
Budapest University of Technology and Economics

Faculty of Electrical Engineering and Informatics

Department of Automation and Applied Informatics

Hyphenation using deep neural networks

TDK Thesis

Author Advisor

Gergely Dániel Németh Judit Ács

October 27, 2017



Contents

Kivonat 4

Abstract 5

Introduction 6

1 Hyphenation algorithms 7

1.1 Liang's algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1.1 Choosing patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2 Hunspell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2.1 Hungarian non-standard hyphenation patterns . . . . . . . . . . . . 9

1.2.2 Hyphenation errors of the Hunspell . . . . . . . . . . . . . . . . . . . 10

2 Neural networks 11

2.1 Feedforward neural network . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Convolutional neural network . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Recurrent neural network . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.1 Long short-term memory . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Neural network APIs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5 Neural networks for hyphenation . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Data preprocessing 15

3.1 Hungarian Webcorpus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Cleaning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3 Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1



3.3.1 Non-standard hyphenation with character addition . . . . . . . . . . 16

3.3.2 Special characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.4 Long word cut and padding . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 Machine Learning based Hungarian hyphenation algorithms 18

4.1 Character classi�cation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.2 Feedforward neural network . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.2.1 Data preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.2.2 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.3 Train-, validation-, test data . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.3.1 Original method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.3.2 Unique words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.3.3 Unique characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.4 Convolutional neural network . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.4.1 Data preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.4.2 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.5 Long short-term memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5 Results 26

5.1 Evaluation values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.2 Feedforward neural network . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.3 Convolutional neural network . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.4 Long short-term memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.5 The 3 model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

6 Evaluation 30

6.1 Error categorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6.2 Model performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6.3 Further research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6.3.1 Multilingual hyphenation algorithm . . . . . . . . . . . . . . . . . . . 33

6.3.2 Non-standard hyphenation . . . . . . . . . . . . . . . . . . . . . . . . 33

2



Conclusion 34

List of �gures 35

List of tables 36

Bibliography 38

3



Kivonat

A szótagoló algoritmusok az elválasztás feladatának számítógépes megoldásai és legtöbbet

dokumentumok tördelésekor használják, azonban a szavak elválasztásának hatása van a

költészetben vagy akár a szövegfelolvasó, szövegfelismer® alkalmazások fejlesztésében is.

A mélytanulásos módszerek el®retörésével megn®tt az igény a nyelvtechnológiai problé-

mák gépi tanulás alapú megoldására is. Az online elérhet® corpus adatbázisok mennyisége

el®segíti, hogy a módszereket kipróbálhassuk olyan problémákon is, mint a szótagolás.

Az itt következ® dolgozatban a szerz® egy új fajta szótagoló algoritmust ismertet. A jelenleg

használt szótagoló algoritmusok rövid ismertet®je és három nyelvtechnológiában elterjedt

neuráls háló bemutatása után rátér ezek alkalmazására a szótagolás terén.

4



Abstract

Hyphenation algorithms are the computer based ways of syllabi�cation and mostly used

in typesetting, formatting documents but the hyphenation of words a�ects the poetry as

well as text-to-speech and speech recognition algorithms.

The rise of the deep learning paradigms increased the demand for solving natural language

processing problems by machine learning. The amount of online available corpora facilitates

the use of these paradigms in problems like hyphenation.

In the following thesis, the author shows a new hyphenation algorithm. After a short sum-

mary of the currently used algorithms, the study describes three neural networks used in

Natural Language Processing and shows a way of their application in the �eld of hyphen-

ation.

5



Introduction

Hungarian children learn the way of syllabi�cation in their early teens. The hyphenation

rules are clearly de�ned [1], and after years of practice most people use it naturally and

this is seen as part of the common knowledge.

In Hungarian, hyphenation depends mostly on the word itself and not from the surround-

ings. However, some words have di�erent hyphenations based on the meaning which can

only be derived from the context. For instance, me-gint (again) and meg-int (warn). Al-

though it is a known issue, most hyphenation algorithms use only the word to insert the

hyphens and de�nes exactly one hyphenation for a word.

Hyphenation algorithms

Commonly used hyphenation algorithms are based on the methods de�ned in the �rst

version of TEX [12]. It is a pattern based hyphenation algorithm with thousands of man-

ually chosen patterns. However its accuracy is good enough for the Research Institute for

Linguistics of the Hungarian Academy of Sciences to collect its own patterns and use it

in the online Hungarian hyphenation portal [16]. On this website1 users can verify their

syllabi�cation.

Language corpus

In natural language processing (NLP) corpus is a collection of linguistic data. Although it

is not only a group of words or sentences but linguistic information and statistics of the

words, in this thesis only the words are used.

While we have enormous amount of words in corpora, it is dropped quite low in terms

of pre-hyphenated words. One way to create hyphenated words is to use already available

hyphenation algorithms.

1http://helyesiras.mta.hu/helyesiras/default/hyph

6



Chapter 1

Hyphenation algorithms

There are two main types of the common hyphenation algorithms: rule-based and dictionary-

based. The world of open-source software de facto uses the TEX's hyphenation algorithm.

The following is a good summary of the early TEX hyphenation algorithm by Liang [15,

page 3]:

The original TEXhyphenation algorithm was designed by Prof. Knuth and

the author [of his book] in the summer of 1977. It is essentially a rule-based

algorithm, with three main types of rules: (1) su�x removal, (2) pre�x re-

moval, and (3) vowel-consonant-consonant-vowel (vccv) breaking. The latter

rule states that when the pattern 'vowel-consonant-consonant-vowel' appears

in a word, we can in most cases split between the consonants. There are also

many special case rules; for example, "break vowel-q" or "break after ck". Fi-

nally a small exception dictionary (about 300 words) is used to handle partic-

ularly objectionable errors made by the above rules, and to hyphenate certain

common words (e.g. pro-gram) that are not split by the rules. The complete

algorithm is described in Appendix H of the old TEXmanual.

This book of Liang was published in 1983 after the algorithm described in it had became

the default hyphenation of the TEX82 version of TEX. The most important innovation of

the new algorithm was that it used hyphenation patterns which are basically schemes that

the program can look for in the words.

The latest version of TEX uses the Hunspell's hyphenation algorithm [17].This method is

based on Liang's algorithm completed with non-standard hyphenation extensions.

The following sections show the basics of Liang's algorithm and the Hunspell [15, 17].

1.1 Liang's algorithm

The basic concepts of Liang's algorithm are the hyphenation patterns. The process of

hyphenating the word hyphenation is the following:

7



First of all, the algorithm checks if the word is in the exception list. These are essentially

hard-coded hyphenations of full words. Hyphenation word is not in the exception list.

Secondly, the algorithm inserts a dot in both end of the word. This will be used when the

algorithm checks for patterns used only in the beginning or the ending of words.

.hyphenation.

The next step is the pattern matching. The patterns used in Liang's algorithm consist of

characters and numbers. When it searches for matching patterns in a word, it skips the

numbers and compares the letters with the word.

Hyphenation's patterns are the following: hy3ph, he2n, hena4, hen5at, 1na, n2at,

1tio, 2io [15, page 37]. Placing the patterns in the right position and inserting the num-

bers in the patterns between the letters we got Figure 1.1.1

. h y p h e n a t i o n .
h y3p h

h e2n
h e n a4
h e n5a t

1n a
n2a t

1t i o
2i o

.0h0y3p0h0e2n5a4t2i0o0n0.
h y-p h e n-a t i o n

Figure 1.1. The hyphenation of 'hyphenation' by Liang's algorithm

After matching all the patterns the algorithm inserts one number between every two letters

of the word. If there was no pattern match with a number at that position, it is a 0,

otherwise the maximum of the matching numbers.

The �nal step is that the algorithm hyphenates at odd numbers and does not hyphenate

if it is even. Therefore, the hyphenation of hyphenation: hy-phen-ation.

1.1.1 Choosing patterns

The e�ectiveness of the algorithm depends on the choice of patterns. In 1982, Liang's goal

was to achieve good error rate with relatively low use of disk space. The �nal program used

around 4500 patterns, occupied 25K bytes of storage and found 89% of the hyphens in the

dictionary it was tested on. The complete hyphenation dictionary of these words would be

500K bytes.

The choice of patterns was manual but a computer scientist in the time of machine learning

says that it's a typical deep learning problem.
1The visualization method comes from Németh's article [17].

8



1.2 Hunspell

Hunspell's hyphenation algorithm is currently used in TEX and OpenO�ce. It is based on

Liang's work with Sojka's non-standard hyphenation extensions [20] and was published by

Németh in 2006 [17].

The �nding of non-standard hyphenations uses Liang's patterns and an extension to charac-

ter replacement. For example the German word Zucker with the non-standard hyphenation

c1k/k=k gets a new k letter before the hyphen: Zuck-ker.

The di�erent languages use di�erent non-standard patterns whose sizes and types vary

signi�cantly. Here we summarize the list of Hungarian non-standart hyphenations.

1.2.1 Hungarian non-standard hyphenation patterns

The Hungarian language uses simpli�ed forms to represent its double digraph and trigraph

consonants (sz + sz → ssz, dzs + dzs → ddzs, etc.), but when the word is hyphenated

into two part around these letters it undoes the simpli�cation (sz-sz, dzs-dzs). A classic

example: asszonnyal → asz-szony-nyal.

Its di�culty comes from the fact that these digraph-simpli�cations can represent two letters

(a monograph and a digraph) like ggy as g-gy in meg-gyúj-tot-ta. So the algorithm must

know whether its two digraphs are simpli�ed or not. Table 1.1. illustrates these extensions

in the v20110815 version of the Magyar Ispell (Hunspell Hungarian pattern dictionary)2.

The meaning of the patterns showed in the fröc5csen/cs=,4,1 example: The part

before the slash character is the standard hyphenation pattern. After it comes the rede�ni-

tion: cs=,4,1 means that from the 4th character of the pattern in 1 letter long it changes

the characters as cs= where the = represents the possible hyphen. In this case, the letter

c will be replaced by the cs= so if it happens to be a hyphenation break, the algorithm

will add a s character into the word.

Digraph Example No. of patterns

ccs fröc5csen/cs=,4,1 96
ggy meg3gyes/gy=,3,1 39
lly gal5lya/ly=ly,3,3 20
nny szen5nye./ny=ny,4,3 97
ssz hos5szal./sz=,3,1 1727
tty hat5tyú/ty=ty,3,3 18
zzs z5zsel./zs=zs,1,3 4

Table 1.1. The hyphenation of 'hyphenation' by Liang's algorithm

2http://magyarispell.sourceforge.net/

9



1.2.2 Hyphenation errors of the Hunspell

Most of the hyphenation errors come from the fact that the Hunspell's creators wanted

to create a typesetting algorithm so they decided to not hyphenate one letter long word

parts at the begining and the ending of the words. However, when it comes to compound

words, these one-letter parts can be in the middle of the word. There are some examples

of hyphenation errors in Table 1.2.

Hyphenation by Hunspell:
au-tó-val
szem-üveg-gel
has-izom
messze
fölül
top-ikok
vi-deó
geo-dé-zia
diszk-ri-mi-na-tív

Correct hyphenation:
a-u-tó-val
szem-ü-veg-gel
has-i-zom
mesz-sze
föl-ül
to-pik-ok
vi-de-ó
ge-o-dé-zi-a
disz-kri-mi-na-tív

Error type:
one-letter
one-letter
one-letter
no hyphen
no hyphen
wrong place3

one-letter
no hyphen
wrong place

Table 1.2. Hyphenation errors in Hunspell

3This word is hyphenated wrongly even in the online hyphenation tool of the Research Institute for
Linguistics.

10



Chapter 2

Neural networks

The following summary of neural networks is based on the Deep learning in neural networks:

An overview by Schmidhuber [18].

2.1 Feedforward neural network

A feedforward neural network approximates any given function f as y = f(x, T ) where T

represents those parameters with which the model can learn to achieve the best approxi-

mation. These networks are called feedforward because the information �ows through the

function from x to inner (hidden) parts and �nally to y. There are no directed cycles or

loops in the network.

x z yW, b g()

x z1 h1W1, b1 g1() z2W2, b2 g2() y

x1

x2

x3

h11

h12

h13

h14

h21

h22

h23

h24

h31

h32

y1

y2

Figure 2.1. Basics of Feedforward Neural Networks (F(F)NN)

The simplest model is a single-layer perceptron which has a weight W and bias b, so for an

input x can compute the ŷ = Wx + b function where the learning method optimizes the

weight W and the bias b. Later on researchers showed that adding a non-linear activation

11



function to it can fasten the learning method and makes it usable in non-linear functions

[4]. So from the ŷ =Wx+b the function changed to z =Wx+b and the prediction became

ŷ = g(z).

The deep neural network's name comes from that instead of a single-layer perceptron the

output of the above equation g(z) now called as h1 is used as the input of the next layer

and so for many-many layers. So for the �rst layer it became z1 =W1x+b1 and h1 = g1(z1)

and to the second layer: z2 =W2h1+b2 and h2 = g2(z2) and so on, until the last, nth layer

where the an became the prediction hn = ŷ. Figure 2.1. summarizes idea of feedforward

networks.

A single iteration of training consists of a forward step where the model predicts ŷ, the

evaluation step where the model compare the ŷ and y with some type of gradient descent

[7] and lastly a backpropagation step where the model updates the weights [8].

2.2 Convolutional neural network

Convolutional neural networks were introduced to solve image recognition problems [6].

A convolutional neural network has a �lter (or kernel) which is sliding around the input

(image) and multiplying the values in the �lter (the weights of the �lter) with the original

input values (pixels). Summing up these values the network get a single number for every

position of the �lter. This will be the output of the layer. The size of the output depends

on the �lter size and the parameter strides which de�nes the steps of the �lter's sliding.

Let aij be the cell (pixel) of the input (image) in the ith row and jth column and fij the

cell of the �lter, while hij the output. Thus the �rst cell of convolutional layer's output is

h11 =
∑

x=1..k,y=1..l

axyfxy,

(where k and l are the height and width of the �lter respectively), and assuming that the

stride is 1, the hij is:

hij =
∑

x=i..(i+k),y=j..(j+l)

axyf(x−i+1),(y−j+1).

Figure 2.2. illustrates a convolutional network with a (3, 3) kernel.

Kim, Jernite, Sontag and Rush showed a way of using 1 dimensional convolutional neural

networks and LSTM networks in character sequences [10], where the �lter size says that

how many character should be included into the convolution.

2.3 Recurrent neural network

A recurrent neural network (RNN) is suited for modelling sequential phenomena. At each

time step t, an RNN takes the input vector xt ∈ <n and the hidden state vector ht−1 ∈ <m

12



a11a11a11a11a11a11a
11

a
12

a
13

a
14

a
1n

a11a11a11a11a11a11a
21

a
22

a
23

a
24 ... a

2n

a11a11a11a11a11a11a
31

a
32

a
33

a
34

a
3n

... a11a11a11a11...

a11a11a11a11a11a11a
m1

a
m2

a
m3

a
m4

a
mn

a11a11a11a
11

a
12

a
13

a11a11a11a
21

a
22

a
23

a11a11a11a
31

a
32

a
33

a11a11a11f
11

f
12

f
13

a11a11a11f
21

f
22

f
23

a11a11a11f
31

f
32

f
33

h
11

h
12

Figure 2.2. Basics of Convolutional Neural Network (CNN)

and produces the next hidden state ht by applying the following recursive operation: ht =

f(Wxt + Uht−1 + b). In theory, an RNN can store all information in ht, however learning

long-range dependences with it is di�cult due to vanishing/exploding gradients [2].

2.3.1 Long short-term memory

Long short-term memory (LSTM) [9] addresses the problem of learning long range depen-

dencies by augmenting the RNN with a memory cell vector ct ∈ <n at each time step.

Concretely, one step of an LSTM takes as input xt , ht−1, ct−1 and produces ht , ct via the

following intermediate calculations:

it = σ(W ixt + U iht−1 + bi)

ft = σ(W fxt + Ufht−1 + bf )

ot = σ(W oxt + Uoht−1 + bo)

gt = tanh(W gxt + Ught−1 + bg)

ct = ft � ct−1 + it � gt

ht = ot � tanh(ct)

Here σ(·) and tanh(·) are the element-wise sigmoid and hyperbolic tangent functions, � is

the element-wise multiplication operator, and it, ft, ot are referred to as input, forget, and

output gates. At t = 1, h0 and c0 are initialized to zero vectors. Parameters of the LSTM

are W j , U j , bj for j ∈ i, f, o, g. See the visualisation of an LSTM unit in Figure 2.3.1

Bidirectional recurrent neural networks are based on the principle to split the neurons of

a regular RNN into two directions, one for positive time direction (forward states), and

another for negative time direction (backward states) [19]. In terms of characters in a word

it means that the letters can a�ect their surroundings on both sides.

1Visualisation and more : http://colah.github.io/posts/2015-08-Understanding-LSTMs/

13



x
t

h
t-1

c
t-1 c

t

h
t

σ

.

tanhσ σ

h
t

.

+
tanh

.f
t

i
t

g
t

o
t

Figure 2.3. Basics of Long short-term memory (LSTM)

2.4 Neural network APIs

When it comes to developing deep learning systems, recently the use of neural network

APIs are rising both in industrial and scienti�c �eld. Its main reasons are the quickness

of designing and the quickness of adaptation. The active community behind these APIs

makes sure that the systems are up-to-date with the recent scienti�c results.

The most important APIs: TensorFlow2, Torch73, Keras4. The programmings of this thesis

are based on Keras[3].

2.5 Neural networks for hyphenation

There is a paper about a similar task: A Norwegian backpropagation neural network based

hyphenation algorithm [14], however it was tested only on a very small database of words.

2TensorFlow: https://www.tensor�ow.org/
3Torch7: http://torch.ch/
4Keras: https://keras.io/

14



Chapter 3

Data preprocessing

In the following chapter I show the preprocessing methods I had used before I started the

training. Data sizes mentioned here are generated by using the �rst 100 000 rows of the

Hungarian Webcorpus's frequency list �le.

Table 3.1. illustrates the preprocessing steps and the amount of dropped words.

Origin Cleaning Non-standard Special chars Long words Final

Words 100000 16322 1115 646 7 81910
% of the origin 100 16.32 1.11 0.65 0.01 81.91
% of the previous - 16.32 1.33 0.78 0.01
Words after - 83678 82563 81917 81910

Table 3.1. Data preprocessing

3.1 Hungarian Webcorpus

Hungarian Webcorpus is the largest Hungarian language corpus with over 1.48 billion words

and it is available in its entirety under a permissive Open Content license [13]. Because it

is collected from websites with a .hu domain, it contains not only Hungarian words but

from many di�erent languages too. However it has over a billion words, for the most of

this study we will use only a smaller portion of it (100 000 words).

3.2 Cleaning

In the �rst stage of the data preprocessing I used the following cleaning methods:

All lowercase Setting the letters in lower case form.

Filtering special characters Deleting the following punctuation characters from the

texts (the python function string.punctuation de�nes them environment de-

pendent so it can be di�erent elsewhere):

! " # $ % & ' ( ) * + , - . / : ; < = > ? @ [ \ ] � _ ` { | } �

15



Filtering numbers Deleting the numbers from the texts.

After the data cleaning I deleted the multiple occurrences (mostly caused by the upper case

of sentence starting words) and the empty data (caused by deleting standing numbers).

The remaining data size was 83678 words.

3.3 Filtering

Some of the models I designed are not suitable for all the words in the cleaned data.

3.3.1 Non-standard hyphenation with character addition

There are non-standard hyphenations where a character addition occurs (see more in 1.2.1

section). The following table shows these additions in the Hungarian language (Table 3.2.).

Since the models use character tagging that may interfere, I removed them from the

database. Another way of solving the problem would be to only remove these additions.

Note that in the �nal model if we try to predict a word with this type of non-standard

hyphenation it may �nd the place of the hyphen but cannot solve the addition.

There were 1115 words with this type of hyphenation in the dataset. There are words like

asszonnyal which contains multiple of non-standard hyphenation so the total amount was

1117 and I used number when I calculated the frequencies.

Before After Number Frequency(%)

ccs cs-cs 21 1.88
ggy gy-gy 21 1.88
lly ly-ly 37 3.31
nny ny-ny 210 18.80
ssz sz-sz 813 72.78
tty ty-ty 13 1.16
zzs zs-zs 2 0.02

Table 3.2. Hungarian non-standard hyphenation

3.3.2 Special characters

My models use an One-hot encoding for the Hungarian character set, which is:

a á b c d e é f g h i í j k l m n o ó ö ® p q r s t u ú ü ¶ v w x y z

In the previous step, we cleaned the punctuation characters from the data, but there are

remaining letters like ô. With �ltering these words we lost another 646 data row. Table 3.3.

illustrates frequency of these special characters among the 646 words. Note that one word

could contain multiple non-Hungarian characters.

16



Char No. Frequency(%) Char No. Frequency(%)

ô 319 49.38 « 13 2.01
ä 61 9.44 � 13 2.01
  37 5.73 â 9 1.39
¨ 29 4.49 © 9 1.39
¤ 28 4.33 » 9 1.39
î 26 4.02 �a 8 1.23
ÿ 25 3.87 �a 8 1.23
ë 18 2.79 ° 8 1.23
�e 18 2.79 
u 8 1.23
¬ 17 2.63 º 8 1.23
¥ 15 2.32 ² 6 0.93
£ 15 2.32 ¢ 6 0.93
ç 14 2.17 ý 5 0.77
¯ 14 2.17 Other 69 10.68

Table 3.3. Non-Hungarian characters in the data set

3.4 Long word cut and padding

The CNN and LSTM models use �xed size words as input so I had to pad the shorter

words with padding and skip the longer words. The FFNN model needs pre- and post-

word padding too so I de�ned them as � and $ respectively. $ was chosen as the length

standardizing �lling character and I �lled the words' end with it.

The �xed size of the words was 30. There were only 7 words out of the range and all of

them were gibberish (Table 3.4.).

Word Possible origin

mailtomaiserszechenyinkzsasulinethu mailto hyperlink
httpdelphiszechenyinkzsasulinethu HTTP hyperlink
ftpftpszechenyinkzsasulinethudelphi FTP hyperlink
httpwwwegyismertszerverhuképgif HTTP hyperlink

orgapachecatalinacorestandardpipeline ?
standardpipelinevalvecontextinvokenext ?

httpwwwsomeunknownplacenetmypicturegif HTTP hyperlink

Table 3.4. Words out of the �xed length

17



Chapter 4

Machine Learning based Hungarian

hyphenation algorithms

4.1 Character classi�cation

These models are based on character classi�cation. The letters in the words are inserted

into groups according to their position between the hyphens. I de�ned two classi�cation

patterns but later I only used the simpler one.

BM The BM classi�cation uses two classes:

• B: In the beginning of the syllables.

• M: Every other letter.

The word leopárd (leopard) hyphenated as le-o-párd and tagged as BMBBMMM.

BMES

• B: In the beginning of the syllables.

• M: The middle of the syllables. Hyphens are neither before nor after this character.

• E: Ending character, a hyphen is placed after this.

• S: Single character: it is between hyphens.

The le-o-párd tagged as: BESBMME

18



4.2 Feedforward neural network

In the feedforward neural network we want to decide to which class a speci�c character

belongs. To do it we use the character and its surroundings coded in one-hot as the input

layer of a fully connected network. The output is the class.

The network is summarized in Figure 4.1. The blue boxes are the letters used to de�ne the

tag of L, in a �ve window length method it represents the �ve letter ��LEO in one-hot

encoded way, then �atten them to make input for the FFNN network. The outputs of the

network are two numbers: the probability of B andM . The process chooses the larger one,

B. The orange boxes are for the letter E and the green ones are for the D.

L

E

O

P

Á

R

D

^

^

$

$

^

^

L

E

O

000...01

000...01

0..010..0

0..010..0

0..010..0

0.912

0.088
B

P

0.137

0.863
M

Á

R

D

$

$

0.012

0.988
M

B

B

M

M

0
0
...
0
1

Figure 4.1. Feedforward neural network

4.2.1 Data preparation

In the following I show the methods of creating the training data by using an example.

This example is the 5-length windowed BM classi�ed preparation of the o character of the

leopárd word. Figure 4.2. summarizes the data preparation.

Learning from the surroundings (Windowing)

The 5-length window means that we use 5 characters around the o letter to classify it. The

value 5 means that we will use 2 letters before the actual character, itself and 2 letters after

it. Implementing it on leopárd the windows are from �� l eo to ár d $$ where the window of

letter o is: le o pá.

19



windowing tagging

Hunspell

one-hot

Character processing

Figure 4.2. Character preprocessing

Note that if the windows are out of the word's range we add � character at the beginning

of the word and $ character at the end of it. We can see the paddings in Figure 4.1.

Labelling

To determine the labels of the training data I used the Hunspell's hyphenation algorithm.

In this example it is the BM labelling, so the class of the letter o is B.

One-hot encoding

So far we have worked with characters but Keras trains on numbers so we have to represent

the words as numbers. An e�ective way of doing so is the one-hot encoding. It means that

we de�ne a 37 length array for each letter in the word: each element of the array means

one letter of the Hungarian characters (35 letters) or the beginning or ending characters.

One-hot means that there is only one 1 in the array, the others are 0. For the letter a it is

the �rst one and the character o it is the 18th.

Thus we have 5 characters in a window, we have (5, 37) shaped two-dimensional array.

The same encoding is used on the labels, B is the 0 and M is the 1.

Flattening

The �nal step before the training is �attening. From the two-dimensional array we create

a reshaped one-dimensional. This means simply putting the characters after each other.

So if we had the (5, 37) array, now we have the 5 · 37 = 185 long 0,1 sequence with only 5

ones in it. And this is the training data.

In summary, from the leopá window we got a 185 long 0, 1 as the training input and [1, 0]

as the training output.

20



4.2.2 The model

The neural network is a fully connected feedforward neural network. In the hyperparameter

optimization along the window length I changed the number of hidden layers and the units

in each hidden layer. The last layer has a softmax activation to approximate the values as

probabilities. Figure 4.3. is the Keras visualization of the layers.

Figure 4.3. The FFNN model

In the training process I used sigmoid activation function and adam optimizer [11].

4.3 Train-, validation-, test data

In machine learning, it is a well-known paradigm to separate the training, validation and

test data. While the neural network �ts on a training data, its performance during the

training is measured on a di�erent, validation data. If we use early stopping, validation

data is used to halt the training when it stopped improving on the validation data. The

third part is the test data. It has not been used in the training method thus it provides

an independent evaluation data. In the trainings I used the common 70-20-10 separation

rate.

Figure 4.4. shows the following 3 methods of splitting the data words into 3 separate sets.

21



Unique words Character
preprocessing

Shuffle and split

Train dataset

Validation dataset

Test dataset

Unique words Shuffle and split

Character
preprocessing

Character
preprocessing

Character
preprocessing

Train dataset

Validation dataset

Test dataset

Unique words Character
preprocessing

Shuffle and split

Train dataset

Validation dataset

Test dataset

Restore
uniqueness

1. Original

2. Unique words

3. Unique chars

Figure 4.4. The 3 methods of splitting train-validation-test data.

4.3.1 Original method

In the �rst method I followed these steps: from the unique words of the dataset with the

previously described way I created the train-ready data. Then I shu�ed it and split into 3

parts. However it has two major problems.

4.3.2 Unique words

Firstly, when we shu�e the windows leopá and eopár they can be in di�erent sets. The

second method prevents it. Here I separate the words �rst, so every word is in one of the

3 datasets. So there are unique and separated words in the sets. But later we would create

windows thus there are windows appearing multiple times, and in di�erent datasets.

4.3.3 Unique characters

The third method focuses on the uniqueness of the {training window, label} pairs. However

if a training window has an example when it is labelled with B and one with M and one

of it went to the training set while the other was in the test set, it always makes an error

at the evaluation.

22



4.3.4 Conclusion

While the third method is the closest to an ideal setting, in a real situation it is quite

unlikely to get an entirely new {training window, label} pair. However it is common to get

a new word.

When we compare the FFNN network with CNN and LSTM ones, we separate the words

�rst because the other two model uses it.

4.4 Convolutional neural network

4.4.1 Data preparation

For the CNN and LSTM networks the data preparation steps are the same. First, using

the Hunspell hyphenation to de�ne the labels, then �lling the words to a �xed size with

padding (the �lling label isM) and �nally using the one-hot encoding method (Figure 4.5.).

Unique words Define labels Fill to fixed size One-hot Shuffle and split

train

validation

test

Figure 4.5. CNN and LSTM data preparation

4.4.2 The model

The model has two parts. The �rst one is the convolutional network and the second is

a feedforward network. The convolutional layers have a stride one so it convolves all the

characters. I optimized the kernel size (it is the same dimension as the window-length in

the FFNN model), �lter and hidden layer numbers. I used the Keras' built-in padding to

prevent problems at the endings of the word. The model currently uses ReLU activation

functions.

The feedforward part is a softmax layer for every character to get back the BM one-hot

probabilities.

Figure 4.6. summarizes the CNN model.

4.5 Long short-term memory

The LSTM network uses the same inputs as the CNN. I used biLSTM and optimized

the unit and hidden layer numbers. At the output of the LSTM I inserted a feedforward

network just as in the CNN one. The model summary of the LSTM network is in Figure 4.7.

23



L

E

O

P

Á

R

D

$

$
...
$

0 0 0 ... 0 1 0 ... 00 0 0 ... 0 1 0 ... 0

0 0 ... 0 1 0 ... 0 0

0 ... 0 1 0 ... 0 0 0

0 0 0 ... 0 1 0 ... 0

0 0 ... 0 1 0 ... 0 0

... ...

B

M

B

B

M

M

M

...

M

Figure 4.6. CNN model summary

24



L

E

O

P

Á

R

D

$

$
...
$

0 0 0 ... 0 1 0 ... 00 0 0 ... 0 1 0 ... 0

0 0 ... 0 1 0 ... 0 0

0 ... 0 1 0 ... 0 0 0

0 0 0 ... 0 1 0 ... 0

0 0 ... 0 1 0 ... 0 0

B

M

B

B

M

0 0 ... 0 0 0 ... 0 1 M

Figure 4.7. Long Short-Term Memory network

25



Chapter 5

Results

5.1 Evaluation values

Val_loss is the validation loss of the Keras model.

True positive sample is what has a B label in both the prediction of the model and the

target (the Hunspell's hyphenation).

True negative sample has a M label as prediction and as target too.

False positive sample is predicted as B by the model but expected M by the dataset.

False negative is the opposite of false positive: the prediction is M and the target is B.

Precision is the rate of correct values among all positive results P = tp/(tp + fp).

Recall is the rate of predicted B values compared to all that should have been B, R =

tp/(tp + fn).

F-Score is the harmonic mean of precision and recall: F = 2 P ·R
P+R

Word accuracy is the ratio of correctly labelled words among the test data.

5.2 Feedforward neural network

I optimized around the window length, the layer number and the hidden unit num-

bers(Table 5.1.). The window-length was tested between three and eleven character. The

layer number and hidden unit numbers were only optimized for �ve and seven window-

length and between 3 and 7 for the layer number and 80 to 130 for hidden units.

26



Window length Num_layer Num_hidden Epochs Val_loss

3 5 60 303 0.0916
3 5 70 303 0.0916
3 5 80 229 0.0916
3 5 90 252 0.0914
3 5 100 196 0.0928
3 5 110 249 0.0913
5 5 60 222 0.0406
5 5 70 202 0.0397
5 5 80 222 0.0421
5 5 90 214 0.0399
5 5 100 198 0.0395
5 5 110 190 0.0400
7 5 60 133 0.0385
7 5 70 131 0.0425
7 5 80 147 0.0443
7 5 90 149 0.0387
7 5 100 137 0.0381
7 5 110 136 0.0393
9 5 60 121 0.0390
9 5 70 119 0.0432
9 5 80 125 0.0413
9 5 90 118 0.0393
9 5 100 116 0.0383
9 5 110 126 0.0397
11 5 60 112 0.0454
11 5 70 111 0.0408
11 5 80 119 0.0457
11 5 90 99 0.0436
11 5 100 103 0.0401
11 5 110 98 0.0412

Table 5.1. FFNN window length optimization

27



5.3 Convolutional neural network

First I optimized the numbers of hidden units and the kernel size. After a few run, the

optimum of the kernel size showed to be around 10 character so I optimized the layer

number and the numbers of hidden units only for 6-10 kernel size it (Table 5.2.).

Num_layers Num_hidden Kernel size F-score Word accuracy

1 512 6 98.63% 93.30%
1 512 8 98.77% 94.07%
1 512 10 98.71% 93.70%
1 1024 6 98.78% 94.10%
1 1024 8 98.79% 94.08%
1 1024 10 98.86% 94.52%
1 2048 6 98.75% 93.85%
1 2048 8 98.85% 94.42%
1 2048 10 98.84% 94.40%
2 512 6 98.92% 94.68%
2 512 8 98.84% 94.41%
2 512 10 98.79% 94.23%
2 1024 6 98.96% 94.96%
2 1024 8 99.01% 95.28%
2 1024 10 98.90% 94.92%
2 2048 6 99.03% 95.25%
2 2048 8 98.99% 95.14%
2 2048 10 98.92% 94.91%
3 512 6 98.77% 94.10%
3 512 8 98.68% 93.71%
3 512 10 98.39% 92.14%
3 1024 6 98.88% 94.54%
3 1024 8 98.81% 94.24%
3 1024 10 98.64% 93.82%
3 2048 6 98.92% 94.64%
3 2048 8 98.76% 94.18%

Table 5.2. CNN hyper-parameter optimization

5.4 Long short-term memory

The LSTM network was the most sensitive to the change of the LSTM layer number

(Table 5.3.).

5.5 The 3 model

Table 5.4. illustrates a rerun of the models with highest F-score. The hyper-parameters:

FFNN: 3 layers of 130 units and a window length of 7. CNN: 2 CNN layers with 1024

hidden units and a kernel size of 8. LSTM: 2 layer of 128 units.

28



Num_layers Num_hidden Precision Recall F-score Word accuracy

1 8 50.33% 75.61% 60.43% 0.72%
1 16 50.32% 75.67% 60.45% 0.72%
1 32 50.33% 75.64% 60.44% 0.72%
1 64 50.33% 75.63% 60.44% 0.72%
1 128 50.34% 75.64% 60.45% 0.72%
1 256 50.33% 75.64% 60.44% 0.72%
2 8 42.55% 75.41% 54.41% 0.00%
2 16 97.09% 99.05% 98.06% 91.73%
2 32 95.95% 98.59% 97.25% 88.71%
2 64 97.52% 98.93% 98.22% 92.63%
2 128 97.99% 99.18% 98.58% 93.90%
2 256 97.77% 99.22% 98.49% 93.37%
3 8 54.23% 99.29% 70.15% 11.71%
3 16 64.65% 97.48% 77.74% 29.34%
3 32 99.94% 31.43% 47.82% 7.54%
3 64 54.95% 99.74% 70.86% 11.70%
3 128 60.53% 98.87% 75.09% 11.57%
3 256 55.52% 98.60% 71.04% 12.62%
3 512 43.75% 99.78% 60.83% 0.59%

Table 5.3. LSTM hyper-parameter optimization

Model Kernel Layers Hidden Epochs Precision Recall F-score Word accuracy

FFNN 7 3 150 103 98.17% 99.11% 98.64% 93.57%
CNN 8 2 1024 12 98.37% 99.27% 98.81% 94.45%
LSTM - 2 128 66 97.68% 99.16% 98.42% 93.13%

Table 5.4. The three model that performed the best

29



Chapter 6

Evaluation

In the 5.5. section I showed 3 models trained in the same data. The following error analysis

is based on those models. Figure 6.1. represents the models' overall performance on the

8191 test words. As we can see, if we uses all three models with the majority rule, 94.3% of

the words can be hyphenated correctly (however the CNN network itself achieves a better

performance with 94.45%).

Figure 6.1. Model performance

6.1 Error categorization

After the rerun, I manually tested the errors and grouped them into categories. These

categories are:

30



Non-hungarian word is which I recognized as a word but not Hungarian.

Compound word

Non-hyphenated part has a hyphen missing because of Hunspell's typesetting goals.

Wrong target Hunspell misses the hyphenation.

Not (a) word are mostly mistyped Hungarian words like elol.

Other words not �lling the above categories.

6.1. Table shows category distribution among all the words (perfectly predicted words as

well as missed ones). Note that one word can be in multiple categories.

Category Distribution Example (Hunspell's hyphenation)
Non-Hungarian word 11 obsta-c-les
Compound word 21 ak-ció-�lm

Non-hyphenated part 8 ak-ció-�lm
Wrong target 1 diszk-ri-mi-na-tív
Not word 4 el-er-ni
Others 59

Table 6.1. Error categories among 100 randomly chosen words

6.2 Model performance

I collected all the errors of the three models and manually inserted 200 words into the

error categories. Figure 6.2. shows the category distribution of the errors for each model

and among the errors.

As we can see, over half of the errors are caused by using a Hungarian hyphenation al-

gorithm on a non-Hungarian word. While Table 6.1. says that only 11% of the words are

non-Hungarian, half of the errors can be tracked back to them. If we compare it with the

data of Table 5.4. where we saw that only 6% of the words are hyphenated badly we can

conclude that half of this 6% is caused by non-Hungarian words so 3% of every word is

miss-hyphenated non-Hungarian word. From this point of view the 11% contribution of

all non-Hungarian words says that 27% of all non-Hungarian words in the test set are

hyphenated wrongly.

In the next �gure (6.3.), I visualized the three models' performance in each categories. So in

this �gure we can see the percentage of missed words by the models, where the 100% is the

amount of wrong word in the category. The last column shows the 3 models' distribution

of hyphenation misses. As we can see, the Hunspell's typesetting error (Non-hyphenated

part) had the worst e�ect on the LSTM network.

Note that there was only one word in the wrong target category.

31



Figure 6.2. Missed hyphenations by error categories

Figure 6.3. Model performance by categories

32



6.3 Further research

There are many ways to improve the hyphenation algorithm. In the future I am intent to

do two things.

6.3.1 Multilingual hyphenation algorithm

As we saw, the hyphenation algorithm tends to make a mistake in non-Hungarian words.

In Hunspell, the writer has to chose the language of the hyphenation but I believe that the

deep learning based algorithm can achieve it in the same network with a mixed dataset of

multilingual words.

6.3.2 Non-standard hyphenation

The algorithm described above cannot handle the non-standard hyphenations because it

is a character tagging algorithm but I think that other models can solve this problem too.

33



Conclusion

In this thesis, a deep learning based hyphenation algorithm was introduced. The thesis

presents the currently used hyphenation algorithms. Three neural network models were

described: the Feedforward Neural Network (FFNN), the Convolutional Neural Network

(CNN) and the Long Short-Term Memory network (LSTM).

The paper shows a method for words to be used in the networks and implements the three

models for the hyphenation problem. The networks described in the paper achieve around

98% precision, over 99% recall and about 98.5% F-score in terms of inserting hyphens

between characters in Hungarian words. Hyphenation of whole Hungarian words is 95%

accurate.

The thesis evaluates the errors of the networks by categorizing them into error groups and

adumbrate a possible way of improving the accuracy with multi-lingual hyphenation.

34



List of Figures

1.1 The hyphenation of 'hyphenation' by Liang's algorithm . . . . . . . . . . . . 8

2.1 Basics of Feedforward Neural Networks (F(F)NN) . . . . . . . . . . . . . . . 11

2.2 Basics of Convolutional Neural Network (CNN) . . . . . . . . . . . . . . . . 13

2.3 Basics of Long short-term memory (LSTM) . . . . . . . . . . . . . . . . . . 14

4.1 Feedforward neural network . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.2 Character preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.3 The FFNN model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.4 The 3 methods of splitting train-validation-test data. . . . . . . . . . . . . . 22

4.5 CNN and LSTM data preparation . . . . . . . . . . . . . . . . . . . . . . . 23

4.6 CNN model summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.7 Long Short-Term Memory network . . . . . . . . . . . . . . . . . . . . . . . 25

6.1 Model performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6.2 Missed hyphenations by error categories . . . . . . . . . . . . . . . . . . . . 32

6.3 Model performance by categories . . . . . . . . . . . . . . . . . . . . . . . . 32

35



List of Tables

1.1 The hyphenation of 'hyphenation' by Liang's algorithm . . . . . . . . . . . . 9

1.2 Hyphenation errors in Hunspell . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1 Data preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Hungarian non-standard hyphenation . . . . . . . . . . . . . . . . . . . . . . 16

3.3 Non-Hungarian characters in the data set . . . . . . . . . . . . . . . . . . . 17

3.4 Words out of the �xed length . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5.1 FFNN window length optimization . . . . . . . . . . . . . . . . . . . . . . . 27

5.2 CNN hyper-parameter optimization . . . . . . . . . . . . . . . . . . . . . . . 28

5.3 LSTM hyper-parameter optimization . . . . . . . . . . . . . . . . . . . . . . 29

5.4 The three model that performed the best . . . . . . . . . . . . . . . . . . . 29

6.1 Error categories among 100 randomly chosen words . . . . . . . . . . . . . . 31

36



Bibliography

[1] Magyar Tudományos Akadémia and Ma¤arsko Budape²t'. A magyar helyesírás sz-

abályai. Akadémiai kiadó, 1959.

[2] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term dependencies

with gradient descent is di�cult. IEEE transactions on neural networks, 5(2):157�166,

1994.

[3] François Chollet et al. Keras. https://github.com/fchollet/keras, 2015.

[4] Scott E Fahlman. An empirical study of learning speed in back-propagation networks.

1988.

[5] Bernd Fritzke and Christof Nasahl. A neural network that learns to do hyphenation.

In Neural Networks, 1991., IJCNN-91-Seattle International Joint Conference on, vol-

ume 2, pages 960�vol. IEEE, 1991.

[6] Kunihiko Fukushima and Sei Miyake. Neocognitron: A self-organizing neural network

model for a mechanism of visual pattern recognition. In Competition and cooperation

in neural nets, pages 267�285. Springer, 1982.

[7] Jacques Hadamard. Mémoire sur le problème d'analyse relatif à l'équilibre des plaques

élastiques encastrées, volume 33. Imprimerie nationale, 1908.

[8] Robert Hecht-Nielsen et al. Theory of the backpropagation neural network. Neural

Networks, 1(Supplement-1):445�448, 1988.

[9] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural compu-

tation, 9(8):1735�1780, 1997.

[10] Yoon Kim, Yacine Jernite, David Sontag, and Alexander M Rush. Character-aware

neural language models. In AAAI, pages 2741�2749, 2016.

[11] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv

preprint arXiv:1412.6980, 2014.

[12] Donald Ervin Knuth. TEX and METAFONT: New directions in typesetting. American

Mathematical Society, 1979.

37

https://github.com/fchollet/keras


[13] András Kornai, Péter Halácsy, Viktor Nagy, Csaba Oravecz, Viktor Trón, and Dániel

Varga. Web-based frequency dictionaries for medium density languages. In Proceedings

of the 2nd International Workshop on Web as Corpus, pages 1�8. Association for

Computational Linguistics, 2006.

[14] Terje Kristensen. A neural network approach to hyphenating norwegian. In Neural

Networks, 2000. IJCNN 2000, Proceedings of the IEEE-INNS-ENNS International

Joint Conference on, volume 2, pages 148�153. IEEE, 2000.

[15] Franklin Mark Liang. Word hyphenation by computer. Department of Computer

Science, Stanford University, 1983.

[16] Márton Miháltz, Péter Hussami, Zsó�a Ludányi, Iván Mittelholtz, Ágoston Nagy,

Csaba Oravecz, Tibor Pintér, and Dávid Takács. Helyesírás. hu. 2013.

[17] László Németh. Automatic non-standard hyphenation in openo�ce. org. COMMUNI-

CATIONS OF THE TEX USERS GROUP TUGBOAT EDITOR BARBARA BEE-

TON PROCEEDINGS EDITOR KARL BERRY, page 32, 2006.

[18] Jürgen Schmidhuber. Deep learning in neural networks: An overview. Neural networks,

61:85�117, 2015.

[19] Mike Schuster and Kuldip K Paliwal. Bidirectional recurrent neural networks. IEEE

Transactions on Signal Processing, 45(11):2673�2681, 1997.

[20] Petr Sojka et al. Notes on compound word hyphenation in tex. TUGboat, 16(3):290�

296, 1995.

38


	Kivonat
	Abstract
	Introduction
	Hyphenation algorithms
	Liang's algorithm
	Choosing patterns

	Hunspell
	Hungarian non-standard hyphenation patterns
	Hyphenation errors of the Hunspell


	Neural networks
	Feedforward neural network
	Convolutional neural network
	Recurrent neural network
	Long short-term memory

	Neural network APIs
	Neural networks for hyphenation

	Data preprocessing
	Hungarian Webcorpus
	Cleaning
	Filtering
	Non-standard hyphenation with character addition
	Special characters

	Long word cut and padding

	Machine Learning based Hungarian hyphenation algorithms
	Character classification
	Feedforward neural network
	Data preparation
	The model

	Train-, validation-, test data
	Original method
	Unique words
	Unique characters
	Conclusion

	Convolutional neural network
	Data preparation
	The model

	Long short-term memory

	Results
	Evaluation values
	Feedforward neural network
	Convolutional neural network
	Long short-term memory
	The 3 model

	Evaluation
	Error categorization
	Model performance
	Further research
	Multilingual hyphenation algorithm
	Non-standard hyphenation


	Conclusion
	List of figures
	List of tables
	Bibliography

