝑡𝑛] range on the spline is defined

as:

𝑟(𝑡) = 𝑎𝑖(𝑡 − 𝑡𝑖)3 + 𝑏𝑖(𝑡 − 𝑡𝑖)2 + 𝑐𝑖(𝑡 − 𝑡𝑖) + 𝑑𝑖, 𝑡𝑖 ≤ 𝑡 ≤ 𝑡𝑖+1

In computer animation, the time parameter of each control point defines the time in secs

which is set by the animator arbitrarily. There are some cases, when each point should be

interpolated with a spline, but only the final time is known.

4.2.2. Approaches to movement

This subsection summarizes the concepts of resolving the movement of simulator objects

given a Catmull-Rom spline assigned to an object.

Given the mathematical background, two approaches possible for the movement of sim-

ulator objects. The position is defined for any given 𝑡 parameter. With calculating the

desired position and storing the previous position, both the required position and velocity

can be calculated.

�⃗� =
𝑟(𝑡0) − 𝑟(𝑡1)

𝑑𝑡
, 𝑑𝑡 = 𝑡1 − 𝑡0, 𝑡0, 𝑡1 ∈ ℝ+

The velocity can be used for multiple purpose. A very straightforward approach is to exert

force on the target object at given point of time (using Newton’s second law �⃗� =
𝑑�⃗⃗�

𝑑𝑡
𝑚,

𝑑𝑡 being the duration between the current and previous call). The force exerted on this

object would result in movement of the object to the desired position and would be com-

pletely affected by interactions of other physical objects. While this is working well on

objects with simple inertia (e.g. a sphere), with objects of complex inertia or inertia of

stiff objects (e.g. cuboid) it can result with undesired results.

The other approach is to set the velocity of the object at the given time according to the

trajectory of the object. This would allow limited interaction with other objects, but as the

mass and the velocity is defined, the inertia can be calculated (∑𝑚𝑣), allowing the simu-

lation to run correctly.

35

4.3. Mission execution

This section provides information about the mission execution related to the generated

test environment.

For the functionality of the framework this component plays a major role. It feeds the

path planning component of the robot – and therefore the test case itself - with new goals.

4.3.1. Mission description

This subsection describes the structure of a mission.

As it was defined in section 2.1.2, the mission is a list of tasks. The tasks can be defined

multiple ways depending on the operating context of the robot. In the context of the test

framework, a mission provides test input for the SUT. My work focuses on defining ge-

ometric goals and forwarding them to the navigation component of the simulated robot.

The structure of the goal description is depicted on Figure 14. A mission is usually iden-

tified by a name and the environment in which the target performs action.

Figure 14. Description of a mission

36

Most mobile robots implement some navigation capabilities (section 2.1.1). Robots in-

crementally reconstruct their environment based on sensory data, which is transformed

into a local map. Based on previous local map snapshots a global map may be constructed,

if it is not available statically. Widely spread navigation algorithms use graph-based ap-

proaches to identify and extract landmarks from the global map (e.g. SLAM). As the path

planning component of the robot only awaits a goal in a predefined format (navigation is

usually done in the geometric space, so a geometric message is awaited, as in Geometric-

Goal), the mission description must be compatible with that high-level description of the

action format (5.1.6.4). The mission target may vary for each scenario (or might be a

kinematic link of the robot), or a robot might have multiple targets throughout a mission.

Each target might have multiple goals (at least two), always starting with the starting state

and the final state. In a robotic sense, the target is usually a mechanic frame. The target

of a navigation problem is the global (world) frame.

A versatile mission description tool handles different controller (action) formats and not

strictly revolves around geometric description. High-level commands may be issued to a

controller component (e.g. find unique object/marker, transport some crates). The defini-

tion of the goal as an abstract object addresses this problem, to allow the extension of the

mission metamodel with additional goal structures.

Also this mission description might be useful to define tasks for other autonomous sys-

tems, not only robotic systems. The robot is an agent in some sense (also can be described

with a sensor-actuation cycle)

This framework handles mission description in the generator component as part of the

abstract test case. For experimental purposes a textual editor (Xtext-based) had been cre-

ated to define and generate goal descriptions. From an existing abstract test case, the mis-

sion is generated in a similar approach, like the simulation description was generated. The

mission endpoints are mapped to existing floor elements of the simulation (assume that

the geometric coordinates are available for each floor element, consequently for each goal

endpoint), and their centric geometric coordinates are used as goal coordinates. Further-

more, the abstract test case is executed on a robot and the target frame is the world frame.

4.3.2. Mission execution component

This following subsection describes the operation of the mission executor itself. The mis-

sion executor component itself should be simple, given a mission description extracted

from the abstract test case.

37

Figure 15. The high-level process of mission execution

This component iterates through every task and feeds them to the target navigation com-

ponent. During every iteration, the component waits for the result of the task and then

moves to the next task. The target is an operating and well-defined component of the

simulated robot. The overview of the process is depicted on Figure 15.

38

5. Monitoring

5.1. Overview

This section describes the monitoring with a focus on the monitor and data collector com-

ponents. The high-level process of the monitoring is depicted on Figure 16. Data is re-

ceived from the simulator, which is used to construct a context model by reverse trans-

forming the concrete elements, with the support of the same catalogue used to transform

concrete description from abstract test data (4.1.3). The context model is then used to

create a runtime model of the mission, which is used to match event patterns according

to the input specification (5.1.1). The pattern matcher (5.1.6) then detects events and for-

wards them to the evaluator component.

Figure 16. High-level description of monitoring process

5.1.1. Concepts

This subsection describes the concept of the monitoring process.

The monitoring itself is based on a specification, which defines the runtime requirements

to be satisfied (Figure 17). The specification defines in what context the monitoring is

done, and it inherently specifies the spatial constraints of monitoring. It also defines que-

ries to check whether target properties of the SUT are satisfied. Temporal patterns can

be defined to specify the temporality of sequential event generation.

Context model

Specification

Runtime model

Detected events Pattern matcher

Simulator Catalogue

39

Figure 17. Components of specification

5.1.2. High-level requirements

The specification is also closely related to the high-level requirements of the system. This

subsection defines some high-level requirements regarding the motivational example of

this work (Section 2.4).

As the target robots are operating in an industrial environment, there might be places with

huge sparse space with locally distributed objects (a hall or shed). People are moving

around in the environment.

The robots should move in this environment from one point to another. The robot is able

to move in this environment (by wheels or bipedal motion). During this movement, the

robot should not collide with another objects, especially not with humans. The robot

should have all the capabilities, to sense objects and their movement in such an environ-

ment (proximity sensor). The high-level requirements stated against a robot in this case

study are summarized in Table 4.

Requirement identifier Short description Test scenario

GEOM_CLOSE_LASER_CORRECT The robot correctly
measures the close
event

GIVEN the simulation and
the robot WHEN the ro-
bot closes THEN the prox-
imity sensors measure
closeness

GEOM_COLLISION_LASER_CORRECT The robot correctly
measures the colli-
sion event

GIVEN the simulation and
the robot WHEN the ro-
bot collides THEN the
proximity sensors meas-
ure collision

MISSION_SIMPLE The robot moves to
the neighboring floor
without collision

GIVEN the simulation and
the robot and a pair of
goals (𝑔1, 𝑔2) WHEN the
robot executes 𝑔1−> 𝑔2
THEN collision never oc-
curs

Context
model

Specification

Queries
Temporal Pat-

terns

40

MISSION_SEQUENCE The robot feeds back
information about all
goals

GIVEN the simulation and
the robot and a sequence
of goals 𝑚 =
(𝑔1, 𝑔2, … , 𝑔𝑛) WHEN the
robot executes for all 𝑔𝑖
in m THEN
𝑠𝑒𝑛𝑑(𝑓𝑖𝑛𝑎𝑙𝑠𝑡𝑎𝑡𝑒(𝑔1))

MISSION_SEQUENCE_CYCLE The robot never col-
lides in a mission
where it moves back
and forth

GIVEN the simulation and
the robot and a sequence
of goals 𝑚 = (𝑔1, 𝑔2)∗
WHEN the robot exe-
cutes for all 𝑔𝑖 in m THEN
collision never occurs

MISSION_WITH_HUMAN_TRAJECTORY The robot avoids col-
lision with a human
following a trajectory
(number of collisions
is limited)

GIVEN the simulation and
a 𝑟 robot and a sequence
of goals 𝑚 =
(𝑔1, 𝑔2, … , 𝑔𝑛) and a h
human on CR trajectory
WHEN the robot exe-
cutes for all 𝑔𝑖 ∈ 𝑚 THEN
𝑐𝑜𝑢𝑛𝑡(𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛(ℎ, 𝑟)) <
𝑁𝐶𝑂𝐿𝐿𝐼𝑆𝐼𝑂𝑁

Table 1. Table of high-level requirements

5.1.3. Process

Figure 18 summarizesone run of the monitoring process, this process is run continuously

during the monitoring. Assume the simulation is set up and running as described in 4.1.

Data is intercepted during every step of simulation. This data is used to update runtime

observation model (about the structure of the model, see 5.1.5.1). After every update,

events are matched on results model queries. Monitoring results can be evaluated after-

wards. The data might be stored as a historical data, for further evaluation or prediction

used in machine learning methods.

41

Figure 18. High-level workflow identifying the main activities of monitoring

Our framework performs basic runtime monitoring with the purpose to detect and diag-

nose the dangerous situation. The overview of the process Recovery may be solved

through a safety logic connected to REI. The compartments of the monitor follows the

terminology in [12] and 2.3.

- Observer: the data adapter attached to the ROS communication model and patch-

ing data to the hive. Filters might be used to transform incoming data (Filter).

- Runtime model (~Analyzer): the communication adapter interfacing the hive

and subscribing the data stream. provided by the Observer component (Moni-

tor/Adapter).

- Pattern Matcher: the monitor subcomponent, which executes Complex Event

Processing (CEP) on the analyzed data and broadcasts generated events to the hive

(Monitor/CEP).

- Executing system: the simulation of the entire physical environment and robotic

components (~SUT).

The data collector component collects data from the middleware and patches through a

more general network protocol usable even by platform-independent applications. The

monitor connects to the collector through the protocol and processes complex events. In

summary, both components as a whole connect the middleware to the evaluator compo-

nent.

It is required to attach each component as loosely as it is possible. Each task has consid-

erable computational overhead.

42

5.1.4. Observer component

This component collects data from the simulator and forwards to the analyzer component.

The data might be filtered through special components.

The observer essentially fetches the geometric state of the environment. Without available

geometric data, the analyzer cannot determine whether critical events occur (e.g. colli-

sion) independently of robotic belief state. The data should contain information of all

objects present in the simulation.

The observer component should also provide information on the belief state of the robot.

This enables the remote verification of the robot cognitive operation..

The subset of collected data to be collected can be selected in a configuration file. The

configuration data should also contain technical data mainly regarding the communica-

tion with other components.

Technically, the observer is as closely attached to the simulator as it is possible. Usually,

the simulator provides interfaces on a middleware layer, so the simplest way to solve the

data fetch is through using these interfaces. This component is required to provide the

data reliably to remote endpoints. This component forwards the data to interfaces of the

selected communication channel, probably in a continuously available and refreshing

manner. Also, the observer should provide the configuration of this component.

5.1.5. Runtime model component

This subsection describes the runtime model (analyzer) and its purpose. It subscribes to

the data provided by the observer component, based on the configuration also provided

by that component.

The main purpose is to construct runtime model based on data fetched from the simulator

and share this model among other high-level components. This reconstructed data can be

used for further operations such as event pattern matching.

Technically, the analyzer component is loosely attached to the simulator, it can be in a

remote location – the observer already provides the simulator data remotely.

5.1.5.1. Runtime model structure

This subsection describes the runtime model update during the fetch of data provided by

the observer component. This subcomponent is analogous to the analyzer component of

general monitoring systems.

43

Figure 19. Runtime model reconstruction based on incoming data

The basic process of monitoring includes the analysis of incoming data from the data

collector component. Technically this means to extract data from raw messages and con-

struct a structured model from the data of interest runtime.

The runtime model reconstructed from incoming data can be divided into three main parts

as it is depicted on Figure 19.

- Concrete environment model: it is constructed from the observed geometric

state of present objects in the simulated environment. Constructing a concrete en-

vironment model is straightforward.

- Abstract environment model: the quasi-original abstract model of the simulated

environment. It is constructed as the inverse process of transforming a user-de-

fined model to concrete format 4.1.3, but uses the concrete environment model as

an input

- Robot description model: this model is constructed from the belief state and

static attributes of the robot. This model contains instant sensory reads (odometry,

laser) or filtered data (RGB camera) and the state of selected software components

(e.g. state of the navigation component).

5.1.6. Pattern matcher

This subsection provides information on the pattern matcher subcomponent of the moni-

tor component. The high-level process is described on Figure 20.

Abstract environment
model

Concrete environment
model

Robot description
model

Geometric data
Sensor data

SW Component
state data

Transformation

Object Catalogue

Data from data collector

44

Figure 20. The process of pattern matching

The monitor uses pattern matching on events extracted from the runtime model. Model

based queries are executed after every update. These queries are extracting information

mostly based on available requirements. For example, if the target (robot) moves to close

to an object, a corresponding query should return with a match.

Matches itself contain information about the state of the environment. While this is useful

enough, the transitions from one state to another is more meaningful in this scenario. An

example is a transition when the robot collides with objects but it was previously “close”

to the object.

The evaluator component connected to the pattern matcher component – thus to the mon-

itor itself – should assign scoring mostly to transitions.

5.1.6.1. Correctness criteria based on requirements

Previously the background has been discussed to construct a framework capable of run-

ning tests and intercepting incoming events from the test execution. With the pattern

matching functionality, the framework is capable of verifying requirements defined on

the available data.

5.1.6.2. Geometric regions

The motivational example of my work revolves around mobile robots operating in an

industrial environment. The most important thing to consider and therefore to monitor is

the current geometric state of the robot. It should be indicated if the robot closes to another

object or building element (onwards in this section the unified set is used for all objects).

The critical event is if the robot collides with another object.

Figure 21. Robotic state in the context of geometric monitoring

The state transitions are depicted on Figure 21. The explanation of the defined states fol-

lows:

Runtime
model

Execute
queries

Events CEP
Detected
Situations

Model
queries

45

- Far: the robot is not close to any object.

- Close: the robot is close to an object, but not in collision range (i.e. the distance

between the robot and the object is lower than a defined threshold 𝜀𝑐𝑙𝑜𝑠𝑒, but larger

than 𝜀𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛). This state is part of the danger zone.

- Collision: the robot collides with an object (i.e. the distance between the robot

and the object is lower than the defined threshold 𝜀𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛. This state is consid-

ered as part of the danger zone.

In this context, the robot is considered to transit from one state to another, if it is closer

to an object than a given threshold (Table 5). Consider, that the runtime model is available

from the analyzer component. The transitions of each state are summarized below. Each

𝜀 ∈ ℝ+ threshold is available, an 𝑜𝑖 object is selected from the set of objects 𝑂, and the

robot 𝑟 is given in this context (which is also 𝑟 ∈ 𝑂), with the position function of 𝑝(𝑜𝑖),

and a distance function 𝑑(𝑜𝑖, 𝑜𝑗) of two arbitrary objects.

Transition Guard condition

𝐹𝐴𝑅 → 𝐶𝐿𝑂𝑆𝐸 ∃𝑜𝑖(𝑑(𝑜𝑖, 𝑟) < 𝜀𝑐𝑙𝑜𝑠𝑒 ∧ 𝑑(𝑜𝑖, 𝑟) > 𝜀𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛),
𝑜𝑖 ∈ 𝑂

𝐶𝐿𝑂𝑆𝐸 → 𝐹𝐴𝑅 ∄𝑜𝑖(𝑑(𝑜𝑖, 𝑟) < 𝜀𝑐𝑙𝑜𝑠𝑒), 𝑜𝑖 ∈ 𝑂

𝐶𝐿𝑂𝑆𝐸 → 𝐶𝑂𝐿𝐿𝐼𝑆𝐼𝑂𝑁 ∃𝑜𝑖(𝑑(𝑜𝑖, 𝑟) < 𝜀𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛), 𝑜𝑖 ∈ 𝑂

𝐶𝑂𝐿𝐿𝐼𝑆𝐼𝑂𝑁 → 𝐶𝐿𝑂𝑆𝐸 ∄𝑜𝑖(𝑑(𝑜𝑖, 𝑟) < 𝜀𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛), 𝑜𝑖 ∈ 𝑂

Table 2. Transition table of the geometric states

The complex event processing should raise events on transitions and forward event iden-

tifiers to the evaluator component.

It should be noted, that it is computationally complex to check that a condition does not

hold at instant (like in case of 𝐶𝐿𝑂𝑆𝐸 → 𝐹𝐴𝑅).

The VEPL implementation of these patterns is described in 9.2.2.

5.1.6.3. Sensory states

To verify the correct operation of the robot, sensors have to be checked online.

All industrial robots have some sort of proximity checking capability, whether being mo-

bile or fixed manipulators. This ensures that the robot is (theoretically) capable of detect-

ing objects. In case of proximity sensors, the same regions are defined as for geometric

distances.

When using a single source of sensor, the query of sensor data is relatively simple. Only

the previously measured value is checked against region containment. But proximity sen-

sors are usually array sources with multiple values (usually around 500), refreshing very

frequently. Running runtime checks after their model update is as the queries are running

incrementally on data change. To resolve this problem and reduce the computational

46

overhead of the sensor monitoring, filters can be employed to determine the minima of

the measured proximity and only this value is used for further analysis.

Moreover, multidimensional sensors, like cameras provide information whose raw values

are usually inefficient to store in a model structure. Mostly extracted values are useful

from a camera image, i.e. the position of a landmark, line position, etc. In this motiva-

tional example, camera images are not extensively used, as industrial robots are usually

solely equipped with laser proximity sensors of high quality.

5.1.6.4. Navigation states

During robotic operation the control components of the robot must be also monitored.

Navigation can be abstractly defined as an abstract action that a robot implements. An

action can be defined with a goal (in sense of navigation), with feedback of the execution

process and the result of the execution (fail/success). The behavior of action execution

can be modeled as a simple state machine (Figure 22). The action itself is realized by an

embedded (software) component compatible with this description. Robotic frameworks

like ROS allows the description of high-level actions, and their implementation as action-

servers.

Figure 22. Simplified state machine of action execution

When concretely the navigation components are monitored the information of interest is

the current state of the execution, which is actually indicates how far the robot traveled

on the planned trajectory (i.e. feedback). The result on completion, and the geometric

goal itself holds interest. Also, the current state of planner may return a local and global

plan, which can help to verify the correct operation of navigation.

Navigation can result in additional events (e.g. re-planning, evasion scenario execution,

block recovery). These events may or may not be observed, depending on the test expec-

tations.

During monitoring the changes are not essentially updated into the robot description

model, rather than analyzed runtime as part of atomic operations or by filter components

resulting with extracted properties. While the state and feedback is a structured and some-

what object-oriented information, the path and the map constructed during the SLAM

process is a complex multi-array data which may not be stored as part of a structured

47

model. Practically, some subset of information might be gained from this component and

the data extracted might be stored in the model.

5.1.6.5. Queries

The following subsection describes the queries related to high-level requirements (Sec-

tion 5.1.2) and employed by the pattern matcher (as part of the specification Figure 17).

Assume that the structured model of the target environment is available, alongside with

some runtime observation of robot sensors. Extracted from the requirements, the follow-

ing queries must be matched after any update of the artifacts (assume 𝑟 is the robot, 𝑜𝑖 is

any object from the set of objects):

- Geometric queries

o Close to object: match if the robot is in the 𝜀𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 < 𝑑(𝑟, 𝑜𝑖) < 𝜀𝑐𝑙𝑜𝑠𝑒

range.

o Collision with object: match if the robot is in the 𝜀𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 > 𝑑(𝑟, 𝑜𝑖)

range.

- Sensor queries

o Laser sensor senses closeness: match if the minimal proximity measured

by the laser sensor is in the 𝜀𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 < 𝑑(𝑟, 𝑜𝑖) < 𝜀𝑐𝑙𝑜𝑠𝑒 range.

o Laser sensor senses collision: match if the minimal proximity measured

by the laser sensor is in the 𝜀𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 > 𝑑(𝑟, 𝑜𝑖).

With the help of defined queries, temporal patterns can be matched on the runtime model

created during monitoring.

5.1.6.6. Temporal patterns

This following subsection describes the concept of defining temporal patterns composed

of queries (as part of the specification, Figure 17). The monitor awaits the specification

of the monitoring subject, which defines the events to process for the evaluator compo-

nent (Figure 23).

Figure 23. Temporal patterns

It was described in section 5.1.6.2, that in this motivational example, the transition from

one state to another holds more interest. The temporal patterns are therefore intuitively

defined as the match of one state after another according to abstractly defined state ma-

chines. The queries define the current state of the monitored robot.

Therefore, to define a new event pattern, analogous patterns to the transitions defined in

Table 2 can be used. On the exact implementation of temporal patterns the implementa-

tion part describes the details (6.1.3.3). The temporal patterns realizing the geometric state

detection (5.1.6.2) are described in the appendix.

VEPL Monitor Evaluation

48

A large contribution of this framework that it enables the use of external temporal speci-

fication editors (e.g. VEPL, part of the VIATRA-CEP project). The pattern matching

rules generated from this description can be used to detect events as described in a high-

level specification.

5.2. Evaluating the events

This section describes the evaluation component. The detected events shall be forwarded

to an evaluator component, which logs them and executes basic analysis operations.

The evaluator logs each event of interest. It is a good practice to operate the logging in a

distributed way, which is inherently enabled by the communication protocol used by the

framework.

The simple operation of the evaluator component can be summarized as follows:

- The evaluator component connects to the monitor component and receives com-

plex detected events.

- Analysis of events

- Each mission is logged to a different file.

- The evaluator essentially logs all intercepted events.

The evaluator maps each event to a corresponding utility value and at the end of mission

returns with a total utility. To do this, the evaluator associates each event type with a

corresponding utility value. If all observed events are mapped to their corresponding util-

ity values, then at the end of the test case execution, the utility of the test case can be

defined as the weighted sum of event utilities.

𝑈𝑡𝑒𝑠𝑡𝑐𝑎𝑠𝑒 = ∑ 𝑈(𝑒𝑣𝑒𝑛𝑡𝑠[𝑖])

𝑛𝑒𝑣𝑒𝑛𝑡𝑠

𝑖=0

, 𝑈(𝑒𝑣𝑒𝑛𝑡) ∈ ℝ

The utility values can be useful in this phase to indicate which test environment is con-

siderably hard for the target robot. Furthermore, utility values might be used for more

complex evaluation components.

5.2.1. Utility assignment

Each event can be mapped to a corresponding utility value. Utility values are useful to

give an objective measurable result of the mission execution supporting the evaluation

process. Utility values can also be used for further machine learning algorithms as an

objective to learn.

Choosing the correct utility value is usually a difficult task. This subsection uses the re-

quirements defined in section 5.1.2and presents some ideas behind the assignment of a

useful value.

The events (state transitions) that can be associated with a negative utility value – i.e.

penalty - are considered as safety critical events or events that may be a presage to such

critical events. These include:

49

- Robot collides with an object. This event is associated with considerable penalty

as usually results with damage.

- Robot closes to an object. This is a recoverable event, and therefore a moderate

penalty is assigned.

- The proximity sensor senses transition to collision from closing range. This might

be a recoverable event, as the sensor might fail.

- While it is not considered as a safety critical event, the failed task execution might

be highly penalized. Executing tasks is a functional requirement and failing to do

it reliably, is violating the main functionality of the system.

Contrary, the events (state transition) that can be associated with a positive utility value

– i.e. reward – are those which indicate that the robot tries to recover from a safety critical

situation. These include:

- Robot leaves the danger zone, or tries to recover from collision.

The following functional requirements are rewarded:

- Robot starts a new task.

- Robot completes a task. This is a functional requirement. The reward of the task

execution is not necessarily equal to the penalty of the failure of the task.

The initial setup of utility values is summarized in Table 3. The explanation of each event

is below the table (note that some transitions are based on the state-machine depicted on

Figure 21):

Table 3. Assignment of events with utility value

Event identifier Utility value

SIG_MISSION_BEGIN 20

SIG_MISSION_END 20

SIG_MISSION_TASK_START 5

SIG_MISSION_TASK_FAIL -100

SIG_MISSION_TASK_SUCCESS 10

SIG_GEOM_FAR_TRANSIT_CLOSE -2

SIG_GEOM_CLOSE_TRANSIT_FAR 1

SIG_GEOM_CLOSE_TRANSIT_COLLISION -10

SIG_GEOM_COLLISION_TRANSIT_CLOSE 1

SIG_LASER_CLOSE_TRANSIT_COLLISION -5

SIG_LASER_COLLISION_TRANSIT_CLOSE 1

50

- SIG_MISSION_BEGIN: indicates the beginning of mission.

- SIG_MISSION_END: indicates the end of mission.

- SIG_MISSION_TASK_START: task of the mission started.

- SIG_MISSION_TASK_FAIL: task of the mission ended and resulted in failure

of some cause (e.g. goal is blocked), or the planner reports success when it is not

actually reaching its goal.

- SIG_MISSION_TASK_SUCCESS: task of the mission ended and resulted in

success (the robot reached its task according to the planner object) and it has ac-

tually reached its goal.

- SIG_GEOM_FAR_TRANSIT_CLOSE: this signal is raised when the robot

closes an object.

- SIG_GEOM_CLOSE_TRANSIT_FAR: this signal is raised when the robot

moves away from the object, from previous closing movement.

- SIG_GEOM_CLOSE_TRANSIT_COLLISION: this signal is raised when the

robot collides with an object from previous close state.

- SIG_GEOM_COLLISION_TRANSIT_CLOSE: this signal is raised when the

robot recovers from collision, but moves to close state.

- SIG_LASER_CLOSE_TRANSIT_COLLISION: this event is raised, when the

robot senses collision from previous far sense.

- SIG_LASER_COLLISION_TRANSIT_CLOSE: this event is raised, when the

robot senses evasion from collision.

51

6. Implementation

The following section describes the considerations of implementation and some of its

details. The components were identified in Section 3.2.2.2, the system overview is de-

picted on Figure 24. This is different from the high-level architecture description in a

sense, that only the contributed elements are depicted. The environment simulation is an

external component (Gazebo), which connects the middleware thus the framework com-

ponents to access environment state.

Figure 24. Component setup of the system

The following sections describe the components from two perspectives, from a network-

interconnection perspective and artifact usage perspective.

6.1. Interconnection of components

The following section describes the components from the viewpoint of network connec-

tivity. This describes, how the components are connected to each other over the protocol

of choice, and what interfaces are provided to each other.

6.1.1. Hive implementation

To connect each loosely coupled component, the framework uses a WAMP hive (section

2.5.3). As it was described, WAMP uses a dedicated router to connect components to

each other. WAMP uses Websocket as transport protocol, this allows to develop general

applications connecting to the system (even JavaScript-based frontends).

52

Figure 25. Network interconnection of components

This router fulfills the broker (Publisher/Subscriber) and dealer (RPC) roles simultane-

ously. Technically this means that a WAMP application can employ both approaches at

the same time without using two different 3rd party libraries – and inherently two different

network settings. Also, the router defines the AAA (Authentication/Authorization/Ac-

counting) tasks of the network. This means, that ACLs can be easily defined to filter

connections that are not supposed to connect in the router configuration. This is really

useful as it is relatively easy to write an application to connect to the WAMP backend.

There are numerous implementations of WAMP based routers, or allows the implemen-

tation of routers by a program. This framework uses Crossbar.io7 router.

The network interconnection of the implemented components is depicted on Figure 25.

The router is not depicted there, it is connected to each component and helps to establish

connection between components.

6.1.2. Data collector

The main purpose of this component is to supply data collected from the robotic middle-

ware (and simulation) and patches through the communication channel in use. This is the

main performance bottleneck of the system. Other components synchronize to its publish

rate, therefore this component defines the processing sample time of the whole system.

The data adapter limits the target of monitoring as it provides the data stream, which is

configured before the beginning of the operation (through file).

The component shall be configured to set the network connectivity settings of the moni-

tor, the identifiers of the published topics and to which subset of the data fetched from

the environment should be forwarded.

7 Crossbar.io is a registered trademark of Crossbar.io GmBH

53

The data adapter is basically an ROS node, subscribing to ROS topics and services. But

it is also composed of a WAMP node part, to forward data to the WAMP hive. The data

adapter provides a WAMP topic to allow other WAMP-based applications to subscribe

to this data stream.

For transmission, WAMP uses MsgPack format. MsgPack serializes only primitive types

and structures by default. Therefore, all ROS messages must be serialized to this format.

Fortunately, all ROS messages have strict structures and they can be easily mapped to a

corresponding C++ built-in type (with the help of generators).

Also the data adapter reads a semi-structured format of configuration with essential in-

formation to connect the WAMP hive. This configuration is shared to the monitor com-

ponent, to help with the initialization of the monitoring process.

6.1.3. Observer

This component subscribes to the data stream generated by the data adapter and analyses

its content. This component unifies the monitor and event handler component of the typ-

ical monitoring structure (identified in 2.3).

To initialize the monitoring context, the monitor uses the configuration received from the

data collector. The monitor connects to the data collector component through the use of

a WAMP client (jawampa). The data collector is a native application which supports raw

socket format, but the Java implementation only supports web-based transport. WAMP

allows the use of mixed transports between two endpoints, but each transport must be

broadcasted on different port.

The monitor employs an EMF instance model of the abstract and concrete test case de-

scription. On each message update, the runtime model is updated with new state of every

object. The queries are executed runtime on the model and the matches are used to gen-

erate events with the pattern matcher generated from VEPL files by the VIATRA-CEP

framework.

The detected complex events are forwarded on a WAMP topic to the evaluator compo-

nent.

The following subsections specifies some details of the monitoring operation.

6.1.3.1. Distance calculation

The general idea behind the collision detection is to determine the distance of all objects

to the robot. In this context yet only the footprint of all the objects is needed.

The footprint definition of primitive objects is straightforward, as they are easily defined

mathematically. Also, the distance calculation of primitive geometric forms to a point

requires only high-school level mathematics. Most of the building blocks are modeled as

cuboids primitives.

On the other hand, the simulation employs complex mesh objects and the calculation of

footprint of such objects is computationally difficult in runtime under the usual require-

54

ments of robotic systems. Fortunately, the simplified modeling of footprint of some com-

plex objects with primitive objects is applicable and greatly decreases the computational

overhead.

For example, the robot might be modeled with its bounding box (the collision model is

usually constructed from primitive objects anyway) which simplifies the footprint calcu-

lation. Calculation of distance of a rectangle to any other primitives is just multiple cal-

culation of vertices to the target primitive.

This simplification might be useful when other complex models, like a human is used, in

the early phases of the verification process. The human can be modeled with a bounding

box, and if the robot moves close to this box, the same distance calculations can be per-

formed.

6.1.3.2. Implementation of queries

The queries defined in 5.1.6.5 can be easily implemented with the help of VIATRA que-

ries. VIATRA provides an intuitive language to define queries on EMF instances, and the

monitor employs EMF metamodels at runtime.

VIATRA queries are running relatively fast on graph based models with large number of

nodes. As the defined queries are implemented with the help of the language, the execu-

tion speed can be further enhanced with some implementation-level considerations. The

robot will be most likely in danger zone if it is inside the circular range of other objects.

The radius of this range should be greater than the maximum possible length of the build-

ing objects. With these conditions, the query input of distance estimation can be signifi-

cantly reduced. VIATRA allows the use of external function calls. The distance function

can be included in a query this way. This allows using different distance functions in

special scenarios.

An example of defining a query is described below. This query reduces the objects to

match into a smaller radius. This definition also shows the possible use of external Java

functions.

pattern closeToObjectRadiusFilter(t: Robot, w: SimulatorObject, p0: Posi-
tion, p1: Position){
 find uniqueObjects(t,w,_,_);
 Robot.pose(t, pos0);
 Pose.position(pos0, p0);
 Position.x(p0, x0);
 Position.y(p0, y0);
 SimulatorObject.pose(w,pos1);
 Pose.position(pos1, p1);
 Position.x(p1, x1);
 Position.y(p1, y1);
 check (
 hu.bme.mit.inf.robotics.util.geometry.GeometricFunctions.eu-
clideanDistance(x0, y0, x1, y1) <= 1.0
);
}

55

First, it must be ensured, that only unique objects are selected. After defining the fields

of interest, each field can be used to check against a condition (in this case, against the

result of an external function).

6.1.3.3. Implementation of timed patterns

The temporal patterns defined in 5.1.6.6 and implemented queries defined in 5.1.6.5 can

be easily implemented with the help of VIATRA-CEP. VIATRA-CEP also provides an

editor to define temporal patterns based on existing VIATRA queries.

From the pattern description, VIATRA-CEP generates Java classes, which can be used

by external applications, in this case by the monitor itself. The VEPL pattern description

employs the implementation of temporal patterns in 5.1.6.6. The only difference from

temporal patterns defined there is that new atomic events are defined, indicating that a

new message update has been received (for all input topics). All patterns are executed

soon after that. Without this mechanism, the queries might run on all changes of the EMF

instance, and therefore the re-execution of model queries can be controlled this way.

VIATRA-CEP allows two main type of event context, immediate and chronicle. In the

early development phase, chronicle event context was used. This is to ensure that the

framework is capable of detecting any event. The main problem is with the chronicle

event context is, that it tends to store way too many snapshots of the runtime model. In

further versions, immediate event context is used which operates in a narrower context.

Also, intuitively the temporal patterns would be directly implemented as analogues of

state machine transitions. If strict event context is used, the temporality is realized if one

match is lost (the left side of the transition expression). An example of the implementation

of a temporal pattern is described in the code example below.

complexEvent closeTransitCollision(){
 as(notAtomicCloseToObject -> atomicCollisionToObject){+}[1000]
 context immediate
}

This describes the transition of the robot from close zone to a collision course. The query

events are previously defined (close matches atomicCloseToObject, collision matches

atomicCollisionToObject, loss of match is with not prefix). The match of object closeness

is lost, and immediately after collision with object is matched. This pattern defines some

temporality, as there is some delay between losing and gaining a match. Additional

6.1.4. Mission executor component

The mission executor provides information about the started or finished task. The infor-

mation provided is the goal setup, the name of the current mission.

The mission executor supplies task state on a topic to the monitor. The monitor can further

evaluate, whether the goal execution satisfies results.

The evaluator component uses the service provided by the mission executor component.

This service provides basic information about the mission itself (e.g. name of the mission,

targets, etc.).

56

6.1.5. Evaluation component

The evaluation component which subscribes to the events generated by the monitor (de-

fined in 5.2).

The evaluation component intercepts the events detected by the monitor component. The

evaluation process can vary in complexity. At its most basic, this component creates a log

for every mission. Also the evaluation component connects to the mission executor com-

ponent, to receive mission information at the beginning of each test scenario.

The log file contains the time and identifier of each event and their associated utility along

with the current total utility. The log is stored in simple file format (CSV) to allow exten-

sive use by general data analysis frameworks.

6.2. Abstract test case artifacts perspective

The components listed in this section use one of the artifacts generated from the abstract

test case. The following subsections specify the

6.2.1. Test room generation tool

Figure 26. Coordinate mapping during graph traverse

The Test room generation tool inputs a metamodel description and outputs the artifacts

defined in 4.1.3.2. This component plays a mandatory role regarding the whole operation

of the system while it is not performance critical.

The test room generation tool is an Eclipse-based AST tool, generated from the Ecore

description of the room (4.1.2) and employs generator libraries using the models. The

instance model creation is implemented by straightforward Ecore library methods.

The abstract test data does not contain geometric data. The idea behind mapping abstract

test case objects into geometric coordinates is to select a starting floor – which is most

likely the starting position of the goal. Then a graph traversal can be started from this

dedicated floor, using the four neighbors of the floor. Each node in the traversal tree is

Current floor RIGHT: (1,0) LEFT: (-1,0)

BOTTOM: (0,-1)

TOP: (0,1)

57

mapped relative to its parent (Figure 26). The branch stops on a wall element neighbor.

The whole algorithm stops, when all floor elements are traversed through its neighbors.

The coordinates are essentially unit length. This algorithm essentially works with a single

room at a time.

As the floor mapping is available, the dynamic objects can be placed according to the

available coordinate mappings. If all objects have been added, the simulation description

can be created according to the specific format. This is actually an XML serialization

process. The animation scenarios are injected into each object description, and therefore

into the environment description itself. A mission description can be created, with the

available coordinate mappings of floors (as the goal start and end points are floors in the

abstract test case).

The robot is usually available through a separate description in ROS manifesting not only

the physical description of the robot, but also the simulated software components. There-

fore, a launch file should be only generated to an existing robot setup.

6.2.2. Animator component

This component implements the object moving functionality of the framework. The com-

ponent inputs a room description which contains the room description and animation sce-

nario of target objects (i.e. a subset of environment objects). The animator component is

not connected to the network, but closely connected to the simulator and the simulator

description format itself.

From an implementation perspective, it is easier to use a simple velocity controller inter-

face and forward control messages. To use a velocity controller, the concrete model must

include the controller setup description.

The animator component sets the velocity of the target object corresponding to the trajec-

tory function defined in 4.2.2.

6.2.3. Mission executor component

The mission executor component loads a list of goals from a mission description file (.

As mission is described in a semi-structured manner (XML), the component employs an

XML deserialization subroutine.

The mission loader forwards all read goals to the path planner component of the robot.

The mission loader forwards a goal to the navigation action server defined in the target

description. The topic of the controller of the corresponding target awaits new goals from

series of tasks (move_base/goal), the program forwards each compact description to this

topic. The mission loader component receives feedback on each goal completion from

the controller. The state of completion is then forwarded to its dedicated WAMP topic.

When no more tasks are available, the program terminates.

58

7. Evaluation

This section describes the evaluation of the framework.

7.1. Evaluation context

The evaluation is performed on two sets of data. One is a motivational example for the

whole context which is evaluated in more depth. The other data set consists of numerous

environments generated by an external tool. Also, consider a differential driver robot

(Turtlebot38 waffle) as the target of the simulation.

7.2. Simple test scenarios

The following scenarios are basic test cases mostly demonstrating the capabilities of the

current framework. The robot is controlled through Simulink components rather than us-

ing the navigation capabilities of the robot.

7.2.1. Toolset

Figure 27. Dashboard to teleoperate ROS-based robot in simple scenarios

Throughout the simple test scenarios, a MATLAB/Simulink tool was developed to per-

form basic movements using the low-level controller of the robot. The simulation is mon-

itored with the help of the framework.

The tool created for the simple test is basically a dashboard, allowing to change the an-

gular and forward linear speed of a differential drive robot. The tool connects directly to

an ROS network and publishes control commands to the drive control of the robot

8 Turtlebot is a trademark of Robotis Inc.

59

(cmd_vel topic in general). The movement can be stopped at any time (the speed is set to

zero).

7.2.2. Simple translation scenario

This is a simple scenario demonstrating the basic functionality of the framework on a

very basic room. This scenario showed that events are raised correctly, when the robot

moves closely to the wall or any other static object.

During execution of this test, the robot moved forwards and backwards. The monitor de-

tected the events, when the robot really collided with a wall or an object.

7.2.3. Circular movement scenario

This is another simple scenario demonstrating the basic functionality of the framework

throughout a robot moving in circles. With this, it was demonstrated that the monitor can

indeed monitor the events detected when the robot collides the object from any side.

7.3. Simple navigation scenario

The following scenario selects a goal of the robot, and leads it to one part of the room.

This scenario is fully supervised and each crucial step is described. The goal is set through

the mission executor component. The room is relatively small.

Figure 28. Initial state of the room

Assume that the rosmaster component and the Crossbar.io router is running – also the

framework is properly installed. The following steps must be performed:

1. Generate the abstract test case with the help of the editor tool.

a. This can be done with the help of the graphical editor (Sirius-based) or

textual editor (Xtext based), also by the default reflective editor.

b. Generate artifacts from the abstract test case, by saving the text description

or by right-click in the graphical editor and click on “Generate Artifacts”.

2. Start the simulation and load the environment (be sure that the ROS instrumented

simulator is launched).

60

$> rosrun gazebo_ros gzserver solution_10_0.mircontext.sdf

3. Start the robotic components of use. This can be done by launching the generated

software setup. This will place the robot inside the simulation and starts its soft-

ware components.

$> roslaunch solution_10_0.mircontext.launch

4. Start the animator node, with the parameter of the simulator context description.

After startup it will move the human inside the simulated environment on a pre-

defined trajectory.

$> rosrun object_animator object_animator_node solution_10_0.mircontext.sdf

5. Start the data collector on the ROS side. Provide the configuration file which de-

scribes the data of interest. After this, WAMP applications can access to the data

provided by the simulator.

$> rosrun ros_test_bridge ros_test_bridge_node example.xml

6. Start the monitor. This is a Java application. It outputs the events detected and

visualizes the position of the robot. Provide the IP address of the Crossbar.io

router.

7. Start the evaluator component. This is a Python application. The log file is created

on the hard disk. Provide the IP address of the crossbar router.

8. Start the mission executor component on ROS side. After start, the navigation

component of the robot receives the start position of the mission. After the goal

execution stopped (with the result of success or fail), the end state of the mission

is send to the navigation component.

$> rosrun mission_loader mission_loader_node solution_10_0.mircontext.xml

The robot has to arrive into the “elevator” part of the room (Figure 31). During execution,

the robot shall not collide with anything, particularly not with humans.

Figure 29. Goal of the robot

61

At startup, it can be noticed that the robot percepts the human trajectory as a moving

obstacle. The monitor outputs the current observed state of the robot (FAR).

Figure 30. Observing the mission with the monitor

As the robot progresses to its goal, different events and the exact position of the robot

might be observed through the observer component. We can observe on the monitor side,

that the robot frequently goes into danger zone (Figure 31), but tends to avoid collision.

The robot even manages to avoid contact with the moving person.

Figure 31. Robot in danger zone

As the mission progresses we may notice that the robot has difficulties to evade objects

and some map construction errors appear. The navigation settings could be fine-tuned or

the SLAM algorithm implementation must be revisited.

62

Figure 32. Final state of the mission

Finally, the robot arrives to its goal location (Figure 32). The evaluator collected a log of

files, which can be further analyzed. It indicates that the mission ran for 381 seconds.

Overall, this mission ran particularly well, with a total utility value of 80.

Figure 33. Change of utility as the mission progress

The events occurred during this scenario are summarized in Table 4. No collisions oc-

curred, the robot successfully evaded the human.

Event identifier Occurrence

SIG_GEOM_CLOSE_TRANSIT_FAR
26

SIG_GEOM_FAR_TRANSIT_CLOSE
9

SIG_MISSION_BEGIN
1

SIG_MISSION_END
1

SIG_MISSION_TASK_START
2

SIG_MISSION_TASK_SUCCESS
 2

Table 4. Occurrence of events in the detailed scenario

63

7.4. Generated test scenarios

The following scenarios are using the mission executor component to perform missions

using on the robot. For each selected test environment, two test are executed one with and

one without animated objects.

7.4.1. Scenario template

The execution of each complex test scenario follows the same template. The test environ-

ment is loaded into the simulation. If there were animated objects defined, the animator

component starts to animate the selected objects. When the simulation is ready, the mis-

sion is executed. During execution, the simulation is monitored and events are extracted

and logged.

7.4.2. Toolset

These test cases use only the components provided by the framework. The logged results

were analyzed offline with the help of the R framework.

7.4.3. Expected outcome

We expect to intercept events on mission completion, geometric transition events (into

and from danger zones), mission execution time and the utility.

7.4.4. Small and dense rooms

Figure 34. Example of generated small room

The following scenario executes a mission on the robot in a relatively small room, with t

densely placed objects (total count of objects is 10) and no animated objects. The robot

starts from one side of the room to reach the another.

64

Test room

name

Exe-

cu-

tions

Mean

execu-

tion

time

Median

execu-

tion time

Mean

utility

Median

utility

Max

utility

Min

utility

Small_1
4

16.0224 16.755 -4.5 23.5 109 -174

Small_2
5

1.1359 1.24003

-87.6 -92.0 -8 -184

Small_3
5

26.999 27.3056 -215.0 -198.0 -61 -477

Total
14

14.6261 16.7549 -109.4

-105.5 109 -477

Table 5. Execution summary of small and dense rooms

The results indicate that the robot went close to the walls or even failed to perform some

tasks. Indeed, the signal logs show (Table 6) that the robot moved close to objects often

and some tasks could not be completed. Also, long execution time may indicate, that the

robot was usually blocked (solution_7_0). This did not last for an infinite time, as the

robot controller is implemented in a way to cancel a task if the robot is only oscillating

back and forth. The navigation parameters may need to be adjusted.

 SMALL_1 SMALL_2 SMALL_3

SIG_GEOM_FAR_TRANSIT_CLOSE
231 402 132

SIG_GEOM_CLOSE_TRANSIT_COLLISION
1 0 0

SIG_MISSION_TASK_SUCCESS
5 5 8

SIG_MISSION_TASK_FAIL
3 5 1

SIG_MISSION_TASK_START
8 10 9

Table 6. Events captured during monitoring of small rooms

7.4.5. Medium rooms

The following scenario executes a mission by the robot in a medium-sized room (Figure

35). The objects are sparsely placed, and there is an additional moving human. The mis-

sions are composed of the same tasks as previously. An example of such room is depicted

on Figure 35.

65

Figure 35. Example of a medium room

The summary of the execution (Table 7) indicates overall long execution time with some

rooms performing fairly good compared to small room scenarios.

Test room

name

Exe-

cu-

tions

Mean

execu-

tion time

Median

execu-

tion

time

Mean

utility

Median

utility

Max

utility

Min

utility

MEDIUM_1
2

42.762

42.762 -40 -40 -40 -40

MEDIUM_2
2

51.663 51.663 -267 -267 -202 -332

MEDIUM_3
4

47.792 48.3 -16 -37.5 51 -40

Total
8

47.502 48.3 -84.75 -40 51 -332

Table 7. Summary of mission executions of medium rooms

In some scenarios, the robot was still blocked or wrongly believed that it was blocked

(solution_5_9). The test results indicate that the navigation parameters should be further

adjusted. The captured events indicate (Table 8) that on collision, the robot did not pro-

ceed to execute the final goal of the mission. This issue might be addressed by imple-

menting new controllers.

 MEDIUM_1 MEDIUM_2 MEDIUM_3

SIG_GEOM_FAR_TRANSIT_CLOSE
175 0 46

SIG_GEOM_CLOSE_TRANSIT_COLLISION
0 0 9

SIG_MISSION_TASK_SUCCESS
2 2 7

SIG_MISSION_TASK_FAIL
2 2 1

SIG_MISSION_TASK_START
4 4 8

Table 8. Events captured during monitoring of medium-sized rooms

66

7.4.6. Large rooms

One test scenario was executed on a fairly large room with default robot settings. The test

was unsuccessful. The robot could not find a path to the selected goal. The problem could

be resolved by changing navigation parameters. This way the testing indicated that further

improvement (configuration) of the tested robot is necessary.

7.4.7. Summary

Figure 36. Total utility value change as missions execute

The following subsection summarizes the results of each test case. The change of utility

for each mission (Figure 36) indicates and the final utility of each mission was usually

negative – as expected. The missions described ran for 779 seconds.

67

Figure 37. Distribution of signals

The distribution of signals shows (Figure 37), that the robot moved close to objects in

many cases. Collisions occurred less frequently. There were actually more cases of far to

close transitions than otherwise. This should be closely equal. The temporal pattern im-

plementation shall be reviewed to address this issue.

7.5. Testing error prone proximity sensor

The following scenario is based on injecting error periodically to the laser proximity sen-

sor of the robot. The setup is familiar to the previous scenarios, an arbitrary room is se-

lected and the corresponding mission is executed. In this case, a small room can be used

as the purpose of this scenario is to verify that the monitor is able to detect the events.

Figure 38. Error injecting logic

For injecting error, the sensor output must be overridden by an external ROS node. The

external error injecting node can be created fast and simple by a Simulink module (Figure

68

38). This module uses a Poisson distribution to model the error occurring in laser sensors

(Figure 39).

Figure 39. Snapshot of output noise produced by the error module

The noise is additive and added to the previous read of the laser scanner. The gain of this

error can be adjusted during mission execution. The error injection is controlled by an

impulse which may have variable pulse width.

7.5.1. Low error

The following scenarios were executed with a 1% of pulse width . The map is constructed

close to a laser scanner with no error at all. On the other hand, the localization encountered

problems derived from estimation error and sometimes failed to localize the robot cor-

rectly. Even the final state had a ~10% error. The failures can be contributed to the local

map construction (Figure 40) which might be resolved with adjusting the planner param-

eters or revisiting the controller implementation and evasion strategies.

Figure 40. Map constructed with low sensor error rate

Investigating the intercepted signals (Table 9), no collision was detected. Indeed, the ro-

bot did manage to avoid collision with static objects of the simulation.

69

Signal id Count

SIG_GEOM_CLOSE_TRANSIT_FAR
251

SIG_GEOM_FAR_TRANSIT_CLOSE
391

SIG_MISSION_BEGIN
4

SIG_MISSION_TASK_FAIL
2

SIG_MISSION_TASK_SUCCESS
6

SIG_MISSION_END
4

Table 9. Signal captured during monitoring

7.5.2. Effect of high error

The following scenarios were investigated with high error injected (10%). This would

mean, that the proximity sensor is malfunctioning, but the error is injected more fre-

quently at the same rate.

One significant anomaly is, that the robot fails to construct a precise map. On the other

hand, SLAM is a relatively reliable algorithm of high tolerance. The robot manages to

find its goal and avoids collision.

On the other hand, with error of large amplitude, the robot fails to achieve its goal and

constructs a wrong map (Figure 41) with falsely presumed blockades.

Figure 41. Effect of high amplitude error on SLAM algorithm

7.5.3. Low error in dynamic environment

The following scenario is done with low sensor error (~1%) in a dynamic environment.

Otherwise than the localization error previously seen in the static environment, the SLAM

process resulted in some visible curvature in the map (Figure 42). This is significant,

70

considering, that the environment is built from rectangle blocks. Also, the robot mistak-

enly places some objects on its constructed map, the whole map seems to be a little dis-

torted. The robot managed to avoid the static building blocks, but did collided with the

person few times.

Figure 42. SLAM map reconstruction during mission execution

The event summary is listed in Table 10.

Signal id Count

SIG_GEOM_CLOSE_TRANSIT_FAR 20

SIG_GEOM_FAR_TRANSIT_CLOSE 38

SIG_MISSION_BEGIN 3

SIG_MISSION_END 3

SIG_MISSION_TASK_FAIL 1

SIG_MISSION_TASK_START

6

SIG_MISSION_TASK_SUCCESS

5

SIG_GEOM_CLOSE_TRANSIT_COLLISIO

N

1

Table 10. Summary of events on a dynamic environment with low error rate

71

8. Summary

8.1. Brief summary

In my work I presented a model-based approach to test and monitor robotic systems. The

characteristics of the framework can be summarized as follows:

- The framework supports the testing of robots implemented using a widely spread

robotic middleware (ROS).

- The framework populates a test environment for the tested robot based on an ab-

stract test case

- The framework feeds a running simulation with tasks from a mission based on an

abstract test case.

- The framework also extends the existing simulator with the ability to move target

objects, having this way a dynamic environment

- The monitor component intercepts data incoming from the simulation and

matches events based on user-defined high-level patterns. The evaluator compo-

nent logs the detected events and calculates utility values.

- In its current state, the monitor is able to check the simulation of differential drive

robots.

8.2. Future work

Having the basic functionalities of the framework successfully completed, there is still

possibility to extend it with additional functionalities.

The framework is not yet ready for humanoid or pedal robots in general. There might be

use cases where specifically humanoid robots might be used (e.g. nursery) or quadrupedal

robots (e.g. military or disaster recovery applications). The framework would be ready

for testing way more complex robots with somewhat large amount of extensions. At least

the distance calculation used by this framework must be improved to allow the monitoring

of humanoid robots precisely.

The possible test environment can be also extended to arbitrary terrains not only interiors

of buildings in general. Indeed, some complex robotic applications are set in natural en-

vironments. Examples include disaster recovery (test whether the robot is capable to nav-

igate and recover in a highly dangerous situation), space missions (reconnaissance on the

surface of Mars for example).

The framework can also be extended to support autonomous vehicle scenarios. The con-

text model can be extended to a new model capable of the description of road networks.

The framework could be extended to test agents of more of an abstract kind. As the mon-

itor not closely attached to the robotic system (uses a network protocol to access infor-

mation), the simulation could be easily changed.

It could be also demonstrated, how this framework helps to design new robotic systems.

This would mean that this monitoring framework could be part of a larger software system

72

of robot or mechatronic design. This way the framework could support the design of ro-

botic construction or control and navigation algorithms.

The evaluation component can be further extended. The logged data and abstract test case

could be used as training data for machine learning methods. Currently available machine

learning methods would allow using graph-based or pattern-based approaches. The

trained machine learning components could be used to generate new abstract test data or

to predict the possible outcomes of test execution based on historical data and test case

properties.

The framework could be also further developed to be ready for ROS 2, also with some

new features of Gazebo 8. Gazebo 8 supports the feedback of contacts which may be used

for more precise collision detection.

73

9. Appendix

9.1. Geometric format

9.1.1. Pose

The pose is generally composed of position and orientation. The definition of position is

straightforward (in 3D, it is defined with three components 𝑥, 𝑦, 𝑧). The

9.1.2. Twist

The twist is generally composed of linear and angular velocity components.

9.1.3. Geometric state

The state provided by simulators (and therefore by Gazebo) is composed of the pose and

twist.

9.2. Implementation details

9.2.1. VIATRA-CEP as standalone application

Problem arises that VIATRA-CEP is easily configurable for Eclipse OSGi applications,

but standalone applications are not currently in extensive use. From an implementation

viewpoint, the standalone configuration is not well documented. This framework resolves

the problem by registering the required plugins and Eclipse providers at startup. The code

below presents the code fragment required at wrapper class instantiation to use the VIA-

TRA-CEP engine throughout the program.

EStructuralFeature.Internal.SettingDelegate.Factory.Registry.INSTANCE.put(
 "org.eclipse.viatra.query.querybasedfeature",
 new QueryBasedFeatureSettingDelegateFactory()
);
WellbehavingDerivedFeatureRegistry.registerWellbehavingDerivedPackage(
 AutomatonPackage.eINSTANCE);
SingletonQueryGroupProvider groupProvider;
groupProvider = new SingletonQueryGroupProvider(DerivedFeatures.instance());
QueryGroupProviderSourceConnector sourceConnector =
 new QueryGroupProviderSourceConnector("org.eclipse.viatra.cep.standalone.connector",
 groupProvider, true);
QuerySpecificationRegistry.getInstance().addSource(sourceConnector);

There is no intention to make the monitor component into an OSGi (more specifically,

Equinox) application. The explanation for this is to allow the use of monitor in a more

limited software environment.

9.2.2. VIATRA-CEP temporal patterns

In 5.1.6.2, the geometric states was defined for the robot, while 5.1.6.6 presented the idea

of describing temporal patterns. 6.1.3.3 described the idea, how to implement each pat-

tern. In the following section, the geometric state detection temporal patterns are listed

and briefly described.

74

9.2.2.1. Preliminaries

Before each temporal pattern could be implemented, the building query must be defined

as query events. These are using the queries previously defined to match geometric

events. Also, it must be also defined when a match is not satisfied.

The query event definition of far from object state.

queryEvent atomicFarFromObject() as findFarObject found
queryEvent notAtomicFarFromObject() as findFarObject lost

The query event definition of close to object state.

queryEvent atomicCloseToObject() as findCloseToObject found
queryEvent notAtomicCloseToObject() as findCloseToObject lost

The query event definition of collision with object.

queryEvent atomicCollisionToObject() as findCollisionToObject found
queryEvent notAtomicCollisionToObject() as findCollisionToObject lost

9.2.2.2. Implementation of FAR->CLOSE pattern

This event is raised just as the robot was previously in a far state and closes to another

object.

complexEvent transitionFarToClose(){
 as (notAtomicFarFromObject -> atomicCloseToObject){+}[1000]
 context immediate
}

9.2.2.3. Implementation of CLOSE->FAR pattern

This event is raised just as the object previously closed to an object, but then moves far.

complexEvent transitionCloseToFar(){
 as (notAtomicCloseToObject -> atomicFarFromObject){+}[1000]
 context immediate
}

9.2.2.4. Implementation of CLOSE->COLLISION pattern

This event is raised just as the object previously closed and the collides with an object.

complexEvent closeTransitCollision(){
 as(notAtomicCloseToObject -> atomicCollisionToObject){+}[1000]
 context immediate
}

9.2.2.5. Implementation of COLLISION->CLOSE pattern

This event is raised just as the object collided but start to move further away.

75

complexEvent collisionTransitClose(){
 as(notAtomicCollisionToObject -> atomicCloseToObject){+}[1000]
 context immediate
}

76

10. References

[1] NIST, "Reference Architecture fo Cyber-Physical Systems," [Online]. Available:

https://www.nist.gov/programs-projects/reference-architecture-cyber-physical-

systems.

[2] ARTEMIS, "Reconfigurable ROS-based Resilient Reasoning Robotic Cooperating

Systems," 2017.

[3] S. Russell and P. Norvig, Artificial Intelligence, A Modern Approach, Prentice Hall,

2010.

[4] ANSI/RIA, R15.06-2012, 2012.

[5] EN, MSZ EN ISO 10218-1:2011, 2011.

[6] S. Roland and N. Illah R., Autonomous Mobile Robots, The MIT Press, 2004.

[7] ANSI, "ANSI/RIA R15.306:2016," 2016. [Online]. Available:

https://webstore.ansi.org/RecordDetail.aspx?sku=RIA+TR+R15.306-2016.

[8] J. Hsu, "When It Comes to Safety, Autonomous Cars Are Still "Teen Drivers","

Scentific American, 2017.

[9] M. Zoltán, "Languages and frameworks for specifying test artifacts," 2013.

[10] IEEE, 24765 Systems and software engineering - Vocabulary, 2010.

[11] ISTQB, Glossary.

[12] D. Nelly, "A Taxonomy and Catalog of Runtime Software-Fault Monitoring Tools,"

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, , vol. 30, no. 12, p. 859,

2004.

[13] R. Wiki, "http://wiki.ros.org," OSRF. [Online].

[14] Orocos, "The Orocos Project," KU Leuven, [Online]. Available: www.orocos.org.

[15] RT-Middleware, "OpenRTM-aist," AIST, [Online]. Available:

http://www.openrtm.org/openrtm/.

77

[16] OSRF, "ROS 2 design," [Online]. Available: http://design.ros2.org/.

[17] Gazebo, "Gazebo simulation," [Online]. Available: http://gazebosim.org/.

[18] OSRF, "Simulation Description Format," [Online]. Available: http://sdformat.org/.

[19] WAMP, "WAMP protocol," [Online]. Available: http://wamp-proto.org/.

[20] WAMP, "WAMP protocol comparison," [Online]. Available: http://wamp-

proto.org/compared/.

[21] F. Huang, Web Technologies for the Internet of Things, University of Aalto, 2013.

[22] E. Foundation, "Eclipse Modeling Framework," [Online]. Available:

https://www.eclipse.org/modeling/emf/.

[23] D. István, "VIATRA CEP," [Online]. Available:

https://wiki.eclipse.org/VIATRA/CEP.

[24] MATLAB, "ROS support from Robotoics System Toolbox," [Online]. Available:

https://www.mathworks.com/hardware-support/robot-operating-system.html.

[25] "Acceleo Eclipse plugin," [Online]. Available: http://www.eclipse.org/acceleo/.

[26] S.-K. László, A. György and C. Ferenc, Háromdimenziós grafika, animáció és

játékfejlesztés, Computerbooks, 2003.

[27] NHTSA, "United States Department of Transportation," [Online]. Available:

https://www.nhtsa.gov/technology-innovation/vehicle-cybersecurity.

