
Budapest University of Technology and Economics
Faculty of Electrical Engineering and Informatics

Department of Measurement and Information Systems

Towards tensor-based reliability analysis of
complex safety-critical systems

Scientific Students’ Association Report

Author:

Dániel Szekeres

Advisor:

Kristóf Marussy

2019



Contents

Kivonat i

Abstract ii

1 Introduction 1

2 Background 4

2.1 Continuous-Time Markov Chains . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Phase-type Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Fault Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4 Binary Decision Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.5 Kronecker algebra and multi-index notation . . . . . . . . . . . . . . . . . . 10

2.6 The Tensor Train Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.7 Approximate matrix inversion through exponentiation . . . . . . . . . . . . 14

2.8 Related works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Overview of the proposed method 16

4 Creating tensor trains for MTFF computation 19

4.1 Structured MTFF Computation . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.2 Description of the MTFF computation scheme . . . . . . . . . . . . . . . . 22

4.3 Tensor Trains from Fault Trees . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.3.1 Representing the original rate matrix . . . . . . . . . . . . . . . . . . 24

4.3.2 Calculating indicator vectors using decision diagrams . . . . . . . . . 25

5 Linear system solvers 27

5.1 Jacobi iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.2 TT-GMRES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.2.1 GMRES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.2.2 The TT version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.2.3 Preconditioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31



5.3 ALS and DMRG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.4 Exponential sums and the Neumann expansion . . . . . . . . . . . . . . . . 33

5.4.1 Adaptation to fault trees . . . . . . . . . . . . . . . . . . . . . . . . 35

6 Evaluation 36

6.1 Implementation and benchmark setup . . . . . . . . . . . . . . . . . . . . . 36

6.2 Benchmark model descriptions . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.3 Experiment setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6.5 Discussion of the results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

7 Conclusion and future work 44

7.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Acknowledgements 46

Bibliography 47



Kivonat

A biztonságkritikus komplex kiberfizikai rendszerek helytelen működése emberi életet ve-
szélyeztet, vagy nagy mértékű üzleti kárt okozhat. Az ilyen rendszerek tervezésekor kü-
lönösen fontos a funkcionális követelményeken túl a különböző extra-funkcionális követel-
ményeket is szem előtt tartani, mint

a biztonság, a megbízhatóság, vagy a rendelkezésre állás. Ezen követelmények alapve-
tően kvantitatívak, azaz különböző mérőszámokra határoznak meg elérendő célértékeket.
Teljesülésük biztosításával már a rendszertervezés fázisában is foglalkozni kell, amikor még
nem áll rendelkezésre a működő rendszer, csak annak modellje.

A megbízhatósági és rendelkezésre állási metrikák meghatározásához a rendszer vi-
selkedésére jellemző véletlenszerűséget tartalmazó, sztochasztikus modelleket használunk.
A munkámban egy elterjedt sztochasztikus modellezési formalizmust, a hibafákat vizs-
gálom. Ez a formalizmus a rendszerszintű hiba dekomponálásán alapul: az egyes elemi
komponensek meghibásodásának egy logikai függvényével írja azt le.

A modellből a szükséges megbízhatósági mutatók, mint as első meghibásodásig tartó
várható időtartam számításához egy alacsonyabb szintű, matematikailag kezelhető analí-
zis modellt kell származtatni. Az analízis modell elkészítésekor és elemzésekor felvetődő
probléma az állapottérrobbanás: bár a magas szintű mérnöki modell még kezelhető mére-
tű, a hozzá tartozó analízis modell mérete ennek exponenciális függvénye. Így az elterjedt
explicit elemzési módszerek csak korlátozottan skálázhatóak.

A probléma egy lehetséges megoldása, hogy az elemzés során megoldandó lineáris
egyenletrendszert tenzorreprezentációs módszerek segítségével, tömör közelítő formában
tároljuk, és a megoldást is ebben a formában keressük. Munkám során a Tensor Train
(TT) formátumú reprezentáció alkalmazhatóságát vizsgálom a hibafák elemzésére, me-
lyet a szimbolikus modellellenőrzésben elterjedt döntési diagram állapottér reprezentáció
segítségével állítok elő.

A számítások elvégzéséhez több különböző iteratív algoritmus áll rendelkezésre TT
formátumú egyenletrendszerek megoldására. Munkám során ezeket hasonlítom össze, va-
lamint egészítem ki a hibafákból származó problémák megoldására.

Az elméleti eredmények helyességét különböző, nagy méretű hibafákon végzett mé-
résekkel támasztom alá, nemcsak az iteratív TT algoritmusok, hanem a széles körben
alkalmazott explicit módszerek felhasználásával is.

i



Abstract

The failure of complex safety-critical cyber-physical systems can endanger human lives, or
cause a high amount of financial loss. Throughout the development of such systems, taking
extra-functional requirements - like safety, reliability and performance - into account is of
utmost importance. These kinds of requirements are mostly quantitative, meaning that
they give target values for some metrics of the system that must be achieved. Achieving
these values must be assured already in the design phase, when no usable instance of the
system under development is available for measurement, only a model describing it.

The reliability and availability metrics are derived using a stochastic model explicitly
describing the randomness inherent in the behavior of the system. In my work, I focus on
a widely used stochastic modeling formalism called fault trees. This formalism is based on
the decomposition of the system-level error: it describes the system-level error as a logic
function of the error of the system’s elementary components.

To calculate the necessary metrics from the model, like mean time to first failure, a
lower level analysis model must be derived from it, that can be handled mathematically.
When creating and analyzing this low-level model, the problem of state-space explosion
arises: even though the high-level engineering model is of tractable size, the size of the
corresponding analysis model is exponential in the original one’s size. Because of this, the
scalability of widespread explicit analysis methods is limited.

A possible solution for this problem is storing the linear equation system that needs to
be solved during the analysis in a concise approximate form using tensor representation
methods, and seeking the solution in the same format. I examined the applicability of
Tensor Train (TT) methods for fault tree in my work. I use decision diagram-based state
space representation for the derivation of the compressed form, which is widely used in
symbolic model checking.

There are several different iterative algorithms for solving equation systems in the TT
format to perform the necessary calculations. Throughout my work I compare and extend
these methods for the solution of problems arising in the analysis of fault trees.

I verify the correctness of the theoretical results through measurements performed on large
fault trees, using not just the iterative TT algorithm, but widely used explicit methods as
well.

ii



Chapter 1

Introduction

The failure of complex safety-critical cyber-physical systems can endanger human lives, or
cause a high amount of financial loss. Throughout the development of such systems, taking
extra-functional requirements – like safety, reliability and performance – into account is of
utmost importance. These kinds of requirements are mostly quantitative, meaning that
they give target values for some metrics of the system that must be achieved. Achieving
these values must be assured already in the design phase, when no usable instance of the
system under development is available for measurement, only a model describing it. Even
if an operational prototype of the the system were available, the requirements imposed on
safety-critical systems by various laws, regulations and standards are so strict that statis-
tically measuring the reliability is impossible. For atomic components like electronic parts,
accelerated life-time analysis is an option for determining the reliability characteristics,
but complex systems are not suitable for this.

The reliability and availability metrics in such cases can be derived using a stochastic model
explicitly describing the randomness inherent in the behavior of the system. There are lots
of different modeling formalisms available, e.g. stochastic Petri nets and its extensions,
stochastic autamata networks, stochastic process algebra, etc. [35, 7]. In my work, I focus
on a widely used stochastic modeling formalism called fault trees [36]. This formalism is
based on the decomposition of the system-level error: it describes the system-level error
as a Boolean function of the failure of the system’s elementary components. Fault trees
are mostly used as a high-level modeling technique, so these elementary components are
usually small subsystems, not directly atomic parts.

Several different extensions have been developed for fault trees which allow the modeling
of complicated behaviour, like constraining the order in which components can fail or
dependencies between components. Such models are called dynamic fault trees, while the
original simple formalism is called static. This work focuses only on static fault trees for
now.

The computation scheme used in this work can be adapted for a lot of different reliability
or performance metrics, like mean time to failure, mean time to first failure, mean time
between failures, etc. For now, I focused on mean time to first the (MTFF). MTFF is
the expected amount of time until the system enters a failure state. This can often be
used when the model is made for probabilistic verification of the system’s safety goals. In
this case, the individual components of the system can be replaced or repaired, but once
the system itself enters a failure state there is no way back. In modeling safety goals, the
system-level failure is often interpreted as the event that the system’s faulty behaviour
caused a catastrophe, like two trains colliding in the case of railway interlocking systems,

1



or a plane crash in case the modeled system is an airplane. These are events that should
not happen at all, but assuring this is physically impossible (as hardware components can
randomly fail from stress or fatigue), so the regulations and standards prescribe a very-
very low non-zero probability for these. Another case when MTFF is a useful metric is
the case when no repairs are done, the system is replaced once it enters a failure state.

Once the model is built, there are principally two ways for calculating the system’s metrics:
Monte-Carlo simulations and mathematical analysis. Simulation is a simple and general
way for obtaining the necessary characteristics of the system, but the results of these
methods are often unreliable, and too many independent simulations of the system must
be run in order to get a good enough convergence. When system-level failure is a very
unlikely event, as it mostly is in the case of well-designed safety-critical systems, basic
Monte-Carlo simulations have too high variance to converge to a good estimate of the real
value, often underestimating the probability of failure. Multi-level Monte-Carlo methods
intentionally designed for rare event simulations are a better alternative if the system
is too complex for non-statistical analysis, but direct mathematical analysis is still more
accurate, so it is still better to use if possible. This work deals with the direct mathematical
analysis of the model.

To calculate the necessary metrics from the model, like MTFF, a lower level analysis
model must be derived from it, that can be handled mathematically. For static fault trees
– similarly to a lot of other stochastic models used in performance and reliability analysis
– this model is a (usually continuous-time) Markov chain. When creating and analyzing
this low-level model, the problem of state-space explosion arises: even though the high-
level engineering model is of tractable size, the size of the corresponding analysis model
is exponential in the size of the original one, making it potentially too large to handle.
Because of this, the scalability of widespread explicit analysis methods is limited.

In this report, I propose a method for overcoming the state space explosion when cal-
culating metrics for static fault trees. It is based on structured tensor representations,
specifically the tensor train decomposition [24], and representing states the operational
state set (or by taking its complement, the failed state set) of the fault tree compactly as
a binary decision diagram, which is a common technique in symbolic model checking.

Contributions The main contribution of this report is three-fold:

• Two mathematically proven formula are given for the computation of mean time to
first failure in a fault tree which can be applied to structured representations. These
are usable not only for fault trees, but also other mean time to absorption problems
in structured Markov chains.

• A method is given for efficiently deriving the structured representation for fault tree
MTFF calculation using BDDs. This is a novel approach, at least to my knowledge.

• The method was benchmarked with different iterative solution methods created for
the TT format. Even though on smaller models the proposed method was slower
than the state-of-the-art optimized model checker model checker, there was one
setting that greatly outperformed the baseline on larger models. This shows that
the method could also be used in practice for appropriately structured large models
that cannot be analyzed using explicit methods.

Structure of the report Chapter 2 reviews the necessary background in stochastics
and reliability modeling, and introduces the Tensor Train (TT) format. Chapter 5 provides

2



a summary of the linear equation solvers applicable to systems given in the TT format.
Chapter 4 describes the main contribution of the paper: the structured method proposed
for MTTF calculation of fault trees. Chapter 6 presents the benchmarking method used
to measure the applicability of the proposed method, and the results of the benchmark.
Chapter 7 concludes the work and provides a summary of some potential areas of future
research in the topic.

3



Chapter 2

Background

This chapter reviews the necessary mathematical and modeling background.

Section 2.1 introduces continuous-time Markov chains, which are used as the low-level
mathematical analysis model for the proposed algorithm. Section 2.2 defines Phase-type
probability distributions, which serve as an important probabilistic model for the time until
system failure in reliability analysis.

Section 2.3 describes the fault tree modeling formalism. A new analysis method for such
models is the focus of this report.

Section 2.4 presents binary decision diagrams, which are an used to derive the structured
representations used by the algorithm proposed in this report.

Section 2.5 defines the operations of Kronecker algebra, and explains the notion of multi-
index notation. These are often used throughout the report.

Section 2.6 introduces perhaps the most important background for the proposed approach:
the tensor train format. This format is the structured tensor representation that the
proposed method is based on.

Section 2.7 describes an efficient approximate matrix inversion approach for appropriately
structured matrices. This approach is used in some versions of the proposed algorithm.

At the end of the chapter, Section 2.8 provides an overview of related works in the litera-
ture.

2.1 Continuous-Time Markov Chains

Markov Chains (MCs) form an important mathematical formalism used in stochastic mod-
eling. Intuitively, a Markov Chain models a stateful system, where state transitions happen
randomly, but with the Markov property: the future depends on the past only through
the present. Markov Chains can have either a continuous or a discrete state space (al-
though some authors refer only to those with discrete state space as Markov chains, and
call continuous ones simply Markovian continuous stochastic processes), and can evolve
in continuous or discrete time, leading to different types of MCs.

In reliability and performance modeling, MCs usually have a discrete state space, which
can be either finite or countably infinite. For example, when dealing with queuing systems,
the size of a queue can be modelled as a Markov chain with a countably infinite number
of states, if the queue has infinite capacity. Most models in reliability analysis, like fault

4



trees or Petri-nets (with a finite maximum number of tokens) yield MCs with a finite state
space. The infinite case needs a very different approach to analyze than the finite case, so
I focused only on MCs with a finite state space in my work.

On the time dimension, both discrete and continuous-time modeling can be a reason-
able choice when dealing with extra-functional requirement verification, depending on the
problem. For now, I considered only a continuous-time treatment of Fault Trees for the
computation of mean time to failure (see section 2.3). In a Continuous-Time Markov
Chain, state transitions can happen at any point in time, but the probability of taking
a given transition in a give time period depends only on the current state of the system,
independent of the previous states and the time spent in the current state before the
interval. The formal definition of a CTMC is as follows (from [34]):

Definition 1. A stochastic process {X(t), t ≥ 0} is a Continuous-Time Markov Chain
(CTMC) if for all integers n and for any sequence t0, t1, . . . , tn, tn+1 such that t0 < t1 <
· · · < tn−1 < tn, the following equation holds:

Prob{X(tn+1) = xn+1|X(tn) = xn, X(tn−1) = xn−1, . . . , X(t0) = x0} =
= Prob{X(tn+1) = xn+1|X(tn) = xn}. �

This definition uses the Markov property in continuous time to define a Markov chain,
but inspecting CTMCs only through this property is hardly useful. A more useful char-
acterization of CTMCs comes from 2.1, which is described in the following.

For the sake of correctly identifying the scope of the work and the theorems used, a small
aside is needed about time-homogeneity.

Definition 2. [34] A CTMC is called time-homogeneous if Prob{X(tn+1) = xn+1|X(tn) =
xn} depends only on xn+1, xn and the difference tn+1− tn. It is called time-inhomogenous
otherwise. �

Analyzing time-inhomogenous CTMCs is a challenging task, they are rarely used. The
CTMCs derived from Fault Trees and Petri-nets are always time-homogeneous, so I consid-
ered only time-homogeneous models in my work. From now on, all CTMCs are implicitly
assumed to be time-homogeneous.

We can assemble the state probability vector π(t), the ith element of which is the prob-
ability of being in the ith state at time t. As this is a vector made of all elements of a
discrete probability distribution, |π(t)|1 = 1, and its elements are non-negative.

With this notation in place, it can be shown (see any textbook on the topic, like [34]), that
the time of taking a transition follows an exponential distribution, and the evolution of
the probabilities of being in each state can be described by the following linear differential
equation, called the Kolmogorov forward equation:

dπ(t)
dt

= π(t)Q (2.1)

where π(t) is the state probability vector at time t, and Q is called the CTMC’s infinites-
imal generator matrix. It can be computed from the rate matrix of the CTMC, in which
the diagonal is zero, and the off-diagonal element (i, j) is the rate (parameter) of the ex-
ponential distribution describing the amount of time after which the system transitions
from state i to state j (0, if transitioning from state i to state j is not allowed). From this

5



s1

s2

s3

s4

λ1

λ2

λ5

λ3

λ4
λ6


−(λ1 + λ2) λ1 λ2 0

0 −λ5 λ5 0
0 0 −λ3 λ3
λ6 λ4 0 −(λ6 + λ4)



Figure 2.1: CTMC example represented by its state graph and
the corresponding infinitesimal generator matrix

matrix, Q = R−diag{R ·1}. Each row of the infinitesimal generator sums to zero, so it is
always singular. An example of a CTMC with its state graph and infinitesimal generator
matrix can be seen on figure 2.1.

Markov Chains are widely used in reliability and performance analysis, as several metrics
and characteristics of the system can be derived by analysing them. Some examples are:

• Transient analysis, which describes the time evolution of the system, answering ques-
tions like what is the probability that the system fails throughout its lifetime, or how
long can the system be operated without maintenance if a given maximum failure
probability is prescribed

• Mean time to absorption, which will be described in more detail in Section 2.2, is
used when calculating the mean time to failure, mean time to failure, mean time to
repair, or mean time between failures metrics

• Steady-state analysis tells us how the system approximately behaves after it is left
on its own for a long amount of time

• Reward-based analysis can be used to compute metrics like expected energy con-
sumption of a system

2.2 Phase-type Distributions

Phase-type distributions is a family of continuous probability distributions related to
Markov chains. They are useful when modeling a random variable representing the amount
of time passed until some event happens.

Definition 3. A state of a CTMC is called absorbing, if it has no outgoing transitions.
This is equivalent for the all the elements of corresponding row in the infinitesimal gener-
ator to be zero. �

Definition 4. A phase-type distribution is the distribution of a random variable repre-
senting the time until absorption in a Markov chain with a single absorbing state. �

A phase-type distribution can be represented by the infinitesimal generator matrix and
initial probability vector of the associated Markov chain. If the states of the CTMC are
ordered such that the absorbing state is the last one, the infinitesimal generator and the

6



initial probability vector can be written in the following block form:

Q =
[
S sabsorb
0T 0

]
, π(0) = [σ | σabsorb]

With this notation, any moment of the phase-type distributed random variable X can be
computed as:

E[Xj ] = (−1)jj!σS−j1 (2.2)

Setting j=1 in this formula, we get the formula for the expectation of the random variable:

E[X] = −σS−11

Computing this formula directly involves taking the inverse of S, which is often compu-
tationally infeasible if the associated Markov chain has a large number of states. Alter-
natively, we can decompose this formula into solving the linear system Sx = 1, and then
computing −σx, or doing the same in the other direction. Thus, the task of finding the
expected value of a phase-type distributed random variable can be reduced to solving a
linear system.

Although the original definition of a phase-type distribution involves a Markov chain with
a single absorbing state, it can be easily shown that the time until absorption in a CTMC
with more than one absorbing state is also a Phase-type distribution.

To see this, we only need to substitute all the absorbing states with a single, abstract
absorbing state, and redirect all the transitions originally leading to one of the absorbing
states to this state. As there are (by definition) no outgoing transitions from any of the
absorbing states, merging them into a single state does not change the behaviour of the
Markov chain. The time until absorption in the Markov chain with the merged absorbing
state is thus the same as in the original one.

When dealing with a Markov chain with an explicitly represented state space, the ab-
sorbing states can easily be abstracted into a single state. In the case of structured
representation, such as those I deal with in this work, however, this is not possible, so
the extension to multiple failure states is needed. Calculation methods can also be easily
extended: instead of eliminating the rows and columns of the single absorbing state, all
the rows and columns corresponding to an absorbing state must be eliminated.

2.3 Fault Trees

A Fault Tree (FT) is a model for decomposing the failure event of a complex system
into basic failure events. It represents the system Boolean function describing the system
failure as a connected directed acyclic graph. The graph has exactly one node which has
no outgoing edges, which is called the top event of the fault tree.

Nodes without any incoming edges are called basic events. A basic event represents the
(permanent) failure of a system component, that is considered atomic. Fault trees can
also take repairs into consideration, meaning that the component corresponding to a basic
event can become working again after a failure. If none of the components are modeled
as repairable, the fault tree is called monotone, else they are called non-monotone.

Nodes with at least one incoming edge (including the top event, if it is not the only node
in the graph) are called gates. These nodes correspond to the failure of a compound

7



EBS Fails

Control
signal
failure

Pneumatic
subsystem

fails

No
condensed
air from
tank A

Air escaped
from tank A

Valve stuck
in tank A

No
condensed
air from
tank B

Air escaped
from tank B

Valve stuck
in tank B

G01

G02

G03 G04

C01

V02 V03A01 A02

Figure 2.2: Example of a (static) fault tree representing the failure
of a pneumatic emergency break system

subsystem. Nodes at the end of the incoming edges of a gate are the input events of the
gate. Gates are typed vertices. In the simplest version of fault trees, called static fault
trees, there are three types of gates:

• Or gates: the subsystem is failed if any of the inputs are failed.

• And gates: the subsystem is failed if all of the inputs are failed.

• Voting or K-of-N gates: these gates have a parameter K, and the corresponding
subsystem is failed if at least K of the inputs are failed.

Fault trees can be extended with other, more complicated gates, like dependencies or gates
that take the order of failures into account [37]. The probability of the top event of a fault
tree with these gates has a more sophisticated time evolution. Such fault trees are called
dynamic fault trees. In my current work, I focused only on static fault trees. Extending
the method to dynamic ones is a potential area for future work. An example of a fault
tree can be seen on Figure 2.2.

When analyzing a FT in continuous time, the time until failure or repair of a component is
mostly assumed to be an exponentially distributed random variable with failure and repair
rates set for each basic event (unrepairable components have 0 repair rate). Combining
these exponentially distributed events through static fault tree gates leads to a phase-type
distribution for the time until the top event happens.

Mean Time to First Failure (MTFF) is a common metric used in reliability engineering
to assess the quality of the system’s reliability. It is defined as the expected time until the
system’s first failure happens. If we model the system failure as the top event of a fault
tree, we can compute the MTFF as the expectation of a phase type distributed random
variable. As described in section 2.2, this can be done by solving a linear equation system
after assembling the infinitesimal generator matrix of the associated Markov chain.

8



a

b

c

0

c

b b

1
(a) BDD with no con-

straints

a

01

b

c

b

c c

(b) ordered BDD

a

01

b

c

b

c

(c) quasi-reduced or-
dered BDD

a

01

b

c

(d) reduced ordered
BDD

Figure 2.3: BDDs representing the function f(a, b, c) = (a∧b)∨c,
with solid lines signifying 1 edges and dashed lines
signifying 0 edges.

2.4 Binary Decision Diagrams

Definition 5. A Binary Decision Diagram is a rooted DAG with one or two terminal
nodes of out-degree zero labeled 0 or 1 and a set of non-terminal nodes of out-degree two.
Non-terminal nodes are labeled with a corresponding variable (more than one node can
be labeled with the same variable), and the edges of a non-terminal node correspond to
choosing the value of the node’s variable. A path from the root to a terminal node thus
means choosing the values of the variables the way the edges on the path specify them.

A BDD is ordered if on all paths through the graph, the variables respect a given linear
order. In this case, the nodes of the graph are organised into levels, each of the levels
corresponding to a variable, except for the last one, which consists of the terminal nodes.

An ordered BDD is reduced, if it satisfies the following properties (where u[0] and u[1]
means the node at the end of the outgoing edge of u labeled 0 and 1, respectively):

• Uniqueness: (u[0] = v[0] ∧ u[1] = v[1] ) =⇒ u = v

• Non-redundant tests: u[0] 6= u[1] �

BDDs were originally created to represent Boolean functions in a compact format. The
variables of the BDD are the inputs of the function, the edges are the values of the inputs,
and the terminal node reached by choosing the appropriate edges for each node is the
output of the function. A reduced ordered BDD is a canonical representation of a Boolean
function this way.

Another canonical form can be given if the non-redundant tests constraint is dropped, and
instead all paths leading from the root to the terminal level are required to go through
exactly one node in each level. Such BDDs are called quasi-reduced. This practically
means that all the input variables are considered in each path, even if their value does
not matter. Although this means storing redundant nodes, this form is needed for the
structured representations used in this work. The computations can be implemented
in such a way that while building the BDD, the more efficient fully-reduced format is
used internally. Throughout the report, “BDD” refers to a quasi-reduced ordered binary
decision diagram.

An example for different BDD types is given in Figure 2.3.

9



A subset of a state space can be represented similarly if the states can be decomposed
into binary state variables: in this case, a Boolean function can be given which takes
the state variables as inputs, and returns 1, if the state is included in the set, and 0
otherwise. Efficient algorithms exist for performing set operations, like union, intersection
or difference, on sets represented by BDDs this way.

The set of failure states in a fault tree can be represented as a BDD using the state space
decomposition described above, by using the state of the basic events as binary state
variables (0 - operational, 1 - failed), and representing the Boolean function encoded by
the tree’s gates as a BDD.

2.5 Kronecker algebra and multi-index notation

Kronecker algebra defines two operations between matrices: the Kronecker product, de-
noted by A⊗B, and the Kronecker sum, denoted by A⊕B. These operations are defined
as follows:

(A⊗B)[i1rB + i2, j1cB + j2)] = A[i1, j1] ·B[i2, j2]
A⊕B = (A⊗ IB) + (IA ⊗B)

where rB and cB denote the number of rows and columns of B, respectively. The Kro-
necker product is essentially an every-element-by-every-element product. When selecting
an element of the result, it must be specified which element of each input matrix is taken.
Because of this, the result has rArB rows and cAcB columns.

Example 1 (Kronecker product).

M =
[
1 2
3 4

]
⊗

[
1 0
0 2

]
=


1 0 2 0
0 2 0 4
3 0 4 0
0 6 0 8


A more natural indexing convention for the result is the multi-index notation: instead of
a single row index and a single column index, two indices are used for each, specifying the
element indices in the input matrices separately. With this a convention, an element of a
matrix resulting from a Kronecker product is denoted as follows:

C[(i1, i2), (j1, j2)] = C[i1r2 + i2, j1c2 + j2)]

This notation can be also be used with more than two indices when the indexed matrix is
the Kronecker product of more than two matrices:

C =
N⊗
k=1

Ak

C[(i1, i2, . . . , iN ), (j1, j2, . . . , jN )] =
N∏
k=1

Ak[ik, jk]

Example 2 (Multi-index notation). With M from the previous example:

M [(2, 2), (2, 2)] = 4 · 2 = 8
M [(2, 1), (1, 1)] = 3 · 1 = 3

10



Considering n long vectors as n× 1 matrices extends the operations naturally to vectors.
The multi-index notation can be used in this case, too. Only one index group is used in
this case:

v =
N⊗
k=1

uk

w[(i1, . . . , iN )] =
N∏
k=1

uk[ik]

Multi-index notation is also used when a vector or a matrix is not the result of a Kronecker
operation, but its elements can more naturally be indexed by an index group (two index
groups, in case of matrices) instead of a single index. This is the case for most of the vectors
and matrices in this work. For example, the state probability vector of the underlying
Markov chain of a fault tree can be indexed by specifying for each basic event if the
corresponding component is failed or operational, instead of specifying the index of the
state directly in the product state space.

Kronecker algebra is used in two ways in this work. First, some linear algebra operations
for tensor trains are implemented using Kronecker products. Second, the rate matrix of
the Markov chain generated by the basic events of a fault tree can be computed as the
Kronecker sum of the 2-by-2 rate matrices of the individual basic events:

R =
⊕
i

[
0 λi
µi 0

]

where i ranges through the indices of basic events, λi is the failure rate, and µi is the
repair rate of the ith basic event.

2.6 The Tensor Train Format

The tensor train (TT) format has been defined by Oseledets in [24]. The format itself
has already been used in the quantum physics community under the name Matrix Product
State. The decomposition is formally defined originally for tensors, which in this area are
essentially multi-way arrays. It can also be used to represent vectors and matrices, when
indexing the vector or matrix can be done using index groups, like the ones in Section 2.5
used to index the result of Kronecker operations. The vector or matrix does not have to
be Kronecker structured, but the closer it is to such a structure, the more compact the
tensor train representation is. The places in the index group are called modes.

A vector v or a matrix M represented as a tensor train is given in the following form
using the multi-index notation:

v[(i1, i2, . . . , in)] = V1(i1) · V2(i2) · · · · · Vn(in)
M [(i1, i2, . . . , in), (j1, j2, . . . , jn)] = M1(i1, j1) ·M2(i2, j2) · · · · ·Mn(in, jn)

The components Vk and Mk are called core tensors or cores (they are also called tensor
carriages, hence the name “tensor train”, but core is more common). These are three way
tensors, but they can be simply considered a bunch of matrices, and the matrix is chosen
by the corresponding index. In some TT articles define the cores as matrix functions,
as they take as input an integer (two, in the case of matrices), and return a matrix. In
others they are referred to as parameter-dependent matrices. Each core corresponds to a

11



mode. The kth core consists of rk−1 × rk matrices, with r0 = rn = 1, so that the result
of the multiplications is a scalar. The integeres rk are called the ranks or TT-ranks (to
distinguish it from the rank commonly used in linear algebra) of the tensor train.

The format comes with efficient algorithms for basic linear algebra operations. The follow-
ing list presents these. Most of these operations are applicable in the same way to vectors
and matrices, so they are not presented separately. The matrix case can be reduced to
the vector case by considering the kth row and column index as a single kth index (for
example, a row index and a column index with range 1 to 4 is treated as a single index
with range 1 to 16).

• Product with a scalar: computing αA can be simply done by multiplying each matrix
in the first core of A by α

• Addition: given two vectors a and b with the same dimensions in the TT
format as a[(i1, i2, . . . , in)] = A1(i1)A2(i2) . . .Am(im) and b[(i1, i2, . . . , in)] =
B1(i1)B2(i2) . . .Bm(im), their sum c = a + b can be computed in the TT format
by setting its cores to:

C1(i1) =
[
A1(i1) B1(i1)

]
Ck(ik) =

[
Ak(ik) 0

0 Bk(ik)

]
for k = 2, . . . ,m− 1

Cm(im) =
[
Am(im)
Bm(im)

]

• Hadamard (element-wise) product: given two vectors of the same dimensions
a and b in the TT format as a[(i1, i2, . . . , in)] = A1(i1)A2(i2) . . .Am(im) and
b[(i1, i2, . . . , in)] = B1(i1)B2(i2) . . .Bm(im), their Hadamard product c = a ◦ b,
the cores of c in the TT format are

Ck(ik) = Ak(ik)⊗Bk(ik),

where ⊗ is the Kronecker product.

• The scalar product of two vectors of the same size, defined as

〈a, b〉 =
∑

i1,i2,...,im

a[(i1, i2, . . . , im)]b[(i1, i2, . . . , im)]

can be efficiently computed in the TT format by using the following computations:

Γk =
∑
ik

Ak(ik)Bk(ik)

vk = vk−1Γk with v1 = Γ1

then vm is a scalar, and 〈a, b〉 = vm.

• The Euclidean norm of a vector – which generalizes to the Frobenius norm in the
matrix case – can be computed using the previously mentioned method for the scalar
product:

||a||F =
√
〈a,a〉

12



• Matrix-vector product: Given a matrix M [(i1, i2, . . . , in)] =
M1(i1)M2(i2) . . .Mm(im), and a vector x[(i1, i2, . . . , in)] =
X1(i1)X2(i2) . . .Xm(im) in the same tensor structure, their product y = Mx can
be computed in the TT format by computing its cores as

Yk(ik) =
∑
jk

(Mk(ik, jk)⊗Xk(ik))

• Transposition: transposition can be done by simply rearranging the matrices in a
core, so that the originally (ik ∗ columns+ jk)th matrix of the core tensor becomes
the (jk ∗ rows+ ik)th one.

• Outer product of vectors: the outer product X = vwT of two vectors represented
using the above format can be computed in the TT matrix format described above
using the following cores:

Xk(i · columns+ j) = Vk(i)⊗Wk(j)

• Matrix-matrix product: this operation should only be used when it is really necessary
and unavoidable, as the cores of the resulting tensor train will be very large if used
in an iteration step. The cores for the resulting matrix C = AB are:

Ck(i, j) =
∑
p

(Ak(i, p)⊗Bk(p, j))

Apart from being able to represent structured matrices and vectors compactly, another
advantage of the tensor train format is that the size of the representation can be auto-
matically reduced even further if the representation does not need to be exact. This is
done through the tensor train rounding algorithm. This algorithm takes as input a tensor
train and a rounding tolerance, and returns a tensor train that has TT-ranks less than or
equal to those of the original, and which represents a matrix/vector not further from the
original one in Frobenius norm than the specified tolerance.

Given a vector a in the TT format a compressed version ã with ε relative tolerance in
Frobenius norm, meaning that ||a−ã||F||a||F ≤ ε can be computed using the following steps:

1. compute truncation parameter δ = ε√
m−1 where m denotes the number of cores in

a

2. orthogonalize the tensor using QR decomposition of the cores

3. compute truncated SVD of the unfolding matrix of each core by dropping singular
vector with corresponding singular value σk < δ. For each core from left to right,
with the truncated SVD decomposition denoted as ŨΣ̃Ṽ , keep Ũ folded back as
the new core, and merge Σ̃Ṽ into the matrices in the next core before computing
the next SVD.

For details and pseudo code of the algorithm, see [24].

Most iterative algorithms for solving systems of linear equations can be implemented using
only these operations. The rounding operation is needed because the size of the cores of
the solution vector grows in each iteration (see the formula for addition and matrix-vector
product), so the iteration vector needs to be compressed using the rounding algorithm
described above.

13



The tensor train decomposition can be considered an extension of decomposing a vector
or matrix into a Kronecker product of smaller components, as a Kronecker product can
be represented as a tensor train with all ranks 1. To convert the Kronecker product into a
tensor train, the components of the product must be simply flattened into cores consisting
of 1 × 1 matrices. If the Kronecker product of the matrices Ck is computed, then the
(i, j)th matrix in the kth core is just Ck[i, j].

2.7 Approximate matrix inversion through exponentiation

A method for approximating the inverse of a non-singular matrix given as a Kronecker sum
was used in [29]. It is based on the following identity, which gives an efficient computation
method for exponentiating a large matrix if it has a Kronecker sum structure:

eA⊕B = eA ⊗ eB

This means that when a large matrix has a Kronecker sum structure, then its exponential
can be obtained by computing the exponentials of the Kronecker sum terms, which are
usually small, and then computing the Kronecker product of the results. Approximating
the function 1/x is possible through a sum of exponentials:

A−1 =
∞∑
i=0

αie
βiA

with some scalars αi and βi. These scalars can be computed in various ways. Similarly
to [29], I used a method based on sinc quadrature. The inverse can be approximated by
truncating the infinite sum. This approximation is used in the computation of the MTFF
for inverting R + γI, where R is the rate matrix of the CTMC generated by the basic
events of a fault tree, and the diagonal term is added to make it non-singular (see Chapter
4 for details).

2.8 Related works

Calculating reliability and performance metrics of complex system by exploiting the inher-
ent structure has been an area of ongoing research for a long time. A well-studied method
of this principle is using Kronecker algebra for decomposing the infinitesimal generator
matrix of a Markov chain into smaller matrices, and using iterative linear equation system
solution methods without assembling the full matrix [8, 21].

The main disadvantages of such methods are that they are not applicable generally, only
for system having exactly the necessary structure, they cannot be used when the state
space is so large that vectors used in the analysis must also be compressed, and they
can store the system only exactly, no memory reduction can be made even when only
an approximate solution is sought. Often, the potential state space of the system has
the necessary structure, and so some analysis e.g. steady-state computation is possible
through Kronecker methods, but this structure is destroyed when failure states must be
considered absorbing, like in the case of MTFF computation.

Tensor representation methods, like the Hierarchical Tucker decomposition (HTD) or the
Tensor Train decomposition (TT) can overcome these problems. These methods exploit
that state probabilities and rate matrices/infinitesimal generator matrices of a CTMC

14



can be treated as a high-dimensional tensor (essentially, a multi-dimensional array) by
decomposing the state space into domains of state variables. These tensors can then be
represented using structured formats (HTD or TT), which can represent any matrix or
vector exactly, although if it is not well structured, the decomposition might have a large
size. There are approximation and rounding algorithm which can reduce the size of these
representations, if exact representation is not required, making a trade-off between size
and accuracy possible. Steady-state computation methods have been proposed using these
formats in several works [6, 19, 5], and the TT format was also used for mean time to
absorption computation when the system has only a single absorbing state in [29].

Several different methods have been proposed for quantitative analysis of fault trees, for
a survey of these see [30]. Using BDDs for fault tree analysis was proposed first in [26].
This method is based on computing a BDD representing the Boolean function encoded by
the fault tree’s gates. The approach is used to speed up both qualitative analysis of the
tree, where the most important calculation is determining the minimal sets of events that
lead to a system-level failure, and quantitative analysis, like computing the probability
of the top event given the probability of the individual basic events. Since then, a lot of
methods were built on this idea, e. g. [4].

Approximation techniques in fault tree analysis are often based on dropping failure cases
where more than a given number of components are needed for the system level failure,
because they are considered unlikely enough. The method proposed here relies on approx-
imating the solution of the linear equation system arising when calculating the mean time
to first failure instead. This means that no failure cases are totally ignored, which leads
to higher fidelity to the specified system architecture, and a tunable accuracy parameter.

The state-of-the-art probabilistic model checking tool Storm [9], which is used as a baseline
for the benchmarks in this report, uses a state-space generation technique based on several
optimization methods for fault trees described in [37].

15



Chapter 3

Overview of the proposed method

The main difficulty in computing the MTFF of a large fault tree is that it can involve
the solution of an intractably large linear equation system. This system can often not
be explicitly stored in a computer’s memory. If the number of basic events is sufficiently
large, there may be cases when even the solution vector cannot be stored explicitly. Most
state-of-the-art methods for MTFF computation try to address this through computing
only the reachable state space through some state space exploration method. However,
the reachable state space can still be exponentially large in the number of basic events,
and the state space exploration can take a lot of time.

A possible solution for this problem is using structured tensor representations instead
of the explicit representation. There are several different decomposition techniques that
can be used as such representations [13, 18, 24]. However, a lot of them still suffer from
the fact that they cannot represent high dimensional cases compactly enough, or that no
efficient algorithm is available for computing at least a quasi-minimal representation of
a matrix efficiently. The tensor train format, however, does not have these problems. It
is also a very simple format with most linear algebraic operations also straightforward to
implement. It was chosen as the structured representation used for the proposed method
for these reasons.

The central idea of the proposed method is computing the mean time to first failure
metric using vectors and matrices represented in the tensor train format. The method
proposed mainly for stochastic automata networks in [29] used the same principal idea,
but worked only for a single failure state, which makes it unusable for fault trees. The
method proposed here extends this to multiple failure state. The most novel part of the
method is using BDDs in the process of creating the necessary tensor train representations.

The method tries to exploit the inherent structure in both the potential state space and
the reachable state space, by using a tensor train representation of both the infinitesi-
mal generator matrix of the original Markov chain induced by the basic events, and the
indicator vector of the operational states.

The representation of the indicator vector is derived by first encoding the Boolean function
represented by the fault tree’s gates as a binary decision diagram, and then assembling
the cores based on the BDD. The ranks of the TT created this way depend on the number
of nodes in each level of the BDD. The BDD computation uses operations that guarantee,
that the number of nodes is minimal, if the variable ordering is fixed, so this is an efficient
method of creating a TT representation with small ranks.

16



top

a

01

b

c

b

c

Original infinitesimal generator 
as a tensor train 

Logic function as a BDD

a b

c

Fault Tree

Modified generator matrix
as a tensor train

Linear System Solver
in the TT format

Initial probability
distribution vector

[ 1, 0, 0, ..., 0]

MTFF

Figure 3.1: High-level overview of the proposed MTFF computa-
tion process from a fault tree

The alternative would be to use either the SVD-based tensor train creation algorithm
(TT-SVD) from the explicit vector, or the black-box decomposition based on cross ap-
proximation [23] (TT-cross). TT-SVD would need firs explicitly storing the large vector,
which might not be even possible. TT-cross is a black-box tensor approximation method,
meaning that it needs only a function which returns the value of an element given its posi-
tion, so it does not need explicit storage of and computations on a potentially intractably
large vector. However, it is only an iterative approximation, and even if it converges, it
might be stuck in a local minimum, and the ranks of the tensor train must be determined
a priori, which also limits its applicability.

Another limitation that both algorithms suffer from is that they can calculate only a
quasi-minimal representation. The direct result of the BDD-based approach is also not
guaranteed to be minimal, even though the BDD itself is minimal, as tensor trains can
use numeric operations (addition and multiplication) and decimal values for the repre-
sentation, which are not available to BDDs. However, a TT-rounding with 0 tolerance
(or, even better, a non-zero value of the scale of machine precision) can be applied after
the computation. This way, the minimization capabilities of the BDD and the TT-SVD
algorithm (which TT-rounding is based on) are combined in the result.

The computation consists of the following steps:

• A binary decision diagram is built representing the operational states of the system.
A tensor train can easily be derived from this representation of the state set.

• The infinitesimal generator matrix or the rate matrix of the Markov chain induced
by the basic events is assembled directly in the tensor train format using the failure
and repair rates of each basic event.

• A modified version of the generator matrix is computed using the indicator vector
of the operational state set based on one of the theorems in Section 4.1, which is
suitable for MTFF computation.

• A linear equation system is created in the TT format from this modified matrix and
the initial probability vector of the underlying Markov chain. This system is solved
using one of the solution methods described in Chapter 5.

• The MTFF metric is finally computed by computing the scalar product of the so-
lution vector obtained in the previous step and a vector of 1s. As the solution is
given in the tensor train format, and the vector of 1s can be represented as a tensor

17



Solvers

State set representation

BDD

Jacobi DMRG GMRES Neumann

Preconditioners

Jacobi DMRG Newton-
Schulz

Figure 3.2: Overview of the implemented algorithms

train with all TT-ranks 1, the scalar product can be computed efficiently without
evaluating each element of the vector.

A graphical overview of the proposed MTFF computation process can be seen on Figure
3.1. Figure 3.2 provides an overview of the algorithms that were implemented. The
multiple solvers and preconditioners provide several options for solving the linear system
arising in the proposed approach.

18



Chapter 4

Creating tensor trains for MTFF
computation

This chapter describes the proposed structured MTFF computation method in detail.

Section 4.1 presents two theorems, which provide formulas for MTFF computation which
are suitable for use with structured representations. Here, the theorems are described
in a quite general manner using general Markov chains, so that the theorems can be
used in other contexts. In the case of computing the MTFF of a static fault tree, the
Markov chain that is generated by the basic events without taking the system level failure
into account plays the role of the original Markov chain in the structured computation
theorems, and making the states where the whole system is failed absorbing results in the
modified Markov chain.

Section 4.2 explains most details of the computation process.

Section 4.3 describes the formulas and algorithms used for tensor train creation for the
computations.

4.1 Structured MTFF Computation

This section presents and proves the central theorems which make the proposed method
possible. Structured representations make computing the expectation of a phase-type
distribution by using the generator matrix without the rows and columns corresponding
to absorbing states impossible, so another formula is needed. Although these theorems
will be used in this report for static fault tree analysis, they are presented in a much more
general setting for Markov chains, so that they can be used in other contexts, too.

Let us consider a CTMC with a (possibly empty) set O of absorbing states, rate matrix
R, and initial probability vector π0, and call this the original Markov chain. Take another
CTMC with set of absorbing states F ⊇ O, created from the original Markov chain by
deleting the outgoing transitions of the new absorbing states, and having the same initial
probability vector π0 and call this the modified Markov chain. Our aim is to compute the
time until absorption in the modified Markov chain using the rate matrix of the original
Markov chain. It is also assumed that the initial probability of being in a state that is an
element of F is 0. An example can be seen on Figure 4.1.

The following notations are used in this section:

19



7.0

0.5

2.5
1

4.3

3.6

2

4.5

5.7

4

3

4.5

6

5

7.0

0.5

2.5
1

2

4.5

5.7

4

3

6

5

0.4

0.60.0

0.0 0.0

0.0 0.4

0.60.0

0.0 0.0

0.0

Figure 4.1: Example of an original and modified Markov chain
pair, as defined in this section. Initial state probabil-
ities are written next to the circle denoting the given
state. States that are elements of O are colored or-
ange in the original MC. States that are elements of
F are colored red in the modified one.

• 1S refers to the indicator vector of the set S consisting of indices, defined as:

1S [i] =
{

1 if i ∈ S
0 if i 6∈ S

.

• diag{v} (where v is a vector) is a diagonal matrix with the diagonal’s elements
defined by v

• diag{M} (where M is a matrix) is a vector created from the diagonal of M

• S{ is the complement of the set S

The following lemma will be needed for the proof of the theorems:

Lemma 1. Let Q̂O denote the matrix obtained by omitting the rows and columns corre-
sponding to states in F from the generator matrix of the original Markov chain, and Q̂M

denote the matrix obtained similarly from the generator matrix of the modified Markov
chain. Then, Q̂O = Q̂M . �

Proof. The most important part to see to prove this equality is that the two rate matrices
differ only in the rows corresponding to states in F . Thus, after obtaining the generators
from the rate matrix by subtracting the sum of the appropriate row from each diagonal
element, the rows of the states in F{ are still equivalent in the two matrices. As only these
rows are kept after the omission, the resulting matrices cannot be different. �

Theorem 1 (Structured MTFF Computation 1). Define the perturbed rate matrix
R̄ and the modified generator matrix Q̄ of the original Markov chain as:

R̄ = R+ γ · I
Q̄ = R̄ · diag{1(F{)} − diag{R̄ · 1}

where γ is an arbitrary non-zero constant. If πT0 1F = 0 (that is, the probability of
starting in an absorbing state is 0), then using this modified generator matrix, the time

20



until absorption in the modified Markov chain can be calculated as:

E{tabsorb} = −π0Q̄
−11 �

Proof. Let us start by reordering the states of the Markov chains, such that the states
in F are the last states, and the ordering among the states in F and F{ is preserved, and
denote the corresponding permutation matrix P . The reordered original rate matrix is
denoted by R′ = P TRP , and all the other reordered vectors and matrices are denoted
similarly by adding a prime to the non-reordered notation. Then, the reordered modified
generator matrix can be written in a block matrix form by dividing the rows and columns
between F{ and F :

Q̄′ =
[
Q̂ 0
C D

]
The upper right block is the zero matrix, as multiplication by diag{1(F{)} zeros out all the
columns corresponding to states in F , and the subtracted term puts elements only into
the diagonal, which stay in the diagonal after the reordering, and thus are contained in
D. Q̂′ is exactly the matrix that could be used in the original method for the mean time
to absorption computation: it is the generator matrix of the modified Markov chain with
the rows and columns corresponding to the absorbing states removed. This can be seen
directly from Lemma 1. D is a non-singular diagonal matrix, whose diagonal values are
−(λexit

i + γ), where the λexit
i are the exit rates in the original Markov chain (sum of the

outgoing transitions from the given state). C is an arbitrary matrix, which contains the
rate of transitions from F to F{. Using the inversion formula for 2-by-2 block matrices
based on the Schur complement, the inverse of Q̄′ is:

Q̄′−1 =
[

I 0
−D−1C I

] [
(Q̂− 0 ·D ·C)−1 0

0 D−1

] [
I −0 ·D−1

0 I

]
=

=
[

I 0
−D−1C I

] [
Q̂−1 0

0 D−1

]

As πT0 · 1F = 0, the reordered initial probability vector π′0 can be partitioned as [π̂0 |0T ],
by dividing between states in F{ and F . Using these identities, the statement of the
theorem can be shown:

π0Q̄
−11 = (π′

0P
T ) · (PQ̄′P T )−1 · 1 = π′

0P
T · Q̄′−1 · 1 =

= [π̂0 |0T ]
[

I 0
−D−1C I

] [
Q̂−1 0

0 D−1

]
1 =

= [π̂0 |0T ]
[
Q̂−1 0

0 D−1

]
1 = π̂0Q̂

−11 �

The last expression is exactly the original formula for the mean time to absorption in the
modified Markov chain, and so the statement is proven.

Theorem 2 (Structured MTFF Computation 2). Define the modified generator as:

Q̄ = Q−Q · diag{1F} − diag{1F} ·Q+ γ · diag{1O}

where γ is some non-zero constant. If πT0 1F = 0, then the time until absorption in the
modified Markov chain can be calculated as:

E{tabsorb} = π0Q̄
−11 �

21



Proof. First, let us examine how the second and the third term affects the result. Let us
call these the column mask and the row mask respectively. Considering only one of them,
the mask would make all the elements of the columns or rows corresponding to states in
F zero. However, when both terms are applied, the terms that were in both masks are
subtracted twice, so there additive inverse is present in the result. The effect of the masks
on the elements can be summarized as follows:

• row /∈ F , column /∈ F : unaffected

• row /∈ F , column ∈ F : zeroed out

• row ∈ F , column /∈ F : zeroed out

• row ∈ F , column ∈ F : multiplied by -1

The last term is only there so that Q̄ is non-singular.

From here, the proof goes similarly to the previous one, starting with the same reordering.
The block form looks like following in this case:

Q̄′ =
[
Q̂ 0
0 D

]

as described above. Here, D is no longer diagonal, but still non-singular because of the
last term in the definition of Q̄. The statement can now be proven more simply:

π0Q̄
−11 = (π′

0P
T ) · (PQ̄′P T )−1 · 1 = π′

0P
T · Q̄′−1 · 1 =

= [π̂0 |0T ]
[
Q̂ 0
0 D

]
1 = π̂0Q̂

−11 �

4.2 Description of the MTFF computation scheme

Based on Theorems 1 and 2 in Section 4.1, the expected time until absorption of a Markov
chain can be computed using a structured representation, like the TT format. Using one
of the provided formulas, the time until absorption in a CTMC can be computed without
really dropping columns and rows of the infinitesimal generator matrix, and they are usable
even if the infinitesimal generator is given only for a version of the Markov chain where a
subset of the states that should be absorbing still have non-zero outgoing transition rates.
This makes it possible to use structured representations like the TT format to compute
the MTFF. Although the formula of Theorem 1 might produce a TT with smaller rank
directly, the result of the other formula might have a better compression rate when the TT
rounding is applied, which cannot be determined without running numerical experiments
on both.

The state change of the basic events can be described as a Markov chain, which will
be referred to as the original Markov chain of the fault tree. The MTFF of the fault
tree is the time until absorption in a version of the original Markov chain where all the
outgoing transitions from the failure events have been dropped. This will be referred to as
the modified Markov chain. These Markov chains have the same role as the original and
modified Markov chains in Section 4.1, respectively. The rate matrix R of the original
Markov chain can be represented as a Tensor Train as given in Section 4.3. From that,

22



the infinitesimal generator can be computed as Q = R − diag{R · 1}, which involves
only operations that can be efficiently implemented with tensor trains. Section 4.3 also
describes how the indicator vector of the failure states can be represented as a tensor
train, which means that all the vectors and matrices are available in the TT format that
are needed to compute the modified generator matrix that can be used in the MTFF
computation defined by either Theorem 1 or 2.

After calculating the matrices and vectors as defined in any of the structured MTFF
computation theorems, the solution of a linear system is needed. In case of Theorem
1, the TT ranks of the coefficient matrix of the system to solve can be reduced if the
perturbed rate matrix R̄ is lifted out of the addition, leading to the formula MTFF =
−π0(diag{1(F{)} − R̄−1diag{R̄ · 1})−1R̄−11.

The TT-ranks of this is likely smaller than of the original, as the ranks of diag{1(F{)}
can be large, making the ranks of the result even larger if this is multiplied by R̄, while
the ranks of subtracted term are usually small. However, this leaves its inverse before the
second term, so a matrix inversion for this low-rank matrix must also performed. As this
matrix can be written as a Kronecker sum, this inversion can be done using the exponential
sum approximation described in Section 5.4.

Using the built-in math library of the JVM, the number of terms in the exponential sum
has an upper limit, as the computation of the coefficients results in NaNs when a higher
number of terms is used because of the numerical limits of the exponential function’s
implementation. This limits the accuracy of the inversion achievable with this algorithm.
The result of this approximation can be fine-tuned using a few sweeps of the DMRG-based
inversion scheme, though, so this inverse can be efficiently approximated using these two
steps.

When the iterative solvers are used with rounding of the iteration vector, a rounding
tolerance must be given. In general, it’s hard to determine this tolerance based on the
requested residual norm, as it is mostly unknown how much a given perturbation in the
solution vector affects the residual. In our case, however, an upper bound on the spectral
radius of the system matrix is known based on the Gerschgorin circles [31], which is in
turn an upper bound of the ratio of the norm of the solution’s perturbation and the norm
of the residual’s change.
Lemma 2.

λmaxout =
∑
i

max(λi, µi)

where λi and µi are the failure and repair rates of the ith basic event, and λmaxout is the
highest exit rate in the original Markov chain, before removing any transitions. 2 · λmaxout

is an upper bound for the spectral radius of the modified generator matrices of Theorems
1 and 2. �

Proof. In any state of the original Markov chain, an outgoing transition with rate λi
exists, if the ith component is operational in the given state, and an outgoing transition
with µi exists, if the ith component is down. There are no other transitions, and these
two are mutually exclusive. The means, that in any state, the exit rate is given by

∑
i νi,

where

νi =
{
λi, if the ith component is operational
µi if the ith component is down

23



This sum is maximal when for each i, the higher of the two rates is chosen. It is also
easy to see that this state exists in the original Markov chain. From here, the upper
bound on the spectral radius directly follows from the Gerschgorin circles theorem for
the original Markov chain’s generator: each circle’s center and radius is the corresponding
state’s exit rate. The Gerschgorin circles corresponding to the rows of the non-failure state
in the modified generators have the same center, and a smaller radius, so no eigenvalue
falling into these circles can have a larger absolute value than the original chain’s spectral
radius. The remaining Gerschgorin circles have a center that is chosen by the dummy
value written into the diagonal of the modified generator matrix, and the radius is smaller
than the radius of the corresponding circle in the original chain’s generator. The dummy
constant can be chosen small, so that it does not modify the spectral radius. The radius
of the circles λmaxout is also the infinity norm of the diagonal of the generator matrix, which
is needed for the solution method based on exponential sums. �

To compute the MTFF of a system, the initial state probability vector is needed, as can
also be seen from the computation formulas. In our case, this is [1, 0, . . . , 0], as the system
starts from a state where all components are operational, which is the first element of the
whole system’s state space. This can be represented by a tensor train with all TT-ranks
1: in each core, the matrix with index 0 is 1, and the one with index 1 is zero.

After the linear system is built with the coefficient matrix and the right hand side vector
represented as tensor trains, the system has to be solved, returning the solution also as a
tensor train. Some possible solvers available for tensor trains are described in Chapter 5.
Once the solution is obtained, it scalar product must be computed with the vector of 1s.
This vector can be represented by a tensor train with TT-ranks 1, which make it efficient
to compute the scalar product. The result of this scalar product times -1 is then the mean
time to first failure of the fault tree.

4.3 Tensor Trains from Fault Trees

4.3.1 Representing the original rate matrix

As seen from the theorems in Section 4.1, the MTFF of a fault tree can be calculated
using the rate matrix (or the infinitesimal generator matrix, which can be derived from
the rate matrix) of the CTMC induced by the basic events. This matrix has a structure
that makes tensor trains a remarkably efficient representation for it. For each basic event,
a state variable can be defined, which is set to 1, if the corresponding component is in a
failed state, and 0 if it is operational. Therefore, the whole state space of this CTMC is
×N

i=1{0, 1}, where N is the number of basic events.

The rate matrix represented as a tensor train can be obtained using the following rules:

• Two events (failure or repair) happen at the same time with zero probability, so a
transition from state A to state B has rate 0, if A and B differ in at least to state
variables

• In any other case, we know that exactly one event happened. This transition has
rate equal to the basic event’s failure rate or repair rate, depending on which type of
event happens (failure means changing the state variable from 0 to 1, repair means
the opposite).

24



The matrix can be directly computed as a Tensor Train, by choosing its cores so that they
satisfy the above rules. To be able to do this, two accumulators are needed between the
cores: one for the transition rate, and one that is used to avoid a second event happening.
Therefore, each inner TT rank is 2. λi and µi are the failure and repair rates of the
component corresponding to the ith basic event respectively. The cores are chosen as
follows:

• The first core:

R1(0, 0) =
[
0 1

]
R1(0, 1) =

[
λ1 0

]
R1(1, 0) =

[
µ1 0

]
R1(1, 1) =

[
0 1

]
• Middle cores:

Rk(0, 0) =
[
1 0
0 1

]
Rk(0, 1) =

[
0 0
λk 0

]

Rk(1, 0) =
[

0 0
µk 0

]
Rk(1, 1) =

[
1 0
0 1

]

• Last core:

RN (0, 0) =
[
1
0

]
RN (0, 1) =

[
0
λN

]

RN (1, 0) =
[

0
µN

]
RN (1, 1) =

[
1
0

]

4.3.2 Calculating indicator vectors using decision diagrams

The indicator vector of the failed state (or the operational ones) are also needed for the
structured MTFF computation. This vector can be easily computed from a BDD (see
Section 2.4) representing the operational states. The first application of binary decision
diagrams for fault tree analysis was proposed in [26], and it has been a widely used
approach since then.

BDDs can be used as an efficient way to represent sets of states, when the states can be
decomposed into binary state variables: the levels of the BDD in this case correspond to
binary state variables, the labeled edges represent the value of the variable of the previous
level, and the set consists of the states that end with the terminal 1 node if a path with
appropriate labels is chosen from the root. In this case, storing the paths going to the
terminal 0 node is redundant, so they are omitted in practice. Efficient algorithms exist for
performing set operations on sets represented by BDDs. The set of operational or failed
states in a fault tree can be represented as a BDD by using the state space decomposition
described above.

The size of a BDD largely depends on the ordering of the variables. A lot of static heuristics
and dynamic minimization methods have been proposed for finding a good ordering, as
finding the best one is generally too hard. A survey and benchmark results of some static
methods can be found e.g. in [28]. Based on the results published in that thesis, I chose
the bottom-up weighted ordering scheme. This algorithm assigns weights to the nodes of
the fault tree calculated in a bottom-up manner based on the type of the node and its

25



[ ] [ ] [ ] = 11 0
1

1

0

0

1

1

[ ] [ ] [ ] = 00 1
1

0

0

1

1

0

a

b

c

b

c

[ ]1 0[ ]0 1

[ ]
0

0

1

1 [ ]
1

0

0

1

Core[1]Core[0]

[ ]
1

0 [ ]
1

1

1 0

Figure 4.2: Example of the conversion between BDD and ten-
sor train with two paths in the BDD and the cor-
responding element computation in the tensor train
highlighted.

inputs. After computing the weights, it orders the basic events in the order they are found
through a depth-first traversal of the tree with higher priority given to nodes with higher
weights. The chosen ordering must also be used when constructing the tensor train for
the rate matrix or the infinitesimal generator so that it is compatible with the indicator
vector.

The tensor train for the indicator vector of the set of failed states can be assembled from
the computed BDD by using the adjacency matrices between two levels as the matrices
in the tensor cores. Each core of the indicator vector has mode length 2. The matrix
with index 0 in the core is the adjacency matrix of the 0-edges between corresponding
levels, and the matrix with index 1 is the adjacency matrix of the 1-edges. The last core
corresponds to the edges between the last variable’s nodes and the terminal node 1.

Lemma 3. The tensor train whose cores are the adjacency matrices of the BDD repre-
senting the set S as described above represent the vector 1S �

Proof. The computation of an element of the represented vector specified using the multi-
index convention is done by going through the cores from left to right, choosing the matrix
from the ith core according to the ith index in the index group, and multiplying these
matrices. Going from left to right, the result of each multiplication before the last one has
exactly one 1 in it, and the other elements are zero, because each node has exactly one
1-edge and exactly one 0-edge.

The place of the 1 in each result specifies the index of the node chosen at that level. As
the last core specifies which nodes of the last non-terminal level are connected to the 1
terminal node, the result of the last multiplication is 0 if the chosen path ends at the 1
terminal node and 0 otherwise. Figure 4.2 shows an example of this conversion. �

Using the conversions described in this section, a tensor train representation is obtained
for all the vectors and matrices that are needed for the formula in any of the structured
MTFF computation theorems. As described in Section 2.6, an algorithm is provided for
each linear algebraic operation needed for the computations that takes its operands as
tensor trains and the result is also in this format. Using these algorithms, the whole
process has to deal only with tensor trains after the conversions.

26



Chapter 5

Linear system solvers

The structured MTFF computation formulas presented in Section 4.1 involve computing
the inverse of the modified infinitesimal generator matrix of a Markov chain, and then
multiplying it from the left with the initial distribution vector and from the right with
a vector of ones: MTFF = −π0Q̄1. This is equivalent to solving the linear system
Q̄Tx = π0 and then computing MTFF = −xT1. Solving a linear system is much easier
than computing the inverse of a matrix and then performing a matrix-vector product with
it, so this is the approach that is followed in the proposed method.

By using the tensor train creation methods described in section 4.3, everything is available
for this computation in the tensor train format, which makes it possible to store and solve
the linear equation system in the structured representation, instead of the intractable
explicit solution.

As the system is to be solved in a structured format, direct methods like Gauss elimination
or methods using LU decomposition cannot be used. These would need operations that
manipulate individual elements, or at least individual rows/columns, which cannot be
done efficiently in the decomposed form. The alternative is using iterative linear system
solvers [31], which need only those linear algebra operations that are available to tensor
trains as described in Section 2.6.

The difficulty of using such solvers with tensor trains is that the TT ranks of the direct
result are higher than the TT ranks of the operands. Because of this, the TT rounding
algorithm must be applied in each iteration, but keeping in mind that this has conse-
quences: the convergence of the method can be broken if the rounding tolerance is too
high, or orthogonality of vectors – which some methods rely on – might be changed.

Several different solvers are available for the tensor train format in the literature. I provide
an overview in this chapter of some of them which I have implemented and evaluated their
applicability as part of the proposed method through benchmarks.

5.1 Jacobi iteration

Stationary solvers are simple to implement iterative solver methods. They compute the
approximation by using an operation that has the true solution as a fix point on the
current approximate solution. A commonly used method of this family is the Jacobi
iteration. This method updates the ith variable (ith element of xk) by solving the ith
equation in the system (the equation defined by the ith row of A and the ith element
of b), with the other variables fixed at the previous approximation. The update can be

27



written in the elementwise form:

xk+1[i] = 1
A[i, i] (b[i]−

∑
j 6=i
A[i, j]xk[j]) (5.1)

This equation can be written in the following matrix form:

xk+1 = D−1b−D−1Rxk = D−1(b−Rxk) (5.2)

whereD is the diagonal matrix constructed from the diagonal ofA, andR = A−D. Using
this form, we do not need any element-wise operations (not even reading an element), if
we can compute the diagonal without them. The only operations needed are:

• computation of the diagonal of A

• matrix addition

• vector addition

• matrix-by-vector product

The rate of convergence of this method is determined by the eigenvalues of the matrix
D−1R [31].

The TT version of this algorithm can be implemented as follows. First, D−1 needs to be
computed. D can easily be computed in the TT format from the cores of A by setting the
slices corresponding to non-diagonal indices to the zero matrix, or we can get the diagonal
as a vector if we delete these slices.

Similarly to [6], the element-wise inverse of this vector can be computed using a version of
the Newton-Schulz iteration, originally used to iteratively compute the inverse of a matrix.
A version of this method for vectors uses the following formula for the iteration:

d̃k = d̃k−1 + d̃k−1 ◦ (1− d ◦ d̃k−1)

where d̃ is an approximate element-wise inverse of d.

For the original matrix inversion method, it has been proven in [16], that the iteration
converges if for the initial approximation Ã0, the absolute values of all the eigenvalues of
the matrix I − Ã0A are less than 1. For a diagonal matrix D with positive values, this
condition can be satisfied by setting the initial approximation to I

||D||F . If the diagonal
matrix has only negative elements, the same initial approximation can be used with a
negative sign.

After convergence of this method, the computed approximation to the vector form of D−1

can be extended into a matrix by adding zero matrices to the cores. The computations
in the Newton-Schulz iteration and all the other computations in the Jacobi iteration can
than be implemented directly using the Tensor Train operations described in section 2.6.

After each iteration (both in the Newton-Schulz inversion and in the Jacobi), the current
solution vector needs to be compressed using the TT rounding algorithm, so that the size
of the cores does not grow out of control.

28



5.2 TT-GMRES

5.2.1 GMRES

The General Minimum Residual method is a Krylov subspace method, which are special
projection methods for solving systems of linear equations [31]. Projection methods for
solving a the system Ax = b extract an approximate solution xm from an affine subspace
x0 +Km of dimension m by imposing the Petrov-Galerkin condition

b− xm ⊥ Lm

where Lm is another subspace of dimension m. This method is said to be a projection
method onto Km orthogonal to Lm.

Krylov subspace methods are projection methods where Km is a special subspace of Rn
called a Krylov subspace.

Definition 6. The m dimensional Krylov subspace generated by the matrix A ∈ Rn×n
and the vector v is the subspace

Km(A,v) = span{v,Av,A2v, . . . ,Am−1v} �

When solving a system of linear equations using Krylov subspaces, the Krylov subspaces
used are generated by the coefficient matrixA and the initial residual vector r0 = b−Ax0.
In each iteration, we use add one new dimension to the subspace, so in the kth iteration,
the Krylov subspace has k dimensions. If the dimension of the subspace is maximal, the
iteration stops, as we run into a “lucky breakdown”. In this case, the solution at this
iteration is already exact, if the system has a solution.

As it can be seen from definition 6, the method calculates an approximation of the error as
the product of a polynom p(A) of the coefficient matrix A and the initial residual r0. In
the case of a non-singular A, this can be seen as implicitly approximating A−1 by p(A).

Different methods differ in how they choose Lm, the space that the residual is orthogonal
to. The method is called an orthogonal projection method, if Lm = Km, and an oblique
one otherwise.

One common way to choose the projector of an oblique method is setting Lm = AKm,
which is motivated by the following theorem.

Theorem 3. [31] Given a system of linear equations Ax = b with an arbitrary square
matrix A, the vector x̂ is the result of an oblique projection method onto K orthogonal
to AK if and only if minimizes the 2-norm of the residual vector b−A over x ∈ x0 + K
i.e. if and only if

||b−Ax̂||2 = min
x∈x0+K

||b−Ax||2 �

Choosing the orthogonal subspace this way for a Krylov subspace method leads to one of
the most commonly used techniques called the Generalized Minimum Residual Method
(GMRES).

The first part of GMRES is the Arnoldi loop, which is used to compute an orthonormal
basis of Km. Let {v1,v2, . . . ,vm} be an orthonormal basis of Km(A, r0). The Arnoldi
algorithm starts by setting v1 = r0

||r0||2 , and then for i = 2, 3, . . .m: ṽi = Avi−1
||Avi−1||2 , and

computes vi by orthogonalizing ṽi against the previous basis vectors. This can be done by

29



using any orthogonalization algorithm, like the (modified) Gram-Schmidt or Householder.
Throughout the Arnoldi process, a Hessenberg matrix Hm is generated, which is used in
the update formula.

Let Vm = [v1,v2, . . . ,vm], the matrix whose columns consist of the computed orthonormal
basis vectors of Km(A, r0). Any vector x ∈ x0 +Km(A, r0) can be written as

x = x0 + Vmy

for some vector y ∈ Rm. The residual can be written as:

b−Ax = b−A(x0 + Vmy)
= r0 −AVmy
= βv1 − Vm+1H̄my

= Vm+1(βe1 − H̄my)

where ei is the ith column of the identity matrix with the appropriate size. Since the
columns of Vm+1 are orthonormal,

||b−Ax||2 = ||βe1 − H̄my||2 (5.3)

From theorem 3 we know, that the GMRES approximation xm is the unique vector in
x0 +Km(A, r0) that minimizes the residual norm. According to equation 5.3, this can be
done by calculating

ym = arg min
y∈Rm

||βe1 − H̄my||2

xm = x0 + Vmy

Calculating y is inexpensive, as it needs the solution of an (m + 1) × m least-squares
problem, where m is typically small. As H̄m is an upper-Hessenberg matrix, the least-
squares problem can be solved by using Givens rotations to transform it to an upper
triangular matrix, and dropping the last row. See [31] for details.

As the computational complexity of the calculations depends on the dimension of the
Krylov subspace, it is desirable to keep m small. To achieve accurate results while keeping
the subspaces used for calculation small, GMRES is mostly used in a restarted manner:
after some iterations, the algorithm is restarted with the initial guess set to the latest
approximation.

5.2.2 The TT version

Adapting GMRES for solving linear systems in the TT format has been proposed in [10],
where the resulting algorithm has been given the name TT-GMRES. As all of the opera-
tions needed in the GMRES algorithm are available for matrices and vectors represented
by tensor trains, the algorithm is mostly the same as the general GMRES applied to
TT-matrices and TT-vectors.

The only modification needed is the introduction of rounding in each iteration, so that the
TT ranks do not become intractably large. In the article, the rounding accuracy needed

30



for convergence is specified according to the results of inexact Krylov theory, presented in
[32].

Although this rounding does not make the method divergent, it can still slow down con-
vergence of the classical GMRES algorithm, and for large Krylov subspaces, the base
vectors computed in the Arnoldi process lose the orthogonality, making the fast residual
norm computation used in GMRES incorrect. The ranks of the Krylov vectors can also
grow large if a high-dimensional Krylov subspace is sought as the rounding might not be
enough.

Because of these problems, the algorithm must be used with restarts, with only a small
number of inner iterations.

5.2.3 Preconditioning

A problem with iterative methods is their lack of robustness. The convergence of these
methods is highly dependent on the spectrum of the coefficient matrix. Therefore, even if
we know that the method converges at all (and we do not know even this surely for projec-
tion methods for arbitrary coefficient matrices), the convergence might be unacceptably
slow.

Preconditioning is a technique that tries to overcome this disadvantage. It means trans-
forming the system in such a way that the new system has the same solution, but is
easier to solve with an iterative solver. When preconditioning is applied to a system of
linear equations, it is done by finding a non-singular preconditioning matrixM , and then
transforming the original system using it in a way that preserves the system’s solution.

The most basic form of this is left preconditioning, when the preconditioned system has the
form MAx = Mb. In this work only this form of preconditioning is used. M should be
constructed in a way such that the spectrum of the coefficient matrix of the preconditioned
system of close to that of the identity matrix.

As the proposed method needs the linear system and the solution in the TT format,
the preconditioner must also be a structured matrix that can be easily computed in this
format. There are some general methods available to compute a potential preconditioner
directly through its TT representation.

Jacobi preconditioner The Jacobi (or diagonal) preconditioner simply uses the inverse
of the coefficient matrix’s diagonal. This can be computed in the TT format as described
in Section 5.1. Using this technique can be efficient in the case of diagonally dominant
matrices:

Definition 7. A matrix A ∈ Rn×n is diagonally dominant if for all i = 1, 2, . . . , n

|A(i, i)| ≥ |
∑
j 6=i
A(i, j)|

�

In the case of calculating the MTTF for a fault tree, this condition always holds for
the coefficient matrix: the absolute value of each diagonal element of the infinitesimal
generator matrix for the corresponding absorbing Markov chain equals the sum of the
other elements in the appropriate row, and we drop the column and row of the absorbing
state, thereby removing positive non-diagonal elements from the remaining rows.

31



The modifications made by the formula of Theorem 2 does not change this, as the absolute
value of the elements in the diagonal does not change, and the change in the off-diagonal
elements is always a change from a positive value to zero. This still holds if the MTFF is
computed through the formula of Theorem 1 when the absolute value of the dummy value
written into the diagonal of failure states is large enough.

Newton-Schulz preconditioner Another way we can approximate the inverse of the
coefficient matrix is running some iterations of an iterative matrix inversion procedure, and
using the result as the preconditioner. One option for this is the Newton-Schulz iteration,
already mentioned for the inversion of the diagonal. The formula of this iteration for a
matrix A is the following:

Ainvk = Ainvk−1 +Ainvk−1(I −AAinvk−1)

To satisfy the convergence condition, the initial approximation can be set to AT

||ATA||F
, as

the matrix ATA is positive semi-definite for any matrix A, thus having only positive or
zero eigenvalues, whose absolute value can be bounded from above by the Frobenius norm.

Although this method can greatly reduce the iterations needed for the final iterative so-
lution for the linear system, this comes at a very high cost: we need to use matrix-matrix
multiplication in the iteration, which increases the size of the cores by a large extent, and
this often cannot be overcome by rounding in the Newton-Schulz iteration.

Experiments have shown, that although after applying the Newton-Schulz preconditioner
to the system, the resulting preconditioned system can be compressed to a reasonable
size, and the solution needs much less iterations, than the one without preconditioning,
the creation of the preconditioner through this iteration takes much more time than the
amount spared in the final solution.

A faster version for this algorithm has been proposed in [20], which uses a differential
geometric integration method to approximate the iteration directly on a fixed-rank TT
manifold. This approach might lead to a more useful preconditioning method.

DMRG preconditioner A third approach to TT-structured preconditioner creation
is proposed in [25]. The DMRG scheme used for linear system solution (see Section
5.3 for details) can also be used as an iterative matrix inversion approach directly in
the TT format. Running this algorithm for some iterations can be used to compute an
approximation to the matrix inverse, which can be used as a preconditioner.

5.3 ALS and DMRG

The previously mentioned linear system solver methods were based on general techniques,
not exploiting the structure of tensor trains. In contrast to them, the Alternating Least
Squares (ALS) method for tensor trains directly uses this structure. It was proposed using
a few different derivation in different papers [14, 17, 25], my implementation is based on
[25].

The method was originally formulated as the solution of an optimization problem: solving
the system Ax = b is equivalent to minimizing xTAx− 2bTx, if A is symmetric positive
definite (SPD). It starts from an initial guess in the tensor train format, and iteratively

32



updates it by optimizing each core individually. One of the cores is chosen for optimization,
and the others are fixed.

A single core enters into this optimization linearly, which leads to a local linear system that
is much smaller than the global system would be if solved explicitly. The local system can
be solved using either simple direct solvers if it is small enough, or some iterative solver
otherwise (see e.g. [31] for such algorithms).

The optimization interpretation is valid only for SPD matrices, but the algorithm can be
used with non-SPD matrices, when its steps can be interpreted as a projection method
instead: the system is projected in each step onto the subspace that can be described by
varying only the optimized core, fixing the others. The optimization perspective provides
a convergence guarantee for SPD matrices, while – like for most projection methods – the
convergence is not guaranteed in non-SPD cases. However, the usefulness of the algorithm
has been empirically proven.

The greatest limitation of the ALS algorithm is that the ranks of the tensor train must
be chosen in advance, as the ranks cannot change when only a single core is varied. For
the matrix multiplications to make sense, the number of rows of the optimized core must
be equal to the number of columns of the previous one, and the number of columns of the
optimized core must be equal to the number of rows of the next one. As the previous and
next cores as fixed, the number of rows and columns (which define the TT rank) are fixed.

However, a good guess for the TT ranks of the solution is usually not available. Underes-
timating the TT ranks of the solution makes it impossible for the iteration to converge to
a solution accurate enough, while overestimation makes the problem ill-conditioned. To
overcome this problem, adaptive versions of the algorithm have been proposed [25, 11].

One adaptive version of ALS is the Density Matrix Renormalization Group (DMRG)
method [25], originating from quantum physics. This algorithm makes changes in the
TT ranks possible by optimizing over supercores instead of single cores: a supercore is
created by merging to subsequent cores. The output of the local optimization is the su-
percore, which is then split into two cores by computing its SVD, which can be considered
as a diadic decomposition, so the two cores can be assembled from it. Growth of the TT
ranks can be controlled by using here only a truncated SVD, dropping components which
correspond to small singular values.

5.4 Exponential sums and the Neumann expansion

A TT-based method for mean time to absorption (MTTA) computation was proposed in
[29]. In the original paper, the method was proposed for models where the underlying
Markov chain has only a single failure state. In my work, I extended this method to
multiple failure states, so that it can be used to compute the MTTF for systems modeled
using a fault tree. This extended version can be devised using Theorem 2, which will be
described in detail along with the extension approach in Chapter 4.

This MTTF computation scheme is based on two iterative matrix inverse approximation
procedures: exponential sums (see Section 2.7) and the Neumann expansion. In the
experiments, these sums turned out to be very well suited for compression.

The Neumann expansion can be used to approximate the inverse of a matrix of the form
I−M , where the spectral radius ofM is less than 1. If this requirement is satisfied, then
(I −M)−1 =

∑∞
k=0M

k. Here, again, the approximation is done through truncating the
infinite sum.

33



The original paper suggested the method for stochastic automata networks, where the
infinitesimal generator of the underlying CTMC can be decomposed as

Q = R+W + ∆

whereR =
⊕
iRi is a Kronecker sum of the local contributions of individual automata,W

is the matrix representing the synchronization contributions, and ∆ = −diag{(R+W )·1}
is the diagonal part of the infinitesimal generator.

The algorithm was devised for stochastic automata networks where each automata has a
single absorbing state, so the whole network also has only a single absorbing state: when
every automata is in its own absorbing state. Therefore, the underlying Markov chain
has a single absorbing state, and as shown in the article, mean time to absorption can be
computed using an additive perturbation S which has TT rank 1, if the probability of
starting in the absorbing state is 0:

MTTA = −π0(Q− S)−11

Splitting Q into Q1 +Q2, the inverse can be expressed as:

(Q−S)−1 = (Q1 +Q2−S)−1 = (I+Q−1
1 (Q2−S))−1Q−1

1 =
∞∑
j=0

(−1)j(Q−1
1 (Q2−S))jQ−1

1

The MTTA can be approximated by using a truncated form of this expression to approxi-
mate −π0(Q−S)−1, and then the approximation can be multiplied by the vector of ones.
If Q1 is a Kronecker sum, then its inverse can be efficiently computed using the exponen-
tial sum approximation described above. This, and the spectral radius requirement of the
Neumann sum can be satisfied by splitting Q as follows:

Q1 = R− γI
Q2 = W + ∆ + γI

where γ is a constant such that γ ≥ ||∆||∞. This constant influences the convergence of
both the exponential sums and the Neumann series.

Even though no general recipe is provided for determining this constant, for the algorithm
present here, it was observed that γ = ||∆||∞ provides the best convergence for the
overall method both by the authors of the original paper and by me throughout the
implementation. However, during the benchmarking process, I observed that this value
can lead to numerical instability in case repairs are present in the fault tree.

Although the spectrum of the large matrix is contained in the appropriate interval, the
individual components can still possess negative eigenvalues, which makes the exponen-
tiation unstable: each component R̃i = Ri + γ/NI is involved in computations of the
form e−b·R̃i , where b is a positive scalar, which means that in case b is large and R̃i has
a negative eigenvalue, the result can contain infinity and NaN values in the numerical
representation.

To solve this problem, gamma is set to max(||∆||∞,−N · νmin), where νmin is the small-
est (meaning largest in absolute value) negative eigenvalue among the eigenvalues of the
Kronecker sum components, if it exists, and 0 otherwise. This way, any of the eigenvalues
of the components is ≥ 0, which gets rid of the blow-up in the exponentiation. The same
principle is used when R̂ is computed for the formula of Theorem 1.

34



In the article, another version of the algorithm is proposed based on reordering the
Neumann terms and repeatedly squaring M in the series, which in this case equals
−Q−1

1 (Q2−S). This provides a much better convergence rate, but in the case of multiple
absorbing states, the matrix S is replaced by a matrix with potentially relatively large
TT ranks (see Chapter 4 for details), which makes repeated squaring intractable.

5.4.1 Adaptation to fault trees

The algorithm can be adapted to static fault trees using Theorem 2 by setting S to the
additive modification matrix described in the theorem. As the rate matrix of the original
Markov chain consists of only a Kronecker sum, W is just the zero matrix, and R is the
whole rate matrix.

Changing S to the multiple absorbing state form introduces a problem, though: in the
original version, the TT-ranks of S were always 1. In this version, however, the ranks can
be much larger, depending on the Boolean function encoded by the tree. This can lead to
a quick rank growth of the Neumann terms. Because of this, the algorithm is no longer
guaranteed to be more efficient than other solvers, so the performance of this method must
be compared to the others.

35



Chapter 6

Evaluation

I measured the applicability of the structured MTTF computation method to Fault Trees
by running benchmarks with the two different structured computation formulas (theorems
1 and 2), and the different solver methods. The numerical experiments were conducted to
answer the following research questions:

• How do the running time of various Tensor Train-based MTFF analysis methods
compare on synthetic and real-world fault tree models?

• How does the running time of Tensor-Train-based MTFF analysis compare to state-
of-the-art fault tree analysis methods based on explicit state space generation?

6.1 Implementation and benchmark setup

The main reasons for building a new implementation of all the algorithms instead of using
those already built is that the available libraries are mostly built in Matlab, which is not
suitable for integration with most modeling tools. My implementation runs on the JVM,
so that the library implementing the described algorithms can be easily integrated with
JVM-based modeling tools, like those built using the Eclipse Modeling Framework. The
project is open-source, the source-code is available on GitHub [2]. This can make progress
in the area faster, as the implementation can be used for further research.

For BDD creation and manipulation, a decision diagram library developed at the Fault
Tolerant Systems Research Group is used.

In the implementation BiCGStab [31] is used as the local iterative solver for the DMRG
scheme. In the first implementation, restarted GMRES was used, but it was prone to
stagnation too early and so the global scheme could not converge to a solution accurate
enough. The stopping criterion of the Neumann-expansion-based computation method is
that the size of the latest Neumann term is less then the required convergence threshold.

I implemented an ANTLR-based parser for a subset of the galileo [1] fault tree descrip-
tion language that contains all the language elements needed for static fault trees with
exponentially distributed failure events. The state-of-the-art probabilistic model checker
Storm, which is used as a baseline for the benchmarks, also uses this input format for fault
trees.

The galileo language in itself does not support exponentially distributed repairs, and no
extension for this was added in Storm either. I added this feature as an extension to

36



Figure 6.1: AND gate with 10 inputs

the language through a ‘repair’ property that can be applied to basic events. As this is
missing from Storm, unfortunately, the results on non-monotone fault trees could not be
compared to it.

6.2 Benchmark model descriptions

The first benchmark is meant to measure the gains of structured representations in the
case of fault trees with a simple, highly compressible structure, but for which explicit
methods suffer severely from the state-space explosion problem when the number of basic
events become large. The best example for this case is a very simple fault tree with a
single AND gate as a top event, and a lot of basic events with different failure and repair
rates as its inputs. This benchmark is a fault tree with 10 basic events as the inputs of
the top AND gate. This model is highly artificial, but it highlights the case where the
approach proposed in this work can be the most beneficial. This benchmark is mainly used
as a quick comparison between the different solver-preconditioner-formula combinations,
to determine which combinations are worth more investigation.

After the AND gate, a group of models that consists of realizations of a scalable model
inspired by a SIL4 safety signal transmitter were used as benchmarks. The concept of this
model comes from an industrial project. The architecture modeled by the tree is quite
general, similar architectures are often used in safety critical systems. The system consists
of a central logic module, and at least one IO module attached to it. Each module has
three channels, referred to as R, G, B channels, and decisions are made by taking the result
of a 2 out of 3 voting of these channels. The voting is performed by a duplicated voter
component on each IO module. The information is transmitted between channels through
the logic module, so in case the given channel of the logic module fails, that channel is
considered failed in every IO module.

The size of the modeled system can be changed by choosing the number of IO modules.
Each IO module has 5 corresponding basic events, and the logic module has 3 basic events,
so a realization of the fault tree template has 3 + 5k basic events, where k is the number
of IO modules. Figure 6.2 shows the fault tree template of this benchmark group with
two IO modules drawn.

6.3 Experiment setup

The baseline used for the benchmarks is the Storm model checker, which uses state-of-the-
art explicit methods for probabilistic model checking. The main difference between the
two approaches is that the explicit methods mostly rely on generating the reachable state

37



2/3

LG_R

IO1_C_R IO1_C_G IO1_C_B

LG_G LG_B

IO1
VoterA

IO1
VoterB

2/3

IO2_C_R IO2_C_G IO2_C_B

IO2
VoterA

IO2
VoterB

...

Figure 6.2: Fault tree of the simplified SIL4 Safety Signal Trans-
mitter

space instead of the potential state space. This is often much smaller than the potential
state space, but can still be exponentially large in the number of state variables (basic
events, in the case of fault trees). The structured approach tries to exploit the structure
of the state space instead, which can often lead to better asymptotic behaviour.

The Newton-Schulz preconditioning method with the naive implementation did not make
into the benchmark, as the creation of the preconditioner took too long even with a small
number of iterations, and the TT-rank growth of the system was too large.

Machine precision was considered 10−16 in the benchmarks. Iterative solvers were required
to converge to a residual norm ≤ 10−7. The convergence in TT-GMRES is checked using
the faster residual norm computation available in GMRES, which provides the residual
norm before the last rounding. Without the rounding, the TT-ranks of the result are
too large for further computations, so the real norm cannot be used to efficiently detect
the convergence. Therefore, the residual norm after TT-GMRES stops might be a bit
above the set threshold because of the last rounding. The benchmarks were run with
the OpenJDK version 11.0.4 with 32GB heap size on an AMD EPYC 7551 processor. A
timeout of 20 minutes was set for each measurement.

6.4 Results

Meaning of the columns in the benchmark result tables:

• Formula: Thm. 1, if the formula of Theorem 1 is used, and Thm. 2, if the formula
of Theorem 2. If 1, then the computation is performed with the formula described
in Section 4.1 with R̄ lifted out.

• Solver: which of the solvers described in Chapter 5 was used.

• Preconditioner: which structured preconditioner was used, if any. If the solver
is DMRG, there are two levels where preconditioning could be performed: at the

38



global level, by multiplying the large system before DMRG is started, and at the
level of the smaller local systems. This preconditioner reported in this column is
at the global level, no local preconditioning was implemented for DMRG for the
benchmarks here.

• Resnorm: 2-norm of the residual after the iterative solver stopped.

• MTFF: the resulting approximate MTFF value.

• rTT: largest TT-rank of the iteration vector after rounding, throughout the whole
iteration process.

• Time: the total time taken by the overall computation, including parsing the fault
tree file and creating the linear system. ‘t.o.’ in this field means that the computation
was stopped either by a timeout of an out of memory exception.

The results of measurements with a single AND gate with 10 basic events can be seen in
Tables 6.1 and 6.2. The Storm baseline is shown only for the version without repairs, as
Storm does not support exponentially distributed repairs in fault trees. This benchmark
was measured with all formula-solver-preconditioner combinations, but a lot of them timed
out even on this size, or stagnated with a very large residual leading to a totally wrong
MTFF value, so further measurements were not performed on these.

Formula Solver Preconditioner Resnorm MTFF rTT Time (ms)
Storm 0.950257 9

Thm. 1 DMRG DMRG - - - t.o.
Thm. 1 DMRG Jacobi - - - t.o.
Thm. 1 DMRG - 7.159e-07 0.9502569 12 45697
Thm. 1 GMRES DMRG - - - t.o.
Thm. 1 GMRES Jacobi - - - t.o.
Thm. 1 GMRES - 2.446e-07 0.9502569 32 24058
Thm. 1 Jacobi DMRG - - - t.o.
Thm. 1 Jacobi Jacobi - - - t.o.
Thm. 1 Jacobi - - - - t.o.
Thm. 2 DMRG DMRG 6.174e-09 0.9502570 16 23561
Thm. 2 DMRG Jacobi 1.981e-08 0.9502569 12 1677
Thm. 2 DMRG - 7.688e-08 0.9502570 10 1062
Thm. 2 GMRES DMRG 6.010e-08 ((((

((-0.9999992 16 99672
Thm. 2 GMRES Jacobi 3.508 ���-1992 25 74446
Thm. 2 GMRES - 3.988e-07 0.9502569 32 12324
Thm. 2 Jacobi DMRG 7.831e-09 0.9502570 16 25871
Thm. 2 Jacobi Jacobi - - - t.o.
Thm. 2 Jacobi - 4.673e-08 0.9502569 18 8351
Thm. 2 Neumann - - 0.9509691 16 3170

Table 6.1: Results on the fault tree with a single AND gate with 10 inputs without
repairs

For the measurements with the simplified SIL4 signal transmitter, only non-preconditioned
DMRG, Jacobi preconditioned DMRG, non-preconditioned GMRES and Neumann iter-
ation were used. These solvers were run on the SIL4 signal transmitter with 1 to 4 IO
modules. The results are shown in Table 6.3.

39



Formula Solver Preconditioner Resnorm MTFF rTT Time (ms)
Thm. 1 DMRG DMRG - - - timeout
Thm. 1 DMRG jacobi - - - timeout
Thm. 1 DMRG none 2.593e-4 587.7872191 10 86875
Thm. 1 GMRES DMRG - - - timeout
Thm. 1 GMRES jacobi - - - timeout
Thm. 1 GMRES none 5.117e-2 ((((

((20.9718066 28 84699
Thm. 1 jacobi DMRG - - - timeout
Thm. 1 jacobi jacobi - - - timeout
Thm. 1 jacobi none - - - timeout
Thm. 2 DMRG DMRG - - - t.o.
Thm. 2 DMRG Jacobi 7.707e-08 587.8045498 12 7489
Thm. 2 DMRG - 1.632e-05 587.8046084 11 24814
Thm. 2 GMRES DMRG - - - t.o.
Thm. 2 GMRES Jacobi 0.034 ���-1375 32 46903
Thm. 2 GMRES - 0.147 ���-1020 31 41403
Thm. 2 Jacobi DMRG - - - t.o.
Thm. 2 Jacobi Jacobi - - - t.o.
Thm. 2 Jacobi - - - - t.o.
Thm. 2 Neumann - - (((

(((135.3470893 5 1193025

Table 6.2: Results on the fault tree with a single AND gate with 10 inputs with repairs

In these measurements, the non-preconditioned DMRG seemed to be the overall best, so
this was also run on the benchmark with 5 to 8 IO modules. For these benchmarks, the
performance of Storm with symmetry reduction turned on was also measured. The results
are shown in Table 6.4.

6.5 Discussion of the results

During the measurements with the 10-input AND gate, restarted TT-GMRES displayed a
very poor behaviour with the Jacobi preconditioner as it stagnated at a very large residual,
which is strange compared to the literature on non-TT restarted GMRES, so there might
be an error in the implementation.

Preconditioning through some DMRG inversion iterations was very unreliable, as no global
convergence checks were performed on it. DMRG is not guaranteed to converge to the
global solution, can get stuck at local optima, which – as observed in this measurement
– can lead to even a wrong solution if it is used as a preconditioning method. Heuristic
convergence checking can be implemented for the DMRG scheme (see Chapter 7), but
even this might not work well for preconditioning as the preconditioner creation should
run only for a few sweeps, when it might not be possible to detect if it moves towards the
correct solution.

The performance of DMRG was not enhanced by the preconditioners in the monotone
case, but it was significantly better with the Jacobi preconditioner in the repaired case.
Because of these, preconditioning was only used with DMRG in further measurements,
and only the Jacobi preconditioner. When repairs were present in the system, only the
Neumann expansion and the DMRG scheme arrived at a correct solution. As the Jacobi
solver was too slow, it was omitted in further benchmarks.

40



Formula Solver Preconditioner Resnorm MTFF rTT Time (ms)
1 IO module (7 basic events)

Storm 0.0683632 1357
Thm. 1 DMRG - 8.849e-09 0.0683632 8 1446
Thm. 1 DMRG jacobi - - - t.o.
Thm. 1 GMRES - 8.963e-08 0.0683632 11 2518
Thm. 1 neumann - 8.963e-08 0.0683151 160 2619
Thm. 2 DMRG - 1.793e-08 0.0683632 8 925
Thm. 2 DMRG jacobi 8.219e-10 0.0683632 8 1698
Thm. 2 GMRES - 0.135 ((((

(0.3977323 10 7390
Thm. 2 neumann - - 0.0683151 160 2328
2 IO modules (12 basic events)

Storm 0.0479165 1180
Thm. 1 DMRG - 0.611 ((((

(0.1052902 24 759775
Thm. 1 DMRG jacobi - - - t.o.
Thm. 1 GMRES - 1.504e-07 0.0479165 60 140093
Thm. 1 neumann - 1.504e-07 0.0479536 1032 34000
Thm. 2 DMRG - 5.9618e-08 0.0479165 32 14268
Thm. 2 DMRG jacobi 5.792e-10 0.0479165 38 121977
Thm. 2 GMRES - 1.341e-06 0.0479123 64 495999
Thm. 2 neumann - 1.341e-06 0.0479536 1032 31741
3 IO modules (17 basic events)

Storm 0.0388832 613
Thm. 1 DMRG - - - - t.o.
Thm. 1 DMRG jacobi - - - t.o.
Thm. 1 GMRES - - - - t.o.
Thm. 1 neumann - - - - t.o.
Thm. 2 DMRG - 6.633-08 0.0388814 52 81066
Thm. 2 DMRG jacobi - - - t.o.
Thm. 2 GMRES - - - - t.o.
Thm. 2 neumann - - - - t.o.
4 IO modules (22 basic events)

Storm 0.0336233 521
Thm. 1 DMRG - - - - t.o.
Thm. 1 DMRG jacobi - - - t.o.
Thm. 1 GMRES - - - - t.o.
Thm. 1 neumann - - - - t.o.
Thm. 2 DMRG - 2.808-09 0.0336232 58 387948
Thm. 2 DMRG jacobi - - - t.o.
Thm. 2 GMRES - - - - t.o.
Thm. 2 neumann - - - - t.o.

Table 6.3: Results of the SIL4 safety signal transmitter benchmark with 1-4 IO modules

41



Solver Resnorm MTFF rTT Time (ms)
5 IO modules (27 basic events)

Storm 0.0300945 8113
Storm+symred 0.0300945 1111

DMRG 4.171e-8 0.0300945 56 303863
6 IO modules (32 basic events)

Storm 0.0275177 122141
Storm+symred 0.0275177 10923

DMRG 3.796e-8 0.0275176 51 178066
7 IO modules (37 basic events)

Storm - t.o.
Storm+symred 0.025528 108305

DMRG 3.506e-8 0.0255278 46 166252
8 IO modules (42 basic events)

Storm - t.o.
Storm+symred 0.02393 1015248

DMRG 5.885e-8 0.0239297 45 160701

Table 6.4: Results of the SIL4 safety signal transmitter benchmark with 5-8 IO modules.
Only the non-preconditioned DMRG method with the formula of Theorem 2
was used for these models.

This gives a first answer to the question of comparing different solvers on a synthetic exam-
ple: the most prominent ones are the non-preconditioned and the Jacobi-preconditioned
DMRG, the Neuman expansion-based computation, and the non-preconditioned TT-
GMRES.

The combinations that seemed competent based on the results of the 10-input AND gate
were run with the more realistic SIL4 safety signal transmitter benchmark. Among these,
only the non-preconditioned DMRG solver with the formula from Theorem 2 was able to
deal with the larger models. For this reason, measurements continued only with this single
setting on realizations with more modules.

This refines the comparison of the solvers, by providing the result for a real-world fault
tree: the most useful one according to these measurements is the non-preconditioned
DMRG.

With 6 modules, it was close to the performance of Storm without symmetry reduction.
With 7 modules, Storm was terminated by 25min timeout when used without symmetry
reduction, and even with symmetry reduction, it did not outperform the proposed method
significantly. With 8 modules, the proposed method finally came out as the winner: Storm
without symmetry reduction was terminated by a 25min timeout, symmetry reduction
reduced the running time to 16min, while the proposed method with the DMRG solver
and formula 2 came to a result in less than 3 minutes. These cases needed 3 DMRG
sweeps, and converged to a residual norm ≤ 10−7.

After this success, another measurement was performed to see if better convergence was
also achievable in the same time-span, but unfortunately, the 4th sweep timed out for the
8-module tree. Results of the measurements can be seen in Table 6.3.

So to answer the second research question, which was about comparing the proposed
method to state-of-the-art fault tree analysis methods based on explicit state space gen-
eration it can be said that:

42



• On smaller trees, the methods based on explicit state space generation outperform
the proposed method

• But the structured computation has much better scalability, and given the appro-
priate structure, it can be significantly faster on large trees than explicit state space
generation techniques.

Overall, a lot of the measurements have shown a very poor performance, but for large
models the DMRG solver without a global preconditioner using the formula from Theorem
2 outperformed the state-of-the-art probabilistic model checker Storm by a large margin if
convergence to a residual norm ≤ 10−7 is enough. This shows that this setting is superior
to the current implementation of the others, but most of the methods can still be enhanced
(see Chapter 7).

The DMRG method was often unreliable, though, as it failed to move towards the global
optimum. Some methods are proposed in the literature to detect such cases and restart
the DMRG iteration from another random guess [22, 25]. The implementation is still in
progress, the benchmark has shown that implementing this check is a top priority feature.

From the two proposed formulas used for structured MTFF computation, the one from
Theorem 2 seems to be more useful from the results. However, the disadvantages of the
other formula can stem from the fact that only the form which introduced an additional
matrix inversion was measured. Therefore, further measurements are still needed, focused
on this aspect.

The MTFF computed by those methods that converged to the required threshold for the
given model, and by Storm where it was available were sufficiently cause to further confirm
the correctness of the proposed method.

43



Chapter 7

Conclusion and future work

This report proposed a method for overcoming the problem of state space explosion when
computing reliability metrics for fault trees. As a proof of concept, the method was de-
veloped for the computation of mean time to first failure from a static fault tree. After
the explanation of the proposed structured computation method and the description of
the corresponding publicly available implementation, the results of some benchmarks per-
formed to evaluate the method were presented.

From analysing these benchmarks, it can be seen that most of the currently implemented
solvers preformed very poorly, and the preconditioners did not enhance the performance
of the solvers. One solver method, however, the DMRG solver performed quite well,
especially on larger models. On larger models, the state-of-the-art model checker used as a
baseline performed significantly worse than the proposed method. A lot of measurements
still need to be conducted in order to really evaluate the capabilities of the structured
representation for MTFF calculation, but it could be seen even from the results presented
in this report that there are cases where methods used until now did not make it possible
to correctly evaluate large systems, and the proposed method can change this.

Even if the method is not generally enough for all kinds of complex systems, it can lead us
closer to the solution of the problem. If the system has an appropriate structure, and some
approximation threshold can be accepted, the proposed method can perform very well.
The presented approach outperformed a state-of-the-art stochastic model checkers on a
large case study based on an industrial project, indicating its real-world applicability. The
approximation capability also does not seem to be limiting, as the results of the method
agreed with the results computed by the baseline to the accuracy the baseline returned.

Contributions of the report can be summarized as follows:

• Mathematically proven formulas were presented which can be used to compute the
mean time to absorption in Markov chains with multiple absorbing states using
representations which do not make dropping individual columns and rows possible.
Structured tensor representations are such representations.

• A method for using BDD-based and TT-based techniques together was given in
Chapter 4, which can lead to further research into how the advantages of these
approaches can be combined.

• Benchmarks were performed with various solvers and results were reported in Chap-
ter 6, which shows the applicability of different TT-based linear system solvers to
static fault trees.

44



• A JVM-based publicly available implementation was made, which makes it easier to
use the tensor train format and the implemented algorithms in JVM-based applica-
tions.

7.1 Future work

The performance of the DMRG method can be enhanced in a lot of different ways. Other
TT-based solvers should be tested, or the currently implemented ones improved, e.g. trying
out other iterative solvers for DMRG (like [33]), or finding a good local preconditioner.
Memory and computation requirements of the method depend on the size of the created
BDD, so reducing its size could also speed up the method. Techniques like exploiting
“don’t care” values in the encoded function [15], or using a conservative approximation of
the model [27] and then refining this until a given target value is met are some possible
directions for this.

Apart from enhancing the method’s performance, the algorithm could also be extend to
more general cases. It could be adapted for the analysis of dynamic fault trees, or (gener-
alised) stochastic Petri nets. An even more general modeling formalism would be general
stochastic transition systems, described for example through the language of PRISM [3].
Some of these models contain proper non-determinism, which leads to the need for the TT-
based analysis of Markov Decision Processes before the proposed method can be applied
to them. Some work has been done in this area for example in [12].

Besides introducing other analyzable modeling formalisms, the method could be adapted
also to the computation of other metrics. Mean time to failure or mean time between
failures can be computed similarly to MTFF, after computing the steady-state distribution
of the model. Although the reliability after a fixed time period of a static fault tree is easy
to compute, this is much harder for more general models. It needs the transient analysis
of the underlying Markov chain, which might also be performed with the help of tensor
trains, for example using the numerical integration algorithm developed for tensor trains
in [20].

45



Acknowledgements

Supported by the ÚNKP-19-1 new national excellence program of the ministry for inno-
vation and technology.

I want to say an ehuge thank you to my advisor, Kristóf Marussy, for all the help he
provided. I am also grateful to everyone in the Fault Tolerant Systems Research Group
who aided my work in any way. I would like to thank Katalin Friedl and László Kabódi for
their insights on the topic. I want to express my gratitude to Péter Lantos for providing
me the opportunity of an intership at Prolan Co., where I could see the practical side of
reliability analysis through a real-world project.

I also want to thank God for giving me the opportunity for this research, leading me to
the people I had to meet to make this happen, and making me capable of this work.

46



Bibliography

[1] Galileo dft analysis tool. URL https://www.cse.msu.edu/~cse870/Materials/
FaultTolerant/manual-galileo.htm.

[2] Implementation of the proposed algorithm. URL github.com/szdan97/
tensortrain.

[3] Prism model checker. URL https://www.prismmodelchecker.org/.

[4] Suprasad V Amari and Jennifer B Akers. Reliability analysis of large fault trees
using the vesely failure rate. In Annual Symposium Reliability and Maintainability,
2004-RAMS, pages 391–396. IEEE, 2004.

[5] Matthias Bolten, Karsten Kahl, and Sonja Sokolovic. Multigrid methods for tensor
structured markov chains with low rank approximation. SIAM Journal on Scientific
Computing, 38(2):A649–A667, 2016.

[6] Peter Buchholz, Tugrul Dayar, Jan Kriege, and M Can Orhan. On compact solution
vectors in kronecker-based markovian analysis. Performance Evaluation, 115:132–149,
2017.

[7] Allan Clark, Stephen Gilmore, Jane Hillston, and Mirco Tribastone. Stochastic pro-
cess algebras. In International School on Formal Methods for the Design of Computer,
Communication and Software Systems, pages 132–179. Springer, 2007.

[8] Tugrul Dayar. Analyzing markov chains based on kronecker products. MAM, pages
279–300, 2006.

[9] Christian Dehnert, Sebastian Junges, Joost-Pieter Katoen, and Matthias Volk. A
storm is coming: A modern probabilistic model checker. In International Conference
on Computer Aided Verification, pages 592–600. Springer, 2017.

[10] Sergey V Dolgov. Tt-gmres: solution to a linear system in the structured tensor
format. Russian Journal of Numerical Analysis and Mathematical Modelling, 28(2):
149–172, 2013.

[11] Sergey V Dolgov and Dmitry V Savostyanov. Alternating minimal energy methods
for linear systems in higher dimensions. SIAM Journal on Scientific Computing, 36
(5):A2248–A2271, 2014.

[12] Alex A Gorodetsky, Sertac Karaman, and Youssef M Marzouk. Efficient high-
dimensional stochastic optimal motion control using tensor-train decomposition. In
Robotics: Science and Systems, 2015.

[13] Lars Grasedyck. Hierarchical singular value decomposition of tensors. SIAM Journal
on Matrix Analysis and Applications, 31(4):2029–2054, 2010.

47

https://www.cse.msu.edu/~cse870/Materials/FaultTolerant/manual-galileo.htm
https://www.cse.msu.edu/~cse870/Materials/FaultTolerant/manual-galileo.htm
github.com/szdan97/tensortrain
github.com/szdan97/tensortrain
https://www.prismmodelchecker.org/


[14] Sebastian Holtz, THORSTEN Rohwedder, and Reinhold Schneider. The alternating
linear scheme for tensor optimisation in the tt format. Preprint, 71, 2011.

[15] Youpyo Hong, Peter A Beerel, Jerry R Burch, and Kenneth L McMillan. Sibling-
substitution-based bdd minimization using don’t cares. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 19(1):44–55, 2000.

[16] Harold Hotelling. Some new methods in matrix calculation. The Annals of Mathe-
matical Statistics, 14(1):1–34, 1943.

[17] Boris N Khoromskij and Ivan V Oseledets. Dmrg+ qtt approach to computation of
the ground state for the molecular schrödinger operator. 2010.

[18] Tamara G Kolda and Brett W Bader. Tensor decompositions and applications. SIAM
review, 51(3):455–500, 2009.

[19] Daniel Kressner and Francisco Macedo. Low-rank tensor methods for communicating
markov processes. In International Conference on Quantitative Evaluation of Systems,
pages 25–40. Springer, 2014.

[20] Christian Lubich, Ivan V Oseledets, and Bart Vandereycken. Time integration of
tensor trains. SIAM Journal on Numerical Analysis, 53(2):917–941, 2015.

[21] Kristóf Marussy, Attila Klenik, Vince Molnár, András Vörös, István Majzik, and
Miklós Telek. Efficient decomposition algorithm for stationary analysis of complex
stochastic petri net models. In International Conference on Application and Theory
of Petri Nets and Concurrency, pages 281–300. Springer, 2016.

[22] Ivan Oseledets. Dmrg approach to fast linear algebra in the tt-format. Computational
Methods in Applied Mathematics Comput. Methods Appl. Math., 11(3):382–393, 2011.

[23] Ivan Oseledets and Eugene Tyrtyshnikov. Tt-cross approximation for multidimen-
sional arrays. Linear Algebra and its Applications, 432(1):70–88, 2010.

[24] Ivan V Oseledets. Tensor-train decomposition. SIAM Journal on Scientific Comput-
ing, 33(5):2295–2317, 2011.

[25] Ivan V Oseledets and SV Dolgov. Solution of linear systems and matrix inversion in
the tt-format. SIAM Journal on Scientific Computing, 34(5):A2718–A2739, 2012.

[26] Antoine Rauzy. New algorithms for fault trees analysis. Reliability Engineering &
System Safety, 40(3):203–211, 1993.

[27] Kavita Ravi, Kenneth L McMillan, Thomas R Shiple, and Fabio Somenzi. Approx-
imation and decomposition of binary decision diagrams. In Proceedings of the 35th
annual Design Automation Conference, pages 445–450. ACM, 1998.

[28] Karen A Reay. Efficient fault tree analysis using binary decision diagrams. PhD
thesis, c© Karen Ann Reay, 2002.

[29] Leonardo Robol and Giulio Masetti. Tensor methods for the computation of mtta in
large systems of loosely interconnected components. arXiv preprint arXiv:1907.02449,
2019.

[30] Enno Ruijters and Mariëlle Stoelinga. Fault tree analysis: A survey of the state-of-
the-art in modeling, analysis and tools. Computer science review, 15:29–62, 2015.

48



[31] Yousef Saad. Iterative methods for sparse linear systems, volume 82. siam, 2003.

[32] Valeria Simoncini and Daniel B Szyld. Theory of inexact krylov subspace methods
and applications to scientific computing. SIAM Journal on Scientific Computing, 25
(2):454–477, 2003.

[33] Gerard LG Sleijpen and Martin B Van Gijzen. Exploiting bicgstab(l) strategies to
induce dimension reduction. SIAM journal on scientific computing, 32(5):2687–2709,
2010.

[34] William J Stewart. Probability, Markov chains, queues, and simulation: the mathe-
matical basis of performance modeling. Princeton university press, 2009.

[35] Kishor S Trivedi and Andrea Bobbio. Reliability and availability engineering: model-
ing, analysis, and applications. Cambridge University Press, 2017.

[36] William E Vesely, Francine F Goldberg, Norman H Roberts, and David F Haasl.
Fault tree handbook. Technical report, Nuclear Regulatory Commission Washington
DC, 1981.

[37] Matthias Volk, Sebastian Junges, and Joost-Pieter Katoen. Advancing dynamic fault
tree analysis-get succinct state spaces fast and synthesise failure rates. In Inter-
national Conference on Computer Safety, Reliability, and Security, pages 253–265.
Springer, 2016.

49


	Kivonat
	Abstract
	Introduction
	Background
	Continuous-Time Markov Chains
	Phase-type Distributions
	Fault Trees
	Binary Decision Diagrams
	Kronecker algebra and multi-index notation
	The Tensor Train Format
	Approximate matrix inversion through exponentiation
	Related works

	Overview of the proposed method
	Creating tensor trains for MTFF computation
	Structured MTFF Computation
	Description of the MTFF computation scheme
	Tensor Trains from Fault Trees
	Representing the original rate matrix
	Calculating indicator vectors using decision diagrams


	Linear system solvers
	Jacobi iteration
	TT-GMRES
	GMRES
	The TT version
	Preconditioning

	ALS and DMRG
	Exponential sums and the Neumann expansion
	Adaptation to fault trees


	Evaluation
	Implementation and benchmark setup
	Benchmark model descriptions
	Experiment setup
	Results
	Discussion of the results

	Conclusion and future work
	Future work

	Acknowledgements
	Bibliography

