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Kivonat

A szenzorhálózatok napjainkban kezdenek elterjedni a világon, a közeljövőben azonban ez
a terjedés jelentősen fel fog gyorsulni. A cél, hogy könnyen lehessen olcsó eszközökből elosz-
tott hálózatokat építeni. Szintén elvárás lesz hamarosan, hogy minden elektronikai eszköz
képes legyen kapcsolódni az Internethez. Az Internetes világban a biztonság egyértelműen
kulcskérdéssé nőtte ki magát, és biztosítására számos módszer létezik. A szenzorok számá-
ra megfelelő megoldás kiválasztásakor elsődleges szempontként figyelembe kell venni azt,
hogy képes legyen a mindennapi eszközökkel (például egy webböngésző) együttműködni.

A dolgozat a TLS (Transport Layer Security) és a DTLS (Datagram Transport Layer Se-
curity) protokollok megvalósítását mutatja be az iSense szenzorhálózati operációs rendszer
felhasználásával.

Ahogy a dolgozatból kiderül, ezeknek a protokolloknak már több implementációja is lé-
tezik különböző mikrokontrolleres platformokra. Ezen megvalósítások hátránya azonban,
hogy előre osztott kulcsokra építenek, és ennek következtében nem képesek mindennapi
eszközökkel való együttműködésre. Ezt a korlátot az itt bemutatott megoldás az elliptikus
görbék használatával megvalósított kulcscserével oldja fel. A különböző elkészített krip-
tográfiai elemek kombinációjával 10 támogatott titkosító készlet (cipher suite) érhető el,
ami jelentősen szélesebb körű alkalmazhatóságot biztosít a korábbi megvalósítások által
nyújtott 1–2 titkosító készlettel szemben.

A megoldás felépítése moduláris szemléletű, így lehetséges a TLS és a DTLS külön illetve
együttes használata, maximálisan kihasználva azok közös vonásait. Ugyan ez a szemlélet
igaz a kriptográfiai elemekre is, így a kód mérete és a memóriahasználat az adott alkalma-
záshoz szükséges minimális szintre szorítható.

Az elérhető átviteli sebesség erősen függ az aktuálisan alkalmazott titkosítási módszertől.
Összességében elmondható azonban, hogy az optimalizálásnak és a hardvertámogatásnak
köszönhetően, a sebesség a titkosítással is racionálisan használható marad. Amennyiben
a kommunikáció utolsó lépése a rádión keresztül történik, az okozott lassulás a válaszidő-
ben 4–20% közötti értékre szorul. Az elkészített TLS illetve DTLS protokollok képesek
együttműködni más rendszerekkel, és idővel piaci termékek részei is lesznek.
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Abstract

The Sensor Networks have started to spread in the world, but in the near future this trend
will be accelerating dramatically. The main goal is to build up distributed networks with
cheap wireless nodes. According to the actual trend, it will be necessary to connect all
electronic devices to the Internet. Nowadays the security is one of the key points of the
Internet, and there are many different standard and non-standard solutions to achieve the
proper level of it. In case of sensors, the possible interoperability with normal applications
(such as a web browser) must be considered.

This paper demonstrates the implementation of the TLS (Transport Layer Security) and
the DTLS (Datagram Transport Layer Security) protocols in the iSense sensor network
operating system.

As it will be detailed in later chapters, there are different available implementations of these
protocols for microcontroller-based systems. The drawback of these solutions is that these
were built on pre-shared keys, which restricts their interoperability with everyday software
solutions. This new implementation overcomes this limitation with the use of elliptic curves
for the key exchange. With the variation of the different adopted cryptographic solutions,
this solution supports 10 different cipher suites. This increases the usability, compared to
the existing solutions, if we consider that those support only 1–2 cipher suites.

This implementation was built in a modular approach, which enables the use of the TLS
and the DTLS separately, or together with the optimized re-use of the common parts. The
same approach is true for the cryptographic elements, and this way the current code-size
and memory footprint can be optimized for the actual application.

The actually used cipher heavily influences the performance of the communication. How-
ever, due to the optimizations and the hardware support, the maximum performance is
practically in a usable range with the extra security layer. If the last hop of the commu-
nication is done via the radio interface, the security causes only 4–20% overhead in the
round trip time. The presented solution can work together with other systems and will be
part of products in the future.
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Chapter 1

Introduction

This chapter gives a brief high-level introduction for the topic of this paper. The first section
describes the main ideas and trends of wireless sensor networks. The second section adds
security related considerations and the third one introduces the target platform. Finally,
the last section summarizes the contents of the different chapters.

1.1 Wireless sensor networks

Nowadays we can find sensors everywhere around us. These sensors can measure the param-
eters of the environment and in some cases they can also intervene. The tracked parameters
are simple ones in most of the cases, such as, movement, light, humidity or pressure. For
a temperature monitoring station, only a simple heat sensor could be enough. However,
if the task is to monitor the climate of a field, then something more complicated would
be needed. The idea is that if we connect the relatively cheap sensors to each other, we
could work with a distributed network. On the one hand, this way we can discover many
correlations between the measured values, on the other hand, if we have intervening nodes
in the system, we can influence the parameters of the environment.

In the past, all deployed sensors were wired constructions, but nowadays every technology in
information technology is moving towards the wireless solutions. The field of sensors follows
this trend as well which results in wireless sensor networks (WSNs). A typical sensor mote
is equipped with a microcontroller, a radio, some LEDs, buttons, batteries and a serial
communication interface. The sensors can be built-in ones, or they can be installed on
an attachable sensor board. An installation can contain hundreds or thousands of simple
nodes and a few special ones called sink nodes (or base stations) which are attached to
computers, and this way they could act as communication tunnels between the WSN and
the outside world. According to the vision of the future, the sensor motes will be cheap
and a lot of these will be used in quite different types of products.

According to the ‘all-IP’ trend, every object will be connected to the Internet [1]. The nodes
in the network need to have IP addresses, as other Internet ready devices. This vision of
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the future – when every device will have a unique IP address – is called the Internet of
Things (IoT). The wireless sensor networks provide a possible technical solution for this
IoT vision. A new and determining type of data traffic will born which will be produced by
the Machine-to-Machine communication. Researchers say that there will be approximately
50 billion smart objects by 2020 [2]. Since the security is getting more and more important
in information technology, it must be considered in case of the IoT.

1.2 Security in the Internet Protocol stack

The Internet enabled WSN solutions must provide standardized ways to reach sufficient
level of security, because it is getting extremely important in information technology nowa-
days. As it will be detailed in this section, in an Internet Protocol stack security can be
provided at different layers.

For WSNs, the IEEE 802.15.4 radio’s standard defines security [3]. This is based on the
AES (Advanced Encryption Standard) block cipher in CCM (Counter with Counter Block
Chaining-MAC) mode and this encryption mode will be detailed in Section 2.3.3.2. The
main disadvantage of this solution is that it protects the messages only inside the low-
power radio network. Since the aim of this work is to secure the communication from the
server to the client (possibly through the Internet), this solution cannot be used.

The IPSec is a protocol suite that runs in the network layer. There are two main protocols
to use: Authentication Header (AH) and Encapsulating Security Payload (ESP). The AH
provides authentication, and the ESP provides both authentication and confidentiality.
Since the IPSec runs in the IP layer, it protects all transport protocols at the same time
[4].

This paper focuses on securing HTTP (Hyper Text Transfer Protocol) and CoAP (Con-
strained Application Protocol) transactions in WSNs. The HTTP is used to access normal
web pages with web browsers. The secured version of the HTTP (known as HTTPS) is
provided with the TLS (Transport Layer Security) protocol in all general cases. The TLS
can operate over stream based protocols (such as the TCP). The CoAP is a protocol de-
veloped specially for machine to machine communication, and it operates over datagram
based transport protocols (for example UDP). The DTLS (Datagram Transport Layer Se-
curity) is the pair of the TLS, but it also handles the missing reliability of the underlying
datagram based protocol. The TLS and the DTLS together provide security for the same
type of applications as the IPSec. However, it must be noted that for an IPSec implemen-
tation the differences between the IPv4 and IPv6 must be considered. Since the target is
to interoperate with commercial or standard HTTP and CoAP applications, the transport
layer security solutions are selected from the listed options.
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1.3 The iSense hardware platform and operating system

The iSense hardware platform is produced by the Coalesenses GmbH1. The hardware
solutions spread on a large scale, from WSN devices (Ethernet gateway, repeaters, USB
stick) to WSN modules (core modules, gateway modules, sensor modules, power modules,
...). The devices are based on the IEEE 802.15.4 radio enabled Jennic microcontrollers
(JN5148). For this work I was using Ethernet gateways and Core Modules. The name of
the Ethernet gateway is ‘NET10’ and it has an Ethernet interface besides the 802.15.4
radio. The main advantage of this device is that it can easily connect the sensor network
to the normal Internet. The NET10 is also equipped with a microSD card slot. The Core
Modules are more simple devices with only radio interface. The JN5148 microcontroller is
a 32-bit RISC controller, which can operate up to 32 MHz. It has 128 kB of RAM which
is shared for the code and the memory (stack and heap) during runtime. Figure 1.1 shows
the NET10 on the left side and the Core Module version 3 on the right side.

Figure 1.1: iSense NET10 and Core Module 3 devices

The iSense OS is also provided by the coalesenses GmbH as a software solution for different
devices. The system is written in C++. This operating system is compilable for different
microcontroller platforms (Jennic, MSP430, Pacemate, XMega), but the mainly used target
is the Jennic. The system provides many features, even dynamic memory allocation which is
not typical for WSNs. Many protocols are implemented for the OS, among others: routing
protocols, over-the-air programming and time synchronization. The OS offers IPv4 and
IPv6 protocols stacks with UDP and TCP transport protocols. In addition, it provides a
full-featured CoAP, and an HTTP server. The listed protocols and applications enable the
following possible scenarios with the iSense devices and OS:

• Ethernet + IPv4 + TCP + HTTP

• Ethernet + IPv6 + TCP + HTTP

• Ethernet + IPv6 + UDP + CoAP

• Radio (& Ethernet) + IPv6 + UDP + CoAP
1www.coalesenses.com
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The list basically shows that the IPv4 and the TCP protocols were not designed (nor
extended) to be used over the radio. In these cases, the application can run on a NET10
box, and the HTTP server is accessible with any normal Internet browser. The IPv6 was
extended with the 6LoWPAN layer in order to fulfill the requirements of the radio based
communication. This enables that the CoAP server can be accessible also via multi-hop
radio communication. Figure 1.2 summarizes the features of the iSense IPv4 and IPv6 Dual
Network Stack.

Figure 1.2: iSense IPv4 and IPv6 Dual Network Stack (Source:
www.coalesenses.com)

1.4 Structure of the paper

In this paper, I show that it is possible to use transport layer security solutions on the
Jennic based devices in a way which enables interoperability with wide range of other more
traditional implementations. This is achieved with the use of elliptic curve cryptography for
the key exchange. The modularity is also a key point in order to provide a scalable product.
With this extra security layer, the previously shown list can be rewritten as follows:

• Ethernet + IPv4 + TCP + TLS + HTTP

• Ethernet + IPv6 + TCP + TLS + HTTP

• Ethernet + IPv6 + UDP + DTLS + CoAP

• Radio (& Ethernet) + IPv6 + UDP + DTLS + CoAP

The rest of the paper is structured as follows: Chapter 2 gives an overview about the differ-
ent related protocols, then it introduces the different symmetric and asymmetric crypto-
graphic building blocks and finally existing solutions will be shown. Chapter 3 starts with
the specific list of technical targets and goals of this work and then summarizes the imple-
mentation related questions in two parts. First, it gives an overview about the architecture
of the system, and then the second part emphasizes and details the main contributions of
this paper. Chapter 4 contains the detailed evaluation and interoperability testing of the
work. Finally, Chapter 5 concludes the paper and lists some future goals.
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Chapter 2

Protocols for IP based WSNs

This chapter discusses the different WSN related protocols in the IP stack from the IP
layer to the application layer with the main focus on the security part. The final section
of this chapter list the existing solutions for the problem.

Figure 2.1 shows the two basic scenarios which will be used in the whole paper. In both
setups the tester computer is connected to the gateway node through a switch. While in the
first scenario the computer communicates directly with the gateway, in the second setup
the gateway only plays a routing role, and forwards the traffic to another device via the
radio interface.

Figure 2.1: Physical scenarios

2.1 Radio and IP

WSNs use the IEEE 802.15.4 radio for the communication. The standard provides 250 kbit/s
data rate at 2.4 GHz in a 10-meter communication range. The maximum size of the phys-
ical layer payload is 127 bytes and there are long (64-bit) and short (16-bit) addressing
modes in this protocol [5].

The Internet is based on the Internet Protocol and the original (and still active) version
of this protocol was defined in RFC 791 in 1981 [6]. The protocol was basically renamed
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to IPv4 when the IPv6 was defined in RFC 2460 in 1998 [7]. The main advantage of the
IPv6 is, that it extends the length of the addresses from 32 bits to 128 bits. This address
space is believed to be large enough for the following decades. The IP based WSN solutions
target only the IPv6, but it is clearly not possible to simply use the pure IPv6 over the
IEEE 802.15.4 radio. The most problematic part is that the maximum transfer unit (MTU)
of the IPv6 is 1280 bytes, but the physical MTU of the IEEE 802.15.4 is only 127 bytes.
In order to bridge the gap between the two protocols, the 6LoWPAN adaptation layer
was introduced. Besides the fragmentation, this layer also provides solutions for header
compressions [8].

Since this work concentrates on security protocols over the transport layer, the used IP
solution should not influence the behavior. In practice, some client applications still lack
of real IPv6 support and the IPv4 is not usable when the communication goes through the
IEEE 802.15.4 radio. The used IP layer will be always noted for scenarios at the evaluation.

2.2 TCP and UDP

In this work the Transmission Control Protocol (TCP) comes into play only when the client
communicates with the gateway device directly. The TCP is not commonly used in WSNs,
because of its complexity, and performance reasons [9]. This protocol provides reliable
stream based communication, which means that the parties maintain a state and use
acknowledgments. The mechanisms of the TCP do not fit efficiently into the IEEE 802.15.4
protocol, as it is detailed for instance in [10], and because of this it is not used over the
radio. The TCP related use-case is that the gateway runs an HTTP server over TCP, and
the client is a simple web browser.

Researchers also argue about whether the User Datagram Protocol (UDP) is suitable for
WSNs or not [10]. It is a connectionless protocol which operates with datagram sockets
[11]. The messages are sent without verifying the readiness or the status of the receiver. It is
unreliable, because the messages could get lost during the transmission, and the sender will
never know about it. There are no acknowledgments and retransmissions in this protocol,
but because of the mentioned characteristics it is extremely lightweight which is a key factor
in WSNs, and this protocol can be used for the data communication over the radio too.
There are several proposed transport layer solutions such as CODA (COngestion Detection
and Avoidance) [12] or RMST (Reliable Multi-Segment Transport) [13]. The problem is
that the traditional Internet will likely never support these protocols and this contradicts
with the main goal of the Internet of Things, which is to move the sensor solutions towards
the standard Internet.
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Applition

TLS DTLS

TCP UDP

IPv4 / IPv6

Figure 2.2: The secured protocol stack

2.3 Transport Layer Security

The TLS (Transport Layer Security) and the DTLS (Datagram Transport Layer Security)
are cryptographic protocols which can provide secured communication over the Internet.
As Figure 2.2 shows, the TLS runs over the reliable TCP protocol, and provides security
for many well known web services (such as HTTPS). The DTLS is the pair of the TLS
protocol and it provides approximately the same security features, however, it runs over
the non-reliable UDP protocol. The DTLS is not used at as many places as the TLS, but
in case of WSNs where the IP communication is based on UDP, it will be an important
protocol in the near future.

TLS DTLS
1.0[14] -
1.1[15] 1.0[16]
1.2[17] 1.2[18]

Table 2.1: TLS and DTLS protocol versions

2.3.1 Protocol versions

Table 2.1 summarizes the different TLS and DTLS versions. As the table also indicates,
the DTLS 1.0 protocol is equivalent with the TLS 1.1 and there is no DTLS 1.1. The
original TLS 1.0 protocol is vulnerable against attacks and it is recommended to use the
newer versions of the protocol. However, as always in case of the Internet, every protocol
change is a long procedure. Table 2.2 shows that only the latest versions of the well-known
web browsers supports the newer versions. Figure 2.3 summarizes the server side support
for popular sites. All in all, a new implementation nowadays should support all versions of
the protocols because of interoperability reasons.
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Browser First version with TLS 1.1 support First version with TLS TLS 1.2 support
Firefox 19 (disabled by default) 24 (disabled by default)
Chrome 22 29

IE 8 (disabled by default) 8 (disabled by default)
Opera 14 16

Table 2.2: Support of the TLS protocol in web browsers [19]

Figure 2.3: Available TLS versions on popular sites (September 2, 2013 [20])

2.3.2 General protocol description

The general description in this section is for both protocols, and only the differences are
noted. The DTLS protocol was designed as a modification of the TLS, in order to handle
the differences of the underling transport layer. Practically the result is that some of the
TCP functionalities (which are missing from the UDP) must be implemented in the DTLS.
These functions are: resend mechanism, packet duplication handling, sequence numbers,
etc. This section omits some parts from the protocols which are not relevant for the current
microcontroller based implementation.

The (D)TLS connections have an initial connection phase and a subsequent communication
phase. The main goal of the connection phase (which is called handshake in these protocols),
is to negotiate a common key which is then used to secure the data exchange in the
communication phase. If we consider the traditional OSI network model, then the initial
phase fits into the Session Layer and the connected phase fits into the Presentation Layer.

The (D)TLS is actually a collective name for four protocols as it is shown in Figure 2.4. All
packets have to go through the Record Protocol which forwards the messages to the upper
level. During the handshake, it forbids the communication with the application. When
the connection is ready, it deals with the encryption/decryption and authentication of the
messages in a transparent way from the application’s viewpoint. Since the TCP provides
reliable communication, the TLS handles its sequence numbers implicitly. For the DTLS,
the sequence number is part of the header of the Record Protocol, and this protocol also
validates it.
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The Handshake Protocol, as the name implies, processes and sends the messages during
the handshake. The asymmetric cryptographic operations also performed here. The goal
of this protocol is to prepare the security parameters for the Record Protocol. The Change
Cipher Spec Protocol is able to send only one empty message. This message indicates
that the sender is going to send encrypted messages in the future. The Alert Protocol is
used when something goes wrong. An alert can be Fatal or Warning. While a Fatal error
immediately closes down the connection, a Warning is only an indicator for the other party.

Application

Record Protocol

Alert ProtocolHandshake Protocol Change Cipher Spec Protocol

Figure 2.4: (D)TLS protocols

The (D)TLS can be used with various cipher suites. A cipher suite is a set of algorithms
and it is negotiated in the first message exchange of the handshake. The related concrete
algorithms will be detailed in Section 2.3.3. A cipher suite specifies the following parame-
ters:

Asymmetric cryptographic algorithm This algorithm is used during the handshake
to perform the key exchange and party authentication.

Symmetric cryptographic algorithm This algorithm is used to encrypt and decrypt
the messages.

MAC algorithm The MAC (Massage Authentication Code) algorithm is used to authen-
ticate the messages.

The handshake requires several messages from both sides, as it is shown in Figure 2.5.
Some of these messages are optional, depending on the used cipher suite. The client al-
ways sends the Client Hello message to initiate the connection. This message contains the
protocol version, client random, list of the supported cipher suites, possible compression
algorithms and the implemented protocol extensions. The DTLS protocol defines an extra
step immediately after the initial Client Hello (indicated with green in the figure). In order
to prevent easy Denial of Service attacks, the server should send a Hello Verify Request
message with a cookie inside. In order to continue the handshake, the client has to repeat
its Client Hello with the same cookie. The server creates the state for the connection only
if this cookie exchange was successful, and from this point the two protocols use the same
flow.

The server selects a cipher suite from the client’s list. In case there is no overlapping option,
the server sends an error message immediately. If there is a common suite, the server sends

13



the Server Hello to the client which contains the protocol version, server random and
the selected cipher suite, compression algorithm and extensions. The following messages
(indicated with orange in the figure) are depending on the selected cipher suite which will
be detailed in Section 2.3.3. The first of these contains the server’s certificate in an ITU-T
standard format (X.509). The second is the Server Key Exchange which contains additional
information for the key negotiation, and it is always signed with the public key from the
certificate. The server always sends the empty Server Hello Done message to indicate the
end of the hello sequence.

The client verifies the server’s identity (based on the certificate). If the server is identified,
the client calculates the so-called pre-master secret – based on the collected information
–, encrypts it with the server’s public key and finally sends it in the Client Key Exchange
message. The client then sends the Change Cipher Spec message to indicate that it is
going to encrypt the following messages. Finally, it calculates the connection keys and
sends the Finished message which contains the hash of all previous messages encrypted
and authenticated with the negotiated algorithms.

Client Server

Client Hello

Server Hello

Server Key Exchange

Server Hello Done

Client Key Exchange

Change Cipher Spec

Finished

Change Cipher Spec

Finished

Client Hello

Hello Verify Request

Certificate

Figure 2.5: (D)TLS normal handshake

The server decrypts the payload of the Client Key Exchange and also creates the keys
based on the pre-master secret. As the last step of the handshake, it sends the Change
Cipher Spec and the Finished messages to the client.

The keys are created in two steps from the pre-master secret. The (D)TLS defines a PRF
(Pseudo Random Function) which takes as input a secret, a seed, and a label and produces
an output of arbitrary length. The PRF in these protocols is based on the HMAC con-
struction [21]. An HMAC takes a key and other some data as input and creates a keyed
hash as output. The TLS 1.0, TLS 1.1 and the DTLS 1.0 protocols use both the MD5 and
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SHA-1 hash functions for the HMAC calculation, and the results are XOR-ed. The TLS
1.2 and DTLS 1.2 protocols use only the SHA-256 function. In brief, the PRF takes the
input parameters and calls the HMAC function (in a chained fashion) as many times as it
is required to get enough pseudo random bytes. The master secret is generated with this
PRF from the pre-master secret. The protocols do not use the master secret directly, in-
stead a key material is generated from the master secret again with the PRF. This enables
to re-use the negotiated master secret and results in different keys for different purposes.
The key material contains different keys for the client and the server and also for the cipher
and the MAC algorithms. In same cases an initialization vector (IV) is also generated here.

The RFCs also define sessions and connections. A session is an ID and master secret pair
which is stored by the server. The client can include a session ID into the Client Hello
message. If the server stores the master secret for the provided ID, it immediately sends
the Change Cipher Spec and the Finished messages after the Server Hello, as it is show in
Figure 2.6. This way the server resumes the session and there is no key exchange needed. If
the client does not provide a session ID or it cannot be identified, the server includes a new
random session ID into the Server Hello, and performs the normal handshake. The new
key material is generated from the master secret with the new client and server random
numbers, which ensures, that it will be different from the previous ones.

Client Server

Client Hello

Server Hello

Change Cipher Spec

Finished

Change Cipher Spec

Finished

Figure 2.6: Resume a (D)TLS session

2.3.3 Cipher suites

The following section introduces the different related cipher suites. The cipher suites work
in a ‘MAC then encrypt’ fashion, which means that the authentication tag is calculated
with a hash algorithm, and then it is encrypted together with the plaintext. This section
also describes some asymmetric and symmetric cryptographic solutions.
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2.3.3.1 Asymmetric algorithms

The traditional cipher suites use the RSA algorithm for the key exchange. The RSA is
based on the difficulty of factorization, and with the nowadays’ computation power, it
requires large primes for sufficient security. The long primes also result in large certificates
(and long calculations). In case of a microcontroller implementation, the RSA calculations
are extremely slow.

The elliptic curve cryptography (ECC) was originally suggested in 1985, but it has been
widely used only since 2004–2005. The ECC is based on the algebraic structure of elliptic
curves over finite fields. Instead of targeting the factorization problem, the ECC assumes
that finding the discrete logarithm of a random elliptic curve element with respect to a
publicly known base point is infeasible. The size of the used elliptic curve determines the
difficulty of the problem, the length of the keys. Table 2.3 compares the key sizes of the
RSA and ECC algorithms which enable the same security level. The smaller curves result
in faster computation, but for instance web browsers do not support weaker curves than
256-bit.

RSA key size ECC key size
1024 bits 160 bits
2048 bits 224 bits
3072 bits 256 bits
7640 bits 384 bits

Table 2.3: RSA and ECC key sizes providing the same security level [22]

In (D)TLS the elliptic curve cryptography is used in the Elliptic curve Diffie–Hellmann
(ECDH) protocol to perform the key exchange. This protocol offers solutions to support
any elliptic curve, but in practice the ‘named curves’ are used, which were standardized
by the American NIST (National Institute of Standards and Technology) [23]. The public
key of the server is always in the certificate. In case of the ECDH, the client encrypts the
pre-master secret with this public key, and the server can decrypt it with its corresponding
private key. At the server this requires 1 ECC calculation. The weakness of this protocol
is that it does not provide perfect forward secrecy, meaning that if the server’s private
key is ever compromised, then all previous recorded communication can be decrypted.
The ECDHE (ECDH Ephemeral) algorithm solves this problem with generating a new
public/private key pair for each connection. In this algorithm, the server sends the new
public key in the Server Key Exchange message, and its original public key from the
certificate is only used to generate a signature on it with the ECDSA (Elliptic Curve
Digital Signature Algorithm). All in all the ECDHE requires 3 ECC calculations on the
server side (key generation, signature, decryption) [24].

Both the ECDH and the ECDHE based cipher suites have been added as valid choices for
the (D)TLS. These are defined (with AES as a symmetric cipher) in RFC 4492, RFC 5269
and in RFC 5489.
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It must be noted that the RFCs define the TLS_RSA_WITH_AES_128_CBC_SHA cipher suite
as mandatory, but the cryptographic libraries and web browsers have been widely adopted
the ECC based cipher suites, which enables the omission of the RSA. Since the code size
is one of the key factors in this kind of development, it is not really an option to have the
RSA just because it is mandatory by the RFC.

A simple solution which was basically defined in RFC 4279 for (D)TLS in constrained
environments, is the Pre-Shared Key (PSK) algorithm [25]. In case of a PSK cipher suite,
the client and the server must know the same secret and an identifier in order to establish
the connection. The server can provide an ‘identity hint’ in the Server Key Exchange in
order to help the client in the correct secret selection. The client sends its ‘PSK identity’
in the Client Key Exchange. This type of key exchange can be done without any real
asymmetric cryptography, however the distribution of the keys can be a serious problem.
These cipher suites can be used only in some limited scenarios. For example, if we consider
a company which provides the sensors devices and the PC-side client applications as well,
the PSK can be a good solution.

2.3.3.2 Symmetric ciphers

The earlier versions (before 1.0 and 1.1) of the (D)TLS protocol support block and stream
ciphers. A stream cipher is initialized only once and then generates a (pseudo) random
byte sequence which is XOR-ed with the plaintext. During the decryption, the same byte
stream is XOR-ed with the ciphertext. It is clear that the cipher must be in the same
state on both ends, which is a huge constraint for the DTLS protocol, since it is based
on the unreliable UDP protocol. Because of this, the stream ciphers are banned from the
DTLS protocol by the RFCs. The target of this work is an implementation which efficiently
supports both the TLS and the DTLS, therefore there will not be any further discussion
about stream ciphers.

The most traditional block cipher is the DES (Data Encryption Standard) which was first
published in 1977. There are several attacks known nowadays against the DES, but its
small key size (56 bits) is in itself cannot stand the brute force attack of the modern
computers. As a solution, in 1998 the Triple DES was published which basically uses
the DES three times. In parallel of the Triple DES, a new encryption standard the AES
(Advanced Encryption Standard) was also created. As it was shown in papers like [26], the
3DES is slower than the AES. Furthermore, it uses shorter keys (112 bit vs. 128/192/256
bits) and also shorter blocks (64 bits vs. 128 bits). Regarding the interoperability, all of the
traditional TLS implementations support the AES based cipher suites. The last important
aspect is that some of the devices developed for WSNs, provides AES encryption engines
in hardware. This decides the competition of the two ciphers without question.

The AES in itself is capable to encrypt and decrypt only one block (16 bytes). In order
to use this cipher for longer messages, the combination of the blocks is needed which
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is called as the ‘mode’ of the cipher. The most well-known mode is the CBC (Counter
Block Chaining), which is shown in Figure 2.7. The idea of this mode is that the next
plaintext block is always XOR-ed with the previous ciphertext block. For the first block,
an Initialization Vector is used. The TLS 1.0 defines this IV as part of the key material
which is updated with the last ciphertext block when after each processed message. This
construction led to possible attacks and in other versions of the (D)TLS protocols, the IV
is always a new random array and it is sent explicitly in the message.

The MAC is calculated with a hash function (such as SHA-1 or SHA-256) and, as the figure
shows, it is copied after the plaintext blocks, and also encrypted. Because the AES takes
always 16 bytes as input, a padding is required for the message. The last byte defines the
length of the padding (without this byte), and the padding itself contains the same bytes
as its length. For instance if the length is 92 bytes, then 4 bytes are required in this form:
03 03 03 03. The padding enables time-related side channel attacks against the (D)TLS
protocols which will be detailed in Section 3.8.

The decryption of the ciphertext is similar to the encryption. Each ciphertext block is
decrypted with the AES and then XOR-ed with the previous block. It must be noted that
the AES requires the same type of steps for encryption and decryption, however, from the
implementation point of view, there are important differences which will be examined in
Section 3.6.

Message MAC Padding

AES block

AES

IV

AES AES AES AES

Key

Figure 2.7: (D)TLS AES encryption in CBC mode

The 1.2 versions of the protocols define the AEAD (Authenticated Encryption with Asso-
ciated Data) type of ciphers. The AEAD ciphers are based on block ciphers but provide
authentication and encryption as one operation with one key. These are also ‘modes’ for
the block ciphers at the end of the day, but the (D)TLS specifications define these in the
separated AEAD category.

The CCM (Counter with CBC-MAC) is an authenticated encryption mode of the AES and
it is shown in Figure 2.8. As the name implies, it uses the previously detailed CBC-mode
for the MAC calculation. However, instead of generating the whole encrypted output, only
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the bytes of the last ciphertext block are used as a MAC. The CCM mode can take two
byte streams as input. One of the byte streams (the message itself) is authenticated and
also encrypted and the second byte stream is only authenticated. For the MAC calculation
both input streams are padded with zeros up to the 16-byte block length. Besides the
data streams, the cipher also takes a nonce and a key, where all nonce – key pairs must
be unique. This key is used for all AES operations in this cipher mode. The input nonce
is used to form a special 16-byte-long ‘nonce block’ which also contains some flags and a
counter part. As the figure shows, this nonce block is used as the input for the AES. The
counter part of the nonce block starts from 1 and it is incremented after each step which
results in a different AES output. This output is then XOR-ed with the plaintext blocks.
For the CCM mode, the last block does not have to be padded, because the unnecessary
bytes from the AES output can be simply dropped. The MAC is also encrypted like the
normal data, but the value of the counter is 0 for that last block.

Nonce block Authenticated only data

Data[n-1] Data[n]

AES AES AES AES

Key

P Data P

AES in CBC 
mode

Data[0] Data[1]

Nonce block ++ ++ ++ =0

AES

MAC

Figure 2.8: (D)TLS AES in CCM mode – authenticated encryption

All in all, the construction is a mixture of the block and stream ciphers, but can be used
with DTLS as well. One important feature of this cipher mode is that the AES decryption
operation is not used. The pseudo random stream can be generated in the same way
for the decryption, and XOR-ed with the ciphertext. For the MAC validation, the same
authenticated only data must be available.

The IEEE 802.15.4 standard in itself contains a security part for the communication. The
standardized cipher is the AES-CCM* [3]. The CCM* is a minor variation of the CCM.
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The difference is that, in contrast with the normal CCM, the CCM* mode can be used to
encrypt only and authenticate only. However, in case of the (D)TLS both the encryption
and authentication is required which results in full interoperability. This is the reason why
the AES encryption is available in hardware on WSN devices.

Some cipher suites define the symmetric cipher as ‘NULL’. This means that the messages
are only authenticated but not encrypted. These suites are not used in general solutions
but can be used in some special scenarios. For example, if we consider that a client gathers
measurements from IP enabled sensor devices, the data itself can be possibly transmitted
without encryption, but it must be authenticated in order to prevent modifications on the
fly. Without encryption, the code size is smaller, and the device consumes less energy.

2.3.3.3 Possible combinations

The presented asymmetric and symmetric algorithms can be combined in several possible
cipher suites. Regarding the AES, only the 128-bit version is considered. This subsection
summarizes the target cipher suites of this work.

The following 4 cipher suites are suitable for interoperability with general applications,
like web browsers. All current web browsers offer some of these suites in their Client Hello
message. It seems that the browsers will move towards perfect forward secrecy, because for
instance the Google Chrome’s newest version (29) only offers the ECDHE suites.

• TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256

• TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA

• TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256

• TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA

The second group of cipher suites can be applied in special environments. For the first
5, the PSK is used which restricts the usage to cryptographic libraries and self-designed
applications. The ‘8’ at the end of the CCM suites defines the length of the MAC tag. The
last suite which uses ECC with CCM is still in draft and not RFC state1. Because of this, it
is only implemented in some cryptographic libraries. The draft does not define the ECDH
suite, only the ECDHE. There are valid combinations for ECC and the NULL ‘cipher’
but these are not implemented in any popular library. The PSK can be also combined
with digital signature algorithms in order to provide perfect forward secrecy, but instead
of those, it is better to use the normal non-PSK suites.

• TLS_PSK_WITH_AES_128_CBC_SHA

• TLS_PSK_WITH_AES_128_CBC_SHA256
1http://tools.ietf.org/html/draft-mcgrew-tls-aes-ccm-ecc-07
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• TLS_PSK_WITH_NULL_SHA

• TLS_PSK_WITH_NULL_SHA256

• TLS_PSK_WITH_AES_128_CCM_8

• TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8

2.4 Applications

In this work I consider two standard applications, an HTTP server and a CoAP server.
There are many possible applications for a TLS and a DTLS protocol implementation,
even in this constrained environment, since it is always possible to construct a new self-
designed solution. The iSense implementation of the HTTP protocol provides a normal
HTTP server’s functionality. This server can use the SD card of the NET10 device as well.
The server is normally running over the TCP protocol, but with proper interfaces it is
possible to inject the TLS between the TCP and the HTTP server in a seamless way. The
testing of this construction is quite trivial with commercial web browsers.

The CoAP (Constrained Application Protocol) is a specialized web transfer protocol for use
in constrained environments. The first draft of the protocol was released in the summer
of 2010 and the protocol has been changing deeply during the last 3 years. The actual
version is the 18th draft, and now it is close the final version. Because of the significant
changes, clients and servers which implement different versions of the draft may not be
able to interoperate.

The protocol works in a request/response manner, it supports the discovery of resources
and services. The well-known URI (Universal Resource Identifier) scheme was adopted for
this protocol. Similarly to the HTTP, the CoAP supports GET, POST, PUT and DELETE
methods. The CoAP resources can be used for quite different purposes:

• Query different sensor values with GET messages.

• Store data on the server with PUSH messages.

• Control peripherals (for example: switch LEDs on and off)

The CoAP runs over the UDP protocol, and similarly to the HTTP server, it is possible
to use the DTLS in order to provide security. The testing of a CoAP over DTLS is, more
problematic since most of the client implementations do not support the DTLS by default.

2.5 Existing solutions

There are different existing implementations of the TLS and DTLS protocols for wireless
sensor networks. As this section will show, the provided cipher suites are quite limited for
these solutions.
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The Contiki is one of the most popular operating systems for WSNs. Currently, there are
two different public implementations exist. The first is called as TinyDTLS and it was
created by Olaf Bergmann [27]. This implementation contains a simple DTLS server, with
support for the TLS_PSK_WITH_AES_128_CCM_8 cipher suite. The second implementation
was created by Vladislav Perelman as his master thesis project [28]. This implementation
contains both the TLS and the DTLS protocols, but it is not designed to re-use the common
parts, which results in duplicated functionalities. This implementation also supports only
the TLS_PSK_WITH_AES_128_CCM_8 cipher suite for both protocols.

The TinyOS is another operating system for WSNs, written in the nesC language. There is
also an existing DTLS implementation for this system created by Thomas Kothmayr [29].
In his work he was using a special TPM (Trusted Platform Module) device which can run
RSA and SHA-1 operations. With this extension it is possible to run the heavy-weighted
RSA in this constrained environment, and use the TLS_RSA_WITH_AES_128_CBC_SHA cipher
suite which provides interoperability with all available PC side applications.
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Chapter 3

Own contribution

After the overview of the different parts of a possible TLS and DTLS implementation for
WSNs, the first section of this chapter summarizes the targets and goals of this work.
The following two sections introduce the proposed and implemented main components and
interfaces. The remaining sections highlight the more important contributions.

3.1 Targets and goals

As it was described in the introduction, the target operating system is the iSense, and the
target hardware platforms are the Jennic 5148 based iSense devices. Before my work, there
was an existing implementation of the server side of the TLS protocol for iSense, created
by Michael A. Strebel as his Master thesis project [30]. I started to work with his code
which was not merged into the main iSense repository nor part of the main IP stack and
namespace. It was obvious that the coding part was finished in rush, since it contained
many dirty and illogical solutions. Also most of the classes were not commented at all.
Unlike the other listed solutions in Section 2.5, his target cipher suites were:

• TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256

• TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA

He implemented his own ECC library, but the performance of this solution was poor, the
connection setup time was around 21 seconds. As an AES engine, he adopted the AES
implementation of the Wiselib WSN algorithm library 1. As it will we detailed in Section
3.6, I managed to increase the speed of this algorithm significantly. The following list
collects the targets of this work.

Clean and fix the existing code Fix the existing implementation, providing a properly
working TLS server.

1http://www.wiselib.org/
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The DTLS protocol Implement the DTLS protocol with re-using the common parts of
the TLS.

New cipher suites Adopt all 10 cipher suites (8 new) which were listed in Section 2.3.3.3.
This also includes the AES-CCM cipher mode, the Ephemeral key exchange and the
Pre-Shared Keys.

Performance improvements Improve the performance of the ECC and the AES.

Evaluation Test the interoperability of the application with various applications. Create
performance related measurements.

One of the key ideas of this work is to provide a scalable solution for the actually needed
purposes. I implemented the DTLS protocol with this idea in mind, making it possible
to run the TLS and the DTLS together with as less overhead as possible. The different
cryptographic parts are also scalable.

3.2 Socket and transport layer interfaces

From the application point of view, the underlying security layer has to be transparent.
This can be achieved with common interfaces for the transport and the security layers as
it is shown in Figure 3.1. This way if we consider for instance the CoAP server, it stores
a UDPInterface and a UDPSocketInterface object, which makes the switch really simple
from the non-secured communication to the secured one and vice versa.

Since the major parts of the TLS and the DTLS are identical, most of the code can
be shared between the two protocols. To hide the differences between the TCP and the
UDP API from the security protocols viewpoint, a third SecureSocketInterface is also
necessary.

Figure 3.1 also implies one of the major structural differences in the TLS and the DTLS
implementations. If an application creates a TCP socket in listening mode, the TCP opens
a new socket for each connection and the HTTP server creates HTTP connections for these.
This mechanism enables a simple scenario with one TLS socket for each new connection.
On the contrary, a listening UDP socket does not create a new socket, instead it provides
the port and host parameters for each incoming datagram. This mechanism is correct, and
resource friendly for the pure UDP communication, nevertheless it causes problems for the
secure communication. The connections must be distinguished and this is the reason why
the DTLS requires the DTLS Connection entity. The only task of the DTLS Socket is to
find the right connection for the actual data.
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Figure 3.1: Interfaces for the sockets and transport layers

3.3 Implementation details of the TLS and DTLS

The implementation consists of several different elements which can be divided into 3 major
groups. Figure 3.2 indicates these groups with different colors:

• The cryptographic parts (light).

• The different layers and sockets which are defined by the TLS and DTLS (mid).

• Additional classes for different state parameters (dark).

The interfaces for the layers and sockets have been already described in the previous section.
This figure shows the connections with the rest of the elements.

When the CoAP server is started, it waits for a UDP Interface and opens a listening socket,
which is in this case a DTLS Socket. When a client initiates the handshake, the DTLS
Socket creates the DTLS Connection, the DTLS protocols (Record, Handshake, and Alert)
and the connection states. The mechanism is similar for the TLS, but instead of the DTLS
Connection, a new TLS Socket is created.

The Record Protocol is responsible for the encryption/decryption and the authentication
of the messages. It uses state objects to store the connection parameters. The active state is
always the ‘current state’ which initially does not define any security. During the handshake,
the Handshake Protocol prepares the ‘pending state’ for the secure connection. When the
connection parameters are ready, the ‘pending state’ takes the place of the ‘current state’.

The cryptographic part contains an asymmetric and a symmetric cipher and different hash
functions. The symmetric cipher is the improved version of the Wiselib’s AES, which will
be detailed in Section 3.6. For the ECC based key exchange, a special library is ported
to the iSense platform (MicroECC). The library will be described in Section 3.4 together
with the Pre-Shared-Key manager. The MD5 hash function is only necessary for TLS 1.0.
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The SHA and SHA256 are used for the handshake and inside the HMAC for the message
authentication in connected status.

The last element in the figure is the TLS Session Manager, which is also a common object
for the TLS and the DTLS. The session management will be detailed in Section 3.5.

DTLS

DTLS Socket

DTLS ConnectionTLS Socket

TLS

Record Protocol

Alert Protocol Handshake Protocol

MicroECC

Current 
Connection States

Pending 
Connection States

Security 
Parameters

AES

SHA SHA256

MD5 HMAC

KDF TLS Session Manager

PSK Manger

Figure 3.2: Related classes

3.4 Solution for the key exchange

The implementation of the ECC support (by Michael A. Strebel) was not fast enough for
the normal usage of the cryptographic protocols, especially in case of the HTTP server it
is really annoying to wait 21 seconds for a web page. The applied solution is the modified
version of the MicroECC library which has an open source version (available on GitHub 2)
directly for 32-bit microprocessor architectures [31]. The library was originally developed
for an ARM based controller, and contains also assembly codes for that platform. This ECC
implementation supports both the key-generation, ECDH and ECDSA algorithms. While
for the ECDH based cipher suites only the ECDH algorithm and the related functions are
needed, the ECDHE cipher suites require the key-generation and the ECDSA as well.

There were two main modifications needed for the library for the use under iSense. The
first, and more obvious part was the porting from C to the object oriented C++. This

2https://github.com/kmackay/micro-ecc
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also implied many modifications in the original C macros and global variables. The second,
and more problematic part was the modification of the functions in order to fulfill the
requirements of an event-driven operating system. The iSense follows the so called ‘run-
to-completion’ way of programming. This means that while a task is running, only the
interrupt service routines can be served. Other task cannot get the processor since there is
no preemption. This is not a really big problem for general algorithms, nevertheless, it must
be considered for long running codes, such as the ECC library. The MicroECC supports
4 different named curves as it is shown in Table 3.1 along with the time which is needed
for one calculation. The calculation obviously cannot block the processor for seconds, and
it must be divided into smaller tasks. These tasks run for approximately 27 ms in this
implementation. For the ephemeral key exchange, I also extended the library with ASN.1
support, since it is needed for the Server Key Exchange message.

Curve name iSense [s] Original ARM [s]
secp128r1 1 0.06
secp192r1 3 0.117
secp256r1 7 0.310
secp384r1 22 0.910

Table 3.1: MicroECC calculation times

The last column of Table 3.1 also contains the time which was measured by the authors
of the original library. The original values are from the GitHub’s wiki page, but I scaled
them for the processor speed of the iSense (48 MHz originally, 32 MHz for iSense). The
difference is significant, but it must be taken into account that the ARM Cortex-M0, which
was used by the authors, provides a ‘hardware single-cycle (32x32) multiply option’3 and
the library also contains some ARM specific assembly parts for the critical calculations.
The mechanism which divides the long running task into quicker tasks also implies latency
for the calculation on the iSense.

Since the trend of the time differences is approximately the same for the two cases, the
assembly versions for the critical parts (operands for very large integers) can be considered
as a possible further improvement.

For the Pre-Shared Key cipher suites, I implemented a manager entity which stores and
handles the registered keys. Along with the key, an ‘identity’ is also stored as a character
array. When the client sends the Client Key Exchange, the manager selects the correct
key based on the provided identity string. There is only one global manager object, which
enables the easy access from both the TLS and the DTLS codes.

3.5 Session management

As it was detailed in Section 2.3.2, the negotiated sessions can be stored and resumed. It
is up to the client whether it includes the session ID of the previous session into its Client

3http://www.arm.com/products/processors/cortex-m/cortex-m0.php
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Hello message or not. In case of the TLS based communication, a web browser stores and
uses the sessions while it is running. For these applications the PSK cipher suites cannot be
used, which implies that it is important to support the session handling on the server side.
It improves the user experience (fast loading of pages) and it also saves the resources of
the device. On the contrary, when the DTLS (and the CoAP) is used, the session handling
might be pointless, since most of the client applications will not send the session ID in the
Client Hello message. As many other parts of the implementation, the session management
can be switched off as well, saving approximately 1400 bytes of code size and 92 bytes of
memory for each stored session. As for the PSK manager, there is one global instance for
the Session Manager, which enables easy access in any situation.

3.6 Accelerating the AES decryption

All of the secured cipher suites use the AES block cipher in different modes. The AES
itself is from the Wiselib open source algorithm library. It handles the AES encryption and
decryption with 128-bit keys. The AES uses 4 operations:

SubBytes is the only non-linear step of the cipher, where each byte is replaced with
another according to a lookup table, called as S-box.

ShiftRows is a byte transposition that cyclically shifts the rows of the state over different
offsets.

MixColumns is a permutation operating on the state column by column.

AddRoundKey is a transformation, where the state is modified by combining it with a
round key with the bitwise XOR operation.

The cipher is symmetric, it uses the inverse versions of the operations in reverse order for
the decryption (InvSubBytes, InvShiftRows, InvMixColumns, the AddRoundKey is the
same) [32].

Operation Encrypt [cycles] Decrypt (Inv) [cycles]
SubBytes 85 84
ShiftRows 38 36

MixColumns 146 5138
AddRoundKey 82 82
Full AES block 2885 48237

Table 3.2: Original Wiselib AES run-time analysis

After the initial connection speed tests, I measured the calculation times for the AES library
itself. Table 3.2 shows the measured values for the different operations at 32 MHz processor
speed. The unit is processor cycle, because the Jennic microcontroller provides a Tick timer
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for precise measurements. It is really obvious that the bottleneck of the algorithm is the
InvMixColumns operation, which runs 35 times slower than the MixColumns.

In the MixColumns step, each column is treated as a polynomial over GF (28). For the
encryption, each column is multiplied by a fixed polynomial (c(x) = 3x3 + x2 + x + 2),
modulo x4 + 1. This is (practically) the following matrix multiplication for a column ‘a’
(in GF (28)):


b0

b1

b2

b3

 =


2 3 1 1

1 2 3 1

1 1 2 3

3 1 1 2

×


a0

a1

a2

a3


In this GF (28) field, the multiplication by 1 means no change, multiplication by 2 means
shifting to the left. The multiplication by 3 can be calculated as ‘multiplication by 2
plus the original value’. In GF (28) the addition is the XOR operation, which means that
multiplication by 3 is shifting and then performing an XOR operation with the initial
(unshifted) value.

After each shift, it must be checked whether the value is bigger than 0xFF, because in this
case an additional XOR operation with 0x1B (it is actually 0x11B but we are working on
bytes) is required.

The InvMixColumns is an operation for the same purpose, the difference is that it uses the
inverse of c(x), which is c−1(x) = 11x3 + 13x2 + 9x + 14. It looks like this in the matrix
multiplication form:


b0

b1

b2

b3

 =


14 11 13 9

9 14 11 13

13 9 14 11

11 13 9 14

×


a0

a1

a2

a3


In the Wiselib’s AES, the MixColumns operation is implemented in a much more efficient
way, than the InvMixColumns operation. The MixColumns uses a pre-processor macro for
the multiplication by 2, and calculates the multiplication by 3 with an XOR operation. For
the InvMixColumns function this part is not that easy, since there are no simple rules for
multiplication by 9, 11, 13 or 14. The Wiselib’s InvMixColumns uses a general function for
GF (28) multiplication (this is the xtimes function in 4). This function is called 16 times
in an InvMixColumns calculation and it runs a loop with 8 cycles inside.

The fastest solution for the InvMixColumns operation can be implemented with look-up
tables. In this case there would be 4 tables containing all possible multiplication results.

4https://github.com/ibr-alg/wiselib/blob/master/wiselib.testing/algorithms/crypto/aes.h
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This means that 1024 bytes would have to be stored, but since the code-size is a key factor,
this solution is not optimal.

The idea for the optimization is to use the basic operations (multiplication by 2 and the
addition) more times after each other to calculate the required values. For instance, the
multiplication by 9 can be calculated as: (((x ∗ 2) ∗ 2) ∗ 2) + x. Figure 3.3 shows the
calculation sequences for each number. As the figure also implies, because all numbers
have to be multiplied by 9, 11, 13 and 14, this can be done in a tree-like fashion with
re-using the partial results.

×2

^2 ×2

^2 ^2 ×2

X

9X 11X 13X 14X

Figure 3.3: AES decryption – InvMixColumns

I implemented this solution with pre-processor macros which results 200 bytes larger total
code size, but the gain in the calculation time compensates it greatly. Table 3.3 shows the
measurement results after the optimization. Comparing the time required for the decryp-
tion of 1 AES block, the optimized version works approximately 8 times faster.

The Jennic microcontroller supports the CCM* mode of the AES in hardware. Since the
CCM* requires only the encryption part of the AES, the decryption is not implemented.
The Jennic API defines functions for the pure AES, which can be used to accelerate the
encryption. Table 3.3 shows the time for the hardware based AES encryption. This method
is also approximately 8 times faster than the original. In addition, this also saves code-size,
because the functions and arrays for the software based encryption are not needed.

3.7 The AES modes

Now, that the AES is reasonably fast enough, the different modes of the block cipher can
be introduced. It is a simple task to implement the CBC mode for the AES, since it requires

30



Operation SW Encrypt [cycles] HW Encrypt [cycles] Decrypt (Inv) [cycles]
SubBytes 85 - 84
ShiftRows 38 - 36

MixColumns 146 - 484
AddRoundKey 82 - 82
Full AES block 2885 366 5905

Table 3.3: Final Wiselib AES run-time analysis

only the XOR calculation for buffers. One buffer is 16-byte-long in this case, and the speed
of this part can be accelerated with unrolled version of the loop. This unroll can be used
as a feature, but it can be disabled as well since it causes some code-size overhead.

I originally started to investigate the use of the CCM mode of operation because the Jennic
device’s AES co-processor supports this mode, since it is required by the 802.15.4 standard.
The hardware API provides the following function for encryption and decryption:

PUBLIC bool_t bACI_CCMstar(

tsReg128 *psKeyData, //Special type with the key

bool_t bLoadKey, //If this is false, the key can be NULL

uint8 u8AESmode, //Encrypt or Decrypt

uint8 u8M, //Length of the MAC

uint8 u8alength, //Length of the authenticated only data

int8 u8mlength, //Length of the normal input

tsReg128 *psNonce, //Special type with the nonce

uint8 *pau8authenticationData, //Pointer to the authenticated only data

uint8 *pau8inputData, //Pointer to the input

uint8 *pau8outputData, //Pointer to the output

uint8 *pau8checksumData, //Pointer to the buffer for the MAC

bool_t *pbChecksumVerify); //Result of the MAC verification

The function takes several input parameters which are detailed in the comments. The
important point is that it does not take the length for the nonce. Before the explanation of
this, the ‘nonce block’ must be examined. Figure 2.8 showed the CCM mode of operation
and the ‘nonce block’ is used both for the authentication and the encryption. As Figure
3.4 shows, the first byte of the block contains some flags. The initial bit is always 0. For
authentication, the ‘A’-bit is 1 if there is authenticated only data, the M field encodes the
number of bytes in the authentication field and the L encodes the length of the Length
part of this block. This L determines the length of the nonce as well, because the nonce
occupies the remaining bytes. For the encryption (and decryption) the A and M is 0, and
the L specifies the length of the Counter field (same as the Length, but it starts from 1
and it is incremented after each block).
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Flags Nonce Length / Counter

| 0 | A |       M       |        L        |

Nonce block – 16 bytes

Figure 3.4: The Nonce block of the AES in CCM mode

The CCM mode for TLS is defined in RFC 6655 [33] and it declares the nonce for fix 12
bytes, which means that the Length/Counter field should be 3-byes-long. The Jennic API
does not take the length of the nonce as a parameter, and there are no notes about this in
the documentation. After some black-box like testing, it turned out that it always assumes
that the nonce is 13 bytes long. This problem in itself can be solved with an additional 0
for the nonce, but the value of the L field cannot be changed in the flags byte. Because
this is an input for the AES, this completely mixes-up the output. All in all, this simple
limitation makes the use of the hardware based CCM impossible.

During the testing of the co-processor, it also turned out that it cannot work with data
which is larger than 128 bytes, the API call simply returns with an error. This makes sense
in case of the 802.15.4 radio, where this is the MTU for the packets. However, since the
operation is the same for each AES block again and again, it is not clear why it is restricted
to 128 bytes.

Despite the listed hardware limitations, the CCM mode still has the nice feature that it
does not require the slow AES decryption. The iSense is compilable for a platform called
XMega as well. Since it does not provide the CCM mode, it was implemented in software.
I adopted this implementation for the CCM based cipher suites. I also optimized the way
how it processes the input data because it was duplicated unnecessarily at a certain point.

3.8 Attacks against the TLS and the DTLS

During the years there were different published attacks against the transport layer security
protocols. In general, the security protocols and the implementations are improved based
on the published attacks. The different methods can be divided into two parts. There are
papers about theoretical and practically exploitable problems. However, often it is only a
question of time when a theoretical problem can be use in a practical scenario.

An up to date paper (published in 2013) from Christopher Meyer and Jörg Schwenk col-
lects many TLS attack related papers [34]. As the TLS is the successor of the SSL protocol,
many discovered vulnerabilities were solved, when the TLS 1.0 was introduced. The most
important weakness of the TLS 1.0 is the IV handling in CBC mode. The problem is that
the IV is only random for the first message, and then the last block of the previous cipher-
text is used as an IV. This problem was published in 2004 [35] and in 2006 [36] by Gregory
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Bard. Finally this attack was deployed in the B.E.A.S.T. tool, and published in [37]. This
tool is able to perform even full message decryption. There is no implementation related
fix for this problem since it is inside the protocol itself. Due to this massive vulnerability,
migration to TLS Version 1.1 has been recommended by IETF.

Some published attacks are not related to this work because the exploited parts are not
part of the implementation. One of these attacks uses the compression algorithm to leak
information about the plaintext [38]. The current implementation does not use any com-
pression and because of code and memory limitations it is not expected that it will be
added in the future. The current version does not include the re-negotiation feature of the
protocol which can be attacked as it is published in [39].

The implementations of the cryptographic primitives easily enable side channel attacks.
For the TLS the most important side channel attacks are based on time difference mea-
surements. The current wireless sensor networks scenario has its strengths and weaknesses
against the timing attacks. If the communication is going over the low-power radio, the
measurement of the time differences gets extremely hard because the jitter (caused by the
radio) is significant. Because the code runs at low processor speeds, the timing differences
can be larger, however, since generally these attacks require numerous connections, the
slow connection setup compensates the gain on the timing differences.

The AES in CBC mode uses a ‘MAC (then PAD) then encrypt’ procedure. This construc-
tion can easily leak information. This timing problem is noted even in the RFCs (from
TLS 1.2 RFC [17]):

‘Canvel et al. [40] have demonstrated a timing attack on CBC padding
based on the time required to compute the MAC. In order to defend against this
attack, implementations MUST ensure that record processing time is essentially
the same whether or not the padding is correct. In general, the best way to do
this is to compute the MAC even if the padding is incorrect, and only then reject
the packet. For instance, if the pad appears to be incorrect, the implementation
might assume a zero-length pad and then compute the MAC. This leaves a small
timing channel, since MAC performance depends to some extent on the size of
the data fragment, but it is not believed to be large enough to be exploitable,
due to the large block size of existing MACs and the small size of the timing
signal.’

The most up do date study was published in February of 2013, as ‘Lucky Thirteen: Breaking
the TLS and DTLS Record Protocols’ [41]. The authors demonstrate that even the ‘small
timing channel’ (which is mentioned in the RFC), can be used to break the security of the
TLS and DTLS. The authors propose an algorithm which reduces the timing channel, and
I implemented this algorithm in this work. It must be noted that this problem only effects
the CBC mode of operation.
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The ‘quality’ of the random numbers is critical for security algorithms. However, this paper
focuses on the protocols and the cipher suites. For the random number generation, the built
in pseudo random number generator of the iSense was used. This is a linear congruential
generator which is seeded with a number based on the current internal voltage multiplied
by the internal temperature of the device. Since these are basically numbers from the
analog to digital converter, the least significant bits are fluctuating. This generator should
be changed to a cryptographically secure pseudo-random number generator before any
real-life deployment.
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Chapter 4

Evaluation

This chapter provides a detailed evaluation for the implemented TLS and DTLS protocols.
The first section details the interoperability capabilities. The next section shows the sce-
narios which were used for the testing. Finally, the third part contains the results, namely:
code size, heap usage, handshake time and round trip time.

4.1 Interoperability with other tools and implementations

I tested the implemented protocols in two different ways. The first approach contains tests
with different cryptographic libraries. These can be used to test the interoperability and
to evaluate the performance of the protocols and the different cipher suites. The other
method of testing involves the real client applications (for instance web browsers). These
tests produce more ‘go – no go’ like results.

There are many open source libraries available nowadays. The different solutions provide
different cryptographic algorithms. The most commonly used library is the OpenSSL1,
however, interestingly it does not support the DTLS 1.2 protocol. It also lacks of IPv6
support by default, but there are some patches available which can be used to fix this
issue.

The OpenSSL is embedded into several different products. The Python language’s SSL
library also uses the OpenSSL. The Python SSL API handles the IPv6 addresses but it
does not provide DTLS related functions. Because of this, I was using a solution called
PyDTLS2 which patches the Python SSL to provide DTLS support. In this work, the
different time related evaluations were created with Python scripts with an ‘echo server’
on the iSense side.

Another cryptographic solution is the CyaSSL3 (yet another SSL). This library has several
modules which must be enabled when it is configured. It supports IPv4 and IPv6 and all

1http://www.openssl.org/
2https://github.com/rbit/pydtls
3http://www.yassl.com/
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TLS and DTLS versions. This library is smaller in general than the OpenSSL and this also
results in simple and more easily understandable code. An important feature in this SSL
implementation is that it supports the AES-CCM based cipher suites, even the ones with
ECC key exchange which are only in draft state at the moment. The CyaSSL was used to
evaluate the AEC-CCM cipher mode and the PSK key exchange.

The second approach for testing uses specified client applications, namely a web browser for
the TLS and a CoAP client for the DTLS. The HTTP server over the TLS protocol can be
used with any normal web browser. However, the performance depends on the actually used
browser. The reason is for instance that the Google Chrome web browser opens two sockets
immediately when it starts to load the web page. It means that the microcontroller has to
run two ECC calculations in parallel. The best results can be achieved with the Firefox
which opens only one socket and even the supported cipher suites can be influenced.

The testing of the secured CoAP is not as easy as the secured HTTP. There are several
CoAP client implementations, but the DTLS support is really rare. I used two solutions to
verify the interoperability capabilities. The first one uses the previously mentioned PyDTLS
python library for the DTLS support. For the CoAP part, I managed to adopt the client
tool from the webiopi library 4. This library is originally for the Raspberry Pi platform,
but with some slight modifications it can be used on a PC with the PyDTLS library.

The second solution is the CoAP client of the Californium project5. This is a JAVA based
CoAP framework created by researchers from the ETH Zürich. The Californium contains
an internal DTLS implementation created by Stefan Jucker [42]. The CoAP client from
this library can be also used to communicate with the secured CoAP server.

All in all, it is possible to use the iSense (D)TLS implementation with various client
applications. The following parts of this chapter show the performance of the code in
different scenarios.

4.2 Experiment setup

The speed of the implementation will be evaluated for two parts, for the handshake and
for the communication itself (as round-trip-time). Figure 2.1 showed the two setups for
these measurements. In both setups the tester computer is connected to the gateway node
through a switch. In the first scenario the gateway runs a (D)TLS echo server. In the second
setup the gateway only plays a routing role, and forwards the traffic to another device via
the radio interface which runs the echo server. For the radio based communication only
the UDP based communication is evaluated.

The TLS and DTLS implementations are completely independent from the IP layer. In
order to keep the results consistent the IPv6 was used for all experiments.

4http://code.google.com/p/webiopi/
5http://people.inf.ethz.ch/mkovatsc/californium.php
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4.3 Experiment results

4.3.1 Code Size

Table 4.1 shows the sizes of the different elements in the three main configurations. The
sizes for the Handshake and Record protocols show the differences in the required func-
tions. These code blocks are required also when both protocols are active, which results
in slightly bigger code size. The heavy part of the implementation is obviously the group
of the cryptographic primitives. The size for the ECC library also includes the pre-loaded
certificate. This is a self-signed certificate for testing purposes, however, it can be easily
changed to a normal one. The ECDHE support was disabled for this measurement and the
support for that adds 2kB extra size for the final result in all configurations.

The main point in the table is that because of the shared code of the TLS and DTLS, the
support of both protocols only increases the code size by 10-15%. Compared to the other
presented implementations [27] [28] [29], on the one hand, this saves a significant amount
of code-memory when both protocols are in operation. On the other hand, this approach
makes much easier the integration of new cryptographic elements.

The size of the security part can be decreased significantly with the Pre-Shared Key ex-
change algorithm, since in this case the MicroECC library can be elided, and only a few
hundred bytes are needed in exchange for the PSK manager class.

Element DTLS TLS TLS & DTLS
AlertProtocol 0.3 kB 0.3 kB 0.3 kB
HandshakeProtocol 4.3 kB 3.5 kB 4.5 kB
RecordProtocol 2.4 kB 2.5 kB 2.9 kB
TLS 1.7 kB 1.7 kB
DTLS 2.1 kB 2.1 kB
Sessions & states 0.6 kB 0.6 kB 0.6 kB
KDF & HMAC 1.4 kB 1.4 kB 1.4 kB
MD5 1.3 kB 1.3 kB 1.3 kB
SHA 0.9 kB 0.9 kB 0.9 kB
SHA256 1.1 kB 1.1 kB 1.1 kB
AES 3.1 kB 3.1 kB 3.1 kB
MicroECC + Certificate 5.0 kB 5.0 kB 5.0 kB
Total 22.5 kB 21.4 kB 24.9 kB

Table 4.1: TLS and DTLS code size

Figure 4.1 shows the impact of the different ciphers for the code size. The baseline for the
bar chart is the NULL cipher, since it does not use any encryption/decryption. For the
AES in CBC mode, the AES block cipher bears with the largest portion, the CBC mode
in itself is nearly negligible. This mode uses the hardware encryption and the software
decryption. The CCM mode requires more code-space than the CBC mode, but it provides
authenticated encryption. For the true comparison, one of the hash algorithms should be
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added to the CBC mode, and in this case the two bars would be similar. However, the
situation is not this clear since the hash functions are used at other places (for instance
in the PRF algorithm), which means that these cannot be elided for the CCM mode. For
the CCM mode the AES block decryption is not used, but the mode in itself is more
complicated. The last bar shows the two modes together which basically means that the
AES block decryption and some extra ‘if conditions’ are added to the code.

Figure 4.1: Code size difference for the cipher algorithms

Figure 4.2 summarizes the code sizes for some different secure protocol stack configurations
which can be used in real-life. The network layer is IPv6 for 4 cases and IPv4 for the last
bar, showing the complexity difference between the two protocols. The dark-gray parts are
the TCP and UDP Protocols, the mid-gray ones are the TLS for HTTPS and DTLS for
CoAPS. At the application level (light-gray) I compared the HTTP server and the CoAP
server implementations with one simple resource for each.

CoAPS – General This protocol stack uses the same installation as the ones for HTTPS,
except the session handling. Namely the ECDH key exchange and the AES in CBC
mode which makes in easily interoperable with CoAP clients running over any cryp-
tographic library.

CoAPS – Traditional This setup is ‘Traditional’ because it uses the PSK key exchange
with AES in CCM mode and this combination is used in other CoAP over DTLS
implementations for WSNs.

CoAPS – Minimal This case illustrates the smallest possible security layer with the
PSK key exchange and the NULL cipher. This stack can be used to authenticate the
data, such as measurements from the server to the client.

HTTPS – IPv6 This version uses the ECDH and the AES in CBC mode, making it
interoperable with web browsers. It also includes the session handling. As it can be
seen, the TCP is significantly larger than the UDP.

HTTPS – IPv4 This version uses the IPv4 which is smaller with approximately 10 kB
than the IPv6. This leaves enough code memory for a complex application too. The
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layers above the network layer are the same as in the previous case.

The figure shows the fact that the reliability functions at the datagram communication
stack are moved from the transport layer to the security and application layers (the UDP
is smaller than the TCP, but the DTLS is larger than the TLS and the CoAP is larger
than the HTTP). However, the summarized size-gain between the ‘CoAPS – General’ and
the ‘HTTPS – IPv6’ is still 12%.

Figure 4.2: Stack code size summary for TCP and UDP bound application
layer protocols.

4.3.2 Heap usage

In order to get a clear picture about the heap usage of the components, I developed a new
plugin for the java based control device application of the iSense operating system (called
as iShell). The node sends information via the serial line when the size of the used heap
changes and the plugin gathers, summarizes and displays these.

Figure 4.3 shows the results of the heap usage measurement for the TLS (dashed black),
DTLS (gray), TCP (black), UDP (dashed gray). For the TLS and DTLS protocols the chart
shows the heap requirements for one handshake. The UDP does not use any connection,
and in this case the line only shows the standby memory requirement for one listening UDP
socket. For the TCP, the figure shows the heap requirements for one new connection. The
behavior of the different cases can be compared with regard to duration as well, however
because of the frequent memory reports via the serial line, the actual time values cannot
be precisely compared to other time measurements in this section.

An important difference between the UDP and the TCP sockets, regarding the heap usage,
is that the TCP uses a so-called SendBuffer for the stream based communication. Because
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of this buffer, the TCP (and the TLS) reaches higher peaks when the node is sending
packets.

Figure 4.3: Heap usage for TLS/DTLS (and TCP/UDP for reference).

All curves start with the startup and initialization of the device and reach the running level
in some seconds. The connections are initiated after 5 seconds. The highest peak in the TLS
and the DTLS curves is the point when the device sends the certificate to the client. After
this peak, the device is working on the ECC calculation for approximately 7 seconds. The
second peak shows the end of the ECC calculation. This is the point where the symmetric
key derivation takes place and the server sends the final handshake messages. In this figure
the behavioral difference between the TLS and the DTLS becomes obvious from here.

After the last handshake messages (t = 13–14), the TLS implementation immediately
deletes the objects which were used for the handshake and are not needed any more. The
SendBuffer is deleted at the 14th second in the figure, and the connection reaches the
normal connected level. Some seconds later (t = 17), the client closes the connection and
the server deletes the related objects expect the one which stores the session ID and the
master key for possible future session re-negotiation.

The UDP protocol does not provide any reliability for the datagrams. Because of this,
during the DTLS handshake, both parties can inform the communication partner about
lost messages. Since the server cannot be sure that the last messages have been reached the
client, it must be prepared for retransmission for some time after the end of the handshake.
This period ends after 22.5 seconds in the figure, and the DTLS deletes the handshake re-
lated objects. The DTLS connection reaches the minimum of the required heap at this time.
This minimum running level is slightly below the required level for the TLS conncetion.
Finally, after the 30th second the connection is terminated.

The TCP connection, which is shown in the figure, is also initiated at the 5th second.
The connection is open without any other data exchange until the 20th second, where it
is closed.

The figure shows that, except the above detailed message storing difference, the behavior
of the TLS and DTLS are similar, and the TLS requires the most memory, out of the 4
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compared cases. After the connection has been established, the secured connections require
approximately 400 bytes more than the non-secured ones.

4.3.3 Handshake time

The required time to establish the connection was measured for different cases. For these
measurements, there is not much difference between the TLS and the DTLS, the figures
shows DTLS measurements only. The time was measured for 20 connections in each case
and the results are shown in box plots.

The results for the ECDH based key exchange can be seen in Figure 4.4. The time is
shown in seconds here, and as it can be seen, the radio does not cause a significant delay,
compared to the calculation itself.

Figure 4.4: ECDH handshake time

Figure 4.5 shows the results for the PSK based key exchange and also for the resumed
sessions. The time is shown in milliseconds here. The figure demonstrates the strength of
the sessions when the ECC based cipher suites are used. However, it can be seen too, that
in case of the PSK based cipher suites, the session storing is practically useless. All in all,
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the required time for the connections is stable, the deviation is small, especially when the
gateway node is used.

Figure 4.5: PSK handshake time and resume time

4.3.4 RTT measurements

This section presents the round trip time measurement results for the implanted protocols.
For these measurements, the two scenarios were used from Section 4.2. The results for the
TLS and DTLS are shown in different figures, and each figure indicates the performance
of the different cipher suites. The plots also show the pure TCP and UDP results for
comparison purposes.

The colored areas in the following curves indicate the values between the lower and the
upper quartiles, and the lines in the middles show the medians. Before the communication
is possible, the handshake must be performed for the secured cases, but the time for that
is not included in these plots.

Figure 4.6 shows the RTT results between the computer and the gateway in case of the
stream based communication. In this first scenario, the payload length is growing up to
2700 bytes in steps of 100 bytes and the message exchange is repeated 50 times for each
length. Since the maximum transfer unit for IPv6 is 1280 bytes, the data cannot be sent
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Figure 4.6: TCP/TLS round-trip-times for the Computer–Gateway-Scenario

in one packet for the larger payload sizes. The TCP and the UDP handles this differently.
The TCP collects the data into the previously mentioned SendBuffer, and creates approx-
imately 500-byte-long IP packets out of it. The transmission window scaling of the TCP
is not implemented currently in the iSense. This way the IPv6 packets do not have to be
fragmented. All curves show this TCP segmentation, but the position of the jumps are
not the same for the pure TCP and the TLS because of the protocol overhead. The figure
demonstrates the speed difference of the CBC and the CCM modes, the CCM is approx-
imately two times faster. An interesting result is that the NULL cipher is only slightly
faster than the CCM (it is even slower for small packets). The reason is that the MAC
algorithm (SHA-1 in this case) works slower than the hardware accelerated CCM mode.
The optimization of the existing MAC algorithms was not part of this work, but these
should be investigated in the future.

The results for the datagram based communication are shown in Figure 4.7. In contrast
with the TCP, the UDP does not care about the size of the packets. It simply pushes the
data to the IPv6 layer which results in IPv6 fragmentation after every 1280 bytes. This
second figure shows that the IPv6 fragmentation requires longer processing time than the
‘fragmentation’ in the TCP layer. Except this difference, the behavior of these curves is
similar to the TCP based ones. All in all, the datagram based communication is faster
than the stream based.

The curves (except for the steps discussed above) are growing in a linear way. The difference
between the gradient (between the unsecured and the secured communication) is basically
caused by the ciphers and the MAC algorithms. If we elide the steps from the curves, the
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Figure 4.7: UDP/DTLS round-trip-times for the Computer–Gateway-
Scenario

UDP and the TCP require approximately 0.7-0.8 milliseconds, the DTLS 4 milliseconds
and the TLS 4.3 milliseconds per 100 bytes. As a summary I can say that the round trip
time remains reasonable for the secure protocol stacks even for larger payload sizes.

Figure 4.8 shows the RTT results for the 1 radio hop scenario. As it was for the previous
figures, the RTT was measured after the handshake. In this case the payload length is
growing up to 1170 bytes in steps of 10 bytes and the message exchange is repeated 50 times
for each length. In this figure, the steps are caused by the fragmentation in the 6LoWPAN
layer. The essence of this figure is that the delay of the radio communication dominates
the delay of the security parts. While the CCM, NULL and the pure UDP communication
cannot be really distinguished, the CBC mode works visibly slower. However, the relative
distance of the curves is reducing for the higher payload sizes as well. This relative difference
is 44% for 100 bytes, 39% for 500 bytes and 25% for 1000 bytes.

4.4 Evaluation results

This chapter showed the interoperability and performance capabilities of the created im-
plementation. The code size related sections proved the strength of the modular building
blocks of the solution, since the required code-memory can be modified on a large scale,
depending on the actual use-case. The time related measurements showed that the hand-
shake requires significant time in case of the ECC based cipher suites, but the round trip

44



Figure 4.8: Round-trip-times for the Computer–Gateway–1 radio hop-
Scenario

time is tolerable, and the introduced delay is even negligible when the communication uses
the low-power radio.

45



Chapter 5

Conclusion

The security is getting more and more important for all Internet based applications nowa-
days. As the wireless sensor networks move towards the Internet of Things, standardized
security protocols should be used to protect the data communication.

This paper showed that it is possible to use the TLS and DTLS protocols with various
cipher suites in embedded systems. The selected platform for this work was the iSense
sensor network operating system, running on the iSense JN5148 microcontroller based
devices from the coalesenses GmbH. For the baseline of this work, I used an existing TLS
server solution from Michael A. Strebel [30]. As it was detailed before, the code was in bad
condition. Actually the final version kept only the basic shape of his work. I restructured,
optimized and extended the main building blocks (except the hash functions).

I modified the TLS related codes in order to enable the code-size friendly DTLS imple-
mentation. The DTLS code contains all important features, including the cookie exchange
mechanism. I added the possibility to enable the session support, and as it was shown dur-
ing the evaluation, this is important for the ECC based cipher suites. I extended the usable
cipher suites from 2 to 10 which enables much more freedom, and it is unprecedented in
existing solutions which provide also only 1–2 suites. Many of the provided cipher suites
also provide interoperability with commercial solutions.

I adopted the MicroECC library which can perform ECC calculations in approximately
7 seconds, this is 3 times faster than the original ECC solution. The improved version of
the AES block cipher works 8 times faster (with hardware acceleration) than the original
version in the Wiselib algorithm library.

The code is compilable in a modular fashion which enables the use of the TLS and the
DTLS separately and together. This is also true for the different cryptographic algorithms,
resulting a scalable solution.

I tested the interoperability capabilities of the implemented protocols with various appli-
cations and cryptographic libraries. The secured HTTP server can work together with web
browsers, and the interoperability of the secured CoAP was also tested with two different
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client side applications. The evaluations showed that the connection setup time is more or
less tolerable for the ECC based cipher sites, and fast enough for the pre-shared keys and
for the resumed sessions. The achievable communication speed is also reasonable, especially
when the low-power radio is also in-use.

As future work, the performance of the hash algorithms should be evaluated and it is
expectable that improvable parts will be found. Regarding the ECC calculations, it can be
considered to re-write the critical parts in assembly language. From the security aspect, the
random number generator must be improved before real-life deployment of the protocols.

All in all, the implemented protocols can be used in various scenarios. It is expected that
these will be included into real-life iSense applications when we will reach the age of the
Internet of Things.
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