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Chapter 1

Introduction

Model checking is a formal verification technique for verifying requirements on behavioral
models of systems in a mathematically precise way. An advantage of model checking is that
in case the requirements are violated, it can produce an execution trace (counterexample)
to demonstrate the incorrect behavior of the system. When analyzing state reachability,
or safety properties, it is especially important to generate traces leading to the states in
the scope of the analysis. This information can be used for the correction of the errors or
it can be used for model based test generation.

Traditional model checking algorithms systematically and often exhaustively explore the
state space of the system, i.e., they build the graph representation of the state space.
These algorithms are called explicit model checkers, because they explicitly enumerate the
states and state transitions of the system. While explicit approaches are mature, they are
inherently limited by the size of the state space that can fit into memory. Unfortunately,
even relatively small systems can have huge state spaces, a phenomenon that is commonly
referred to as state-space explosion.

One way of handling the state space explosion problem is symbolic model checking, which
exploits the inner structure of states to encode the state space as a decision diagram. Sym-
bolic encoding significantly extends the size of manageable state spaces, but does not allow
to exploit the advantages of explicit techniques – this is why many of the efficient sym-
bolic algorithms are incapable to give counterexample or only with a huge computational
overhead.

One reason of state space explosion in concurrent systems is the interleaving semantics of
model checking, i.e., total ordering of independent, asynchronous operations. Examination
of each interleaving leads to a large amount of intermediate states that might be irrele-
vant for the requirements. The main idea of partial order reduction is to substitute the
equivalent interleavings with a single representative trace to reduce the number of states
to discover. The technique builds on explicit state traversal, so most of the methods used
there remain applicable, i.e., we can compute traces to erroneous states efficiently.
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Applying directed (guided) model checking can further improve the efficiency of explicit
state model checking by heuristically classifying states and transitions of models based
on which could give results sooner or produce shorter traces. Every heuristic builds on
additional known properties of system model – the efficiency of the approach greatly
depends on choosing these properties well.

This work aims to contribute in three different, but related fields.

1. We propose a workflow to combine the advantages of symbolic and explicit model
checking algorithms, focusing on safety checking and counterexample generation.

2. In the field of symbolic model checking, we investigate state-of-the-art symbolic
representations to assess their strengths and weaknesses and lay the foundations of
potential future improvements, both in theory and in terms of implementation.

3. We propose a directed model checking algorithm building on a new kind of heuristic,
combined with partial order reduction. We also prove the soundness and rationale
of the heuristic.
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Chapter 2

Background

In this chapter we introduce some basic concepts and methods used in the literature and
refer to related work which server as the basis of our approach. Firstly, section 2.1 presents
Petri nets, a widespread modeling language used in the field of formal methods. Secondly,
section 2.2 introduces the Kripke structures commonly used to describe state spaces in the
literature. Thirdly, section 2.3 presents the basic concepts of model checking and safety
properties which is the basis of our approach. Fourthly, section 2.4 introduces the basics of
symbolic model checking, a cardinal part in our work. Finally section 2.5 presents partial
order reduction, a method to combat the state space explosion in explicit model checking.

2.1 Petri Nets

Our work relies on Petri nets as a modeling formalism: in this section we give a brief
introduction. For a full-detailed description of Petri nets, refer to [17].

Petri nets are a popular formalism which are especially suitable for modeling concur-
rent, asynchronous and nondeterministic systems. – this is why we chose it for the first
formalism to apply our solutions on.

Definition 1 (Petri net).
A Petri net is a 5-tuple PTN = (𝑃, 𝑇, 𝐴, 𝑊, 𝑀0) where:

∙ P is a finite set of places;

∙ T is a finite set of transitions, such that 𝑃 ∩ 𝑇 = ∅;

∙ 𝐴 ⊆ (𝑃 × 𝑇 ) ∪ (𝑇 × 𝑃 ) is the set of arcs;

∙ 𝑊 : (𝑃×𝑇 )∪(𝑇×𝑃 )→ N0 is a weight function such that 𝑊 (𝑥, 𝑦) > 0 iff (𝑥, 𝑦) ∈ 𝐴;

∙ 𝑀0 : 𝑃 → N0 is the initial marking, i.e., the number of tokens on each place. �

A Petri net consists of places, transitions and arcs. A state of the Petri net is determined
by the marking function (𝑀 : 𝑃 → N0) registering the number of tokens for every place.
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Throughout this work, we will assume that a Petri net is bounded, which means that
the number of tokens in every place is below a certain value in every reachable state.
Furthermore, we assume that there are no parallel arcs (arcs that has the same start and
end point) in the net, if there would be an equivalent net could be produced by merging
the parallel arcs. For the sake of convenience, we introduce some common notations used
to refer to the structure of the Petri nets.

- ∙𝑡 = {𝑝|𝑝 ∈ 𝑃 ∧ (𝑝, 𝑡) ∈ 𝐴}, i.e., the set of input places of t;

- 𝑡∙ = {𝑝|𝑝 ∈ 𝑃 ∧ (𝑡, 𝑝) ∈ 𝐴}, i.e., the set of output places of t;

- ∙𝑝 = {𝑡|𝑡 ∈ 𝑇 ∧ (𝑡, 𝑝) ∈ 𝐴}, i.e., the set of input transitions of p;

- 𝑝∙ = {𝑡|𝑡 ∈ 𝑇 ∧ (𝑝, 𝑡) ∈ 𝐴}, i.e., the set of output transitions of p;

- 𝑊 +(𝑡, 𝑝) = 𝑊 (𝑡, 𝑝) is the total amount of tokens transition 𝑡 adds to place 𝑝 when
fired.

- 𝑊 −(𝑡, 𝑝) = 𝑊 (𝑝, 𝑡) is the total amount of tokens transition 𝑡 removes from place 𝑝

when fired.

- 𝑊 * = 𝑊 + −𝑊 − represents the sum of removed and produced number of tokens in
place 𝑝.

𝑊 * can be used to calculate whether transition t increases or decreases the number of
tokens on a place.

The behavior of a Petri net is defined by the following firing rules:

∙ A transition t is enabled iff ∀𝑝 ∈ ∙𝑡 : 𝑀(𝑝) ≥ 𝑊 (𝑝, 𝑡), i.e., all input places of t has
at least as many tokens as the weight of the input arcs of t.

∙ An enabled transition may fire and change the marking of the Petri net. Every
enabled transition can fire, but there is no ordering or precedence amongst them
inducing a non-deterministic behavior.

∙ When a transition t fires, it removes 𝑊 (𝑝, 𝑡) tokens from all of its input places 𝑝 ∈ ∙𝑡
then puts 𝑊 (𝑡, 𝑝) tokens to its output places 𝑝 ∈ 𝑡∙.

An example of the firing mechanism in Petri nets is shown on figure 2.1.

We call 𝜏 a firing sequence iff it is a sequence of transitions that can be fired in the Petri
net exactly in that order starting from the current state (commonly the initial state) of
the Petri net. The sequence of states reached after each step in 𝜏 (including the initial
state) is called a path and is denoted by 𝜌. We call a marking 𝑀 reachable in the Petri
net iff there is a path 𝜌 that ends in 𝑀 .
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Figure 2.1. Firing, in a graphical representation of Petri net

2.2 Kripke Structures

The state space of high-level models can be described by so-called Kripke structures ([14]).
Kripke structures are directed graphs, where the nodes are labeled. The states of the model
are represented by the labeled nodes of the Kripke structure while transitions correspond
to the arcs connecting the nodes. Labels provide a way to reason about states.

Definition 2 (Kripke structure). Given a set of atomic propositions AP a Kripke
structure is a 4-tuple 𝐾 = (𝑆, 𝐼, 𝑅, 𝐿), where:

∙ S is the finite set of states;

∙ 𝐼 ∈ 𝑆 is the set of initial states;

∙ 𝑅 ∈ 𝑆 × 𝑆 is the transition relation;

∙ 𝐿 : 𝑆 −→ 2𝐴𝑃 is the labeling function that maps a state to a subset of atomic
propositions; �

In a Kripke structure a path (trace) 𝜌 is a sequence of states, corresponding to a directed
path in the graph, i.e., states in 𝜌 follow each othr according to 𝑅.

2.2.1 Connection Between Petri Nets and Kripke Structures

As stated in section 2.2, Kripke structures can be used to represent the state-space of high
level models.

In case of Petri nets a state of the Kripke structure describes the marking of a Petri
net. The atomic propositions constituting the labels on the Kripke structure are relations
interpreted over the marking of the Petri net. The initial state of the Kripke structure
corresponds to the initial marking of the Petri net. Transitions of the Kripke structure can
be regarded as instances of the transitions of the Petri net – they correspond to a single
firing of an enabled transition. This way, the state-space of the Petri net is described by a
(not necessarily connected) Kripke structure. Exploring the state space off the Petri net
essentially means the traversal of the Kripke structure.
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Figure 2.2. Kripke structure describing state space of Petri net

It is important to note, that (as shown in figure 2.2) the state space of a Petri net model can
be much larger and much more complex than the structure itself, that is why discovering
the full state space can be hard. In sections 2.4, 2.5 we will show methods to handle this
problem.

2.3 Model Checking

Model checking [4] is an automatic formal verification technique for exhaustively comput-
ing and analyzing the state space to see if it satisfies a given requirement.

The input of the model checking procedure is the model of the system (in our work a Petri
net model) and some formal specifications (this work considers safety properties). The
states or traces of the model are examined and if the model violates the requirements it
a counterexample is given to demonstrate the error. (Commonly a trace to an erroneous
state which violated said specifications).

Figure 2.3. The general workflow of model checking

Due to the fact that model checking computes the state-space of high-level models, the
aforementioned state space explosion arises. Sections 2.4, 2.5 will introduce two ways of
dealing with state-space explosion.

One of the main contributions of this work is the combination of these techniques to be
efficient even for large state-spaces preserving the ability to generate counterexamples.
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Similar works are present in the literature [1][10] but we use a significantly different ap-
proach.

2.3.1 Reachability

A common use of model checking is checking safety properties, i.e., that some unwanted
event or situation cannot occur in the system. This problem can be reduced to reachability
of these states.

”Bad“ states (or goal states in general) are usually described by state predicates referring
to state variables of the system (e.g., a given place in a Petri net must not have more
than 2 tokens). Checking reachability is then performed by evaluating the predicates on
reachable states to see ifa described state can be found.

2.3.1.1 State Properties

In this section we will introduce state predicates to describe a set of states. A state is in
the described set if it satisfies the state predicates. We describe the state predicates

The atomic state propositions are based on the marking of a Petri net in the following
form:

𝜑 ::= 𝑝𝑖 < 𝑘 | 𝑝𝑖 > 𝑘 | 𝑝𝑖 ≤ 𝑘 | 𝑝𝑖 ≥ 𝑘 | 𝑝𝑖 = 𝑘 | 𝑝𝑖 ̸= 𝑘 | ⊤ | ⊥

This rule generates the set of atomic propositions AP={ℓ1, ℓ2, ...ℓ𝑛} used as labels in the
Kripke structures, where 𝑝𝑖 ∈ 𝑃 and 𝑘 is a constant integer.

A state predicate formula is described in terms of atomic propositions as follows:

Φ ::= 𝜑𝑖 | ¬Φ | Φ ∨ Φ | Φ ∧ Φ

to denote a concrete formula generated by the grammar we will use 𝜙.

Example:

𝜙 ≡ 𝑝1 ̸= 1 ∧ (𝑝4 < 5 ∨ 𝑝30 ≥ 3) means that ”on place 𝑝1 cannot have exactly 1 token and
either 𝑝4 has less than 5 tokens or 𝑝30 has at least 3 tokens“.

A number of functions and notations are introduced below to describe certain aspects of
atomic propositions. Given a state predicate 𝜙, an atomic proposition ℓ and a marking
𝑀 .

∙ 𝐴𝑃 (𝜙) = {ℓ1 . . . ℓ𝑛} denote the set of atomic propositions in the current formula 𝜙.

∙ 𝑠𝑢𝑏(ℓ) ∈ 𝑃 (ℓ ∈ 𝐴𝑃 (𝜙) −→ 𝑝 ∈ 𝑃 ) is the subject of ℓ, i.e., the place ℓ refers to.

∙ 𝑘(ℓ) : ℓ ∈ 𝐴𝑃 (𝜙) −→ N the constant in ℓ.

∙ 𝑜𝑝(ℓ) : ℓ ∈ 𝐴𝑃 (𝜙) −→ {=, ̸=, <,≤, >,≥} the operator of ℓ.
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∙ 𝐿𝑒𝑠𝑠(ℓ, 𝑀) =

⎧⎪⎪⎨⎪⎪⎩
true : 𝑀(𝑠𝑢𝑏(ℓ)) = 𝑘(ℓ) ∧ 𝑜𝑝(ℓ) ∈ {≠}or

𝑀(𝑠𝑢𝑏(ℓ)) < 𝑘(ℓ) ∧ 𝑜𝑝(ℓ) ∈ {=, >,≥}
false : otherwise.

∙ 𝑀𝑜𝑟𝑒(ℓ, 𝑀) =

⎧⎪⎪⎨⎪⎪⎩
true : 𝑀(𝑠𝑢𝑏(ℓ)) = 𝑘(ℓ) ∧ 𝑜𝑝(ℓ) ∈ {≠}or

𝑀(𝑠𝑢𝑏(ℓ)) > 𝑘(ℓ) ∧ 𝑜𝑝(ℓ) ∈ {=, <,≤}
false : otherwise.

𝐿𝑒𝑠𝑠 (𝑀𝑜𝑟𝑒) means that in 𝑀 there is currently less (more) token on 𝑠𝑢𝑏(ℓ) than any
state satisfying ℓ. These functions are used as guiding heuristics in our guided search
algorithm presented in Chapter 5

2.3.2 Directed Model Checking

Directed model checking [10] is an efficient method to combat the state-space explosion
problem in case a goal state is reachable. Explicit directed model checkers [8] replace the
standard depth-first search strategy with heuristic search in order to guide the exploration
of the state-space towards the goal states. If it is enough to find a single goal state, the
algorithm can terminate as soon as the first solution is found. In this case, guiding the
search towards a goal state can significantly reduce the number of states that has to be
traversed before termination.

The heuristic search algorithm is usually 𝐴*, while the most common heuristics are based
on some notion of distance between markings (e.g., Hamming distance)[10]. It is important
to note that such a heuristic is only useful when a goal state is actually reachable.

An important use case for directed model checking is in the field of model-based test
generation for software and hardware. With this approach, it is possible to compute test
cases to check if the implementation conforms to the specification model. This can be
regarded as an automated way of specification-based testing, reducing the cost of test
engineering and raising the quality of the product.

2.3.3 Symbolic Model Checking

Complex systems often have a huge state space with large state vectors, so efficient encod-
ing of states are necessary. In order to tackle the state space explosion problem, symbolic
algorithms introduce special encodings of the state space. These approaches handle huge
sets of states together and encode them in a compact symbolic representation.

The general idea behind symbolic algorithms is to operate on large sets of states instead
of single states [2]. As stated above, these methods encode state spaces in a compact
form, directly manipulating the symbolic representation. Common representations include
binary functions and decision diagrams, this work focuses on the latter approach.
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2.4 Decision Diagrams

Decision diagrams are more compact forms of decision trees, where the nodes with the
same meaning were contracted to achieve more efficient, less redundant storage without
loss of information. In this section, we introduce two of the most widely used decision
diagrams (binary decision diagram and multivalued decision diagram) and a specialized
hierarchic decision diagram, called set decision diagram.

2.4.1 Binary Decision Diagrams

Binary decision diagrams (or BDDs) were introduced by Randal Bryant in 1986, to effi-
ciently represent binary functions. [3] In the following we introduce BDDs in more detail
as they are the most basic type of decision diagrams, encoding a set of binary vectors.

Definition 3 (Binary decision diagram).
A binary decision diagram is a directed acyclic graph, with a node set (𝑉 ) consisting of
two types of nodes: terminal and non-terminal nodes. Every nonterminal node 𝑣 ∈ 𝑉 has
two outgoing edges to two children nodes, we denote them as 𝑣[0] = 𝑙𝑜𝑤(𝑣) ∈ 𝑉 and 𝑣[1] =
ℎ𝑖𝑔ℎ(𝑣) ∈ 𝑉 . Nodes are associated with levels: 𝑙𝑒𝑣𝑒𝑙(𝑣) ∈ Z+. For every non-terminal
node, 𝑙𝑒𝑣𝑒𝑙(𝑙𝑜𝑤(𝑣)) < 𝑙𝑒𝑣𝑒𝑙(𝑣) and 𝑙𝑒𝑣𝑒𝑙(ℎ𝑖𝑔ℎ(𝑣)) < 𝑙𝑒𝑣𝑒𝑙(𝑣) must hold. There are also
exactly two terminal nodes, 0 ∈ 𝑉 and 1 ∈ 𝑉 , called terminal zero and terminal one
respectively. The terminal nodes also have fixed level numbers: 𝑙𝑒𝑣𝑒𝑙(0) = 𝑙𝑒𝑣𝑒𝑙(1) = 0.
The terminal nodes encode binary values: 𝑣𝑎𝑙𝑢𝑒(0) = 0, 𝑣𝑎𝑙𝑢𝑒(1) = 1. Every BDD has a
root node which is on the highest level (top level). �

The graphical representation of BDDs consists of circles for the non-temrinal nodes,
squares for the terminal nodes and arrows for the directed edges. The squares are la-
beled with the value of the corresponding terminal node. There are two type of arrows:
dotted arrows for the 𝑙𝑜𝑤(𝑣) edges and solid arrows for the ℎ𝑖𝑔ℎ(𝑣) edges.

The semantics of BDDs come from the level numbers: each level corresponds to a variable.
The value of the encoded function can be computed by traversing the graph starting from
the root, and following the edges according to the value of the variable of the current level.

In Figure 2.4 presents a BDD encoding a binary functions that is true for the following
Boolean tuples: (0, 0, 0), (0, 1, 0), (0, 1, 1), (1, 0, 1), (1, 1, 1).

2.4.2 Multivalued Decision Diagrams

Multivalued decision diagrams (or MDDs) are extensions of binary decision diagrams. In
BDDs, nodes have two outgoing edges: low(v) and high(v). An MDD encodes an integer
function 𝑓(𝑥1, ..., 𝑥𝑛) −→ {0, 1} , so a node in an MDD corresponds to an variable 𝑥𝑖 with
a finite domain 𝐷𝑖. This way, a node of an MDD has |𝐷𝑖| outgoing edges. For the sake of
simplicity, we use integer domains without loss of generality: 𝐷𝑖 = {0, 1, 2, ..., |𝐷𝑖| − 1}.
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Figure 2.4. Graphical representation of a BDD

Just like BDDs, MDDs have two terminal nodes: terminal zero and terminal one. Non-
terminal nodes, as previously stated, are different, with node 𝑣 having |𝐷𝑖| outgoing edges
pointing to nodes 𝑣[0], 𝑣[1], ..., 𝑣[|𝐷𝑙𝑒𝑣𝑒𝑙(𝑣)| − 1].

When there are no isomorphic sub-diagram in an MDD, we call it a canonical MDD.
Formally, if 𝑣 = 𝑤 ∈ 𝑉, 𝑙𝑒𝑣𝑒𝑙(𝑣) = 𝑙𝑒𝑣𝑒𝑙(𝑤) and ∀𝑖 ∈ 𝐷𝑙𝑒𝑣𝑒𝑙(𝑣) : 𝑣[𝑖] = 𝑤[𝑖] in a canonical
MDD, then 𝑣 = 𝑤.

If a canonical MDD has no edges skipping levels, we call it a quasi-reduced MDD. Formally,
this means that ∀𝑖 ∈ 𝐷𝑙𝑒𝑣𝑒𝑙(𝑣) : 𝑙𝑒𝑣𝑒𝑙(𝑣[𝑖]) = 𝑙𝑒𝑣𝑒𝑙(𝑣)−1 holds for every non-terminal node.

When representing the MDD graphically, we still use circles and squares as in BDDs, but
the edges in MDDs are always solid lines with an 𝑖 integer label, which corresponds to
the edge leading to 𝑣[𝑖]. If an edge is not shown on a figure, then it either points to the
terminal zero or to a zero node, which is a node where every outgoing path leads to the
terminal zero.

Figure 2.5. Graphical representation of a quasi-reduced MDD
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Figure 2.5, we can see a MDD encoding a function which is true for the following (𝑥1, 𝑥2,
𝑥3) values: (0, 0, 1), (0, 1, 0), (0, 1, 1), (0, 2, 1), (1, 0, 0), (1, 0, 1 ), (1, 1, 0), (1, 2, 0).

2.4.2.1 Operations on Multivalued Decision Diagrams

MDDs are often used to encode a set of integer vectors as the function corresponding
to the MDD returns 1 for exactly the vectors included in the set. Based on this, it is
possible to define set operations on MDD nodes. The result of MDD operations on two
MDD nodes encodes the same set as the corresponding set operations would produce from
encoded sets of the original nodes. Operations are defined strictly to nodes on the same
level.

The union of nodes v and w is

𝑣 ∪ 𝑤 =
{︃

𝑣 = 1 ∨ 𝑤 = 1 if 𝑙𝑒𝑣𝑒𝑙(𝑣) = 𝑙𝑒𝑣𝑒𝑙(𝑤) = 0
𝑥 otherwise, where ∀𝑖 ∈ 𝐷𝑙𝑒𝑣𝑒𝑙(𝑣) : 𝑥[𝑖] = 𝑣[𝑖] ∪ 𝑤[𝑖].

The intersection of nodes v and w:

𝑣 ∩ 𝑤 =
{︃

𝑣 = 1 ∧ 𝑤 = 1 if 𝑙𝑒𝑣𝑒𝑙(𝑣) = 𝑙𝑒𝑣𝑒𝑙(𝑤) = 0
𝑥 otherwise, where ∀𝑖 ∈ 𝐷𝑙𝑒𝑣𝑒𝑙(𝑣) : 𝑥[𝑖] = 𝑣[𝑖] ∩ 𝑤[𝑖]∀𝑖 ∈ 𝐷𝑙𝑒𝑣𝑒𝑙(𝑣).

The relative complement of node w in v:

𝑣 r 𝑤 =
{︃

𝑣 = 1 ∧ 𝑤 = 0 if 𝑙𝑒𝑣𝑒𝑙(𝑣) = 𝑙𝑒𝑣𝑒𝑙(𝑤) = 0
𝑥 otherwise, where ∀𝑖 ∈ 𝐷𝑙𝑒𝑣𝑒𝑙(𝑣) : 𝑥[𝑖] = 𝑣[𝑖] r 𝑤[𝑖].

The union, the intersection and the relative complement of terminal nodes w and v is
similar to Boolean logic.

Due to the recursive definition of the operations, they can be efficiently realized with
recursive functions. Using a cache also improves the performance, since the same nodes
can be reached along multiple paths.

2.4.3 Set Decision Diagrams

Set decision diagrams (SDDs) were introduced by [6], aiming to represent hierarchy in
the data structure. The main idea behind SDDs is that its edges encode sets of values
instead of a single value. To achieve this, the outgoing edges of a node are labeled by
another decision diagram node instead of an integer. The definition in [6] builds on a
special decision diagram type called data decision diagram (DDD). However, the ideas of
SDDs follow more naturally if they are introduced as hierarchic extensions of MDDs.
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Definition 4 (Set decision diagram).
A set decision diagram is a set of integer tuples represented by a directed acyclic graph,
with a node set (𝑉 ) consisting of two types of nodes: terminal and non-terminal nodes.
Every nonterminal node 𝑣 ∈ 𝑉 has at least one outgoing edge to a child node. Nodes
are associated with levels: 𝑙𝑒𝑣𝑒𝑙(𝑣) ∈ Z+. For every non-terminal node, 𝑙𝑒𝑣𝑒𝑙(𝑣[𝑖]) <

𝑙𝑒𝑣𝑒𝑙(𝑣) for every children of 𝑣. There are also exactly two terminal nodes, 0 ∈ 𝑉 and
1 ∈ 𝑉 , called terminal zero and terminal one respectively. The terminal nodes also have
fixed level numbers: 𝑙𝑒𝑣𝑒𝑙(0) = 𝑙𝑒𝑣𝑒𝑙(1) = 0. The terminal nodes encode binary values:
𝑣𝑎𝑙𝑢𝑒(0) = 0, 𝑣𝑎𝑙𝑢𝑒(1) = 1. The edges of the SDD encode sets of integer tuples. Edges
are denoted by 𝑥

𝑎𝑖−→ 𝑦, where 𝑥, 𝑦 ∈ 𝑉 , and 𝑎𝑖 is the root node of an MDD or SDD
representation of the set of integers. �

A path from the root node of an SDD to the terminal one encodes the Cartesian product
of the sets encoded by the labels of traversed edges. For the sake of convenience, the
notion of a node is often used to refer to the set it encodes, if not ambiguous.

In order to efficiently use SDDs they have to be unambiguous.

Definition 5 (Canonical set decision diagram).
An SDD is canonical iff :

∙ ∀𝑣 𝑎𝑖−→ 𝑤 =⇒ 𝑎𝑖 ̸= ∅ ∧ 𝑤 ̸= 0;

∙ ∀𝑣 𝑎𝑖−→ 𝑤 ∧ 𝑣
𝑎𝑗−→ 𝑧 =⇒ 𝑎𝑖 ∩ 𝑎𝑗 = ∅ ∧ 𝑤 ̸= 𝑧. �

Definition 5 can be fulfilled by applying the following reduction rules. For a visual expla-
nation, see Figure 2.6:

∙ A canonical representation of 𝑣
𝑎𝑖−→ 𝑤 and 𝑣

𝑎𝑗−→ 𝑤 is 𝑣
𝑎𝑖∪𝑎𝑗−−−→ 𝑤.

∙ A canonical representation of 𝑣
𝑎𝑖−→ 𝑤 and 𝑣

𝑎𝑗−→ 𝑧, where 𝑤 ∪ 𝑧 ̸= ∅ and 𝑤 ∩ 𝑧 ̸= ∅,
is 𝑣

𝑎𝑖∖𝑎𝑗−−−→ 𝑤, 𝑣
𝑎𝑗∖𝑎𝑖−−−→ 𝑧 and 𝑣

𝑎𝑖∩𝑎𝑗−−−→ 𝑤 ∪ 𝑧.

Figure 2.6. SDD reduction rules visualized

The advantage of MDDs is that they can exploit the similarities of the encoded tuples
to achieve a compact representation. In addition to this, SDDs add the capability of
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exploiting the inner structure of the encoded tuples, i.e., symmetries inside a tuple can be
efficiently represented hierarchically. When used in symbolic model checking, this feature
aligns with the compositional structure of high level models.

The graphical representation of an SDD is problematic due to the hierarchic structure.
The convention used in this work is to represent labeled nodes by a dashed arrow pointing
from the referencing edge to the referenced decision diagram’s node. Figure 2.7 shows the
graphical notations and also illustrates the source of compactness in SDDs.

Figure 2.7. An MDD and an SDD hierarchy encoding the same
set

2.5 Partial Order Reduction

In this section we show another way of handling the state space explosion problem.

For an illustration, see figure 2.8. In order to find a trace from P to Q, we must use
transitions a, b, c, but the order of these transitions does not affect the reachability of Q.
Partial order reduction would choose a representative ordering (e.g. a, c, b) omitting 4
intermediate states from the state space without affecting the reachability.

Partial order reduction uses that commonly the reason behind state-space explosion in
concurrent systems is the interleaving semantics, i.e., the total ordering of actions in in-
dependent asynchronous processes. This interleaving leads to a huge number of possible
behaviors and intermediate states that can be irrelevant with regard to our requirements.
Partial order reduction chooses some representative orderings from these traces and dis-
covers only them, resulting in a reduced state-space.
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Partial order reduction[11][12][4] is an explicit technique, so it stores the states of the
system explicitly. However the reduced state-space often allows to handle huge concurrent
models. An important requirement for the reduction to preserve interesting properties. In
this case of reachability properties it means that if a goal state 1 is reachable in the full
state space it must be also reachable in the reduced state space. It is important to note
that the reduction has to be performed without exploring the full state-space, because the
main reason of the reduction is to avoid storing all the states in the memory. Most of
the reduction approaches use some structural property of the model, because they can be
checked statically without computing the full state space.

Figure 2.8. An example of indepently reorderable transitions

The idea of partial order reduction has been implemented in a number of approaches
[9][16][1][11][15][12]. In this work, we use the stubborn sets method, which can be consid-
ered as the state-of-the-art algorithm in this field.

2.5.1 Stubborn Sets

The name of the stubborn sets method comes from the strategy of calculating sets of
transitions whose firing can not disable transitions outside the stubborn set, and transitions
outside the stubborn sets cannot disable transitions from the stubborn set either. These
sets are stubborn in the sense that they stay enabled as long as only transitions of other
sets are fired. Note that these stubborn sets are correspond to the independent concurrent
processes, which we said partial order reduction uses to reduce the state-space.

The rationale behind stubborn sets is that in a given state it is enough to exhaustively
fire a single set, because every other set will stay enabled and can be processed in a later
state.

1Note that states that are not characterized by the predicate can become unreachable
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For convenience reasons, we define the following notations:

∙ 𝑠
𝑡1...𝑡𝑛−−−→ 𝑠′ means that if we fire transition sequence 𝑡1 . . . 𝑡𝑛 from 𝑠 we reach 𝑠′.

∙ 𝑠
𝑡1...𝑡𝑛−−−→ means that the transition sequence 𝑡1 . . . 𝑡𝑛 is enabled from 𝑠.

Definition 6 (Stubborn sets). STUB(s) ⊆ 𝑇 is a stubborn set in state s iff the fol-
lowing conditions hold [16]:

D0: STUB(s) is empty iff s is a deadlock state.

D1: ∀𝑡 ∈ 𝑇 and ∀𝑡1...𝑡𝑛 sequence such that each 𝑡𝑖 ∈ STUB(s) and for which 𝑠
𝑡,𝑡1...𝑡𝑛−−−−→ 𝑠′

it holds that 𝑠
𝑡1...𝑡𝑛,𝑡−−−−→ 𝑠′, i.e., if a 𝑠′ state is reachable from 𝑠 via firing any transition

from the net, and then all the STUB(s) members, stays reachable if we fire the
members of STUB(s) first and then 𝑡.

D2: ∀𝑡 ∈ STUB(s) and ∀𝑡1...𝑡𝑛 sequence such that each 𝑡𝑖 /∈ STUB(s) and for which
𝑠

𝑡1...𝑡𝑛−−−→ if 𝑠
𝑡−→ then 𝑠

𝑡1...𝑡𝑛,𝑡−−−−→, i.e., if a transitions from STUB(s) is enabled from
state 𝑠 no transition sequence outside the STUB(s) can disable it. �

The condition D0 ensures that deadlocks are preserved, i.e., we find a deadlock state in
the reduced state space iff that state is a deadlock in the full state space. Conditions D1,
D2 ensures the stubborn behavior of the STUB(s) members.

There can be many stubborn sets for a given state of a model, the key for the reduction
is to choose which sets to fire before the others. An ideal solution is to use the one
which takes the exploration closer to its goal. A more general direction is to choose the
smallest set in order to produce a smaller reduced state-space. Note, however that the
basic stubborn set methods only preserves deadlocks, so there is no guarantee that a set
contains the transitions to reach a a desired part of the state-space. In order to preserve
additional properties other constraints have to be fulfilled by the chosen sets. Since the
union of stubborn sets is also a stubborn set by definition, so it is possible to construct a
stubborn set that contains all the ”essential“ transitions. Chapter 5 will present a way of
acquiring such transitions.

Note that D1 and D2 are very hard to check based on the definition, because it would
require exploring the intermediate states, the exact thing tat the approach aims to avoid.
Most of the implementations use constructions that inherently satisfy D1 and D2, but
are easier to compute statically. One such way is to compute the independent transitions
based on the structure of the high-level model (see more in Section 5.2), which is a cheap
over-approximation.
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Chapter 3

Overview of the Approach

This work focuses on properties that can be reduced to reachability checking (e.g., safety
properties). The presented algorithms are capable of determining if a given set of states
is reachable from the initial state. In case of safety properties, a reachable unsafe state
implies that the original safety property is false, and a counter-example (trace) is generated
to demonstrate how to realize the violating behavior. The absence of reachable bad states
indicate that our model is correct with regard to the property. In this section we introduce
a hybrid model checking approach combining a symbolic and an explicit model checking
algorithm (presented in chapters 4 and 5) to implement a scalable solution for reachability
analysis and efficient trace generation.

3.1 A Hybrid Model Checking Procedure

In this section we describe our approach in terms of the general model checking workflow.

Symbolic and explicit algorithms have different trade-offs that often complement each
other. For example, symbolic model checking algorithms are efficient in handling huge state
spaces, however their decision diagram based variants are not efficient in trace generation.
Explicit model checking algorithms can easily produce traces if the state space fits into
memory. However, state space explosion often prevents their application. It is therefore
desirable to find a solution that keeps the good from both worlds. Our proposed solution
combines the advantages of both approaches: a symbolic state space traversal algorithm is
used to check the properties and an explicit search algorithm is applied for trace generation,
if needed.

To exploit the strengths of the two different approaches, both algorithms restricted to
perform only those tasks in which they are better in. The symbolic algorithm can easily
decide if a requirement holds, but additional operations are costly. Explicit algorithms
can be specialized in computing traces, but then they easily fail if a goal state is not
reachable. One of the main ideas of this work is to minimize the load of each algorithm by
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dividing the tasks and providing information that is easy to compute. A similar approach
is presented in [9].

The two tools work together, but separately. First a symbolic model checking is performed,
then – if there are reachable goal states – the explicit algorithm is run with additional
parameters computed in the first step, such as the exact specification of the reached goal
state and its depth to it to aid trace generation. Figure 3.1 summarizes this strategy.

Figure 3.1. The general workflow in our work

3.2 Contributions in Symbolic Model Checking

Chapter 4 aims to investigate the possibilities of set decision diagrams in symbolic model
checking. Since [6] and [13] use SDDs in a special context, a number of operations have to
be defined to use this type of diagram in traditional symbolic algorithms. A special repre-
sentation of transitions is also necessary in order to align with the hierarchical structure
of SDDs.

In this work, we define the basic set operations for hierarchical decision diagram nodes to
employ SDDs in two basic state space traversal algorithms. Our main goal is to evaluate
the potential of SDDs compared to MDDs in these settings, so an implementation of a
prototype is also presented. In Chapter 6, conclusions are derived from empirical com-
parisons of the different implementations, demonstrating the strengths and weaknesses of
both representations and highlighting interesting directions for future work.

3.3 Contributions in Explicit Trace Generation

Chapter 5 presents a new approach of explicit trace generation. In the field of directed
model checking it is common to aid the directed trace generation with a symbolic model
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checking beforehand[10], but the majority of algorithms extracts exact markings from the
symbolic search and bases its heuristic search on distances between markings by token
count differences[10][8]. Our contribution to the field of directed model checking is that
we calculate our reachability heuristic based on the behavior of transitions in the Petri
net. This way we can produce very short traces for huge models efficiently if a goal state
is reachable, but the method needs the aid of the symbolic model checker for the above
discussed reasons.
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Chapter 4

Symbolic Method

In this chapter, we present different approaches for symbolic state space representation
and generation. Symbolic algorithms are essential when explicit algorithms cannot deal
with the size of the state space anymore, especially when the whole state space has to
be generated, such as the case when proving reachability. While these methods have the
ability to decide if a given state is reachable, it is not trivial – and usually inefficient – to
generate a demonstrating trace.

First, Section 4.1 shows how to use multivalued decision diagrams and set decision di-
agrams to encode the state space of a system, as well as a compact way to represent
transitions of a Petri net (or in general, vector addition systems). Our implementation of
set decision diagrams are described in Section 4.2. Finally, Section 4.3 discusses basic state
space exploration algorithms in terms of the different decision diagram representations.

4.1 Symbolic Representations

When dealing with symbolic model checking, an important question is how to encode the
states and transitions of the system. In this section, two types of decision diagram based
encodings are given for states, and a lightweight representation is proposed specifically for
Petri net transitions.

4.1.1 Representation of the State Space

The most trivial way to represent a state space of a model is to store its state graph,
explicitly enumerating the different states and transitions.

Example. Figure 2.2 illustrates a Petri net and its state space. A marking of this net can
be stored as an integer vector (or tuple) of length three: the first integer referring to the
token count of p1, the second to p2 and the third to p3. In this case, the initial state can
be represented as [0, 2, 0]. The state space can be stored as a set of the vectors encoding
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the possible states. This Petri net has six distinct states, so this approach gives the set
{[0, 2, 0], [0, 1, 1], [0, 0, 2], [1, 1, 0], [1, 0, 1], [2, 0, 0]} as the state space.

The example above clearly shows that the explicit storage is very straight-forward, but
also very naive. Usually. there are multiple states in which the token count of a place is
the same (e.g., in the example above, p1 has zero token in three different states), which
causes a redundancy. The strength of the decision diagram encoding is that it exploits the
redundancy in the state space to achieve a compact storage.

4.1.1.1 Encoding States with Multivalued Decision Diagrams

MDDs are commonly used to represent sets of states, e.g., in [18]. As mentioned in Section
2.4.2, an MDD encodes an integer function 𝑓(𝑥1, ..., 𝑥𝑛) −→ {0, 1}. Suppose 𝑥𝑖 refers to
the token count of the i-th place, and 𝑓(𝑥1, ..., 𝑥𝑛) is 1 iff [𝑥1, ..., 𝑥𝑛] is part of the encoded
set. The levels of the MDD then correspond to places in the Petri net. MDDs have set-
like operations as seen in Section 2.4.2.1, thus it is possible to directly manipulate this
representation.

Example. The Petri-net on Figure 2.2 has three places, so the MDD encoding the state
space will have three levels. Let the first level represent p1, the second p2 and the third
p3. The MDD representation of the state space can be seen on Figure 4.1, with paths
from the root node to the terminal 1 denotes the encoded vectors.

Figure 4.1. An MDD representation of the state space of the Petri
net on Figure 2.2

Figure 4.1 above illustrates the way an MDD provides a less redundant way to encode the
state space. However, this method is still not redundancy-free.
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4.1.1.2 Ecoding States with Set Decision Diagrams

There are models which are structurally symmetrical, and this causes redundancy in the
MDD representation of their state spac. Suppose a model has similar, repeated sub-
models, or components. If these components can be arranged into a hierarchy, then we
call it a hierarchical model.

Example. An example for hierarchical models could be the dining philosophers model.
This model has multiple philosophers around a table, their meals in front of them, and a
fork between every neighboring philosopher. A fork can be used by only one philosopher,
and a philosopher needs both forks next to him to eat. For more information of the model,
see Appendix A.

Figure 4.2. The dining philosophers problem for five philosophers.

As Figure 4.2 shows, the problem is composed of similar, repeated components. In this
case, a component consists of a philosopher and a fork. These components have similar
behavior and also similar states, so the MDD has repeating patterns (see Figure 4.3).

Figure 4.3. Approximate shape of an MDD encoding the state
space of the dining philosophers problem.
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To make the state space representation even more compact, set decision diagrams can be
used (see Section 2.4.3). Using SDDs, the symmetric parts can be encoded only once, and
their recurring appearance can be referenced by the use of edge labels.

Example. The aforementioned dining philosophers model can be arranged into three
hierarchy levels: the topmost level, with five philosopher-fork pairs, the middle level,
encoding the combination of a philosopher and a fork, and the lowest level, which encodes
the states of philosophers and forks in MDDs. A route to the terminal 1 in the first
hierarchy level references the second hierarchy level five times by its labels. A route in the
second hierarchy level has two reference to the lowest hierarchy level (containing MDDs),
with one label pointing to the MDD node encoding the states of a philosopher and another
one encoding a fork.

Figure 4.4. Schematich figure of a hierarchical encoding of the
state space of the dining philosophers problem.

Figure 4.4 shows a schematich figure of the resulting SDD hierarchy. Instead of storing
the broad, branching parts of the state space multiple times, now they are encoded only
once on the MDD level, and referenced multiple times by labels on the upper levels. Using
this method, the redundancy of the state space caused by the hierarchic and repeating
structure of the model is significantly reduced. For an even more detailed example on
using SDD hierarchy levels, see [13].
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4.1.2 Encoding of Petri Net Transitions

Symbolic algorithms generate new reachable states from the already explored part of the
state space. To find these states, the algorithm has to know the transitions and their exact
effect. Thus we have another problem beside the representation of the state space – the
representation of transitions and their firing rules.

In case of Petri nets, the weight functions 𝑊 − and 𝑊 + (see Section 2.1) are a sufficient
representation when working with MDDs, because levels of the diagram are associated
with places. However, if we want to represent the state space with SDDs, level numbers
do not correspond to places anymore, because the same diagram can encode the states of
different components. In other words, the meaning of a level is now context dependent.

To solve this, we developed a way to represent the transitions hierarchically. The hierarchy
of a model is basically a tree structure, so we encoded transitions in trees with the exact
same structure as the model. In this construct, the missing context is reintroduced by
processing the proper subtree of the transition encoding.

Figure 4.5. A hierarchical structure of decision diagrams, and the
tree structure of the transitions

Figure 4.5 depicts a decision diagram hierarchy along with a tree describing a transition.
Leaf nodes correspond to levels of MDDs and they encode the effects of the transition
in two integer values: the number of tokens removed and added to the corresponding
place. Every non-leaf node corresponds to a decision diagram, with the 𝑖th child node
giving context to the labels of the 𝑖th level of the SDD. This relation is formalized in the
following definition:

Definition 7 (Hierarchic transition tree).
A transition tree describing a transition in a hierarchic Petri net is a directed tree, with
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a node set 𝑉 consisting of internal nodes and leafs (𝐿), an edge set 𝐸, and a function
𝑇 : 𝐿 −→ (Z,Z) such that 𝑇 (𝑤) : (𝑊 (𝑝, 𝑡), 𝑊 (𝑡, 𝑝)) for ∀𝑤 ∈ 𝐿. Every component in the
hierarchy is associated with an internal node 𝑣 ∈ 𝑉 ∖ 𝐿. Every place 𝑝 ∈ 𝑃 in Petri net
is associated with a corresponding leaf node 𝑤 ∈ 𝐿. There is an edge (𝑥, 𝑦) ∈ 𝐸 in the
tree iff the component or place corresponding to 𝑦 is the part of the subcomponent of the
component corresponding to 𝑥. �

4.2 Implementing Set Operations on Set Decision Diagram

This section introduces algorithms to implement set operations on set decision diagrams.
These operations were not defined in [6] and [13] where SDDs were introduced, but they
defined the so-called homomorphisms. A homomorphism is an abstract operation that
maps canonical SDD nodes to canonical SDD nodes. They can be used to define various
operations, including set operations, integer arithmetic or even variable assignments. In
this sense, the following operations can be regarded as our custom homomorphisms.

The following algorithms will be doubly recursive: for every edge in the resulting diagram
the label and the child node has to be computed by a recursive calls to another set
operation. The recursions computing the child nodes traverse the current diagram and
will be terminated on the terminal level. The recursions computing the labels to the
new children traverse the hierarchy, and will eventually result in a simple MDD operation
(introduced in Section 2.4.2.1). Furthermore, reduction rules must be enforced during the
computation.

When defining the following algorithms, one must consider the path passing through the
current decision diagram node(s). In every case we will consider how to compute the child
and label nodes of the resulting edges such that the resulting node is canonical.

4.2.1 Intersection

The intersection of two SDDs is an SDD encoding the set of vectors encoded by both of
the operands. Our first consideration is that every path that is present in the intersection
has to pass trough some label in both the first and the second operand. Therefore, to
compute the labels of resulting edges, we have to intersect labels of every edge of the first
operand with labels of every edge of the second operand. The resulting intersection are the
candidates to be labels on the edges of the result node. Furthermore if a path got through
the labels, it still has to reach the terminal one in both diagrams, so the intersection of
the children nodes also has to be computed for every edge candidate. If the intersection is
non-empty, we add an edge to the result node labeled with the intersection of the labels
leading to the intersection of their corresponding children. This construction inherently
satisfies both of the reduction rules.
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Algorithm 1: Intersection of two SDD nodes
Input: SDD nodes v and w on the same level in two canonical SDD graph
Output: SDD node z encoding the intersection of the inputs

1 if v = 0 ∨ w = 0 then
2 return 0;
3 end
4 if v = w then
5 return v;
6 end
7 𝑧 ← new node on the same SDD level as operands;
8 foreach outgoing edge e of v do
9 foreach outgoing edge f of w do

10 𝑐← child(𝑒) ∩ child(𝑓);
11 𝑙← label(𝑒) ∩ label(𝑓);
12 if n ̸= 0 and l ̸= 0 then
13 create edge 𝑧

𝑙−→ 𝑐 ;
14 end
15 end
16 end
17 if z does not have any edges then
18 𝑧 ← 0;
19 end
20 return z;

4.2.2 Union

The union of two SDDs is an SDD encoding the set of vectors encoded by any of the
operands. Our first consideration is that every path that is present in both of the operands
has to path trough some label in both the first and the second operand. But unlike in
the case of intersection, the corresponding children has to be merged. Furthermore, in
this case, paths only present in one of the operands also have to be included in the result.
Therefore, the parts of labels not present in the intersections has to be added as a new
edge with their original child node.

While the definition of intersection implied that the reduction rules are satisfied, it is not
the case here. To see this, consider the following. Assume that the label of an edge had
an intersection with the label of another edge, whose child was the same. In this case
the algorithm above would create two edges that lead to the same child. Therefore, the
last step of the algorithm has to apply the first reduction rule (defined in Section 2.4.3)
by merging the labels of the edges leading to the same child node. The other rule is still
guaranteed by the construction.

4.2.3 Subtraction

The subtraction of an SDDs from another SDD encoding the set of vectors encoded only by
the latter. In our implementation, we subtracted the right operand from the left operand.
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Algorithm 2: Union of two SDD nodes
Input: SDD nodes v and w on the same level in two canonical SDD graph
Output: SDD node z encoding the union of the inputs

1 if v = 1 or w = 1 then
2 return 1;
3 end
4 if v = w then
5 return v;
6 end
7 𝑧 ← new node on the same SDD level as operands;
8 foreach outgoing edge e of v do
9 foreach outgoing edge f of w do

10 𝑐← child(𝑒) ∪ child(𝑓);
11 𝑙← label(𝑒) ∩ label(𝑓);
12 if l ̸= 0 then
13 create edge 𝑧

𝑙−→ 𝑐;

14 replace e with 𝑣
label(𝑒) ∖ 𝑙−−−−−−→child(𝑒);

15 replace f with 𝑣
label(𝑓) ∖ 𝑙−−−−−−→child(𝑓);

16 end
17 end
18 end
19 add every remaining edges from v and w to z;
20 while ∃𝑎𝑖, 𝑎𝑗 , 𝑥 : 𝑧

𝑎𝑖−→ 𝑥 ∧ 𝑧
𝑎𝑗−→ 𝑥 do

21 remove edges 𝑧
𝑎𝑖−→ 𝑥 and 𝑧

𝑎𝑗−→ 𝑥;
22 create edge 𝑧

𝑎𝑖 ∪ 𝑎𝑗−−−−→ 𝑥;
23 end
24 return z;

Our first consideration is that every path that is present in both of the operands has to
path trough some label in both the first and the second operand. But unlike in the case of
intersection, the corresponding children has subtracted, with subtracting the children of
the right operands from the children of the left operand, thus eliminating the paths found
in both of the operands. Furthermore, in this case, paths only present in the left operand
also have to be included in the result. Therefore, the parts of labels from the left operand
not present in the intersections has to be added as a new edge with their original child
node.

While the definition of intersection implied that the reduction rules are satisfied, it is not
the case here. To see this, consider the following. Assume that the label of an edge had an
intersection with the label of another edge, whose children nodes are disjunct. In this case
the algorithm above would create two edges that lead to the same child. Therefore, the
last step of the algorithm has to apply the first reduction rule (defined in Section 2.4.3)
by merging the labels of the edges leading to the same child node. The other rule is still
guaranteed by the construction.
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Algorithm 3: Subtraction of an SDD node from another SDD node
Input: SDD nodes v and w on the same level in two canonical SDD graph
Output: SDD node z which is the subtraction of w from v

1 if v = 0 or w = 0 then
2 return v;
3 end
4 if v = w then
5 return 0;
6 end
7 𝑧 ← new node on the same SDD level as operands;
8 foreach outgoing edge e of v do
9 foreach outgoing edge f of w do

10 𝑐← child(𝑒) ∖ child(𝑓);
11 𝑙← label(𝑒) ∩ label(𝑓);
12 if l ̸= 0 then
13 create edge 𝑧

𝑙−→ 𝑐;

14 replace e with 𝑣
label(𝑒) ∖ 𝑙−−−−−−→child(𝑒);

15 end
16 end
17 end
18 add every remaining edges from 𝑣 to 𝑧;
19 while ∃𝑎𝑖, 𝑎𝑗 , 𝑥 : 𝑧

𝑎𝑖−→ 𝑥 ∧ 𝑧
𝑎𝑗−→ 𝑥 do

20 remove edges 𝑧
𝑎𝑖−→ 𝑥 and 𝑧

𝑎𝑗−→ 𝑥;
21 create edge 𝑧

𝑎𝑖 ∪ 𝑎𝑗−−−−→ 𝑥;
22 end
23 return z;

4.3 Exploring the State Space

In this section, the necessary algorithms for exploring the state space are presented: the
algorithm responsible for firing the transitions in the hierarchical model, and common
path finding algorithms.

4.3.1 Firing a Transition

To traverse through the state space, an algorithm has to be defined to generate the set of
states reached from an already discovered set of states after firing an enabled transition.
Algorithms 4 and 5 are designed to use the transition trees for firing transitions by calling
doubly recursion in accordance with the structure presented in Section 4.1.2. The first
algorithm is called on the root node of the SDD on the top hierarchy level, and when it
travels down to the lowest SDD hierarchy levels, then eventually it calls the MDD variant
of the algorithm, when the labels are referring to MDDs. This MDD variant algorithm
will determine if a transition is enabled, and if it is, then calculates the new token count
on the place of the Petri net corresponding the MDD level within the current context.
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The other recursion traverses downwards in the levels of the SDD to calculate the child
nodes, and terminating on the terminal level.

Algorithm 4: Fire transition algorithm for SDD nodes
Input: SDD node v, tree node t from the transition tree of a transition
Output: SDD node w encoding the sub-states resulted from firing the transition

corresponding to the tree of t on the states encoded by v
1 if level(v) = 0 then
2 return v;
3 end
4 𝑤 ← new node on the same MDD level as the operands;
5 foreach outgoing edge e of v do
6 𝑛← fireTransition(node(𝑒), 𝑡);
7 𝑙← fireTransition(label(𝑒), 𝑡[level(𝑣)]);
8 if l ̸= 0 ∧ n ̸= 0 then
9 create edge 𝑤

𝑙−→ 𝑛;
10 end
11 end
12 if w don’t have any edges then
13 return 0;
14 end
15 while ∃𝑎𝑖, 𝑎𝑗 , 𝑥 : 𝑤

𝑎𝑖−→ 𝑥 ∧ 𝑤
𝑎𝑗−→ 𝑥 do

16 remove edges 𝑤
𝑎𝑖−→ 𝑥 and 𝑤

𝑎𝑗−→ 𝑥;
17 create edge 𝑤

𝑎𝑖 ∪ 𝑎𝑗−−−−→ 𝑥;
18 end
19 return w;

4.3.2 Traversing Algorithms

The two methods of traversing the state space presented here are the widely known breadth
first search (BFS), and a similar algorithm called chaining loop.

BFS starts at the initial state, and explores the states reachable by firing only one transi-
tion with every iteration. That means BFS finds every reachable state with the minimum
required firings needed to reach that state from the initial state. With every iteration, BFS
constructs the result for the firing of every enabled transition on the currently explored
state space, and then it sums the results and this original set.

Chaining loop fires every transition after each other as well, but this algorithm makes the
union of the result set of states with the original state space straightaway. This means
that on average, chaining loop will find most of the reachable states sooner then the BFS,
but it can only give a loose upper estimation on firing needed to reach a given state.
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Algorithm 5: Fire transition algorithm for MDD nodes
Input: MDD node v, tree node t from the transition tree of a transition
Output: MDD node w which encodes the sub-states resulted from firing the

transition corresponding to the tree of t on the states encoded by v
1 if level(v) = 0 then
2 return v;
3 end
4 𝑤 ← new node on the same MDD level as the operands;
5 i = 0;
6 foreach outgoing edge e of v do
7 if n[i] ̸= 0 ∧ i – 𝑡[𝑙𝑒𝑣𝑒𝑙(𝑣)].From >= 0 then
8 𝑥← fireTransition(𝑛𝑜𝑑𝑒[𝑖], 𝑡);
9 if x ̸= 0 then

10 𝑤[𝑖− 𝑡[𝑙𝑒𝑣𝑒𝑙(𝑣)].From +𝑡[𝑙𝑒𝑣𝑒𝑙(𝑣)].To]← 𝑥;
11 end
12 end
13 end
14 if w don’t have any edges then
15 𝑤 ← 0;
16 end
17 return 𝑤;

Algorithm 6: Breadth first search
Input: a set 𝑠 containing the initial state only
Output: the encoded state space

1 while new states are found do
2 𝑑← empty set;
3 foreach every transition t do
4 𝑑← 𝑑 ∪ fireTransition(𝑠, 𝑡);
5 end
6 𝑠← 𝑠 ∪ 𝑑;
7 end
8 return 𝑠;

Algorithm 7: Chaining loop
Input: a set 𝑠 containing the initial state only
Output: the encoded state space

1 while new states are found do
2 foreach every transition t do
3 𝑠← 𝑠 ∪ fireTransition(𝑠, 𝑡);
4 end
5 end
6 return 𝑠;
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Chapter 5

Guided Partial Order Reduction

This chapter introduces our new explicit model checking algorithm building on concepts
of directed search and partial order reduction. The proposed method focuses on efficiently
generating traces to unsafe states even in large and complex systems. To handle cases
where the algorithm has to prove unreachability, the efficiency of partial order reduction
(see Section 2.5) is employed to complement the guiding heuristics. Nevertheless, our
approach tends to sacrifice performance in the unreachable case in favor of efficient trace
generation. This is in accordance with the strategy of Chapter 3 – proving unreachability
is assumed to be the task of a symbolic model checker. Due to the techniques our approach
builds on, we call it Guided Partial Order Reduction (GPOR).

Figure 5.1. General workflow of guided partial order reduction

5.1 Guided Search in Petri Nets

Our contribution in the field of explicit model checking is a new heuristic to perform
directed model checking on Petri nets. The introduced new algorithm incorporates this
heuristic into partial order reduction to build stubborn sets using the information about
which transitions should be fired in order to “get closer” the goal state. This section
introduces the heuristic and our notion of “closer” to introduce the theoretical foundations
of the algorithm.
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For the rest of this section, we assume that the reachability criteria 𝜙 is given as the
conjunction of positive atomic propositions, i.e., 𝜙 = ℓ1 ∧ · · · ∧ ℓ𝑛. Section 5.2 will discuss
methods to reduce other forms of 𝜙 to this form.

5.1.1 Closed-Quarters Navigation with UP Sets

Figure 5.2. Place of UP sets in our workflow

Our heuristic is based on the information extracted from the structure of Petri nets: the
algorithm investigates if transitions can modify the number of tokens on “interesting”
places – e.g., places that appear in the requirement. Using this heuristic the algorithm
can prioritize transitions and fire the more promising ones first. As the Petri net reacha-
bility problem for bounded Petri nets is computationally hard, we can not ensure to find
the solution efficiently all the time. As a first approach, we define a set of “good” transi-
tions called the UP set. The idea of our algorithm is based on [15], however we propose
significant improvements.

Definition 8 (Positive UP set). Let 𝑈𝑃 +
𝑖 = {𝑡 | 𝑡 ∈ ∙𝑠𝑢𝑏(ℓ𝑖) ∧𝑊 *(𝑡, 𝑠𝑢𝑏(ℓ𝑖) > 0)},

i.e., all the transitions that adds more tokens on 𝑠𝑢𝑏(ℓ𝑖) than it removes. �

Definition 9 (Negative UP set). Let 𝑈𝑃 −
𝑖 = {𝑡 | 𝑡 ∈ 𝑠𝑢𝑏(ℓ𝑖) ∙ ∧𝑊 *(𝑡, 𝑠𝑢𝑏(ℓ𝑖) < 0)},

i.e., all the transitions that adds more tokens on 𝑠𝑢𝑏(ℓ𝑖) than it removes. �

Such positive and negative UP sets can be statically computed for every atomic propo-
sitions of 𝜙. In order to use the sets as guiding heuristics during state-space exploration
the proper sets have to be chosen for every unsatisfied atomic proposition.

Observation: If the operator of ℓ𝑖 is ̸=, both sets are useful. In this case we do not
know whether we want to increase or decrease the token count, we only know that the
present marking is not satisfying the atomic proposition. The choice between a positive or
negative UP set is determined by the values of the functions Less and More (introduced
in Section 2.3.1.1). Observation of the definitions of the functions reveals that in case of
operator “̸=”, both UP sets can help to satisfy the atomic proposition. This is reflected
in the following definition of UP sets.

32



Definition 10 (UP set). Let 𝑠 be the marking of a Petri net and 𝜙 = ℓ1 ∧ · · · ∧ ℓ𝑛 a
reachability criteria. Then 𝑈𝑃 (𝑠) = (

⋃︀
{∀ℓ𝑖∈𝜙 | 𝐿𝑒𝑠𝑠(ℓ𝑖,𝑠)} 𝑈𝑃 +

𝑖 )∪(
⋃︀

{∀ℓ𝑖∈𝜙 | 𝑀𝑜𝑟𝑒(ℓ𝑖,𝑠)} 𝑈𝑃 −
𝑖 )

is the UP set corresponding to 𝑠. �

An UP(s) set is the union of the 𝑈𝑃 ±
𝑖 with regard to all the atomic propositions based

on the state 𝑠. The role of the UP set is to characterize “good transitions” based on the
following theorem.

Theorem 1 (Theorem of UP sets). Every 𝜌 path starting in 𝑠 and leading to a goal
state 𝑔 according to reachability criteria 𝜙 contains at least one firing from the transitions
in 𝑈𝑃 (𝑠). �

Proof 1. Indirect proof. Assume that a current state is not a goal state and there is a
path 𝜌 starting in 𝑠 leading to a goal state 𝑔 according to reachability criteria 𝜙 without
firing a transition in UP(s).

If ∃ℓ𝑖 ∈ 𝐴𝑃 (𝜙) : 𝐿𝑒𝑠𝑠(ℓ𝑖, 𝑠) then a transition along path 𝜌 has to raise the tokencount of
𝑠𝑢𝑏(ℓ𝑖). However transitions that can raise the token count on 𝑠𝑢𝑏(ℓ𝑖) is by definition in
𝑈𝑃 +

𝑖 , which is a subset of UP(s) according to Definition 10, so this assumption leads to a
contradiction.

If ∃ℓ𝑖 ∈ 𝐴𝑃 (𝜙) : 𝑀𝑜𝑟𝑒(ℓ𝑖, 𝑠) then a transition along path 𝜌 has to decrease the tokencount
of 𝑠𝑢𝑏(ℓ𝑖). However transitions that can decrease the token count on 𝑠𝑢𝑏(ℓ𝑖) is by definition
in 𝑈𝑃 −

𝑖 , which is a subset of UP(s) according to Definition 10, so this assumption leads
to a contradiction.

Otherwise, the definition of 𝐿𝑒𝑠𝑠 and 𝑀𝑜𝑟𝑒 implies that every atomic propositions of 𝜙

is satisfied which in term implies that 𝑠 is a goal state. This is again a contradiction. �

Note that both 𝑈𝑃 +
𝑖 and 𝑈𝑃 −

𝑖 can be computed in a preprocess step, because they do not
depend on the current state, only on structural properties off the model and an atomic
proposition. This way the calculation of UP(s) is a single decision based on the current
state and an union of the chosen sets. This can significantly reduce the overhead of UP
set computation during state space exploration.

5.1.2 Road Signs in the Net: UP Layers

UP sets can be used to guide the search towards goal states, unless none of the chosen
transitions are enabled. To mitigate this situation, additional “road signs” has to be
defined in the model to guide the search up until a point where one of the transitions in
𝑈𝑃 (𝑠) become enabled. The basic idea of the following heuristic is that finding a state
in which a transition of 𝑈𝑃 (𝑠) is enabled is similar to the original problem of reaching a
goal state.

To implement this idea, layered structure is built for every 𝑈𝑃 ±
𝑖 , with every layer including

transitions that can enable transitions of the previous layer.
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Figure 5.3. The place of UP layers in our workflow

Definition 11 (𝑈𝑃 + layer). For every atomic proposition ℓ𝑖 ∈ 𝐴𝑃 (𝜙), we define the
𝑈𝑃 + as follows:

𝑈𝑃 +
𝑛,𝑖 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑛 = 0 : 𝑈𝑃 +

𝑖

∀𝑛 > 0 : {𝑡|𝑡 ∈ ∙ ∙ (𝑈𝑃 +
𝑛−1,𝑖) ∧ 𝑝 ∈ ∙(𝑈𝑃 +

𝑛−1,𝑖) ∧𝑊 *(𝑡, 𝑝) > 0}∖
𝑗<𝑛⋃︀
𝑗=0

𝑈𝑃 +
𝑛,𝑗

Definition 12 (𝑈𝑃 − layer). For every atomic proposition ℓ𝑖 ∈ 𝐴𝑃 (𝜙), we define the
𝑈𝑃 − as follows:

𝑈𝑃 −
𝑛,𝑖 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑛 = 0 : 𝑈𝑃 −

𝑖

∀𝑛 > 0 : {𝑡|𝑡 ∈ ∙ ∙ (𝑈𝑃 −
𝑛−1,𝑖) ∧ 𝑝 ∈ ∙(𝑈𝑃 −

𝑛−1,𝑖) ∧𝑊 *(𝑡, 𝑝) > 0}∖
𝑗<𝑛⋃︀
𝑗=0

𝑈𝑃 −
𝑛,𝑗

The topmost layer (𝑈𝑃 ±
0,𝑖) is the UP set defined in the previous section, then the role of

lower layers are to enable transitions in the higher layers. In addition, transitions can only
belong to the highest possible layer, meaning that every transition belongs to at most one
UP layer. Note that 𝑈𝑃 ± layers are still statically computable.

Choosing between 𝑈𝑃 ± layers again depends on the current state defined in the following
function.

Definition 13 (UP layers). Let 𝑠 be the marking of a Petri net and 𝜙 = ℓ1 ∧ · · · ∧ ℓ𝑛 a
reachability criteria. Then 𝑈𝑃 𝑛(𝑠) = (

⋃︀
{∀𝑖∈𝐼|𝐿𝑒𝑠𝑠(ℓ𝑖,𝑠)} 𝑈𝑃 +

𝑛,𝑖) ∪ (
⋃︀

{∀𝑖∈𝐼|𝑀𝑜𝑟𝑒(ℓ𝑖,𝑠)} 𝑈𝑃 −
𝑛,𝑖)

where 𝑠 is the current state of the Petri net. �

The definition is similar to Definition 10, 𝑈𝑃 𝑛(𝑠) is built based on the current state.
Every layer helps enabling the layer “on top of it”, while the topmost layer helps reaching
a goal state. The representation of these sets in the actual Petri net is a set of transitions
that influence the reachability of a goal state surrounded by similar sets that influence the
enabling of these transitions.

The following definition characterizes the UP layer that is a local best choice according to
our heuristics.
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Definition 14 (Highest available UP layer). The highest available UP layer is the
highest layer that contains an enabled transition in state 𝑠, and is denoted by 𝑈𝑃 *(𝑠). �

To show that it is indeed a good choice to fire the transitions of 𝑈𝑃 𝑛(𝑠) we the following
lemma and theorem.

Lemma 1. Assuming that there is no transition enabled in 𝑈𝑃 𝑛(𝑠), there is no path 𝜌

starting in 𝑠 that contains a firing from 𝑈𝑃 𝑛(𝑠) but not from 𝑈𝑃 𝑛+1(𝑠). �

Proof 2. Similarly to the proof of Theorem 1, it is easy to see that a transition in 𝑈𝑃 𝑛(𝑠)
cannot become enabled unless tokens are placed onto its input places, but transitions
raising the token count on these places are in 𝑈𝑃 𝑛+1(𝑠). �

Theorem 2 (Theorem of UP layers). Every 𝜌 path starting in 𝑠 and leading to a goal
state 𝑔 according to reachability criteria 𝜙 contains at least one firing from the transitions
in 𝑈𝑃 *(𝑠). �

Proof 3. Inductive proof. If 𝑈𝑃 *(𝑠) = 𝑈𝑃 0(𝑠), then Theorem 1 provides a proof. If
𝑈𝑃 *(𝑠) = 𝑈𝑃 𝑛(𝑠) and 𝑛 > 0, then Definition 14 implies that none of the transitions
in 𝑈𝑃 𝑛−1(𝑠) is enabled. Based on Lemma 1, transitions in 𝑈𝑃 <𝑛(𝑠) can only become
enabled if at least one transition is fired from 𝑈𝑃 𝑛(𝑠).

Theorem 2 implies that it is inevitable to fire a transition from 𝑈𝑃 *(𝑠) if we want to reach
a goal state. This serves as the basis of our guided model checking algorithm, presented
in Section 5.2.

In order to be able to compute 𝑈𝑃 *(𝑠) it is important to prove that the number of non-
empty UP sets is finite.

Lemma 2 (UP layer calculation is finite). There is a finite integer 𝑛 such that
𝑈𝑃 𝑛(𝑠) = ∅. �

Proof 4. If we do not include any transition in 𝑈𝑃 𝑛(𝑠) then the statement holds. If we
include in every layer at least one transition, sooner or later (in a finite Petri net) the
remaining set of transitions we can choose from will become ∅, because we do not include
a transition more than once (see Definitions 11,12,13). �

If we find an empty UP layer UP𝑛(𝑠) = ∅, we can terminate the calculation of layers,
because an empty set of transitions has an empty set of input places, which, in turn, has
an empty set of input transitions (i.e., UP𝑛+1(𝑠) = ∅)

It is also worth noticing that if 𝑈𝑃 *(𝑠) = ∅ there is no path leading to a goal state (this
is a consequence of Theorem 2).
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5.2 Introducing the new algorithm

In this section we will introduce our guided partial order reduction algorithm that uses
the above described heuristic. The algorithm can generate traces to reachable states very
efficiently even in huge models.

As we mentioned in Section 2.5, there are many ways to create stubborn sets, and one
way is to heuristically guess which transitions are “helpful” to reach a goal state. In this
work we use UP layers as a guiding heuristic. We will construct our stubborn sets in a
way that they contain all enabled UP layer transitions. From the theoretical proofs above,
we know that transitions of the UP layers will eventually guide the search to a goal state.
Partial order reduction is necessary to make sure that the search is complete.

5.2.1 Preprocess Steps

As we described above, the 𝑈𝑃 ± sets and layers are computable before the actual model
checking procedure, saving computation time during the actual checking. If we would have
to compute the UP layers in every state from scratch, our algorithm would be very slow
and redundant, because (even with partial order reduction) the state-space is huge.

5.2.1.1 UP Layer Cache

As mentioned in Section 5.1, UP layers can be precomputed statically to boost the per-
formance of the algorithm. However this tabel can grow unnecessarily large, so it is often
an overhead to compute all of the layers in advance.

For this reason our algorithm uses a lazy computation strategy that only computes the
first layer initially and delays the computation of lower layers until necessary, but uses a
cache to save redundant computations.

5.2.1.2 Negation Normal Form

For our algorithm to work it is necessary to convert the reachability criteria to negation
normal form. Such a form can be reached using the DeMorgan rules on the expression-tree
recursively:

∙ ¬(𝐴 ∧𝐵) = ¬𝐴 ∨ ¬𝐵

∙ ¬(𝐴 ∨𝐵) = ¬𝐴 ∧ ¬𝐵

Example:

¬(¬(𝐴 ∧𝐵) ∨ 𝐶) ∧𝐷 = ¬𝐴 ∨ ¬𝐵 ∨ 𝐶 ∨ ¬𝐷

With these rules we can push the negations into the leaf-nodes, and absorb them by
negating the operators in ℓ. The operator negation rules are the following:
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∙ = in negation is ̸= and ̸= in negation is =

∙ < in negation is >= and >= in negation is <

∙ > in negation is <= and <= in negation is >

This step is necessary because negations must be built into the UP sets.

5.2.2 Exploration of the Reduced State-Space

In this section we will show the actual state-space exploration process, then we introduce a
method that produces stubborn sets without checking the conditions described in Section
2.5 but inherently satisfying them.

5.2.2.1 Computing Stubborn Sets

Figure 5.4. Place of partial order reduction in our workflow

We compute the stubborn sets in a way that inherently satisfies properties in Definition 6.
The essence of the method is to group the transitions in a Petri net to disjunct sets based
on their dependencies. Two transitions belong to the same set if one of them can disable
the other, i.e., transitions that have common input places. This is a stricter rule than the
ones described in Definition 6, but it is a relatively cheap over-approximation and can be
derived from the Petri net structure only.

Example:

On figure 5.5 there are three groups: Group1 = {𝑡1, 𝑡2, 𝑡5}, Group2 = {𝑡3}, Group3 = {𝑡4}.
The basis of the grouping is the common input place, because in ordinary Petri nets, the
only way to disable an enabled transition is to remove tokens from one (or more) of its
input places. A group is defined as the transitive closure of this dependecy relation. If
we find a transition that disables another, they belong to the same group together with
all the other transitions that can disable either. Every time we include a transition in a
group, we must check again for the transitions it has common input places with, and add
them to the group. For example, in figure 5.5, 𝑡1 cannot disable 𝑡5 but both can disable 𝑡2
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Figure 5.5. Grouping of transitions based on ability to disable
each other

so they belong to the same group (Group1). We call these groups of transitions dependecy
groups.

To satisfy Definition 6 we must make sure that if we include a transition in a stubborn
set, we include the whole dependency group it belongs to. To use the defined heuristics we
start from the best UP layer, 𝑈𝑃 *(𝑠), then add transitions of related dependency groups.

∙ D0: This requirement is only violated iff 𝑈𝑃 *(𝑠) is empty, but according to Theorem
2 this also means that goal states are not reachable from this state.

∙ D1 and D2: STUB members cannot disable transitions outside the STUB set and
a non-STUB members cannot disable a STUB members, due to the definition of
dependency groups thus inherently satisfy D1 and D2.

5.2.2.2 Discovering the Reduced State-Space

Figure 5.6. Place of state-space discovery in our workflow
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The core of the state-space exploration algorithm is depth first search. We start the
search from the initial state of the Petri net. The essence of our approach is that instead
of discovering every neighbor the current state. we compute a stubborn set and only fires
the transitions in it. As mentioned before, the core of each stubborn set is an UP layer so
heuristic search is achieved by firing those transitions first.

Algorithm 8 presents the core of our explicit guided partial order reduction model checker.
In accordance with our plans, we sacrifice the unreachable cases in favor of generating
shorter traces faster. This is caused by the fact that if we backtrack to a state, we does
not pop it from the stack immediately (like we would in a traditional DFS), instead, we
try the stubborn set built around the next UP layer. This is a key step in the algorithm,
because there is no guarantee that the ”best“ stubborn set preserves reachability, it is
possible that the worse best stubborn set contains the key transition to reach a goal state.
Heuristics are only best guesses to direct the state-space traversal, in accordance with our
workflow shown in 5.1.

5.2.3 Strengths and Weaknesses of UP Sets

The heuristics we described are very efficient in guiding the DFS state-space discovery.
Combined with partial order reduction we can efficiently check models for safety prop-
erties, but there is a slight complication when it comes to complex specifications. If the
reachability criteria describe two disjunct sets of unsafe states that mutually exclude each
other, we face a problem illustrated on Figure 5.7.

If the heuristic tries to direct the search towards multiple directions, although it gives right
answer, only a much longer longer, suboptimal traces is produced. this problem can be
solved by transforming the reachability criteria (𝜙) to disjunctive normal form (DNF). By
this, way we can decompose the problem into easier sub-problems. These problems can be
solved sequentially or in parallel, yielding shorter counterexamples. In case of sequential
execution, unreachable sub-problems can cause a memory and runtime overhead, this is
why it is advantageous to extract the exact description of a reachable goal state from a
symbolic model checking run.
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Algorithm 8: Limited depth first search to produce reduced state-space
Input: the Petri net structure, the reachability formula (𝜙), and maxdepth the

depth limit to the search
Output: trace to a goal state if reachable, an empty set if not

1 var Stack and ExampleStack are stacks storing states;
2 var DiscoveredStates is a set to store the discovered states;
3 var depth=0 is an integer;
4 Set the Petri net to the initial state; Put the initial state on Stack;
5 while Stack is not empty do
6 var s = Stack.pop();
7 try to insert s to DiscoveredStates;
8 if DiscoveredStates already had s and we fired all of its UP layers then
9 if s is the the top element in ExampleStack then

10 ExampleStack.pop();
11 end
12 Stack.pop();
13 continue;
14 end
15 else
16 ExampleStack.push(s);
17 ++depth;
18 end
19 if s satisfies 𝜙 then
20 return ExampleStack;
21 end
22 if depth < maxdepth then
23 var STUB = Get the next stubborn set for s;

; // if we were ot in this state before, get the first
; // by different stubborn sets we mean
; // which UP layer we build it around

24 foreach t in STUB do
25 if t is not in DiscoveredStates then
26 var ss = the state result of firing t from current state;
27 Stack.push(ss);
28 end
29 end
30 end
31 if s is the the top element in Stack and we saw all of its stubborn sets then
32 Stack.pop();
33 ExampleStack.pop();
34 end
35 end
36 retrurn ExampleStack;
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Figure 5.7. Example for two disjunct set of unsafe states and the
interfering upsets
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Chapter 6

Evaluation

In this chapter we present the performance results of our algorithms and data structures
in terms of independent capabilities and the efficiency of combining the two approaches.
Our measurements shows an interesting comparison between the symbolic and explicit
techniques and presents the efficiency of the combination of the best of both worlds.

6.1 State Space Exploration Tools

We compared the capabilities of SDDs and MDDs combined with common state space
exploration algorithms. In these measurements, our goal was to traverse through the
whole state space, so these measurements composed exclusively from symbolic methods,
and we did not use any expression to evaluate: the algorithms were finished when they
found all reachable states. We tried out four different combinations for the exploration:
we tried out MDDs and SDDs for data structures and breadth first search and chaining
loop for the traversing algorithm. We wanted to inspect the differences between these
combinations to find possibilities for future works.

6.1.1 Prototype Implementations

In order to evaluate our algorithms, we implemented prototype tools. The algorithms of
Chapters 4 and 5 were implemented separately to express their loose coupling and make
it possible to combine them with other solutions.

6.1.1.1 Prototypes for Symbolic Model Checking

There are only a handful of papers available on SDDs, all of them without any words on the
concrete implementation [6] [13]. To the best of our knowledge, SDDs were implemented
only once, in a fully different environment1 [5], so we had to start the development of
the data structure from scratches. We decided to use the C# Language and the .NET

1http://ddd.lip6.fr/
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framework, to integrate our algorithms into the successor project of the PetriDotNet2

model checking framework. We implemented the SDD as a component of the tool, so we
paid attention to align the interface of the SDD to match the other data structures in the
program.

6.1.1.2 Prototypes for Explicit Trace Generation Algorithms

The explicit trace generation algorithms were implemented in C++11 for performance
reasons, because explicit model checkers especially need to exploit the full potential of
computation resources. The prototype is a stand-alone tool with a command-line interface
to be able to integrate with other tools more easily.

6.2 The Hybrid Model Checker

Our hybrid model checker follows the workflow presented on Figure 3.1. At first a symbolic
model checking is performed and then, if needed the explicit guided algorithm is used for
trace generation. For our hybrid model checker we used the most efficient (based on
measurement results) combination of the symbolic methods presented in chapter 4.

6.3 Measurements

In this section we present the actual performance results of our tools, detailed measurement
results can be found at Tables 6.1, 6.2, 6.3.

6.3.1 Process of Measuring

We performed the measurements on an system: Intel i7-3610-QM CPU @ 2.30 GHz, 6 GB
DDR3-1333 MHz RAM, Microsoft Windows 8.1 operating system with .NET platform 4.6.
We limited the memory usage of all configurations to a maximum of 4 GB and enforced a
time limit of 10 minutes. If a test-case violated these limits we terminated it and displayed
the reason of termination in the results.

At first we measured the various combinations of symbolic methods in order to decide
which is the most efficient to serve as basis of our hybrid model checker. As shown in th
Table 6.1 this configuration was the usage of multivalued decision diagrams (MDDs) with
the chaining loop algorithm.

Then we performed the model checking with the guided partial order reduction algorithm
alone without the aid of any additional information in order to be able to measure the
efficiency boost of our approach.

2http://petridotnet.inf.mit.bme.hu/en
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Finally we performed the measurements with our hybrid model checker and evaluated the
results. In Section 6.3.3 we present interesting evaluations which can further aid the work
in the field of safety property model checking.

6.3.2 Results

In this section we present the actual results of our work, the notations in the tables are
the following.

∙ The Model column contains the name of the model we ran test-case on.

∙ The Crit. column contains the code of reachability criteria we asked from our model
checkers. The description of codes can be found in appendix A

∙ The |S| column shows the size of the state-space of the model, if it is unknown in
the literature it contains the “?” symbol.

∙ The RT columns shows the total runtime of the process.

∙ The PMU columns shows the peak memory usage of the process.

∙ The DS/TL columns shows for the explicit algorithm the size of the discovered
(reduced) state-space (DS) in comparison to the length of trace generated (TL)

∙ > 4 GB means that the process terminated due to too much memory consumption.

∙ > 10 m means that the process terminated due to reaching the time limit.

∙ if in a cell the symbol “–” showed it means that the cell cannot contain valuable data
due to termination because of other reasons or that the data is not representative.
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Model Crit. |S|
SDD MDD

BFS Chaining Loop BFS Chaining Loop
RT PMU RT PMU RT PMU RT PMU

Dekker 10 3 6 144 > 10 m – > 10 m – 1.86 s 62 MB 1.88 s 63 MB
Dekker 20 3 278 528 > 10 m – > 10 m – – > 4 GB – > 4 GB
Dekker 50 3 ? > 10 m – > 10 m – – > 4 GB – > 4 GB
Peterson 2 3 20 754 > 10 m – > 10 m – 4.24 s 124 MB 4.28 s 123 MB
Peterson 3 3 3.408× 106 > 10 m – > 10 m – – > 4 GB – > 4 GB
Peterson 4 3 6.299× 108 >10 m – > 10 m – – > 4 GB – > 4 GB

FMS 10 3 2.501× 109 64.57 s 15 MB 65.42 s 11 MB 5.12 s 114 MB 0.51 s 16 MB
FMS 100 3 2.703× 1021 > 10 m – > 10 m – – > 4 GB – > 4 GB
FMS 500 3 ? > 10 m – > 10 m – – > 4 GB – > 4 GB
DPhil 10 3 59 049 20.03 s 2 MB 8.04 s 1 MB 0.24 s 13 MB 0.07 s 5 MB
DPhil 100 3 5.146× 1047 > 10 m – > 10 m – – > 4 GB 20.8 s 401 MB
DPhil 500 3 3.64× 10238 > 10 m – > 10 m – – > 4 GB – > 4 GB
Kanban 10 3 1.006× 109 52.07 s 14 MB 29.03 s 7 MB 3.81 s 72 MB 0.8 s 19 MB
Kanban 100 3 8.054× 1011 > 10 m – > 10 m – – > 4 GB – > 4 GB
Kanban 1000 3 ? > 10 m – > 10 m – – > 4 GB – > 4 GB
TokenRing 5 3 166 69.8 s 7 MB 58.42 s 2 MB 0.18 s 7 MB 0.16 s 7 MB
TokenRing 10 3 58 905 > 10 m – > 10 m – 14.44 s 324 MB 14.29 s 324 MB
TokenRing 20 3 2.477× 1010 > 10 m – > 10 m – – > 4 GB – > 4 GB

Table 6.1. Results of the full state space exploration
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Model Crit. R? |S| GPOR Alone Symb in Hybrid GPOR in Hybrid Total Hybrid
PMU RT DS/TL PMU RT PMU RT DS/TL PMU RT

Dekker 10 1 X 6 144 2 MB < 1 ms 3 / 3 1 MB 0.15 s 2 MB < 1 ms 3 / 3 2 MB 0.15 s
Dekker 20 1 X 278 528 2 MB 0.01 s 3 / 3 3 MB 0.14 s 2 MB 0.01 s 3 / 3 3 MB 0.15 s
Dekker 50 1 X ? 13 MB 0.5 s 3 / 3 50 MB 0.34 s 13 MB 0.46 s 3 / 3 50 MB 0.8 s
Dekker 10 2 X 6 144 6 MB 10.13 s 6144/3 1 MB 0.17 s 2 MB < 1 ms 3 / 3 2 MB 0.17 s
Dekker 20 2 X 278 528 > 4 GB – –/– 3 MB 0.17 s 2 MB 0.1 s 3 / 3 3 MB 0.27 s
Dekker 50 2 X ? > 4 GB – –/– 50 MB 0.35 s 13 MB 0.5 s 3 / 3 50 MB 0.85 s
Dekker 10 3 × 6 144 6 MB 10.13 s 6144/– 82 MB 3.1 s – – – 82 MB 3.1 s
Dekker 20 3 × 278 528 > 4 GB – –/– > 4 GB – – – – > 4 GB –
Dekker 50 3 × ? > 4 GB – –/– > 4 GB – – – – > 4 GB –
Peterson 2 1 X 20 754 11 MB 1.56 s 8994/43 80 MB 3.04 s 11 MB 1.55 s 8994 / 43 80 MB 4.59 s
Peterson 3 1 X 3.408 × 106 2.08 GB 527.60 s 949 561 / 232 > 4 GB – – – –/– > 4 GB –
Peterson 4 1 X 6.299 × 108 – > 10 m / > 4 GB – – – –/– > 4 GB –
Peterson 2 2 X 20 754 12 MB 5.49 s 20 754 / 54 158 MB 6.2 s 11 MB 1.56 s 8994 / 43 158 MB 7.76 s
Peterson 3 2 X 3.408 × 106 – > 10 m –/– > 4 GB – – – –/– > 4 GB –
Peterson 4 2 X 6.299 × 108 – > 10 m –/– > 4 GB – – – –/– > 4 GB –
Peterson 2 3 × 20 754 12 MB 3.81 s 20 754/– 80 MB 3.09 s – – 80 MB 3.09 s
Peterson 3 2 × 3.408 × 106 – > 10 m –/– > 4 GB – – – – > 4 GB –
Peterson 4 3 × 6.299 × 108 – > 10 m /– > 4 GB – – – – > 4 GB –

FMS 10 1 X 2.501 × 109 2 MB < 1 ms 11/11 8 MB 0.31 s 2 MB < 1 ms 11 / 11 8 MB 0.31 s
FMS 100 1 X 2.703 × 1021 2 MB < 1 ms 101/101 > 4 GB – MB s / > 4 GB –
FMS 500 1 X ? 2 MB 0.01 s 501/501 > 4 GB – MB s / > 4 GB –
FMS 10 2 X 2.501 × 109 > 4 GB – –/– 8 MB 0.31 s 2 MB < 1 ms 11 / 11 8 MB 0.31 s
FMS 100 2 X 2.703 × 1021 > 4 GB – –/– > 4 GB – MB s / > 4 GB –
FMS 500 2 X ? > 4 GB – –/– > 4 GB – MB s / > 4 GB –
FMS 10 3 × 2.501 × 109 > 4 GB – –/– 17 MB 0.61 s – – – 17 MB 0.61 s
FMS 100 3 × 2.703 × 1021 > 4 GB – –/– > 4 GB – – – – > 4 GB –
FMS 500 3 × ? > 4 GB – –/– > 4 GB – – – – > 4 GB –
PRISE 1 X ∼ 108 5 MB 0.05 s 29 / 29 52 MB 1.52 s 5 MB 0.05 s 29 / 29 52 MB 2.02 s
PRISE 2 X ∼ 108 – > 10 m –/– 52 MB 1.46 s 5 MB 0.05 s 29 / 29 52 MB 1.96 s
PRISE 3 × ∼ 108 – > 10 m /– > 4 GB – – – – > 4 GB –

Table 6.2. Results of hybrid model checking
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Model Crit. R? |S| GPOR Alone Symb in Hybrid GPOR in Hybrid Total Hybrid
PMU RT DS/TL PMU RT PMU RT DS/TL PMU RT

Kanban 10 1 X 1.006 × 109 2 MB < 1 ms 70 / 70 7 MB 0.3 s 2 MB < 1 ms 70 / 70 7 MB 0.3 s
Kanban 100 1 X 8.054 × 1011 2 MB 0.01 s 700 / 700 > 4 GB – – – –/– > 4 GB –
Kanban 1000 1 X ? 7 MB 0.05 s 7 000 / 7 000 > 4 GB – – – –/– > 4 GB –
Kanban 10 2 X 1.006 × 109 > 4 GB – –/– 7 MB 0.31 s 2 MB < 1 ms 70 / 70 7 MB 0.31 s
Kanban 100 2 X 8.054 × 1011 > 4 GB – –/– > 4 GB – – – –/– > 4 GB –
Kanban 1000 2 X ? > 4 GB – –/– > 4 GB – – – –/– > 4 GB –
Kanban 10 3 × 1.006 × 109 > 4 GB – –/– 18 MB 1.05 s – – – 18 MB 1.05 s
Kanban 100 3 × 8.054 × 1011 > 4 GB – –/– > 4 GB – – – – > 4 GB s
Kanban 1000 3 × ? > 4 GB – –/– > 4 GB – – – – > 4 GB –

DPhil 10 1 X 59 049 2 MB < 1 ms 3 / 3 1 MB 0.15 s 2 MB < 1 ms 3 / 3 2 MB 0.15 s
DPhil 100 1 X 5.146 × 1047 5 MB 0.01 s 3 / 3 114 MB 13.1 s 5 MB 0.01 s 3 / 3 114 MB 13.1 s
DPhil 500 1 X 3.64 × 10238 74 MB 0.3 s 3 / 3 > 4 GB – – – –/– > 4 GB –
DPhil 10 2 X 59 049 70 MB 28.37 s 59 049 / 3 1 MB 0.15 s 2 MB < 1 ms 3 / 3 2 MB 0.15 s
DPhil 100 2 X 5.146 × 1047 > 4 GB – –/– 114 MB 13.1 s 5 MB 0.01 s 3 / 3 114 MB 13.1 s
DPhil 500 2 X 3.64 × 10238 > 4 GB – –/– > 4 GB – – – –/– > 4 GB –
DPhil 10 3 × 59 049 70 MB 28.36 s 59 049 / – 5 MB 0.21 s – – – 5 MB 0.21 s
DPhil 100 3 × 5.146 × 1047 > 4 GB – –/– 536 MB 26.48 s – – – 536 MB 26.48 s
DPhil 500 3 × 3.64 × 10238 > 4 GB – –/– > 4 GB – – – – > 4 GB –

TokenRing 5 1 X 166 2 MB 0.01 s 48 / 9 6 MB 0.2 s 2 MB 0.01 s 48 / 9 6 MB 0.2 s
TokenRing 10 1 X 58 905 6 MB 1.00 s 1 558 / 9 71 MB 2.21 s 6 MB 1.01 s 1558 / 9 71 MB 3.32 s
TokenRing 20 1 X 2.477 × 1010 > 4 GB – –/– > 4 GB – – – –/– > 4 GB –
TokenRing 5 2 X 166 2 MB 0.05 s 166 / 9 6 MB 0.2 s 2 MB 0.01 s 48 / 9 6 MB 0.22 s
TokenRing 10 2 X 58 905 36 MB 72.5 s 58 905 / 9 446 MB 22.84 s 6 MB 1.01 s 1558 / 9 446 MB 23.85 s
TokenRing 20 2 X 2.477 × 1010 > 4 GB – –/– > 4 GB – – – –/– > 4 GB –
TokenRing 5 3 × 166 2 MB 0.05 s 166 /– 12 MB 0.35 s – – – 12 MB 0.35 s
TokenRing 10 3 × 58 905 36 MB 72.3 s 58 905 /– 75 MB 2.27 s – – – 75 MB 2.27 s
TokenRing 20 3 × 2.477 × 1010 > 4 GB – –/– > 4 GB – – – – > 4 GB –

IBMB2S565S3960 1 X 1.551 × 1016 4 MB 0.012 s 226 / 226 > 4 GB – – – –/– > 4 GB –
IBMB2S565S3960 2 X 1.551 × 1016 > 4 GB – –/– > 4 GB – – – –/– > 4 GB –
IBMB2S565S3960 3 × 1.551 × 1016 > 4 GB – –/– > 4 GB – – – – > 4 GB –

Table 6.3. Results of hybrid model checking
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6.3.3 Conclusion of the Measured Configurations

From the test-cases above it is clear that unfortunately the extreme-hard problems that
are unsolved today remain unresolved, however we show some significant results to guide
our future work in the field of model checking.

6.3.3.1 Evaluation of Symbolic approaches

Table 6.1 contains the measurement datas for the two different decision diagrams combined
with the two different state space traversal algorithms. An interesting result is that the
automated termination of the program is always caused by the runtime in case of SDDs,
and by the memory usage in case of MDDs. Unfortunately, SDD were terminated many
times, but it is clear from looking at the peak memory usages that it is indeed a way more
compact data structure than the MDD. In [13] it was demonstrated that the SDDs (and
most data structures as seen in [7]) are far more efficient with saturation. Implementing
saturation for hierarchical structures are beyond the scope of this thesis, but it can be
an interesting path for our future work. Because the faster runtimes of the MDD, we
chose that to be the base structure behind the symbolic component of our hybrid model
checker..

Judged from the measurements, the chaining loop proved to be the more efficient al-
gorithm: whereas at models like TokenRing, Dekker or Peterson, there are little to no
differences between the breadth first search and the chaining loop, but at DPhil, FMS and
Kanban, the chaining loop have beaten the BFS sometimes with a decimal. That is why
we chose the chaining loop to accompany the MDD in the hybrid tool.

6.3.3.2 Evaluation of Explicit Trace Generation

From Table 6.2 and 6.3 it is clear that our explicit approach (as expected) cannot handle
big state-spaces and in the majority of unreachable criteria it terminates because of the
memory limit. However it is important to note, that there are huge models (e.g., FMS-500
or Kanban-1000) that have so huge state-spaces that we do not even know its size, but if
a goal state is reachable the trace generator very efficiently generates a short trace with
minimal resource usage. Of course this exceptional results fade, if we combine our tool
with the symbolic method because then our algorithm does not even get called due to the
symbolic algorithm’s failure, but these cases are as said, exceptional.

It is very important to notice that if the reachability criteria is hard, our trace generator
tends to fail, but if a marking is reachable and a symbolic algorithm is able to find it, that
boosts the trace generator greatly producing traces with the hybrid tools even when the
GPOR alone failed.

Furthermore even if the GPOR alone did not fail for a harder reachable goal state, when we
aid its search with additional information from the symbolic checking it produces shorter
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traces more efficiently and in the majority of cases the combined runtime and memory
usage of the hybrid algorithm is far below the usage of the GPOR.

It is also an important result, that there are test-cases (like Peterson) where the time limit
aborted the GPOR. that means that the computation of the UP sets and layers is still
very expensive, and one of our future goal, that we can optimize it further.

6.3.3.3 Evaluation of Our Hybrid approach

Based on the results shown in Table 6.2 and 6.3 our hybrid approach, however there is
still much room for development, it is a success. Even though it fails for big models, these
models are mostly so huge that even state-of-the-art model checkers cannot handle them.

For the majority of test-cases when the symbolic model checking is able to produce results
the trace generator is so efficient it barely impacts the performance, thus we can rapidly
check relatively big state-spaces and generate short traces for them efficiently. The per-
formance of the tool is highly dependent on the symbolic model checker, with our future
symbolic model checker plans further described in section 7.3 the usability of this tool
could be boosted greatly.

It is also very important to note that our symbolic model checker was able to run for
an industrial model (PRISE), not just for academic ones, further adding to its real-life
usability.
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Chapter 7

Summary

In this chapter we summarize our results and contributions, and present some of our future
plans of further developing our algorithms.

7.1 Conclusion

The main conclusion of our work is that although we produced great results, there are still
unanswered questions in the field of reachability checking, and there is room for further
development. It is clear that our hybrid approach is a promising start for a full-fledged
symbolic model checker that can also efficiently generate traces.

Nowadays more and more applications become so complex regular test-engineering starting
to become harder and harder, and if we can aid the process of software and hardware
testing with automatic test-generator tools that is also capable of producing a chain of
events to reproduce an erroneous behavior we can develop quality products with less effort,
in shorter time.

7.2 Contributions

In this section we will summarize our contributions to the different fields our work is
related to.

7.2.1 Contributions to Explicit Trace Generation and Directed Model
Checking

Our greatest contribution to the field of directed model checking is the new heuristic
to guide the state-space traversal of the model checker. If a goal state is reachable it
produces very short traces, furthermore it is able to utilize additional informations given
by other model checkers to boost its own efficiency. However the heuristic of UP sets are
considerably efficient, there are models where its usefulness is limited. In particular for
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cyclic models it tends to generate suboptimal traces, but the cyclic property of a Petri net
is a structural property so this downside of the method can be improved in the future.

7.2.2 Contributions to Symbolic Model Checking

The main contribution to the field of symbolic model checking is the implementation of
set decision diagrams, for use it in model checking of hierarchical models. Its goal is to
reduce the redundancy in the representation of hierarchical models even more then the
common decision diagrams, and to represent state spaces with the least amount of physical
memory. Our SDD implementation still needs a lot of improvements because of its speed,
but there are ways of improving its performance worth considering, detailed in Section
7.3.

7.3 Future Work

In future work, we want to develop the set decision diagrams further, because their memory
usage is more than promising. Implementing saturation to hierarchical structures is a part
of our future plans with SDDs, because it can greatly improve their now logging speed as
seen in [13]. Designing homomorphisms also seems to be a viable solution to increase the
effectiveness of SDDs, because these are the original operations defined on the structure.

In the future we plan to further develop the UP set heuristic to produce even shorter
traces for models now its suboptimal (like TokenRing in Table 6.3). One way of further
development could be that we leave the partial order reduction approach and optimize for
directed model checking. That way we would rely greatly on some other symbolic model
checking tool to ensure us that the state we are searching for is reachable, but based on
our measurement results it only boosts the efficiency of our algorithm. An other way of
further development could be that, if we are ensured that a goal state is reachable we
can neglect the model checking approach and use the UP sets and layers for only trace
generation. This approach can be combined with the technique called cone of influence to
reduce the size of the model and in the far future we can try to exploit the best properties
of partial order reduction within the UP layers.

Our plan for the near future is to integrate our hybrid approach to the successor of the
PetriDotNet model checking tool that is currently being developed at our department.
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Appendix A

Description of Tested Models and
Criteria

In this appendix we will enumerate describe the basic properties of these models with
regard to the reachability criteria we tested on them.We used the models of the Model
Checking Contest (MCC) from 2013 and a behavioral model of the nuclear reactor in Paks
(PRISE model).

In general, all reachability criteria we tested are in the form of the following: First we ask
a reachable marking, then ask the same but we describe an other unreachable marking
too to harden the task of the explicit trace generation, and then we ask an unreachable
marking.

Dekker-n

This model is a variant of Dekker’s algorithm for mutual exclusion, it is parametrized by
the number of processes it realizes the algorithm on. The source of the model is the model
checking contest 2013. in this work we examined the Dekker-10, Dekker-20, Dekker-50
models where 10, 20, 50 process’ mutual exclusion were simulated.

We tested the following criteria on Dekker-n:

No. Question Reachable?

1 𝑝3/1 = 1 X

2 𝑝3/1 = 1 ∧ 𝑝3/2 = 1 ∨ 𝑝3/1 = 1 X

3 𝑝3/1 = 1 ∧ 𝑝3/2 = 1 ×
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FMS-n

This Petri net is extracted a benchmark used for SMART. It models a flexible manufac-
turing system. it is parametrized with the starting token-count on each process. In this
work we simulated FMS-10, FMS-100, FMS-500

We tested the following criteria on FMS-n:

No. Question Reachable?

1 𝑃1 = 1 X

2 𝑃2 > 1000 ∨ 𝑃1 = 0 X

3 𝑃2 > 1000 ×

Peterson-n

This is a model of the Peterson’s algorithm for the mutual exclusion problem, in its gener-
alized version for N processes. This algorithm is based on shared memory communication
and uses a loop with N-1 iterations, each iteration is in charge of stopping one of the
competing processes. In this work we simulated Peterson-2, Peterson-3, Peterson-4.

We tested the following criteria on Peterson-n:

No. Question Reachable?

1 𝐴𝑠𝑘𝐹𝑜𝑟𝑆𝑒𝑐𝑡𝑖𝑜𝑛_0_1 = 1 ∧ 𝐶𝑆2 = 1 X

2 𝐴𝑠𝑘𝐹𝑜𝑟𝑆𝑒𝑐𝑡𝑖𝑜𝑛_0_1 = 1 ∧ 𝐶𝑆2 = 1 ∨
𝐶𝑆1 = 1 ∧ 𝐶𝑆2 = 1

X

3 𝐶𝑆1 = 1 ∧ 𝐶𝑆2 = 1 ×

Kanban-n

This Petri net is extracted a benchmark used for SMART. It models a Kanban system.
In this work we simulated Kanban-10, Kanban-100, Kanban-1000.

We tested the following criteria on Kanban-n:

No. Question Reachable?

1 𝑃1 = 1 X .
2 𝑃1 = 1 ∨ 𝐶𝑆1 = 1𝑃𝑚1 > 1000 X

3 𝑃𝑚1 > 1000 ×

DPhil-n

This is the famous model that illustrates an inappropriate use of shared resources gener-
ating deadlocks. N philosophers share a table with N plates and sticks. They are thinking
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and, when they need to eat, they go to the table, grab one stick from one side of their plate,
then the second from the other side, then eat, and then go back thinking. we simulated
Dphil-10, Dphil-100, Dphil-500.

We tested the following criteria on DPhil-n:

No. Question Reachable?

1 𝐸𝑎𝑡4 = 1 X

2 𝐸𝑎𝑡4 = 1 ∨ 𝐸𝑎𝑡5 = 1 ∧ 𝐸𝑎𝑡6 = 1 X

3 𝐸𝑎𝑡5 = 1 ∧ 𝐸𝑎𝑡6 = 1 ×

TokenRing-n

A very complex model from the MCC 2013, parametrized with the number of processes.
We simulated TokenRing-5, TokenRing-10, TokenRing-20

We tested the following criteria on TokenRing-n:

No. Question Reachable?

1 𝑆𝑡𝑎𝑡𝑒_4_1 = 1 ∧ 𝑆𝑡𝑎𝑡𝑒_3_0 = 1 X

2 𝑆𝑡𝑎𝑡𝑒_4_1 = 1 ∧ 𝑆𝑡𝑎𝑡𝑒_3_0 = 1 ∨
𝑆𝑡𝑎𝑡𝑒_3_1 = 1 ∧ 𝑆𝑡𝑎𝑡𝑒_3_0 = 1

X

3 𝑆𝑡𝑎𝑡𝑒_3_1 = 1 ∧ 𝑆𝑡𝑎𝑡𝑒_3_0 = 1 ×

IBM

A very complex industrial model from the MCC 2013.

We tested the following criteria on IBM:

No. Question Reachable?

1 𝑜𝑢𝑡𝑝𝑢𝑡 = 7 X

2 𝑜𝑢𝑡𝑝𝑢𝑡 = 7 ∨ 𝑜𝑢𝑡𝑝𝑢𝑡 > 8 X

3 𝑜𝑢𝑡𝑝𝑢𝑡 > 8 ×

PRISE

This is a huge model of the nuclear reactor of Paks, modeled by András Vörös at our
department.

We tested the following criteria on PRISE:
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No. Question Reachable?

1 𝑜𝑢𝑡𝑝𝑢𝑡_1𝑓𝑎𝑙𝑠𝑒 = 1 X

2 𝑜𝑢𝑡𝑝𝑢𝑡_1𝑓𝑎𝑙𝑠𝑒 = 2 ∨ 𝑜𝑢𝑡𝑝𝑢𝑡_1𝑓𝑎𝑙𝑠𝑒 = 1 X

3 𝑜𝑢𝑡𝑝𝑢𝑡_1𝑓𝑎𝑙𝑠𝑒 = 2 ×
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