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Kivonat

Az elmúlt években jelentősen megnőtt a járművekben található elektronikus vezérlők száma. Ez a válto-
zás, a külső interfészek elterjedésével reális veszéllyé tette a kibertámadásokat. Mivel egy támadó akár
már távolról is hozzáférhet a járműhöz, annak belső rendszerének a sérülékenységeit kihasználva akár
át is veheti az irányítást a jármű felett. Ennek a problémának egyik oka, hogy a CAN protokoll (a leg-
szélesebb körben használt protokoll járművek belső hálózatában) nem tartalmaz semmilyen biztonsági
mechanizmust, és így egy támadó potenciálisan megtámadhatja az elektronikus vezérlőket ezen keresz-
tül. A legsúlyosabb problémát a CAN üzeneteket módosító támadások jelentik, amelyek detekciója több
szempontból is kihívást jelent. A támadások észlelésére szolgáló rendszerek (Intrusion Detection Sys-
tems, IDS) alkalmazása egy lehetséges megoldás a járműhálózatokat érintő veszélyek felderítésére és
elhárítására. A korábbi megoldások képesek a járművek jeleinek nagyobb rendellenességeit észlelni, vi-
szont a kisebb eltérést okozó támadások detektálásához kifinomultabb megoldásokra van szükség. Egy
olyan anomália-felismerő rendszert mutatunk be, amely a jelek normális viselkedésére és az azok közötti
kapcsolatokra (korrelációra) együttesen épít.

A fő probléma, amellyel ez a dolgozat foglalkozik, hogy a korábban javasolt detekciós eljárások hi-
ányosságot mutatnak két konkrét támadási helyzet esetében. Egyrészről, amennyiben egy támadó olyan
módosítást hajt végre, amely más helyzetben normális viselkedés is lehetne, akkor azt kizárólag viselke-
dés alapú módszerrel nem lehet jól felismerni. Másrészről, amennyiben a támadó ismeri a jelek korrelá-
cióját és képes a jeleket egyszerre módosítani, akkor ezt megteheti úgy, hogy azok korrelációja továbbra
is megmaradjon. Ezesetben a pusztán korrelációra támaszkodó megoldások nem fogják detektálni a tá-
madást.

Egy olyan megközelítést javaslunk az üzenetmódosítások észlelésére, mely a két módszert kom-
binálja: az idősor-előrejelzés és a jelkorreláció elemzésének együttes használatával elemzi a CAN for-
galmat. A két megközelítés kombinálásával megoldjuk az egyes módszerek egyedüli alkalmazása során
fellépő hiányosságokat.

Az adatok időbeli függőségeinek modellezésére egy több csatornás Temporal Convolutional Net-
work idősoros hálót használunk, melyet a jelek egy csoportjára tanítunk be. A csoportosítás a jelek
korrelációja alapján történik, így ezen jelek együttes predikciója során azok korrelációját is figyelem-
be vesszük. A csoporton belüli jelekhez mind előállítunk egy predikciót, mely így függeni fog a jel
viselkedésétől, és a csoporton belüli korrelációtól, tehát bármelyik jellemzőben történne az anomália, a
detekció során lesz róla információnk.

A detekció során olyan összehasonlítást alkalmazunk, mely figyelembe veszi, hogy milyen mérték-
ben tért el az előrejelzés a tényleges értéktől, és azt, hogy ez az állapot milyen hosszan állt fenn.

A dolgozatban bemutatjuk a módszer hatékonyságát egy már meglévő, korábbi megoldások teszte-
lésére is használt CAN forgalmi támadásokat tartalmazó adathalmazon.
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Abstract

The number of electronic controls in vehicles has increased significantly in recent years. This change,
combined with the widespread of external interfaces, has made cyber-attacks a real threat. As an attacker
can now gain access to a vehicle remotely, they can exploit vulnerabilities in the vehicle’s internal sys-
tems to take control of the vehicle. One of the reasons for this problem is that the CAN protocol (the
most widely used protocol in the vehicles’ internal networks) does not contain any security mechanism.
Through this, an attacker could attack electronic control units. The most severe problem is CAN message
modification attacks, which are challenging to detect in several ways. Intrusion Detection Systems (IDS)
are a possible solution to detect and mitigate threats to vehicle networks. Previous solutions can detect
significant anomalies in vehicle signals, but more sophisticated solutions are needed to detect attacks
that cause only minor deviations. We present an anomaly detection system that relies on the expected
behavior of the signals and the relationships (correlation) between them.

The main problem addressed in this paper is that the previously proposed detection methods indicate
shortcomings in two specific attack situations. On the one hand, if an attacker makes a modification
that could be a normal behavior in another situation, it cannot be well detected by a behavior-based
method alone. On the other hand, if the attacker knows the correlation of the signals and can modify
all the signals simultaneously, they can do so while maintaining their correlation. In this case, detection
methods that rely on correlation alone will not detect the attack.

We propose an approach to message modification detection that combines the two methods: time series
prediction and signal correlation analysis. Combining the two approaches, we overcome the shortcom-
ings of using each method alone.

To model the temporal dependencies of the data, we use a multichannel Temporal Convolutional Network
trained on a specified group of signals. The clustering is based on the signals’ correlation, so the joint
prediction of these signals will correspond to their correlation. For each signal within the group, we
produce a prediction, which will then depend on the behavior of the signal and the correlation within the
group so that if an anomaly occurs in any of these features, we will have enough information to detect it.

The detection process uses a comparison that considers how much the prediction deviated from the actual
value and the length of time this state lasted.

This work demonstrates the method’s effectiveness on an existing dataset of CAN traffic attacks, which
has been used to test previous solutions.

iv



Chapter 1

Introduction

Securing vehicular communication networks is becoming crucial as the automotive industry rapidly
evolves and increasingly adopts connectivity. Applying Intrusion Detection Systems (IDS) in specific
domains is becoming essential for identifying and mitigating threats to vehicular networks. One such
domain is the vehicles’ inner communication on the Controller Area Network (CAN).

The CAN bus is a complex network of Electronic Control Units (ECUs) that collaborate to provide the
necessary functions of the vehicle. Cyber attacks targeting these ECUs can have dire consequences for
safety-critical subsystems such as brakes, the engine, or the steering wheel. A malfunctioning vehicle
not only endangers passengers and others around it but also impacts the VANET (Vehicular Ad-hoc
Network). Compromising data used in Vehicle-to-Everything (V2X) communication, an attacker could
spread malicious information and alter the behavior of others, which could cause congestion or severe
accidents in an urban environment. An attacker can have financial motivation besides deteriorating reli-
ability and driving safety. Gaining control over the vehicle could allow theft, stealing sensitive data, and
sabotaging the system.

Since the CAN protocol does not implement any security measures [3], an attacker can potentially attack
the ECUs by making communication inaccessible, injecting new malicious messages, or even modifying
valid messages. DoS (Denial-of-Service) attacks disable the benign CAN communication by flooding
the network with the highest priority messages. However, this attack can be easily detected because
the network load is significantly increased during the attack. Message injection can also affect specific
vehicle functions, but these attacks are also easy to detect, with simple statistical methods, as injected
messages cause a recognizable change in the regular arrival times.

The most challenging issue is message modification attacks that do not introduce new messages to the
network, only the data contents are changed. This attack is the hardest to detect due to the variability
in traffic patterns, lack of authentication or encryption, the existence of stealthy attack techniques, and
the lack of attack signatures. In general, only the continuously changing message data can be used
for identifying anomalies that requires general, accurate methods to differentiate between normal and
malicious behavior.

After extracting signals from the messages, the detection of malicious message modifications follow two
main approaches: time-series forecasting [16], [17], [6] and signal correlation analysis [14], [21]. In
time-series forecasting, a machine learning model is trained per signal that predicts the next, expected
signal value. Anomaly is reported when there is a substantial deviation between the prediction and
the actual value. Unfortunately, this method is incapable of identifying modifications that fall within
the usual, non-anomalous range of signal values, even if they constitute an attack. For instance, this
limitation is evident when the speed value is modified, causing it to marginally fall below the speed
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Figure 1.1: Example benign CAN signal (S-1-4).

limit. To overcome this shortcoming, the deviation of the correlation between each pair of signals is
checked, where correlation is calculated based on the most recent few minutes’ worth of signal data
[14], [21]. Indeed, increasing the speed should naturally result in a corresponding increase in the RPM
signal; otherwise their correlation would appear anomalous, as Figure 1.1 shows. Consequently, to evade
detection, an attacker would need to maintain the original correlation intact and simultaneously modify
all correlated signals, which could be prohibitively expensive in practice. Nonetheless, unlike time-series
forecasting, this purely correlation-driven approach is unable to identify malicious alterations in signals
that lack any correlation between them.

Our proposal combines the merits of both time-series forecasting and correlation analysis, as shown in
Figure 1.2. We simultaneously forecast multiple correlated signals and flag an anomaly if the cumulative
difference between the predicted values and the actual values of all correlated signals exceeds a specified
threshold. The underlying idea is that, as a single model forecasts multiple highly correlated signals,
any alteration in one signal will inevitably influence the predictions of all other correlated signals. In
other words, we leverage signal correlation not only for more accurate prediction, but also to induce
detectable deviation of the predicted signals from the actual ones even if only one of them is maliciously
modified. For example, the larger the speed the larger the RPM value, which means that increased speed
with constant RPM is likely to produce a noticeable cumulative prediction loss over both signals if they
are predicted jointly by a single model. Furthermore, unlike pure correlation-based approaches, our
method is capable of identifying malicious alterations in signals, even those that lack correlation, when
their predicted values deviate significantly from their actual values. Additionally, it can detect attacks in
which the attacker modifies correlated signals simultaneously without altering their correlation, yet still
induces abnormal behavior.

Our contributions in this work are as follows:

• We employ a combination of time-series forecasting and signal correlation analysis to identify
anomalies in the vehicular CAN bus. Our unsupervised method relies solely on unlabeled CAN
traces for training and calibration prior to deployment. It operates by simultaneously predicting
correlated signals that allows a more accurate detection of abnormal behaviour.

• We assess the effectiveness of our approach using a dataset comprising eight distinct message
modification attack types. Our results demonstrate a substantial performance improvement over
the state-of-the-art: we achieve a detection rate of 95% (compared to 68%) with a precision of
80% (versus 30%). Additionally, our method exhibits a minimal average detection delay of just
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0.38 seconds.

• Finally, we show that in addition to modification attacks, our solution also effectively identifies
injection attacks, allowing the identification of both types of attacks by a single algorithm.

The rest of the paper is organized as follows: Chapter 2 briefly covers prior research and developments
in anomaly detection in Controller Area Networks. Chapter 3 summarizes the relevant background of
the CAN bus and vehicular intrusion detection solutions. The attacker model is introduced in Chapter 4.
Chapter 5 describes the proposed anomaly detection mechanism, the training process, and the detec-
tion process. Chapter 6 evaluates the performance of the method on real-world CAN data. Finally, in
Chapter 7 we conclude our paper.

Figure 1.2: High-level layout of our correlation-based approach.

3



Chapter 2

Related Work

Intrusion detection systems used in in-vehicle networks differ from those used on the Internet because
there are limited known attack signatures. Most research results are based on unsupervised learning, as
the available data can only be used appropriately to describe the benign state of the systems. Following
this approach, papers have been published on detecting message injection and modification attacks.

IDS systems often rely on measuring and monitoring the timestamp of message arrivals to detect injection
attacks. Due to the periodical timing of CAN data messages in a benign state, timing-based detection
methods can effectively detect message insertions and drops [26, 13]. Young et al. showed that the
constant nature of the inter-arrival times can also change for short periods of time during transitions
of vehicle state [28]. They propose analyzing the message arrival times in the frequency domain to
build a robust detection algorithm even for state transitions. In their research, Müter et al. proposed
measuring the message entropy for anomaly detection [22]. While this approach successfully detected
injection attacks, they also demonstrated the shortcomings of their approach in short-duration attack
scenarios. Machine learning has also been used for the detection of injection attacks. Guidry et al.
have proposed using a one-class classification method [15]. Features of their model included inter-
arrival times, the transmission frequencies, and the deviations from the typical inter-frame times. They
measured the effectiveness of different one-class classification-based approaches and concluded that the
S-SVDD method performs the best with an average of 85% detection rate.

Attackers, however, cannot only inject messages into the bus, but it is also possible for them to modify
messages, as described in Chapter 4.

In [18], the proposed method can detect these modification attacks by utilizing the transient state at the
beginning of a modification attack. For a short time missing messages could indicate a suspension attack
as a preparation step for a modification attack. However, if this phase is not detected in time, the rest of
the attack will be successful.

In recent years, many papers have been published on identifying modification attacks based only on the
message data contents. Among others, researchers tackled the problem by continuously measuring the
relationship between data fields, forecasting future data values and later identifying deviations between
the predictions and actual values.

CAN signal correlation analysis is proposed in [14] to identify modification attacks. Even though this ap-
proach is robust against attacks that target highly correlated signals, its effectiveness is generally limited.
The proposed solution calculates correlations between signals regularly in two different time windows
to identify ongoing anomalies. In [21], the authors extend correlation analysis with hierarchical cluster-
ing. Their results are demonstrated on a dataset, but it is not compared to other baseline results. As the
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presented framework can only handle entire traffic logs, it is not applicable as a real-time detector for the
CAN bus but only as a forensics tool.

Time series forecasting is also used to predict future values in CAN communication, either on message or
signal level. These predictive methods can identify possible modification attacks by measuring deviations
between predicted and actual measured values.

Using a neural network for anomaly detection has been proposed in CANet [16]. The authors used in-
dependent LSTM models for each message ID to capture the corresponding signal’s temporal dynamics
and forecast its future values. The output of all models is then fed into a fully connected autoencoder
layer, allowing the network to consider the interdependencies of signals. Although this approach exploits
relations between signals for detection, this information is not directly used in the network structure. In
[17], the INDRA framework was proposed, which analyzes temporal patterns and behavior of messages
using Gated Recurrent Unit (GRU) based recurrent autoencoders. One such autoencoder was trained
for each message ID to reconstruct signals within the message. The authors show that INDRA outper-
forms CANet in accuracy and false positive rate. In [6], the authors introduce a Temporal Convolutional
Network based detection system. Their approach separates CAN signals and builds individual predictor
models for each signal, similar to CANet and INDRA. However, as TCN networks are smaller and faster
than previous neural networks, such as LSTMs, their solution outperforms all previous results. In this
paper, we improve on the TCN-based approach by introducing signal clustering to improve detection
results while reducing the mechanism’s footprint.

5



Chapter 3

Background

This section provides an overview of the CAN network’s operation within vehicles, outlines the typical
methods used to build an Intrusion Detection System, and introduces the application of Temporal Convo-
lutional Neural Networks (TCNs) along with signal correlation analysis as part of our proposed anomaly
detection approach.

3.1 CAN

Modern-day vehicles have a complex internal control system comprised of ECUs, each assigned to man-
age a specific function. These ECUs are interconnected via networks, the most important being the
Controller Area Network. While this system has proven reliable over the years, external interfaces have
exposed it to potential attacks [5, 1].

Figure 3.1: Structure of a CAN frame [17].

On the CAN bus information is transmitted in frames. A CAN frame is shown in Figure 3.1, containing
header, payload, and trailer segments. The header contains the start of the frame signal for synchroniza-
tion, the message identifier (ID), and the data length code (DLC), which specifies the payload’s length.
The actual data to be transmitted is in the payload segment. The trailer segment is mainly used for error
checking at the receiver’s end. The cyclic redundancy check (CRC) is used for the data integrity check,
while the acknowledgment (ACK) is used to confirm reception.

Messages sent over the CAN network have an ID, either 11 bits or 29 bits long. A typical passenger
vehicle uses an 11 bit identifier. The data section can range from 0 to 8 bytes of data. Within the data
part, various digital and analog signals are encoded. Manufacturers do not disclose how the signals
are encoded, but they can be reverse-engineered using methods previously proposed in the literature
[19, 27, 20].
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Figure 3.2: Structure of a stack of dilated causal convolutional layers in TCN [24].

3.2 Intrusion Detection Systems

In order to detect attacks, Intrusion Detection Systems (IDS) mainly utilize two methods: signature-based
and anomaly-based detection [2].

Signature-based detection systems search for specific attack features in the examined traffic. While they
have a low false positive rate, they require knowledge of the attacks to detect them accurately. Any
attacks that are not modeled in the signature database will not be detected by the system.

An anomaly detection system relies on learning the system’s normal behavior and identifying any mes-
sages that indicate a deviation from this benign state. This approach is beneficial in situation where it is
not possible to describe the attacks in advance.

Vehicular networks show large variations, as manufacturers significantly change the built-in features
between vehicle types. In this complex landscape, attacks are also customized for each target. Thus,
creating a comprehensive database of every attack is not feasible, therefore vehicular attack detection
systems are mostly anomaly-based.

Our detection model is based on an unlabeled data model, built from benign network traffic of a test
vehicle, that implements an anomaly-based IDS system. Although the dataset we use includes real
attacked CAN data, it will only be used for testing and evaluation purposes as it is not representative of
all possible attack types.

3.3 Temporal Convolutional Networks

Convolutional Neural Networks (CNNs) and Temporal Convolutional Networks (TCNs) are deep learn-
ing architectures widely used for various tasks, including image recognition and natural language pro-
cessing. They offer significant benefits when applied to time series data, making them suitable for de-
tecting anomalies in the Controller Area Network (CAN) [6].

CNNs are designed to process grid-like data, such as images, by applying convolutional filters to extract
spatial features. In the case of time series data, 1-dimensional causal convolutions can be used to identify
local patterns and dependencies within the data.

A TCN is a type of deep learning architecture designed explicitly for sequential data, such as time series.
To process sequences in parallel, TCNs use dilated convolutions, which enable them to capture long-
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range dependencies efficiently, as shown in Figure 3.2. This ability is critical in identifying anomalies
that may occur over extended periods or exhibit complex temporal behaviors. Additionally, TCNs stack
multiple layers for hierarchical feature extraction. They also employ causal padding, ensuring only
past and present information is used. Due to these features, TCNs are suitable for various applications,
including time series forecasting and anomaly detection.

TCNs can handle large volumes of data, making them suitable for analyzing extensive CAN message
traffic. This architecture can be optimized for real-time processing, allowing immediate anomaly detec-
tion and response in safety-critical CAN systems.

8



Chapter 4

Attacker model

This section discusses the attacker model and the attack surface of a CAN network. We describe the
capabilities and goals of an attacker and classify the potential attacks that an attacker may perform on
CAN messages.

We assume that the attacker can gain access to the vehicle using the most common attack vectors [5].
The goal of the attacker is to send forged data to an ECU, forcing it into a corrupt state. This could cause
problems anywhere between showing invalid values on the dashboard to making the vehicle completely
unusable or stealing it1, depending on the target ECU. This goal can be achieved in multiple ways. An
attacker with physical access to the vehicle can add new devices to the CAN network. Vehicles with
wireless interfaces, such as Bluetooth, WiFi, or a 3G/4G/5G connection, can also be attacked remotely.
After exploiting a vulnerability in the communicating ECU, similar CAN transmission capabilities can
be gained. This is the first necessary step of any attack against the CAN bus. The CAN network operates
reliably under normal conditions; however, due to the absence of security provisions within its specifi-
cation, it remains susceptible to potential attacks. Once an attacker has the capability to interact with the
CAN bus, there are multiple possible attack strategies, including DoS, message injection, and message
modification. The latter two are also referred to as a fabrication and a masquerade attack.

First, we focus on the most challenging problem, which is the message modification attack. During these
attacks the repetition times of the messages are unchanged, as there are no new messages introduced to
the network. Hence, messages arrive at their expected time but with a modified data content. Carrying out
such an attack requires strong technical skills, nevertheless, its feasibility has already been demonstrated
in [7]. A practical implementation of such an attack exploits the error handling mechanism of the CAN
protocol. If a device detects an error during transmission, an error signal bit can be used to inform the
sender about the problem. Repeated error signals can force an ECU into an error state. In this state all
further message transmissions are suspended, allowing an attacker to take the place of the ECU in the
communication and send modified messages. Therefore, identifying modification attacks based only on
meta-data (e.g., the number or timing of CAN messages) is not possible. In this paper, we present a novel
anomaly detection mechanism, designed to detect such attacks.

We also evaluate the performance of our model for message injection attacks. A less sophisticated
detection mechanism, based only on statistical properties of the message arrival times, can also detect
such attacks. However, if the modification attacks require a neural network-based anomaly detector, it is
beneficial to know the detector’s performance for every scenario.

1https://arstechnica.com/information-technology/2023/04/crooks-are-stealing-cars-using-previously-unknown-keyless-
can-injection-attacks
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Chapter 5

Proposed solution

Our solution has three main components: after extracting signals from the raw CAN traffic, (1) corre-
lated signals are grouped together using clustering, (2) a separate and independent supervised forecast-
ing model per group predicts the next value of all correlated signals within a group, and finally (3) an
anomaly is reported if at least one of the forecasting model’s predictions deviate significantly from the
true, observed values of the predicated signals. We detail the operation of each component as follows.

5.1 Preprocessing of CAN Traffic

All signals from the available CAN messages are extracted using the manufacturer’s specification or any
state-of-the-art automatic extraction tool [23, 19, 27]. As not all extracted signals are equally useful for
anomaly detection, a subset K of all extracted signals are retained while the rest are dropped. Indeed,
useless signals are extracted from unused parts of the CAN messages (i.e., there is no device in the
vehicle that uses that part of the message), or carry constant values with no predictive power. This
filtering process also helps minimize the size of the forecasting model detailed in Section 5.3. Finally, all
retained signals are normalized by dividing each signal value by their theoretical maximum that is either
specified by the manufacturer, or computed as ⌈2s⌉ where s is the number bits used to store the signal in
the CAN message.

5.2 Grouping of Correlated Signals

All retained K signals are clustered into C groups based on their pairwise correlation value. Specifically,
each signal is first assigned to a separate cluster and then the closest clusters are iteratively merged
until the number of clusters attains K, where the closeness of two clusters is measured by a chosen
correlation metric of their respective centroids. Our approach is not restricted to any specific similarity
measure or clustering technique. Still, as we show in this section, and in Chapter 6, linear correlation
with hierarchical clustering is effective in practice.

5.2.1 Correlation analysis

We have analyzed different correlation metrics to support the claim that linear correlation is a viable
option for clustering signals. Our investigation included three correlation methods, namely Pearson,
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Spearman, and Kendall correlation, which are commonly used for evaluating the strength of relationships
between two variables.

Pearson’s correlation coefficient [9] measures the linear relationship between two continuous variables,
suitable for typical analog signals on the CAN bus, such as speed, PRM, etc. The formula for calcu-
lating rp Pearson’s correlation can be seen in Equation 5.1, where X and Y are the two variables, and
x j,y j, j = 1,2, ...,n the observed data points. Pearson correlation assumes that the variables follow a
normal distribution and have a linear relationship. Correlation values range from -1 to 1, where -1 indi-
cates a perfect negative linear relationship, 1 indicates a perfect positive linear association, and 0 shows
no linear relationship. It is sensitive to outliers, meaning extreme values can significantly influence the
correlation value.

rp =
∑

n
i=1(xi − x̄)(yi − ȳ)√

∑
n
i=1(xi − x̄)2

√
∑

n
i=1(yi − ȳ)2

(5.1)

Spearman Rank Correlation [9] measures the strength and direction of the monotonic relationship be-
tween two variables by calculating the correlation based on the ranks of data points. It is calculated in
the same manner as the Pearson correlation, except that the Spearman correlation is calculated after the
two variables have been ranked and transformed to values between 1 and the number of observations.
Other than a monotonic relationship, it does not assume linearity or follow any specific distribution. The
ranking property of this metric makes is robust to outliers. Similarly to the Pearson correlation, resulting
values range from -1 to 1, with -1 indicating a perfect inverse rank correlation, 1 indicating a perfect rank
correlation, and 0 indicating no rank correlation.

Like Spearman, Kendall’s Tau, also known as Kendall’s rank correlation coefficient [9], does not assume
linearity or follow any specific distribution. Values range from -1 to 1, where -1 indicates a perfect inverse
ordinal association, 1 indicates a perfect ordinal association, and 0 indicates no ordinal association.
Kendall’s Tau is often considered more robust than Spearman’s when dealing with tied data values.

A heatmap for each correlation method displaying the pair-wise correlation between signals is shown in
Figure 5.1. The magnitude of the correlation is represented by the darkness of the color and the size of
each point. The sign of the correlation is encoded in the hue of the color.

As can be seen from Figure 5.1, all three correlation methods identify almost the same correlation.
However, some significant differences occur in the case of signals 0290_1, 0410_4, and 300_4, which
correlate only with signals 0290_4 and 0290_2 when calculating the Pearson method. Furthermore, there
is a stronger correlation between the group of signal 0120_0 and signal 0120_1 and the group of signal
0110_1 and signal 0110_3, as observed by the Pearson method, whereas a weaker correlation can be
measured for Spearman and Kendall. We manually reviewed these discrepancies and determined no real
connections between these signals.

Our measurement results indicate that the Pearson correlation method is the most suitable for our needs.
However, it is worth noting that the final grouping of signals has a significant impact on the detection
accuracy rather than the correlation results directly. As such, we are evaluating all three correlation
computation methods while exploring clustering algorithms to determine the optimal signal grouping for
our purposes.
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Figure 5.1: Heatmaps of different correlation metrics used to determine similarity between signals (Pear-
son, Spearman and Kendall correlation form left to right). To better illustrate the magnitude
of the correlation, we also varied the size of each point on the heatmaps, which is propor-
tional to the darkness of the color. The sign of the correlation is encoded in the hue of the
color.

5.2.2 Clustering of signals

We use the measured correlations to group the signals in the prediction phase. This clustering has two
benefits. First, it is more efficient to treat similar signals together, as we need fewer models compared
to predicting each signal alone. Second, it is more accurate due to the additional information about
interdependencies. The joint prediction of the groups will thus implicitly exploit the correlation of the
signals since if it changes, the group’s forecast will also change.

As previously mentioned, our approach is not limited to any particular clustering technique. However,
to demonstrate the effectiveness of our chosen hierarchical clustering, we compared it to four other
clustering techniques, each tested with all the correlations discussed previously.

We compared four distinct clustering algorithms on our dataset - DBSCAN, Affinity Propagation, Hier-
archical Clustering, and Mean Shift Clustering. We chose only clustering techniques that do not require
the number of clusters to be specified in advance, as we do not know how many groups can be utilized.

DBSCAN (Density-Based Spatial Clustering of Applications with Noise) is a density-based clus-
tering algorithm that groups data points based on their density within the dataset [25]. It can discover
clusters of arbitrary shapes and is robust to outliers called noise points. The method identifies core points
(dense data points), border points (points on the edge of a cluster), and noise points (isolated points).

Affinity Propagation is an exemplar-based clustering algorithm that selects a set of data points as
exemplars and assigns the rest of the points to the nearest exemplar [11]. It automatically determines
the number of clusters by choosing exemplars in the data. Affinity Propagation can be sensitive to the
choice of similarity or distance metric, and the number of exemplars can significantly affect the results.
We observed this when we computed the Affinity Propagation method using Pearson, Spearman, and
Kendall metrics, as it produced quite different clusters.
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Figure 5.2: Comparing signal groups produced by different clustering techniques, with different corre-
lation metrics. From top to bottom, the result for 1) MeanShift clustering with Spearman
correlation, 2) Hierarchical clustering with Pearson correlation, 3) DBSCAN clustering with
Kendall correlation and finally 4) Affinity propagation clustering with Spearman correlation
can be seen. First column indicates the name of the chosen pair of clustering and correlation
method, second column shows a 2D representation of the clustering, while the first column
shows each signal, with the same background color for each signal in a group.
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Hierarchical clustering builds a tree-like hierarchy of clusters, often represented as a dendrogram
[25]. It can be agglomerative (bottom-up) or divisive (top-down). Agglomerative clustering starts with
individual data points as clusters. It merges them iteratively, while divisive clustering begins with a single
set containing all data points and splits them into smaller groups [10].

Mean Shift clustering is a mode-seeking clustering algorithm that aims to find the modes or peaks of
data density [4]. It is beneficial for finding clusters with non-uniform shapes or densities. Mean Shift is
sensitive to the bandwidth parameter, which affects the size and shape of the groups.

To visually represent signals and their relationships in a 2D figure, we use dimensionality reduction. This
involves projecting the signals into a 2D space while keeping their similarity or dissimilarity. To achieve
this, we use Multidimensional Scaling (MDS), which aims to position data points in a way that preserves
their pairwise distances or similarities as accurately as possible in the reduced-dimensional space. Each
point in the 2D subfigure corresponds to a signal.

This representation is purely for visualization purposes. It does not impact the chosen correlation method
or clustering technique.

We compared the aforementioned clustering techniques by analyzing the resulting groups using all three
correlation metrics. The result of the executions can be seen in Figure A.1. Here, we evaluate in details
the clustering results with Pearson correlation, which is shown in Figure 5.2.

During the DBSCAN execution, we had to adjust most of the algorithm parameters. It was evident that
their values greatly affected the output. We noticed that some signals were assigned to separate groups,
even though they seemed to belong together. Due to this issue, we decided to exclude this method from
further consideration.

We also assessed the Affinity Propagation method but found it too sensitive to parameters. Even after
fine-tuning the parameters to obtain the best possible results, we found that it was still grouping signals
that did not belong together. Therefore, we decided to exclude this method as well.

We then evaluated MeanShift and Hierarchical clustering algorithms and found that both methods essen-
tially gave us the same results. After manually reviewing the output, we determined that the outcome
aligned with our expectations. As such, we concluded that both methods were suitable for our use case.
Ultimately, we opted to use the Hierarchical clustering algorithm for ease of use.

5.3 Signal Forecasting

We train C supervised models on the clustered CAN data in order to predict the next upcoming signal
value: all retained K signals are divided into equally-sized overlapping segments using a sliding window
with size w, and each segment serves as input to the forecasting model to predict the subsequent signal
value immediately following the segment.

More precisely, let a signal with ID s be represented as a time series (T s
1 , . . . ,T

s
n ) after pre-processing,

and MG = [(T g j
1 ,T g j

2 , . . . ,T g j
n )] ∈ R|G|×n denotes the time series of all correlated signals in group G,

where G = {g1, . . . ,g|G|} are the set of signal IDs belonging to G. For any signal group G, a forecasting
model fG simultaneously predicts the next element of each signal of the group: given the most recent
w signal values MG

t−w:t = [(T g j
t−w,T

g j
t−w+1, . . . ,T

g j
t−1)] ∈ R|G|×w as input, the forecasting model predicts the

next value MG
t:t+1 = (T g1

t ,T g2
t , . . . ,T

g|G|
t )⊤ ∈R|G| of every signal in G. Before deployment, all forecasting

models are trained on CAN data that comes from the same or sufficiently similar distribution as the actual
CAN traffic after deployment.
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5.4 Decision

We compare the prediction made by every forecasting model with the actual, observed values of the
signals, and report anomaly if the deviation of the prediction is too large for any group.

More precisely, let OG
t:t+1 denote the actual, observed value of the signals at time t in group G after

performing the pre-processing steps detailed in Section 5.1. The prediction error for group G at time t is
defined as

errG(t) =
1
|G|

|| fG(OG
t−w:t)−OG

t:t+1||22 (5.2)

which measures the mean squared error (MSE) between the actual signal values and the values predicated
by fG from the last w observed values of the signal. Note that O denotes the true value of the signal that
is observed on-line after the deployment of the trained forecasting model fG.

A naive method of detection is to directly compare the prediction error with a threshold τ, and report
anomaly if errG(t) ≥ τ for any group G. However, since the variance of errG(t) can be large depending
on the accuracy of the forecasting model fG, this approach can yield large detection error: any value of τ

would induce either too many false positives (for smaller τ) or false negatives (for larger τ). To mitigate
such effect of forecasting inaccuracy, we rather compare the mean of the last ℓ error values with the
threshold, that is, report anomaly if (1/ℓ)∑

t−1
i=t−ℓ errG(i) ≥ τ for any group G. This approach also more

reliably detects stealthier attacks that span multiple time slots and involve insignificant modification of
the signal value per slot, but surpass the threshold when aggregated.

To adjust τ, we follow the standard three-sigma rule and set τ to three times the standard deviation of
(1/ℓ)∑

t−1
i=t−ℓ errG(i) plus its expected value on normal (attack-free) traffic [8]. The underlying assump-

tion is that, without adversarial manipulation, the cumulative prediction error lies within three standard
deviations of its mean that has a probability of 0.9973 if it is normally distributed (which is the case if
ℓ is sufficiently large). The three-sigma rule is applicable even without access to attacked traffic before
deployment, otherwise an optimal calibration of τ follows from the Neyman-Pearson lemma.

5.4.1 Determining the parameter of ℓ

We performed experiments to determine the value of ℓ, representing the number of the last loss values
considered in the decision-making process. We conducted this experiment by analyzing the detection
results for different values of ℓ. A reasonable range for the ℓ values is from 1 to 500, where ℓ= 1 means
we do not calculate mean values, and 500 corresponds to roughly 0.8 milliseconds of data. The goal is
to calculate the mean of the loss values in a window that is only on the order of the noise and not yet
comparable to a potential attack.

For each ℓ value between 1 and 500, we replaced each loss value with the average of the last ℓ loss values.
The distribution of the resulting values is shown in Figure 5.3 on the left side for an example REPLAY
attack. The figure shows the effect of two different ℓ values. The first row depicts ℓ = 1, meaning no
averaging was used, and the second row illustrates the case of ℓ= 200.

The distribution plots on the left show the distribution of loss values containing the attack in blue and
the distribution of benign loss values in pale orange. The difference for each bin is highlighted in darker
green. It can be seen that at the location of small loss values, there is a lot of error, which is considered
noise. Additionally, at larger loss values, there appears to be a more significant error, which is caused by
the attack. In the figure, a vertical dashed red line indicates the threshold calculated for the actual loss
values. It is important to note that in the case of the blue distribution, the error to the left of the threshold
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is not a false negative, which would mean an undetected attack but the same noise as in the benign case.

The plots on the right in the figure show the detection for the given value of ℓ. The vertical orange lines
indicate the locations where detection occurred, while the single green bar in the middle represents the
location of the actual attack. It can be seen that as ℓ increases, false positives decrease, so there will be
fewer detections outside of the attack.

We computed accuracy, false positive rate, and attack detection delay for different values of ℓ. Figure 5.4
illustrates that the false positive rate decreased immediately, reaching a minimum at approximately ℓ =
50, and then started to increase again. The accuracy increased proportionally and then began to decline
around ℓ= 100.

To ensure that the characteristics of available attacks do not influence the detection process, the value
of ℓ was adjusted to minimize false positives in benign signals while avoiding the potential range of an
attack.

As discussed in this section, we applied a threshold to the difference between predicted and observed
values in our modeling. The choice of threshold and the size of ℓ would depend on the manufacturer’s
priorities. For instance, a manufacturer may prefer to minimize false positives to detect and respond to
attacks quickly or to investigate all suspicious cases. In our case, we set the value of ℓ to 200. However,
the chosen threshold and ℓ value may have the unintended consequence of missing some low-intensity
and short-duration attacks.

Figure 5.3: Visualization of the effect of different ℓ values, showing the distribution of the resulting loss
values and a detection plot for each value ℓ.
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Figure 5.4: Visualization of the effect of different ℓ values, showing metrics (accuracy, detection delay,
and false positive rate).

5.5 Discussion

5.5.1 Why Grouping Correlated Signals?

The joint forecasting of correlated signals offers several advantages for anomaly detection. First, it allows
a single model per group to leverage the inherent interdependencies among group members, resulting in
more accurate forecasts for each signal within the group. Second, any malicious modification of a signal
is likely to impact the predictions of all group members, thereby increasing the cumulative prediction
error as described in Eq. (5.2). This enhances the detectability of attacks compared to prior methods in
the literature, as demonstrated in Chapter 6. Finally, instead of creating a stand-alone model for each
individual signal as in [6], our approach requires the construction of only K forecasting models, rendering
it a more appealing choice in resource-constrained environments.

5.5.2 Cost Analysis, Scalability and Robustness

When designing a solution for the industry it is crucial to consider the limited resource availability of
automotive embedded systems.

The cost of our approach is dominated by that of the forecasting models. Apart from the C forecasting
models, K ·w signal values are stored for forecasting and K · ℓ error values for decision purposes. The
forecasting models are trained off-line in parallel, and the trained models are deployed in the vehicle.
Therefore, the computational cost is dominated by the inference time of the forecasting models, where
the inference processes of models are parallelizable.
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It’s important to highlight that during the offline training phase before deployment, our TCN architec-
ture doesn’t demand an excessively large model size, making the training phase feasible even for an
average manufacturer. Clustering of signals also plays a significant role in reducing the computational
requirements, resulting in fewer models.

In summary, these arguments substantiate that our system is well-suited for deployment in industrial
environments, especially in the context of automotive embedded systems where resource constraints are
a critical consideration.
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Chapter 6

Evaluation

6.1 Dataset

We use two CAN datasets for evaluation: Dataset-1 introduced in [6], and Dataset-2 introduced in [12].

Dataset-1 contains seven short (<1 minute) traces of specific driving and traffic scenarios, and a longer
trace (∼25 minutes). Dataset-2 contains nine short traces and eleven longer traces.

As the datasets originate from the same vehicle type, both have 20 message IDs and 1-6 signals per ID.
Similarly, both datasets contain message injection and message modification attacks. As our objective is
to detect modification attacks, we only use the corresponding traces.

We evaluate our mechanism on Dataset-1 to compare its performance to the chosen baseline described
in Section 6.3. Since the two datasets are based on very similar CAN traffic from the same vehicle type,
and most attacks follow the same strategy (only the RANDOM and DELTA attacks are not included in
both), we present only the joint results.

The attacks have been performed using 6 different signal modification strategies:

• ADD-DECR - Modify with decrement value: a decrease per message is subtracted from the origi-
nal value.

• ADD-INCR - Modify with increment: increases the original value by one increment per message.

• CONST - Change to constant: constant value replaces the original value.

• NEG-OFFSET - Modify with delta: a given value is subtracted from the original data value.

• POS-OFFSET - Modify with delta: a given value is added to the original data value.

• REPLAY - Replace the original data value with a previous value.

• DELTA - An attacker chosen value is added to the original value.

• RANDOM - The original value is replaced by a new random value in every attacked message.

For illustration, an example for a REPLAY modification attack is depicted in Figure 6.1.
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Figure 6.1: REPLAY attack, shown between the vertical lines, targeting messages with ID 0410, modi-
fying speed signals [12].

6.2 Model Architecture and Parameters

For evaluation, we instantiate our proposal described in Chapter 5. We create two datasets for training
and testing purposes. A total number of 3.2 million CAN messages were used to create a training dataset
for signal forecasting and calibrating all parameters of our approach (i.e., K, C, w, ℓ). Our calibrated
model is tested on 1.3 million benign and malicious test messages (67 attacked traces and 9 benign
traces), each containing one attacked signal. Both datasets undergo the same pre-processing steps with
the same parameters that were computed exclusively on the training data.

Pre-processing: We use a signal mask based on the bit flip rate to extract relevant signals. We retain
K = 20 of the N = 77 extracted signals that describe the state of the vehicle and likely to have sufficient
predictive power for signal forecasting1. The retained signals are normalized as described in Section 5.1.

Signal grouping: We conduct a correlation analysis on the signals and identify groups of correlated
signals. We utilize hierarchical clustering with Pearson correlation as a similarity measure, and group
linearly dependent signals together accordingly. We identify C = 9 clusters of the 20 signals in our
dataset.

Signal forecasting: For forecasting, we use multi-channel Temporal Convolutional Networks (TCN).
We apply an input sliding window of size w = 1750, equivalent to roughly 3 seconds, and each TCN
has a receptive field with the same size w. Each channel of the multi-channel model corresponds to an
individual signal in the group. The output of the TCN layers is then forwarded to a fully connected
linear layer which generates the prediction of the upcoming signal values. Each multichannel TCN layer
has four dilatation layers with a logarithmic offset of 2 (1,2,4,8). The kernel size is fixed at 16. We
train each forecasting model with Adam optimizer and MSE loss using early stopping. This forecasting
module is illustrated in Figure 6.2.

The total size of all forecasting models, capable of handling all message IDs together in groups, is
approximately 15 MB and contains 4.157 million parameters.

1Note that this information is already known to a car manufacturer
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Figure 6.2: Visualization of the forecasting module.

Decision: We average the last ℓ = 200 prediction error values of our forecasting models and compare
with threshold τ which is calibrated according to the three-sigma rule on the training data as described
in Section 5.4. In other words, we do not use the attacked traces in our dataset to adjust τ because it
is unlikely to have sufficiently representative data about all possible attacks in practice. The decision
module is illustrated in Figure 6.3.

6.3 Comparison with Baselines

The most relevant related works are CANet [16], INDRA [17], and the single TCN (S-TCN) anomaly
detector architecture from [6]. To avoid confusion, from now on, we will refer to the Single TCN
method (S-TCN), and refer to our proposed solution described in Section 6.2 as Correlation-based TCN
(C-TCN).

The INDRA framework has been shown to outperform other relevant unsupervised approaches including
CANet regarding false positives and detection accuracy. Moreover, according to numerical experiments
on two datasets, the SynCAN dataset [16] and Dataset-1, the S-TCN approach has larger accuracy with
a significantly lower false positive rate than INDRA. Therefore, it is sufficient to show that our solution
outperforms the S-TCN approach, because it has demonstrated superior performance compared to CANet
and INDRA [6].

To properly compare the two results, we adapt the S-TCN approach by training one TCN model per
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Figure 6.3: Visualization of the decision module.

signal but keeping the rest of the process, i.e., the data pre-processing, the same as our C-TCN solution.
As expected, this adapted approach can reconstruct the expected behavior of CAN signals individually.

6.4 Evaluation Metrics

We evaluate both the baseline S-TCN and our proposed C-TCN method using standard performance
metrics: accuracy, false positive rate, precision, and recall.

Accuracy =
T P+T N

T P+T N +FP+FN
(6.1)

Precision =
T P

T P+FP
(6.2)

Recall =
T P

T P+FN
(6.3)

FPR =
FP

FP+T N
(6.4)

Metrics are calculated according to Equations 6.1, 6.2, 6.3, 6.4, where TP means the number of true
positive detections, FP the number of false positives, TN the true negatives and FN the false negatives.

Precision and recall are particularly important metrics in this context, since the testing dataset is often
imbalanced; attacks on the CAN bus are often short, which means that the number of benign instances
significantly exceeds the number of attack instances.

In addition, we also measure the time it takes to detect attacks (denoted by TD), and the fraction of
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Figure 6.4: Comparative evaluation of S-TCN vs. C-TCN on two attacked traces. ADD-DECR (add
decrement value) attack (first row of each column) and a REPLAY attack (second row of
each column) are shown. The figure shows the attacked region marked by grey vertical lines
and detections marked by yellow to red vertical lines, with the magnitude of the cumulative
prediction error indicated by the darkness of the color.

attacked traces that are successfully detected (denoted by RD):

TD =
∑

Nt
n=1(tdetection − tattack)

Nt
(6.5)

RD =
∑

Nt
n=11{trace n is detected as anomalous}

Nt
(6.6)

where Nt is the number of attacked traces, tdetection is the time of detection (time of the first message
whose signal values trigger anomaly), tattack is the starting time of the attack (time of first attacked
message) and 1 is the indicator function. Note that, while recall in Eq. (6.1) measures the detection
performance on individual messages, detection rate measures the recall with respect to the traces. Indeed,
both datasets used for evaluation includes short driving scenarios affected by various types of attacks, as
described in Section 6.1, and an attacked trace is successfully detected if at least one message belonging
to the attacked section of the trace triggers detection.

6.5 Results

All experiments were done using the TCN implementation in Keras [24].

Table 6.3 shows the accuracy and false positive rate for benign and malicious test sets, as well as the
precision, recall, detection rate, and detection delay for attacked traces for both message modification and
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Table 6.1: Comparing detailed results of evaluating the baseline S-TCN and the proposed correlation-
based C-TCN on each modification attack types from both dataset.

Model Accuracy FPR Precision Recall RD

ADD-DECR
S-TCN 0.93 0.06 0.35 0.34 0.45
C-TCN 0.97 0.05 0.78 0.73 0.95

ADD-INCR
S-TCN 0.91 0.05 0.28 0.13 0.43
C-TCN 0.97 0.04 0.79 0.71 0.96

CONST
S-TCN 0.91 0.04 0.09 0.01 0.0
C-TCN 0.97 0.04 0.64 0.62 0.8

NEG-OFFSET
S-TCN 0.94 0.02 0.18 0.04 1.00
C-TCN 0.98 0.02 0.75 1.00 1.00

POS-OFFSET
S-TCN 0.94 0.02 0.18 0.04 1.00
C-TCN 0.98 0.02 0.76 1.00 1.00

REPLAY
S-TCN 0.93 0.03 0.08 0.03 0.55
C-TCN 0.96 0.02 0.80 0.65 1.00

DELTA
S-TCN 0.9 0.03 0.05 0.01 1.00
C-TCN 0.99 0.06 0.86 0.87 0.88

RANDOM
S-TCN 0.97 0.11 0.84 0.99 1.00
C-TCN 0.99 0.06 0.92 1.00 1.00

Table 6.2: Comparing detailed results of evaluating the baseline S-TCN and the proposed correlation-
based C-TCN on each injection attack types.

Model Accuracy FPR Precision Recall RD

ADD-DECR INJ
S-TCN 0.95 0.01 0.54 0.11 0.67
C-TCN 0.98 0.01 0.91 0.59 1.00

ADD-INCR INJ
S-TCN 0.95 0.01 0.59 0.11 0.70
C-TCN 0.98 0.00 0.77 0.42 0.80

CONST INJ
S-TCN 0.95 0.01 0.51 0.09 0.60
C-TCN 0.98 0.00 0.79 0.42 0.83

NEG-OFFSET INJ
S-TCN 0.97 0.02 0.85 0.61 1.00
C-TCN 1.00 0.01 0.92 1.00 1.00

POS-OFFSET INJ
S-TCN 0.97 0.02 0.84 0.57 1.00
C-TCN 1.00 0.01 0.92 0.99 1.00

REPLAY INJ
S-TCN 0.96 0.01 0.69 0.17 1.00
C-TCN 0.99 0.01 0.97 0.79 1.00

message injection attacks. These metrics are calculated across multiple traces and averaged to provide
the overall results shown in the table.

All metrics are also calculated for each attack type individually to determine the effectiveness against
each type. Detailed results for message modification attacks in Table 6.1 show that both our solution and
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Table 6.3: Comparing overall results of evaluating the baseline S-TCN and the proposed correlation-
based C-TCN on benign and malicious test traces from both dataset.

BENIGN MALICIOUS MODIFICATION MALICIOUS INJECTION
S-TCN C-TCN S-TCN C-TCN S-TCN C-TCN

Accuracy 0.98 0.99 0.93 0.98 0.96 0.99
FPR 0.03 0.02 0.05 0.04 0.01 0.01
Precision - - 0.30 0.80 0.67 0.88
Recall - - 0.24 0.83 0.28 0.70
RD - - 0.68 0.95 0.79 0.94

the baseline solution can easily detect modification attacks like NEG-OFFSET, POS-OFFSET, RAN-
DOM, DELTA and some REPLAY attack. The baseline S-TCN performs poorly against the stealthier
ADD-DECR, ADD-INCR and CONST attacks, while our results are 95%, 96%, and 80% respectively.

To investigate the use of only one IDS system in a vehicle, we also tested our solution against message
injection attacks. Although we do not focus on detecting these attacks, we demonstrate that the solution
can be applied to detect message injections as well. The results for message injection attacks in Table 6.2
show that, on average, both S-TCN and C-TCN perform better in this case than in the case of message
modification attacks because duplicate signal values result in a more significant anomaly, as the values
frequently oscillate between the two values.

After experimenting, we conclude that correlation-based C-TCN can effectively detect attacks on CAN
bus data. Our major findings are as follows:

1. Grouping of CAN signals based on correlation improves the detection performance from 68% to
95% which means that our proposed C-TCN method can detect 95% of all the modification attack
scenarios. These attacks are detected with a delay of 0.38 seconds on average.

2. Correlation-based C-TCN significantly outperforms S-TCN on all evaluated metrics, especially
regarding precision and recall, where C-TCN achieves 80-83% average performance.

3. Table 6.1 shows that our C-TCN can detect even stealthier attacks that do not significantly modify
signals (i.e. ADD-DECR, ADD-INCR and CONST attacks). Figure 6.4 presents an example of
this improvement over the S-TCN baseline.

4. In addition to modification attacks, C-TCN also effectively identifies injection attacks, allowing
the identification of both types of attacks by a single algorithm.

As Figure 6.4 shows, S-TCN fails to detect the stealthier ADD-DECR attack, which slowly modifies
the original signal message-by-message. It is only detected when the attack abruptly stops, and the
signal returns to its original value. In contrast, our C-TCN model can detect the attack earlier when
the modification induces a detectable change in the cumulative prediction error. Similarly, while both
models can detect the start of a replay attack, the baseline S-TCN cannot detect it throughout the entire
attack span, whereas our C-TCN can.
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Chapter 7

Conclusion

This paper presented a novel approach to intrusion detection on the CAN bus. We aimed at detecting
message modification attacks, the most complex attack type possible on the CAN bus. We showed that a
correlation-based TCN model can efficiently predict the subsequent values of the vehicle signals, which
can be used for anomaly detection. Finally, we also presented measurements demonstrating that our
approach outperforms the state-of-the-art.

Our main contribution is to combine correlation analysis with time-series forecasting to improve detec-
tion accuracy. By grouping signals first based on their correlation, we create models that can predict
future values with a high accuracy. During an attack, the forecasting of a group of correlated signals is
significantly less accurate, allowing the detection of the anomaly. Furthermore, by grouping the signals,
we can use fewer models resulting in a smaller footprint, which is an important factor for embedded
systems.

In case an attacker knows which signals are clustered together and understands how the signals usually
behave, it may be able to modify all the signals in the group without being detected. This requires main-
taining the normal signal behavior including the inter-dependencies between different signals. However,
it is unlikely that the attacker have all these capabilities in practice, especially if the groups are suffi-
ciently large and the device running our integrated solution is adequately protected.

In our future work, we plan to analyze correlations in different traffic situations to improve our solution.
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Appendix

Figure A.1: Clustering results for Affinity Propagation, DBSCAN, Hierarchical and MeanShift cluster-
ing (from top to bottom) calculated with the Kendall, Spearman and Pearson correlation
(from left to right).
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