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Abstract 

 
With the continuous progress of cloud computing, many microservices and complex multi-

component applications arise for which resource planning is a great challenge.  

For example, when it comes to data-intensive cloud-native applications, the tenant might be 

eager to provision cloud resources in an economical manner, while ensuring that the 

application performance meets the requirements in terms of data throughput.  

 

However, due to the complexity of the interplay between the building blocks, adequately 

setting resource limits of the components separately for various data rates is nearly 

impossible. 

 

In this paper, we propose a comprehensive approach that consists of measuring the resource 

footprint and data throughput performance of such a microservice-based application, 

analyzing the measurement results by data mining techniques, and finally formulating an 

optimization problem that aims to minimize the allocated resources given the performance 

constraints. 

 

We illustrate the benefits of the proposed approach on Cortex, a horizontally scalable, highly 

available, multi-tenant, long-term storage service for Prometheus monitored metrics as time 

series data. The data-intensive nature of this choice of illustrative example stems from real-

time monitoring of metrics exposed by a multitude of applications running in a data center, 

and the continuous analysis performed on the collected data that can be fetched from Cortex.  

 

We introduce Cortex and its key microservice components, then we present the data write 

and read paths along with the performance vs. resource footprint trade-off.  

Finally, we build regression models to predict the resource consumption of the microservices, 

and we draw a linear programming formulation to optimize the most important configuration 

parameters.  
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Összefoglaló 

 
A felhőalapú számítástechnika folyamatos fejlődésével számos mikroszolgáltatás és összetett, 

többkomponensű alkalmazás készült, amelyek esetében az erőforrás-tervezés nagy kihívást 

jelent.  

Ha például adatintenzív felhő-natív alkalmazásokról van szó, akkor a bérlőnek fontos lehet, 

hogy a felhő erőforrásokat gazdaságosan biztosítsa, miközben biztosítja, hogy az alkalmazás 

teljesítménye megfeleljen az adatok átbocsátóképességével kapcsolatos követelményeknek.  

 

Az építőelemek közötti kölcsönhatások összetettsége miatt azonban szinte lehetetlen a 

komponensek erőforrás-korlátjainak megfelelő beállítása külön-külön a különböző 

adatátviteli sebességekre. 

 

Ebben a tanulmányban egy átfogó megközelítést mutatunk be, amely egy ilyen 

mikroszolgáltatás-alapú alkalmazás erőforrás-lábnyomának és adatátviteli teljesítményének 

méréséből, a mérési eredmények adatbányászati technikákkal történő elemzéséből, és végül 

egy optimalizálási probléma megfogalmazásából áll, amelynek célja a kiosztott erőforrások 

minimalizálása a teljesítménykorlátok mellett. 

 

A javasolt megközelítés előnyeit a Cortex-en, egy horizontálisan skálázható, nagy 

rendelkezésre állású, több felhasználóra kiterjedő, hosszú távú tárolási szolgáltatáson 

mutatjuk be, amely a Prometheus által megfigyelt metrikák, mint idősoros adatok számára 

lett kialakítva. A választott szemléltető példa adatintenzív jellege az adatközpontban futó 

alkalmazások sokasága által kitett metrikák valós idejű megfigyeléséből, valamint a Cortex-ről 

lekérhető, összegyűjtött adatokon végzett folyamatos elemzésből ered.  

 

Bemutatjuk a Cortex-et és annak legfontosabb mikroszolgáltatás-összetevőit, majd 

bemutatjuk az adatírási és olvasási útvonalakat, valamint a teljesítmény és az erőforrás-

felhasználás közötti kompromisszumot.  

Végül regressziós modelleket építünk a mikroszolgáltatások erőforrás-fogyasztásának 

előrejelzésére, és lineáris programozási formulát írunk fel a legfontosabb konfigurációs 

paraméterek optimalizálására.  
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1 Introduction 

 

Cloud computing is widely used currently in the digital industry as a technology that enables 

cheap and easy means not only to online web services but also to big data processing, 

machine learning, and storing data. The cloud is backed by actual physical data centers across 

the world which host virtual machines which are offered to customers and users. The cloud 

concept empowers the user to replace their hardware with cloud server instances and creates 

a new economic model where the customer pays only for the usage and not for the entire 

hardware itself. However, decision-making in cloud environments can be difficult due to the 

diversity in pricing models and service offerings. There are no rules of thumb as each customer 

could have a specific set of constraints and requirements of their cloud application when it 

comes to selecting the perfect cloud environment [14].  

 

Microservices have recently gained striking popularity due to being highly maintainable and 

easy to develop. Microservices-based applications allow the deployment of each microservice 

(or component) to be in physically separated virtual machines if needed. Microservices, being 

separately manageable, have a huge advantage in scaling which is one of the most important 

features of the cloud context. Instead of launching multiple instances of the whole 

application, there is a possibility to only scale in or scale out the specific microservice 

component [13]. Creating microservices with the help of container technologies can result in 

very powerful and easy deployment closely followed by the small footprint which could be 

easily reached with containers. 

 

When creating microservices, the goal is not only to create a small footprint application but 

also performance-wise to match the Quality of Service (QoS) of the original monolith. When 

it comes to data-intensive applications, data throughput is the most important aspect. The 

components of the application communicate with each other via APIs. Creating a microservice 

where the data throughput is relatively slow can result in a bottleneck in terms of the whole 

application’s performance. Increasing the bottleneck components’ resources might mitigate 

the issue, but this approach contradicts the low footprint goals. 

 

To create a resource-efficient microservice, the most important settings to tune are the CPU 

and memory limits that control the resource usage of a microservice instance. These limits 

can prevent components from using more resources than needed, and with the help of these 

limits the app provider or operator can make sure in a private cloud that concurrent 

applications use the cluster as efficiently as possible, whereas in a public cloud limit help to 

pre-estimate costs. 

 

When it comes to microservices, setting the limits for several components at once raises a 

complex optimization problem. Application components have their tasks while working 
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closely with other components and if one of the components lags, the whole microservices-

based application will suffer. On the other hand, resource provisioning must consider the 

shared resources: over-provisioning one component can cause starvation at other 

components. Furthermore, each component may have several configuration parameters 

which need to be tested in terms of resource usage to find the optimal limit values making 

the specific component work as efficiently as possible. 

 

Section 2 presents the related work; in Section 3 we introduce building blocks for cloud native 

applications and microservices. We pick an illustrative example for microservice-based 

applications, Cortex: Section 4 introduces Cortex’s most important components, while in 

Section 5 we focus on the data ingestion pipeline as well as the data retrieval path of Cortex. 

In Section 6 we define the regression model built on the measurements and create a linear 

programming formula for resource optimisation and showcase the Cortex example with 

numerical analysis. Section 7 concludes the findings. 
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2 Related work 

 

The authors in [16] argue that performance modeling of microservice-based applications 

allows us to determine the capacity distribution among each microservice. This enables 

planning for applications and the detection of the bottleneck in microservices. [16] proposes 

to apply statistical models, e.g., Theil-Sen estimator or Support Vector Regression for this 

purpose. After analyzing the data acquired by their approach on the example applications, it 

was identified that the microservices follow a common pattern in the performance versus 

workload relationship which suggests the performance degrading with the increase of 

workload up until a certain point when all the virtual resources are used. Commonly in all 

tests, the CPU utilization increased linearly with the number of requests sent to the 

microservices. The approach was tested on several test applications including a compute-

intensive application, a database accessing application, and a web accessing application. 

Similarly, to [16] we also want to create a model to detect and avoid bottlenecks; however, 

we also want to provision the resources individually for each microservice while using as 

minimal resources as possible. 

 

Yanqi Zhang et al. [17] presented Sinan, a Machine learning driven (ML-driven) resource 

manager for microservice-based applications. Sinan highlights the challenges of managing 

complex microservices and leverages a set of scalable and validated ML models to reduce 

resource usage while meeting the end-to-end Quality of Service (QoS). Sinan trains two 

models with the traces: a CNN (Convolutional Neural Network) model for short-term 

performance prediction, and a Boosted Trees model that can evaluate long-term 

performance evolution. The combination of the two models allows Sinan to be effective in 

both near-future and distant future resource management. Similarly, to [17], our goal is to 

meet the QoS requirements with an analytical model which can calculate and predict the 

expected average resource usage. 

 

The detection of a bottleneck component is important if we want to increase the performance 

of a complex application deployed in the cloud. [18] presents an analytical model that can 

detect bottlenecks and predict the performance of a multi-tier application. The suggested 

approach consists of two resource provisioning steps: a predictive one for long-term scales 

and a reactive one for short timescales. Long-term prediction is useful when the load can be 

predicted e.g., a typical daily pattern, but only reactive provisioning can handle unexpected 

high workloads. Using both and combining them can create an effective provisioning scheme. 

With this approach in a scenario where the workload of a three-tier application has been 

doubled, the technique showcased in [18] was able to double the application capacity within 

five minutes while maintaining the QoS (Quality of service) targets. Unlike [18], the focus is to 

predict and create resource limits for the average resource usage of microservices of any 

cloud-native application. 
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3 Cloud native building blocks 

 

Launching and managing multiple applications (or microservices) in the cloud can be a great 

task. However, with the help of containers, container orchestration tools and monitoring 

applications these tasks could be sped up, be more efficient and less time consuming. In this 

section we will take a closer look at these solutions. 

3.1 Docker 

Docker is a container virtualization technology. Containers are lightweight and contain 

everything required to run the application and provide isolation for apps from the 

infrastructure. Docker’s popularity comes from the quick shipping, testing, deploying 

possibility which means the time between writing the code and running it in production is 

significantly reduced. Because Docker is more lightweight than the previously used/popular 

hypervisor-based virtual machines; with the same resources containers can utilize more of 

the resources for the actual application(s) and need less for the background tasks [11]. 

 

3.2 Kubernetes 

Kubernetes is responsible for managing containerized workloads such as Docker containers. 

With Kubernetes scaling and health checking become easy. Deploying containers and pods 

only require a single line of command with additional support for options that can be set in a 

configuration file. It can restart containers when they fail, replace these containers with new 

ones, and kill containers when they are not responding [10]. 

Kubernetes allows the system owner to limit the containers' resource usage. In Kubernetes, 

containers are grouped into pods where they share the storage and network resources with 

other containers. For easy use, one can deploy pods without specifying any option this way 

Kubernetes will use the default options provided with the pod. The problem with this, e.g., 

the developer will not have control over the pods' resource usage. There is a huge possibility 

that a pod might utilize a lot of resources and deploying it next to another pod will result in 

leaving only a minimal resource for the other pod which can make it unreliable or even worse: 

the pod will not be able to do its task. The solutions are built-in for Kubernetes: developers 

can control the CPU and memory usage for a pod by setting resource limits and requests in 

the pod’s configuration file. Limits could be used to maximize the pods' resource usage while 

with the request option Kubernetes provides at least the specified amount of resources for 

the pod. On a higher level, maintainers can create namespaces and give limits in the 

namespaces so the pods cannot use up all the resources [9]. The question is how should we 

approach this limit and request problem when we want to be as efficient as possible? What 

are the trade-offs in terms of resource limitations e.g., when we apply Cortex for storing 

Prometheus metrics? 
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3.3 Prometheus 

Prometheus is a highly popular, open-source systems pull-based monitoring and alerting 

toolkit written in Go and a Cloud Native Computing Foundation (CNCF) project. It can collect 

and store metrics as time series data, i.e., metrics information is stored with the timestamp, 

alongside optional key-value pairs called labels. 

Prometheus has several useful features like Prometheus Query Language (PromQL), a flexible 

query language that lets the users select and aggregate time series data in real-time. 

Prometheus provides a multi-dimensional data model with time series data identified by 

metric names and labels. The time series are being collected by a pull model over HTTP 

protocol. The query results can be a graph, viewed as tabular data. There is no distributed 

storage, so every single server node is autonomous [2]. 

 

Prometheus’s goal is to run with as few dependencies as possible; due to this philosophy, it 

uses only the local network to gather the metrics and stores the received data on the local 

disk. Even though the storage format can store data for a long time, truly durable long-term 

storage needs to consider disk failure, replication, and recovery while Prometheus does not 

provide solutions out of the box [8]. 

3.4 Cortex 

Cortex is a horizontally scalable, multi-tenant, long term storage for Prometheus written in 

Go which is also a CNCF project. The foundation’s goal is to support and help the advancement 

of container technologies. Cortex can be run across multiple machines in a cluster, exceeding 

the throughput and storage of a single machine. More well-known CNCF projects include 

Kubernetes, Helm, Prometheus and Thanos.  

 

Cortex is able to send the metrics from multiple Prometheus servers to a single Cortex cluster 

and run aggregated queries across all data in a single place which is useful when the operator 

wants to get an overview about all of the metrics and data collected by these Prometheus 

servers. Cortex can also isolate data and query from multiple different independent 

Prometheus sources in a single cluster, allowing untrusted parties to share the same cluster 

and being able to prohibit unauthorized access to this information. When it comes to long 

term storage support Cortex supports S3, GCS, Swift and Microsoft Azure. This allows durable 

data stores for later use [1]. Figure 1 shows a commonly used architecture for a data lake; 

Cortex can be used in this architecture as a data collector, ingestor and storage microservice. 

 

Prometheus instances can scrape metrics and data from various targets and push them to 

Cortex with the help of Prometheus’ remote write API. Prometheus’ remote write API creates 

and sends batched Snappy-compressed Protocol Buffer messages inside the body of an HTTP 

PUT request. 
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Cortex requires that each HTTP request come with a header specifying the tenant ID for the 

request. These requests’ authentication and authorization are handled by an external reverse 

proxy. 

Incoming sample writes (from Prometheus) are handled by the Distributor while incoming 

reads (PromQL queries) are handled by the Querier or optionally by the Query frontend. 

These two cases will be introduced and presented in this paper [1]. 

 

 
Figure 1: Common data lake architecture with colored extract, transform, load (ETL) 

procedures [19]. 

 

3.5 Thanos vs Cortex 

In this section, we will compare Cortex and Thanos. Cortex and Thanos are two popular 

solutions used by many companies to scale out Prometheus in production. Cortex and Thanos 

are both in the CNCF Sandbox and initially started with different technical approaches and 

philosophies but over time they became similar when it comes to features and functionality. 

 

Cortex has been designed for scalability and high performance since the beginning. When it 

comes to components Cortex has an all-or-none philosophy which means most of the 

components are not optional, there is a need to deploy most of the microservices. Cortex is 

using a push-based model which means the Prometheus server remote-writes to Cortex with 

the help of an API. Cortex uses both a NoSQL database and object storage. 

Thanos on the other hand was originally planned for operational simplicity - Thanos can be 

rolled out incrementally. While Cortex uses a push-based model Thanos originally only 

supported a pull-based model which requires Thanos Queriers to pull out metrics from 
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Prometheus during the query. Thanos only uses object storage; there is no need for a 

database. Figure 2 shows an overview for both Cortex and Thanos when it comes to their used 

mode; Cortex’s push-based model and Thanos’s pull-based model. 

 

Thanos' configuration is compact and easy to consume. With different design principles in 

mind, Cortex configuration allows the microservice operators to change every bit of the 

microservices, which turns out to be quite powerful when setting up a large production 

cluster but makes it more difficult to set up as most of these configurations have to be done 

before starting the microservices and even before making into the production pipeline.[7] 

 

The Prometheus servers need to share the cluster with the target they are monitoring. This 

works extremely well when the application is deployed in one region but at a later stage the 

company starts deploying servers in multiple regions, therefore also needing to deploy 

Prometheus servers in each region which needs to be monitored. And when there is a need 

to run queries that cover data in multiple regions, there is no aggregated or specified place 

where these queries can be sent. This is the first problem that Cortex and Thanos set out to 

solve. 

 

Thanos’ solution is to reuse already existing Prometheus servers in the clusters. The Thanos 

Queriers spread apart queries to these existing Prometheus servers. In order to handle these 

queries and to help the Querier collect all of the metrics needed we need to deploy a sidecar 

(the Thanos Sidecar) next to the existing Prometheus servers. With the help of these Sidecars, 

the Querier can pull the data from these Prometheus servers. 

 

In contrast with Thanos, in Cortex these requests go in the opposite direction – the existing 

Prometheus servers push data to a central, scalable Cortex cluster using Prometheus’ built-in 

remote-write capability (API). The central Cortex cluster stores all the data and handles 

queries locally; if the Prometheus servers are not available all of the pushed data will still be 

available in Cortex. 

 

Here we can see the first trade-off: the query's performance and availability. When using 

Thanos chunk data must be pulled back from the edge locations (from all of the Prometheus 

servers) to a central location where the Thanos Queriers are running. If there is an 

interruption in this wide-area network, the query performance and availability will be 

significantly slower and less reliable. In the worst case, the latest 2 hours of data may not be 

available for querying. In comparison to Thanos, Cortex relies on a push-based model to 

aggregate the data; when an edge location becomes unavailable, all data up to that point is 

still available to use. On the other hand, for this to work, we need to deploy a Cortex cluster 

and storage on top of the Prometheus deployment, while Thanos leverages the existing 

deployment. 
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Prometheus runs as a single process so if it’s needed to restart Prometheus, there is a 

possibility to end up with gaps in the data. The best and most common practice to avoid this 

issue is to deploy a pair of Prometheus servers in each monitored region, so if one fails, the 

idea is the other one continues to scrape the jobs and store metrics. But this does not solve 

the problem of the gaps – out of the box, Prometheus does not provide a way to merge data 

from multiple replicas. 

 

When a pair of Prometheus servers are deployed the Thanos Querier will try to read from 

both replicas and combine these metrics into a single, no-gaps-included result. Thanos uses a 

heuristic to determine which results to show to avoid gaps. This step needs to be taken 

because there is a possibility that the two replicas are out-of-sync. 

 

When it comes to this problem Cortex takes a different approach. As each replica is pushing 

samples to the cluster, Cortex deduplicates the streams internally and only store a single copy 

of it. Cortex also relies on tracking the last push from each replica connected to it and using a 

timeout to elect the other replica(s) as the master [8]. 

 

Comparing these two solutions there are no significant differences. Both can create gapless 

metrics which is the main goal when it comes to monitoring; to be able to monitor the 

applications without any issue or gaps and when these metrics need to be analyzed later, e.g., 

for troubleshooting all of the data need to be available to use. 

 

Over time, the two projects started to influence each other, and these differences have been 

significantly reduced. Thanos started to support a push-based model with the receiver 

component, and many improvements have been made by the team both in terms of 

scalability and performance. Cortex’s operational complexity has been significantly reduced: 

the team introduced the single binary mode, removed some external dependencies. With 

these changes, Cortex has become more popular, easier to deploy and maintain [7]. 
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Figure 2: Comparing Thanos and Cortex philosophy [8]. 

3.6 MinIO 

Our long-term storage choice is MinIO, high-performance object storage. MinIO is S3 

compatible, and it can handle unstructured data such as log files, backups, and container 

images with (currently) a maximum object size support of 5TB. The philosophy behind MinIO 

is to offer a high-performance infrastructure for machine learning, analytics, and application 

data workloads. The MinIO storage stack has three major elements which include the MinIO 

Server, the MinIO Client, and the MinIO Client SDK. 

 

MinIO cloud storage server is designed to be as minimal and as scalable as possible. Designed 

with performance in mind, it offers many features including erasure coding, data decay 
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protection [22], encryption, identity management, continuous replication, global federation, 

and multi-cloud deployments via gateway mode. 

 

The MinIO Client, mc, provides an alternative to the well-known UNIX commands such as ls, 

cp, mirror, diff, etc. and adds support for S3 compatible cloud storage services. 

 

MinIO Client SDK provides an API to access any Amazon S3 compatible object storage server. 

The API is available for Go, Java, Python, JavaScript, Haskell, and languages hosted on top of 

the .NET Framework. With the SDK all of the MinIO client commands and features are 

available [6].  
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4 Cortex components 

 

Cortex consists of multiple horizontally scalable microservices from which we will introduce 

the most important ones in terms of performance and resource footprint in this section. 

Figure 3 contains most of the components used by Cortex including the external applications 

which vary on the use case. Write path is the microservice’s data ingestion process where the 

collected and gathered data gets stored in the long-term storage after pre-processing. The 

read path on the other hand is the process when the data gets retrieved from the long-term 

storage. There are some components that are key components for both paths. When it comes 

to the write path, the key components are the Distributor and Ingester. The Ingester has a 

similarly important role when it comes to the read path. In addition to the Ingester, we will 

introduce the Querier, Query frontend (optional), Ingester, and the Store-gateway. 

 

 

Figure 3: Cortex’s architecture including the external applications [3]. 

4.1 Distributor 

The Distributor microservice is responsible for handling the incoming samples of Prometheus. 

It’s the first step in the writing path. When the Distributor receives samples from the 

Prometheus servers, each sample is checked and validated for the correctness and to make 

sure that it is within the preconfigured tenant limits and falling back to default ones in case 

limits have not been overridden for the specific tenant. The valid samples are then split into 

batches and get sent to multiple Ingesters in parallel by the Distributor. 
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The validation done by the Distributor includes checking the metric labels' names whether 

they are formally correct, checking the maximum number of labels per metric, the maximum 

length of label names and values whether they are being respected. In addition to these, the 

Distributor also checks if the timestamps are older/newer than the configured min/max time 

range [3]. 

 

4.2 Ingester  

The Ingester microservice is responsible for writing incoming time series to a long-term 

storage backend (in our case into MinIO) on the write path and returning in-memory series 

samples for queries on the read path. 

Incoming series are not immediately written to the long-term storage but kept in memory 

and periodically flushed to the storage (by default, 12 hours for the chunks storage and 2 

hours for the blocks storage). For this reason, the Queriers may need to fetch samples both 

from Ingesters and long-term storage while executing a query on the read path. 

 

If an Ingester process crashes or exits abruptly, all the in-memory series that have not yet 

been flushed to the long-term storage will be lost.  

There are two main ways to handle this failure: replication and write-ahead log (WAL). 

 

The replication is used to hold multiple (typically 3) replicas of each time series in the 

Ingesters. If the Cortex cluster loses an Ingester, the in-memory series held by the lost Ingester 

are also replicated at least to another Ingester. In the event of a single Ingester failure, no 

time series samples will be lost while, in the event of multiple Ingesters failure, time series 

may be potentially lost if failure affects all the Ingesters holding the replicas of a specific time 

series. 

 

The write-ahead log (WAL) is used to write to a persistent disk all incoming series sample until 

they’re flushed to the long-term storage. In the event of an Ingester failure, a subsequent 

process restart will replay the WAL and recover the in-memory series samples. [3] 

 

4.3 Querier  

The Querier microservice handles queries using the Prometheus Query Language (PromQL) 

query language. The Queriers fetch series samples both from the Ingesters and long-term 

storage: the Ingesters hold the in-memory series which have not yet been flushed to the long-

term storage, of course, it will only fetch data from both when it is demanded because of the 

query’s time range. Because of the replication factor of the Ingesters, there is a possibility 

that the Querier may receive a duplicated sample of time series; to resolve this, for a given 
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time series the Querier will internally deduplicate these samples with the same timestamp 

[3]. 

 

4.4 Query frontend  

The Query frontend is an optional microservice providing the Querier’s API endpoints and can 

be used to accelerate the read path. When the Query frontend is in place, incoming query 

requests should be directed to the Query frontend instead of directly to the Queriers. The 

Querier microservice will be still required within the cluster, to execute the actual queries the 

frontend does not query the required data. 

The Query frontend internally performs some query adjustments and holds queries in an 

internal queue similarly to a database. Setting up like this the Queriers act as workers which 

pull jobs from the queue, execute them, and return them to the Query frontend for the 

aggregation if it's needed [3]. 

 

One more reason to use a Query frontend is that the frontend is capable of retrying a query 

on another Querier if the first should fail due to OOM or network issues [4]. 

 

The flow of the query in a system where Query frontend(s) are being used starts with the 

query being received by a Query frontend, which can optionally split it or serve from the 

cache. (if Cortex’s caching options are being used) If it cannot serve it from the cache the 

Query frontend stores the query into an in-memory queue, where it waits for a Querier to 

pick it up and to execute it. After the execution, the last step is to send the results back to the 

Query frontend and then forward them to the client [4]. 

 

It is recommended to add a readiness/health check to the Query frontend to prevent it from 

receiving queries while it is waiting for Queriers to connect. HTTP health checks are supported 

by Envoy, K8s, Nginx, and basically any commodity load balancer. The Query frontend would 

not indicate healthy on its health check until at least one Querier had connected [4]. We 

decided to use Nginx in this project [23]. 

 

4.5 Store-gateway 

The Store-gateway is the Cortex microservice responsible to query series from blocks; each 

block is composed by chunk files containing the timestamp-value pairs for multiple series as 

well as an index, which indexes the metric names and the labels. The gateway should have an 

almost up-to-date, valid view over the storage bucket(s), in order to discover blocks more 

easily. Bucket is a unit of storage; a bucket typically stores one disk block, which in turn can 

store one or more records inside. The Store-gateway can keep the bucket view updated with 

periodically scanning the bucket - this is the default option -, or with periodically downloading 

the bucket index. 
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When the bucket index is disabled - this is the default option - following can be experienced: 

At start-up Store-gateways iterate over the entire storage bucket to discover blocks for all 

tenants and download the meta.json and index-header for each block. While running, Store-

gateways periodically rescan the storage bucket to discover new blocks (uploaded by the 

Ingesters) and blocks marked for deletion or fully deleted since the last scan (as a result of 

compaction). The blocks chunks and the entire index are never fully downloaded by the Store-

gateway. The index-header is stored to the local disk, in order to avoid to re-download, it on 

subsequent restarts of a Store-gateway [5]. 

 

When bucket index is enabled, the overall workflow is the same but, instead of iterating over 

the bucket objects, the Store-gateway fetches the bucket index for each tenant belonging to 

their shard in order to discover each tenant’s blocks and block deletion marks.[5] 

 

The Store-gateway supports the following caches: index, chunks and metadata cache.  

The index cache can be used to speed up lookups of postings and series from the TSDB clocks 

indexes. There are two supported options here: in-memory and memcached. 

The chunks cache can be used to store chunks fetched from the long-term storage. The chunks 

contain samples and can be reused when the user queries the same series for the same time 

range. 

The metadata cache can be used to cache bucket metadata using Memcached. It can store 

and cache the list of tenants, list of blocks per tenant and the block’s meta.json content. 

Although caching is optional, it is highly recommended to use by the official documentation 

in a production environment. With the measurements we experienced the same and we also 

recommend using all of the caching options if it is possible [5]. 
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5 Cortex operations 

 

In this section we present the data paths. Writing data into long-term storage as efficiently 

and rapidly is as important as being able to retrieve the stored data. Some of the Cortex 

components are being used in both paths but there are specific microservices which are 

only needed in one of the paths. First, we will present the general data path, afterwards we 

present the findings with some illustrative figures. 

 

5.1 Data ingestion of Cortex 

Our hypotheses on the write path include high disk usage while running multiple Ingester 

replicas. While the Ingesters storing and writing time series into the long-term storage the 

data which they carry is stored on a persistent disk for restoring purposes. This means more 

replicas result in higher disk usage. Next to the Ingester the Distributor is expected to be 

CPU load heavy just like the Ingesters. For the Distributor component it is crucial to run 

without any issue because without a Distributor the writing path stops and there is a 

possibility the microservice will lose data in the process. With multiple replicas of 

Distributors and Ingesters we are expecting stable run and load balancing between the 

components. 

 

When it comes to the writing path the Ingesters receive incoming samples from the 

Distributors which are responsible for handling the incoming samples of Prometheus. Each 

push request comes from a specific tenant, and the Ingester inserts the samples to the 

specific TSDB stored on the disk. The received data is both kept in-memory by the Ingester 

and written to a write-ahead log (WAL) which can be used to recover the in-memory time 

series if the Ingester unexpectedly terminates. These logs should be stored on a persistent 

disk which can be easily used after the Ingesters failed and need to be restored to be able to 

work again. This high overview can be seen on Figure 4 which shows how the metrics and 

time series gets collected by Cortex and how they can be queried after the deduplication 

with a Grafana microservice [8]. 

 

The time series data stored in-memory is periodically written to a local disk when a new 

TSDB block is being created, which by default happens every 2 hours. Each created block is 

then inserted into the long-term storage and kept in the Ingester until the given retention 

period expires. The reason for this is in order to give Queriers and Store-gateways 

microservices enough time to discover these new blocks on the storage and pull the 

required data for later use during querying. 

 

Due to Cortex’s replication factor X - typically 2 or 3 -, each time series is stored by X 

Ingesters. Since each Ingester writes its own block to the long-term storage and not 
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communicating with the other Ingesters, it leads to a storage utilization of X times more 

than the minimum or expected. The Cortex compactor microservice solves this problem in 

Cortex by merging blocks from multiple Ingesters into one, single block, and deduplicates 

time series [12]. This introduced pipeline can be seen on Figure 5 where not only the 

components are presented but the flow of the data from the external application to the 

long-term storage. 

 

 
Figure 4: Cortex’s writing path workflow [8]. 

 

This section presents the findings about Cortex’s write path when we tested and measured 

the microservices with different configurations. It is very important to note that if the 

Distributor(s) crash or stop working, the collected monitoring data will be lost or not be 

written in the long-term storage which can have a negative impact when the user would like 

to query that specific time period. The compactor can save disk space with larger block 

ranges. Each block contains chunk files - which have the timestamp-value pairs for multiple 

time series - and an index, which indexes the metrics’ names and labels. 

 

Some rules of thumb to be taken into consideration when we are designing the writing 

pipeline are the following: every million time series in an Ingester takes approximately 15 

GB of memory and consumes 15 GB of chunk storages while the indexes need ~4 GB of 

storage every day. The Distributor is capable of processing 100,000 samples per second with 

1 CPU core while it does not require much memory during the process. 

 

The Distributor’s CPU consumption depends very much on the type of metric ingested by 

the pipeline. Prometheus and Cortex supports counters, gauges, histograms, and 

summaries. A counter can represent a single monotonically increasing value which can only 
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increase or be reset to zero. Counters can be used to represent the number of requests 

served, tasks completed, or errors. A gauge can represent a single numerical value that can 

increase and decrease. They are typically used for measured values like current memory 

usage. A histogram samples observations and counts them in configurable buckets. They are 

typically used for things like request durations or response sizes. A summary is similar to a 

histogram, it samples observations while providing a total count of observations and a sum 

of all observed values, it calculates configurable quantiles over a sliding time window. They 

are typically used for things like request durations and response sizes. The disk, CPU and 

memory usage of the Cortex write path components increases linearly with the number of 

time series given to Cortex. While the Ingesters can save disk usage when the WAL 

compression is turned on the CPU usage expectedly will increase however this increase is 

not relevant so using the WAL compression is recommended. 

 

 

 
Figure 5: Cortex’s writing path including the external, monitored application. 

 

Overall, the write path depends on the specific parameter inputs: the number of time series 

written, the number of used Nginx, Ingester and Distributor components. The distribution 

between the number of Ingesters used by Cortex and the CPU consumption of the writing 

path when using the specific amount of Ingesters can be seen on Figure 6. The coloring 

shows the number of time series ingested by Cortex. On the writing path Cortex is using 

load balancing which aims for making the overall processing more efficient. As every replica 

needs a minimal resource to run the overall CPU and memory usage is higher when there 
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are several replicas of each component. The disk usage is also higher when there are several 

Ingester replicas because every Ingester uses its own persistent disk. Using more replicas 

also provides more reliable operation which is important if we only use one Distributor and 

the component crashes, the writing pipeline stops and the writing process into the long-

term storage also stops. 

 

 
Figure 6: Writing path CPU usage by the number of Ingesters used with the coloring of the 

number of time series stored by Cortex. 
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5.2 Data retrieval from Cortex 

Our hypotheses on the read (or query) path were a bit different. Comparing it to regular SQL 

databases we expected high CPU consumption with somewhat normal memory usage. The 

memory usage should depend on the component being able to retrieve the data in one step 

or need to create smaller batches and store the temporary data in memory. As Cortex 

components are scalable, we expected the Query frontend and the Querier to be able to 

work in parallel. This should result in higher CPU and potentially higher memory usage while 

speeding up the query time. Aggregating the data using the Cortex components should have 

a higher load on the whole microservice than the load when retrieving the data without any 

aggregation. We should expect longer query time and higher resource usage when we 

increase the number of time series retrieved by Cortex. From the initial first measurements, 

it was clear that the Querier, the Query frontend, and the store gateway will be resource-

heavy while e.g., the Ingester and the long-term storage will not be affected as much as we 

expected. 

  

Unlike querying a SQL database, with Cortex there is more steps to consider besides 

fetching data from the long-term storage (e.g., MinIO). The newest data (in the 

measurements the last 2 hours) are only stored in the Ingesters memory so if this data is 

needed, the Querier needs to think of these additional steps. Luckily with the Querier 

microservice Cortex does it on its own so there is no need for the developer to handle this 

step, however, later we will present a use-case where this problem needs to be tackled. 

  

For optimization purposes, the Queriers and Store-gateways periodically scan through the 

storage bucket to discover blocks recently uploaded by Ingesters. The reason for this is to 

keep the stored statistics up-to-date. With the help of these statistics, the planner 

component can determine the most efficient execution plans for given queries. For every 

block, the Queriers download the block’s metadata file (which contains data about the min 

and max timestamp of samples within the specific block), while the Store-gateways 

download the metadata JSON as well as the index-header of the block, which is a small 

subset of the index used by the Store-gateway to search series at query time. The metadata 

blocks stored by the Queriers help to collect the list of blocks that need to be queried during 

query time and fetch the matching series of blocks from the Store-gateway instances 

holding the required blocks [12]. The reading path workflow can be seen on Figure 7. This 

path really depends on being able to serve the queries from indexes which need to be 

updated in every update window specified by the microservice. 
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Figure 7: Cortex’s reading path workflow. 

This section presents the findings of Cortex’s read path when we tested and measured the 

microservice with different configurations. We will focus on the Querier, the Query 

frontend, Store-gateway, and the MinIO. We started off by turning on all the caching 

options provided by Cortex. This decision was made by the documentation where the 

developers suggest that every production Cortex should utilize these caching options as they 

will help with load and query time. The Store-gateway supports the following caches: index, 

chunks, and metadata cache. The reading path components and their relation can be seen 

on Figure 8 including the external data retrieval data application. 

 

As we tested multiple use cases, we found that querying huge amounts of data can make 

Cortex unstable and will increase the resource needs. As we used MinIO we tested the 

MinIO client from where we can access the stored data. This is the best method when an 

operator wants to pull all data stored by long-term storage as it only relies on the storage 

system and it will not influence the stable working of Cortex. If we want to retrieve the data 

with the help of Cortex, the resources needed will be 6-7x times higher compared to other 

queries. One thing to keep in my mind when querying this data manually from the long-term 

storage is that although Cortex provides deduplication and retrieves the data stored in the 

Ingester, when we use the MinIO client in this example we need to self deduplicate the data 

and also retrieve the stored data in the Ingester in a different query addressed to Cortex. 

MinIO supports two different methods for this data retrieval: sharing and mirroring. With 

sharing a custom URL can be generated which grants secured download access to the 

object. Mirroring can be used to synchronize data between file systems. Both of these 

methods are more lightweight than querying the data from Cortex. 

  

When it comes to the resources the Query frontend and the store gateway were the two 

resource-heavy components. Both of them require high resources to be able to retrieve the 
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data. As we used the frontend optional component the queries were targeted to this 

component. As we tested the system, we could clearly see that the frontend needs to have 

enough resources to handle the incoming queries, or it will drop the queries which cannot 

be scheduled or served. It can also result in crashing the component and if this happens 

none of the requests will get back to the user. After restarting the component, the queries 

can be sent to the frontend once again. 

 

 

 
Figure 8: Cortex’s reading path including the external, dara retrieving application. 

The read path’s components are efficient. When we created multiple replicas and queried 

data from Cortex, the microservice only used resources provided to one replica. Of course, 

when we use 3-4 replicas of Queriers the footprint is not the same as using 1. All of the 

components have a minimal required usage even in idle mode. Most of the measurements 

had a dominant replica which was selected by Cortex randomly and was used more than the 

other replicas and because of this used more resources than the others. The investigation 

suggests that using more frontend replicas can help reduce CPU consumption whereas with 

this method the overall memory usage will increase but this will only be useful and should 

be considered if there are several Queriers and the required data is big and for that, the 

queries will last long. The memory usage highly depends on the complexity of the query and 

the amount of data retrieved in that query. If the Querier can retrieve the data in one batch 

then there is no significant memory usage as there is no temporarily stored data in the 

component; the data is accessible in one piece and can be forwarded to the data retrieval 

application with the help of the frontend. 
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This can be helpful when the read path needs to serve resource-heavy queries 3-4 times a 

week, but it also needs to serve light queries e.g., every few minutes. With this insight, we 

know that Cortex will only use as much resource as needed for that specific lightweight 

query. 

  

When we were looking for features for the regression model, we immediately started with 

the replica numbers as these are important features on the writing path. Unfortunately, as 

we wrote before, replica numbers are not important features when it comes to the model 

because Cortex is not doing any sort of load balancing; it will only use one replica per 

component if that one replica can handle the request. We did not want to test the 

difference between turning on and off caches and using these variables as model features 

because the documentation says for the production it should be always on. 

  

Overall, the read path depends on the specific parameter inputs: the number of time series 

queried, the interval of the data, and the aggregation of the data. Prometheus and Cortex 

support built-in aggregations such as sum, min, max, average, quantile, etc. It is useful when 

the microservice stores the data for every second but for a specific use case the developer 

only needs the data every other minute. The number of time series and the interval of the 

data are the two inputs that have the highest correlation with resource usage. Using a 

bigger interval while aggregating the data can also reduce CPU usage and query time. Figure 

9 represents this finding; the plot shows the distribution between the aggregation and the 

CPU consumption of the read path. 

 

 
Figure 9: Reading path CPU usage vs. the level of data aggregation in seconds. 
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6 Methodology and model 

 

We use Cortex to demonstrate the optimization methodology applicable to any 

microservice-based cloud-native application. We analyzed the performance vs. resource 

footprint trade-off of both the reading and the writing paths, then we applied data mining 

and optimization techniques to determine the necessary resource provisions for each 

microservice given a user-defined QoS demand.  

 

6.1 Measurements and feature selection 

We deployed Cortex in a Kubernetes cluster and monitored the CPU usage of each 

component. Along with the measurements, we gathered insights that are not documented 

at all. On the writing path, we ran every test for a couple of hours to check and verify the 

whole pipeline's CPU usage. This has to be done as there are components that are only 

active at the beginning or the very end of the pipeline. As for the reading path we tested our 

queries multiple times and created a data retrieval application that created different queries 

to avoid serving data from cache. 

Based on the experiments and tests, we selected the most important parameters of the 

microservices. This is important to find the features which infer total resource usage. We 

selected the important features by first testing all potential features and after the initial 

tests, we went through all the tested features and selected the dominant ones.  

 

 
Figure 10: Distribution between the number of time series used by Cortex and the average 

CPU used. 
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Our target function is the microservice’s overall average CPU usage. The CPU consumption 

includes every component of Cortex and also Prometheus on the writing path to get an 

overview on not only the active components but on all components working in the 

background while running the tests. The average CPU usage varies between 900 and 1.600 

millicores. 

The two paths can be connected by the number of time series and their average CPU 

consumption can be summed.  

 

From the writing path we will be using the number of time series continuously written into 

Cortex and the number of Nginx, Distributor and Ingester components. These components 

are used in the writing path, scaling other components will not change the CPU usage of the 

write path. WAL compression could have been a feature but as introduced before actually 

turning on this option is recommended as it saves disk usage while increasing CPU 

consumption, but this latter is marginal. 

On the writing path we wrote several blocks into MinIO. This way we could make sure we 

tested the whole writing pipeline numerous times. We wrote 60,000-300,000 time series 

and deployed 1-3 replicas of each featured component. The only exception is the Ingester 

which should not be deployed in a single instance, instead we deployed 2-5 of them. The 

distribution between the number of time series ingested by Cortex and the average CPU 

usage can be seen on Figure 10. 

 

From the read (query) path we will be using the number of time series queried in Cortex and 

the aggregation (or step as Prometheus calls it) as important features. As we previously 

wrote, on the reading path the replica numbers cannot be used as the query side of Cortex 

is not using load balancing and the microservice will only use as many components as 

needed. 

We queried time series between 60,000-300,000 (to match the write path’s numbers) and 

aggregated the data inside Cortex. The aggregation was between 10 seconds and 1 hour 

with various aggregation levels. With every test we queried the last 4 hours from Cortex 

while writing data inside it to ensure we always have the latest data in the long-term 

storage and in the Ingesters. The requests were targeted towards Nginx; it forwarded it to 

the Query frontend which could optionally transform the query into smaller queryset 

batches and send it to the Querier which was doing the aggregation and the data retrieval. 
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Figure 11: The two paths’ correlation matrix. 

 

From the correlation matrix on Figure 11, we can see that the most dominant feature is the 

number of time series. This comes from mostly the writing path as the reading path is being 

influenced by the query aggregation. This can vary as the queries retrieval can be created by 

different approaches. From the writing path the number of Ingesters is also an important 

feature in contrast to the number of Distributors and Nginx. 

The correlation’s conclusion is the following: the most important thing to plan when 

creating a data ingestion pipeline is the number of time series stored and later queried. 

Using several Ingester can balance the writing path and can reduce the possible crashes 

which is important because this component stores the metrics and time series before it gets 

written into the long-term storage. On the reading path using higher aggregation can lower 

the CPU usage as well as only querying as much time series as needed.  
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6.2 Linear regression models 

After all of the tests and measurements were done, we created different regression models 

for each component and trained them. We used linear regression models because the 

chosen features showed linear dependencies with the target dependent variable, i.e., CPU 

consumption. We only needed to focus on the components which have an important role in 

any of the paths. Most of the other components’ resource usage could be seen and taken as 

constant values; not significantly depending on any of the test settings.  

 

When it comes to statistical or machine learning algorithms the most well-known is 

probably linear regression. Linear regression is a linear model which means that from a 

linear combination of input variables (x) an output variable (y) can be calculated. If the input 

is a single variable, it is most often referred to as simple linear regression. When there are 

multiple input variables, we can call the method as multiple linear regression. Today linear 

regression is often used to examine if a set of predictor variables can precisely predict the 

dependent variable. If this is possible with the data regression analysis can use this dataset 

to forecast different effects. 

 

In a simple regression problem (where the is a single x and a single y), the form of the model 

would look like this:   

 

𝑦 =  𝐴 ∗ 𝑥 +  𝐵, 

 

where y = predicted variable, B = constant (called as intercept), A = regression coefficient 

[15]. 

 

Our linear regression model comes from the two paths we introduced before: write path 

and read (query) path. The reason we are creating one aggregated model is that for a 

microservice which is used for data ingestion not only will it be used for writing or reading 

interchangeably; it will be used continually by both paths so creating an aggregate model 

which takes features and information about the different paths at the same time is 

important. With this philosophy we can also give a higher view which can be useful when 

designing data processing pipelines and microservices like this. 
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Table 1: The regression coefficients. 

 

Table 1 shows the coefficients of the features used in the model. The performance of the 

regression model is best reflected by 𝑅2 - the coefficient of determination - which was 

around 0.75. The Mean Absolute Error (MAE) is around 58.2. As the microservice requires a 

minimum CPU and of course memory resources we created an offset of 750 millicores. This 

has to be added at the end when this model is being used. For better understanding the 

coefficients we also divided the number of time series with 10,000. With this data 

transforming step the coefficient (9.28) is for every 10,000 time series used. Figure 12 shows 

all the data points used for this model and the distribution between the overall average CPU 

consumption and the stored and queried number of time series. 

 

 
Figure 12: The two paths combined CPU usage by the number of time series used by 

Cortex. 

Features Coefficients 

Number of time series 9.28 

Number of Distributors 32.54 

Number of Ingesters 24.21 

Number of Nginx 1.91 

Query aggregation -0.182 

Intercept 129.3 
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6.3 Integer linear programming for optimization 

With a complex regression model including both the read and write path, we created 

integer linear programming optimizations for each component with specific constraints. 

With this in mind, we also configured the microservice with the findings and the results of 

the optimization. 

 

Linear programming (LP) is a method that can be used to achieve the best possible outcome 

in a mathematical model whose requirements are represented by linear relationships. 

Linear programming is a special case of mathematical optimization. An integer programming 

problem is a linear programming method in which some or all of the variables are restricted 

to be integers only. In many settings, the term refers to integer linear programming (ILP), in 

which the objective function and the constraints are linear. 

  

Integer programming is nondeterministic polynomial-time complete (NP-complete). This 

means that the problem for which the correctness of each solution can be verified quickly, 

and a brute-force search algorithm can find a solution by trying all the possible solutions and 

when the problem can be used to simulate every other problem for which we can verify 

quickly that a specific solution is correct [20]. 

  

We minimize CPU usage for the user inputs, i.e., the number of time series used in the 

system, the available memory for the microservices, and the data aggregation given in 

seconds for the query part. The output is the average CPU utilization expected by 

components; the number of Ingesters, Nginx, and distributors suggested to use, and 

whether the given memory is enough for the microservices. As we previously discussed the 

number of time series is one of the most dominant features and the amount of resources 

needed for the microservice heavily depends on this number. As for the aggregation, the 

average CPU usage on the reading path can be lower while using a higher aggregation 

window. 

 

The decision variables are the following: 

𝑇 =  𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒 𝑠𝑒𝑟𝑖𝑒𝑠 𝑢𝑠𝑒𝑑 [10,000] 

𝐼 =  𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐼𝑛𝑔𝑒𝑠𝑡𝑒𝑟 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 

𝐷 =  𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑜𝑟 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 

𝑁 =  𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑁𝑔𝑖𝑛𝑥 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 

𝑄 =  𝑙𝑒𝑣𝑒𝑙 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛 [𝑠𝑒𝑐]  

𝑀 =  𝑚𝑒𝑚𝑜𝑟𝑦 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 [𝑀𝐵] 
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Our CPU offset is 750 millicores and the intercept is 129.3 millicores. These two values are 

important to keep in mind because they are not presented in the optimization equation 

because these are constant values but need to be added to the overall CPU usage. 

 

User input: 𝑇, 𝑄, 𝑀. 

 

Minimize 9.28 ∙ 𝑇 +  32.54 ∙ 𝐷 +  24.21 ∙ 𝐼 +  1.91 ∙ 𝑁 −  0.182 ∙ 𝑄  (1) 

 

Subject to 

𝐼 >  1          (2) 

and 

𝐷 >  1        (3)  

and 

𝑁 >  1        (4) 

and 

𝑇 >  0         (5) 

and 

𝑄 >  0        (6) 

and 

128 ∙ 𝑁 +  512 ∙ 𝐷 +  1500 ∙ 𝐼 +  1000 ∙ 𝑇 / 10  <  𝑀  (7) 

and 

𝑇/100 −  𝐼 >  0.       (8) 

 

 

Our objective function is (1) where we want to minimize the CPU resource given by the 

user’s input. 

We are using (2), (3), (4) constraints for high availability between the components. As 

previously discussed, multiple replicas are useful for load balancing on the writing path but 

also important for availability; for example, a Distributor failure can result in a temporary 

stop on the writing path and can potentially create data loss if not handled correctly. As for 

(5) and (6) the constraint is for nonnegativity. When it comes to memory and memory usage 

we previously showed the memory usage cannot be modeled with the same approach we 

used for the CPU. From the measurements, we managed to formalize the important 

component’s memory needs and tested these approaches to find the minimal memory 

needed for these components, this is Constraint (7). There is a constant need for all of the 

components which are not in the model; these components need approximately 1,500 MB 

(megabyte) memory when only one replica per component is available in the microservice. 

As for the 3 components which are used in the model an Ingester needs approximately 

2,000 MB memory when used by both paths parallel, an Nginx only needs 128 MB memory 

while the Distributor needs approximately 512 MB. From the tests, we can also confirm that 
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not only the CPU usage is being influenced by the number of time series but also the 

memory usage, memory needs. From the measurements, we can state that for every 

100,000 metrics there is a need for another 1,000 MB by the microservice. This additional 

resource is being divided between the components proportionately. Constraint (8) is also for 

high availability. From the measurements, we found that launching an additional Ingester 

replica for every 100,000 time series used can help load balance the writing path and 

provide safer operation. 

  

After the optimization model calculates the average CPU usage and uses the appropriate I, 

D, N numbers it is useful to be able to translate the results to every component. From the 

number testing, we can state that Table 2 indicates the distribution of the CPU among the 

microservices. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2: The components’ CPU consumption distribution. 

  

Component % of total CPU usage 

Ingester  32% 

Distributor  26% 

Querier  14% 

Query frontend 13% 

Store gateway 9% 

Nginx  6% 
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6.4. Illustrative user input examples and optimization results 

To demonstrate the optimization, we created 3 examples where we gave input to the model 

and we got back the optimized solution. We used PuLP [21] for these demonstrations. Many 

libraries offer the option to pick the solver which will be used. The used solver is the COIN-

OR Branch and Cut Solver (CBC) which is a pen-source mixed integer linear programming 

solver written in C++. Other solvers include GNU Linear Programming Kit (GLPK), LP Solve, 

Coin-or linear programming (Clp), etc. 

 

With the first example, the inputs are 300,000 time series with 12 GB (gigabyte) memory 

available and the aggregation should be 10 seconds. 

The model suggests using 3 Ingesters and 2-2 Distributors and Nginx. Our expected average 

CPU usage will be around 1,300 millicores and the memory usage should be around 11.8 GB. 

This test shows that the expected memory usage will be around our available amount. 

 

With the second example, the inputs are 400,000 time series with 16 GB (gigabyte) memory 

available and our aggregation should be 60 seconds. 

The model suggests using 4 Ingesters and 2-2 Distributors and Nginx. Our expected average 

CPU consumption will be around 1,405 millicores and the memory usage should be around 

14.8 GB. 

This test shows that the expected memory usage will be enough and the microservice will 

still have some available amount of memory if needed. 

 

With the third example, the inputs are 120,000 time series with 9 GB (gigabyte) memory 

available and the aggregation should be 15 seconds. 

The model suggests using 2 Ingesters and 2-2 Distributors and Nginx. The expected average 

CPU usage will be around 1,105 millicores and the memory usage should be around 8 GB. 

This test shows - just like the first one - that the expected memory usage will be around the 

available amount. 

 

With the fourth example, the inputs are 250,000 time series with 8 GB (gigabyte) memory 

available and the aggregation should be 120 seconds. 

The model suggests using 2 Ingesters and 2-2 Distributors and Nginx. The expected average 

CPU consumption will be around 1205 millicores and the memory usage should be around 

11,3 GB. Here the model shows that using 8 GB memory will not be enough so we should 

solve the problem by using more memory or reducing the time series to e.g., 100,000. 

 

We summarized the examples in Table 3. These tests show that the Distributor and the 

Nginx replica should be 2. This is because of high availability but using more replicas for 

these components will not give any benefit so the minimization results in the lowest 
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number of instances possible. The Ingester number depends on the number of time series 

used but also on the available memory. 

 

Table 3: Illustrative examples summary table with Cortex’s recommendation. 

 

The paper’s most important takeaway message can be found in Table 3. Although Cortex’s 

documentation recommends capacity planning [23], these resources are not optimal when 

we are trying to reduce and keep the resource usage as low as possible. The illustrative 

examples show not only the documentation’s recommendation but also the relative saving 

which we managed to achieve with the regression and optimization models. From the 4 

examples this saving ranges from 54-82%. If we translate these numbers to cost, i.e., we use 

these microservices in the cloud and paying for being hosted, then we can save 54-82% of 

the total operational cost. 

 

 

  

  

Time 
series 
used 

[1,000] 

Memory 
available 

(GB) 

Aggregation 
(sec) 

Ingester 
replica 

number 

Distributor 
replica 

number 

Nginx 
replica 

number 

Predicted 
CPU usage 
(millicores) 

Cortex 
planned 

CPU  
(millicores) 

[23] 

Relative 
saving 

300 12 10 3 2 2 1,300 6,000 78% 

400 16 60 4 2 2 1,405 8,000 82% 

120 9 15 2 2 2 1,105 2,400 54% 

250 8 120 Infeasible 5,000 - 

250 12 120 3 2 2 1,218 5,000 76% 
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7 Conclusions & future work 

 

In this paper, we argued that resource provisioning is important, and in fact possible to 

perform in a scientific manner when using cloud native microservices. We proposed an 

approach that we demonstrated on a data ingestion and storage cloud native application, 

Cortex. After measuring the performance vs. resource footprint trade-offs with several 

different configuration settings, and creating a regression model for resource usage, we 

showed the most important features and their quantitative effects on CPU utilization. Then 

we introduced an integer linear programming formulation that can be solved to minimize the 

expected CPU usage for given user inputs. 

 

The main focus of further work is to create a model for memory usage as well. For that, we 

need to take a different approach as the current one can only predict constant memory usage. 

An example can be the read path of Cortex where the memory usage is expected to be 

constant as the Querier can serve the query and for that reason, there is no data stored in the 

memory. 
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