
Budapest University of Technology and Economics
Faculty of Electrical Engineering and Informatics

Department of Automation and Applied Informatics

Study of sensorless PMSM control
methods

Scientific Students’ Association Report

Author:

Kristóf Oláh

Advisor:

dr. Péter Pál Stumpf

2023



Contents

1 Introduction 1

2 Field-oriented control of Permanent Magnet Synchronous Motors 2

2.1 Coordinate transformations . . . . . . . . . . . . . . . . . . . . . . . 2

2.2 Permanent Magnet Synchronous Motors . . . . . . . . . . . . . . . . 3

2.2.1 Mathematical model of PMSMs . . . . . . . . . . . . . . . . . 4

2.3 Field-oriented control (FOC) . . . . . . . . . . . . . . . . . . . . . . . 6

3 A review of sensorless methods 9

3.1 Grouping of sensorless methods . . . . . . . . . . . . . . . . . . . . . 9

3.2 Saliency and Signal Injection based methods (Low-speed and standstill) 10

3.2.1 Signal Injection based methods . . . . . . . . . . . . . . . . . 10

3.2.1.1 Rotating high frequency injection . . . . . . . . . . . 11

3.2.1.2 Pulse high frequency injection . . . . . . . . . . . . . 13

3.2.2 Methods based on monitoring the locus of the stator space
vector current . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2.3 Fundamental PWM excitation (FPE) based methods . . . . . 14

3.2.3.1 Indirect flux detection by on-line reactance measure-
ment (INFORM) . . . . . . . . . . . . . . . . . . . . 14

3.2.3.2 Zero-sequence current derivaties (ZSCD) measure-
ment method . . . . . . . . . . . . . . . . . . . . . . 15

3.2.3.3 Zero voltage vector injection (ZVVI) method . . . . 16

3.3 Fundamental Excitations based methods (Medium and High-speed) . 16

3.3.1 Nonadaptive methods . . . . . . . . . . . . . . . . . . . . . . 17



3.3.1.1 Techniques using the measured DC-Link . . . . . . . 17

3.3.1.2 Estimators using monitored stator voltages or currents 17

3.3.1.3 Flux based position estimators . . . . . . . . . . . . 18

3.3.1.4 Position estimators based on back-EMF . . . . . . . 18

3.3.2 Adaptive methods . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3.2.1 Estimator based on Model Reference Adaptive Sys-
tem (MRAS) . . . . . . . . . . . . . . . . . . . . . . 20

3.3.2.2 Observer-based estimators . . . . . . . . . . . . . . . 21

3.3.2.3 Kalman Filter and Extended Kalman Filter (EKF) . 25

3.4 Artificial Intelligence based methods . . . . . . . . . . . . . . . . . . 26

4 A proposed wide-speed-range sensorless control method 28

4.1 Initial position estimation: DC pulse injection . . . . . . . . . . . . . 28

4.2 Low-speed control: High frequency alternating signal injection . . . . 29

4.3 High-speed control: Luenberger observer . . . . . . . . . . . . . . . . 31

4.3.1 State space model of the observer . . . . . . . . . . . . . . . . 32

4.3.2 Observer design . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3.3 Discretized Luenberger observer . . . . . . . . . . . . . . . . . 35

4.3.4 Extraction of rotor speed and position . . . . . . . . . . . . . 36

4.4 Combining sensorless control methods . . . . . . . . . . . . . . . . . . 37

5 Simulation of sensorless methods 38

5.1 Overview of the simulation . . . . . . . . . . . . . . . . . . . . . . . . 38

5.1.1 Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.1.2 Machine parameters . . . . . . . . . . . . . . . . . . . . . . . 39

5.1.3 Control loop without estimation . . . . . . . . . . . . . . . . . 40

5.2 High frequency alternating signal injection . . . . . . . . . . . . . . . 41

5.2.1 Structure of the simulation model . . . . . . . . . . . . . . . . 42

5.2.2 Results of the simulation . . . . . . . . . . . . . . . . . . . . . 43

5.3 Luenberger observer . . . . . . . . . . . . . . . . . . . . . . . . . . . 47



5.3.1 Observer design . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.3.2 Structure of the simulation model . . . . . . . . . . . . . . . . 49

5.3.3 Results of the simulation . . . . . . . . . . . . . . . . . . . . . 49

5.3.3.1 Open-loop operation . . . . . . . . . . . . . . . . . . 50

5.3.3.2 Advanced Luenberger observer . . . . . . . . . . . . 50

5.3.3.3 Simplified Luenberger observer . . . . . . . . . . . . 52

5.3.3.4 Parameter sensitivity tests . . . . . . . . . . . . . . . 53

5.4 Combining the estimators . . . . . . . . . . . . . . . . . . . . . . . . 56

6 Implementation 60

Bibliography 63



Chapter 1

Introduction

In modern electric drives mostly permanent magnet machines are used. When we
control these types of motors, we want to get the most out of them, our goal is the
greatest possible torque with the least loss. Field-oriented control (FOC) provides
all of this for us, but to implement this control process the position information
of the rotor is required. Usually, not only current control, but speed control is
also necessary, then the actual angular velocity of the rotor needs to be determined
as well. Even though these values can be measured by different sensors, sometimes
either the placement of these sensors is difficult or even impossible due to the physical
design of the machine, or some companies want to save on the cost of the sensors.
In this case position and speed sensorless techniques can be used to determine the
necessary information.

This report will present several existing sensorless methods that can be found in
the literature and propose a combination of estimators, in order to present a control
method that is functioning the entire operational speed range. These estimators will
be implemented and tested in MATLAB/Simulink environment.

First, in chapter 2 permanent magnet synchronous machines will be presented in-
cluding their mathematical model, then the theory of FOC will be shown. In chapter
3 a review will be given of the existing sensorless methods, while in chapter 4 the
theory of the chosen estimators will be discussed in detail. After the theoretical part
of the sensorless methods are known the simulations will be presented in chapter 5,
where both estimators will be investigated individually and then their combination
will be shown. Finally, the further work will be discussed briefly in chapter 6.
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Chapter 2

Field-oriented control of
Permanent Magnet Synchronous
Motors

2.1 Coordinate transformations

During the control of PMSMs several coordinate systems need to be used in order to
make calculations and the control process easier. These coordinate systems can be
transformed into each other, these transformations will be presented in this section.

The abc reference frame describes the 3-phase model of the machine, where the
phase vectors are shifted 120 degrees each other. First, by applying the so-called
Clarke transform, a two-phase stationary reference frame (SRF), called α-β frame
is obtained, where instead of the three, only two phase vectors are used, shifted 90
degrees each other. The Clarke transform (2.1) and its inverse (2.2) are described
with the following equations.

iα
iβ

 = TClarke
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Secondly, if one further transformation, the Park transform is applied on the previous
reference frame we get into the d-q rotating reference frame (RRF). It has also
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two phase vectors shifted by 90 degrees relative to each other, but rotating with
synchronous angular speed. The Park transform (2.3) and its inverse (2.4) are
written as id

iq

 = TPark

iα
iβ

 =
sin(θe) −cos(θe)
cos(θe) sin(θe)

iα
iβ

 (2.3)
iα
iβ

 = T−1
Park

id
iq

 = 2
3

 sin(θe) cos(θe)
−cos(θe) sin(θe)

id
iq

 (2.4)

where θe is the actual electrical position of the rotor, which can be expressed as
PΘm, where Θm is the mechanical angle of the machine and P is the number of
pole pairs. Figure 2.1 illustrates the aforementioned coordinate systems in case of a
two-pole machine.

Figure 2.1: Representation of the abc axes, the α-β SRF and the d-q RRF of a
two-pole PMSM.

2.2 Permanent Magnet Synchronous Motors

Permanent Magnet Synchronous Motors are machines equipped with permanent
magnets in their rotors. PM motors have two types based on the shape of the Back
Electro-Motive Force (BEMF) signal. We can talk about BLDCs when the signal
is trapezoidal and PMSMs in case of sinusoidal signal shapes. The stator of these
electric drives has 3-phase windings, these can be supplied from an inverter.

PMSMs have two common types which are differentiated based on how the perma-
nent magnets are placed on the rotor, this is presented on figure 2.2.
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(a) SPMSM (b) IPMSM

Figure 2.2: Different types of PMSMs based on the positioning of the magnets.

When the magnets are installed on the surface of the rotor we can talk about surface
mounted PM motors (SPMSM). This type has an approximately isotropic rotor
surface and structural saliency does not really appear in this case. The machine is
symmetrical from the inductance point of view, the Ld and Lq inductances are the
same.

The other type is the interior PM motors (IPMSMs), where the magnets are in-
stalled lowered into the rotor. In this case the machine is highly anisotropic and
the effect of saliency is significant. At this type of machine the inductances are
highly different, the q-axis inductance is higher than the d-axis one, Lq > Ld. The
advantage of IPMSM is that the torque of the electric machine can be increased
with the reluctance torques, when the rotor is anisotropic. At vehicle drive systems
the torque can be increased by even 50% [20].

2.2.1 Mathematical model of PMSMs

The mathematical model of PMSMs can be expressed in all three reference frames.
The abc reference frame describes the 3-phase model of the machine, based on [1]
the 3-phase voltages of a PMSM machine can be written as

va = Rsia + d

dt
ψa

vb = Rsib + d

dt
ψb

vc = Rsic + d

dt
ψc (2.5)

where va, vb, vc are the phase voltages, ia, ib, ic are the phase currents, ψa, ψb, ψc
are the phase flux linkages and Rs is the stator phase resistance.
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When the Clarke transform is applied and the model is transformed into the α-β
stationary reference frame, instead of the three, only two phase vectors are used,
shifted 90 degrees each other. Writing the 2-phase voltage equations in the α-β SRF
[12] gives us the following form

vα = Rsiα + d

dt
ψα

vβ = Rsiβ + d

dt
ψβ

ψα = Rsiα + ψMcos(θe)
ψβ = Lsiβ + ψMsin(θe) (2.6)

where ψM is the rotor magnetic flux, Ls is the stator phase inductance and θe is the
angle of the rotor.

Alternatively the equations in the α-β frame can be expressed using the Ld, Lq
inductances and the electrical angular frequency (ωe). Based on [4, 9] it can be
written as

vα = Rsiα + d

dt
Lαiα + d

dt
Lαβiβ − ωeψMsin(θe)

vβ = Rsiβ + d

dt
Lβiβ + d

dt
Lαβiα + ωeψMcos(θe) (2.7)

where

L0 = (Ld + Lq)/2, L1 = (Ld − Lq)/2,
Lα = L0 + L1cos(2θe), Lβ = L0 − L1cos(2θe), Lαβ = L1sin(2θe).

The equations work both for SPMSMs and IPMSMs, but in case of SPMSMs Ld =
Lq = Ls inductance must be used. It results that the L1 and Lαβ terms will be 0,
while Lα = Lβ = L0 = Ls can be used as the other terms.

If the Park transform is applied on the previous equations the mathematical model
of the motor is obtained in the d-q RRF. Based on [16] the voltages of a PMSM in
the d-q rotating reference frame can be described with the following equations

vd = Rsid + dψd
dt

− ωeψq

vq = Rsiq + dψq
dt

+ ωeψd

ψd = Ldid + ψM

ψq = Lqiq (2.8)
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or in matrix form it is given asvd
vq

 =
Rs + d

dt
Ld −ωeLq

ωeLq Rs + d
dt
Lq

id
iq

+
 0
ωeψM

 . (2.9)

The electrical torque can be written as the following

Te = 3
2P [ψM iq − (Lq − Ld)idiq]. (2.10)

and the electrical angular position of the rotor is related to the angular frequency
by

dθ

dt
= ωe = PΩ (2.11)

where ωe is the electrical speed, while Ω is the mechanical angular frequency. Ld

and Lq are d and q axis inductances and P is the number of pole pairs. At PMSMs
most of the natural magnetic flux is on the d axis, hence id needs to be set around
0.

In general, PMSMs require constant torque performance at low speed and a constant
power at higher speeds. Typically two operating regions can be classified. Below the
nominal speed, the machine operates in the so-called constant torque region, while
above the base speed in the so-called field weakening or constant power region.

In the constant torque region, the d axis current of SPMSM is controlled to be zero
and the q axis current is proportional to the electrical torque. In the case of IPMSM
the d and q axis current values are typically obtained by the MTPA (Maximum
torque per Ampere) scheme by using the following equations

id_MTPA = − ψM
4(Ld − Lq)

−

√√√√ ψ2
M

16(Ld − Lq)2 + i2max
2

iq_MTPA =
√
i2max − (id_MTPA)2 . (2.12)

2.3 Field-oriented control (FOC)

Field-oriented control is a variable-frequency drive control method, where transfor-
mations are applied on the motor’s three-phase AC current values in order to control
the electric machine using DC-like values. The method was introduced by Hasse and
Blaschke in the late 60s.
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Figure 2.3: Coordinate transformations during an FOC cycle.

In order to make the control easier the 3-phase machine model can be transformed
into the 2-phase orthogonal RRF, where the stator currents are DC-like values in-
stead of the fundamental sinusoidal components. This makes a lot easier to im-
plement current controllers for the system as regular PI controllers can be used
effectively in case of controlling DC-like values. After the application of the trans-
formations we get two orthogonal components in a rotating frame, which is linked
to the rotor of the motor. The direct (d) component corresponds to the flux of
the electric drive, meanwhile the quadrature (q) current component stands for the
torque. The transformation process and the voltage and current wave forms are
presented on figure 2.3.

Figure 2.4: A basic example of a FOC machine control.

With FOC we are able to control the id and iq values easily; using e.g., PI controllers,
the measured currents can be kept at their reference values. An example of this
process is presented on figure 2.4. To validate the values of id and iq and apply
our changes to the real machine firstly we need to do the inverse transformations
on the controllers’ output signals, in order to get back from the d-q RRF to the
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abc reference frame. After that, to generate the appropiate output voltages, a Pulse
Width Modulated (PWM) Voltage Source Converter (VSC) is used. The switching
signals of the converter typically are generated by the Space Vector Modulation
(SVM) scheme.
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Chapter 3

A review of sensorless methods

Sensorless speed and position estimators for electric machines is a well-studied field.
Over the years numerous methods have been shown and examined in detail. As a
reason of the variety of these methods this chapter gives a review for the reader to
have a broad view before some estimators are discussed in detail. The methods will
be presented and grouped based on previous studies.

3.1 Grouping of sensorless methods

In previous literature several different groupings can be found, but the common in
most of the articles is that there are three main categories, with various subcate-
gories. The three main categories based on [1, 2, 3, 16, 14]:

1. Saliency and Signal Injection

2. Fundamental Excitations

(a) Nonadaptive Methods

(b) Adaptive Methods

3. Artificial Intelligence

The main categories can be called differently such as Saliency-based and Model-
based in [25], but the basis of the grouping is the same as in the aforementioned list,
that first group of methods work at low-speed while the second group at medium
and high-speed range. Figure 3.1 summarize the methods that will be presented
later in this chapter.
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PMSM sensorless
control methods

Saliency and Signal
Injection based

(Low-speed)

Fundamental
Excitations based

(High-speed)

Signal Injection
based

Rotating high
frequency injection

Pulse high frequency
injectionMonitoring the locus

of the stator space
vector current

Fundamental PWM
excitation (FPE)

based

INFORM

ZSCD

ZVVI

Nonadapive
methods

Adaptive
methods

DC-Link
measurement

Monitor stator
voltages and currents

Flux based position
estimation

Back-EMF based
position estimation

MRAS

Observer-based
estimators

Kalman Filter
and EKF

Negative-sequence
current method

Zero-sequence
voltage method

Enhanced PLL

Sine-wave HF
injection

Square-wave HF
injection

Luenberger
Observer

Reduced Order
Observer

Sliding Mode
Observer (SMO)

Artificial Intelligence
based

Figure 3.1: Grouping of sensorless methods. The later implemented methods are
marked red.

3.2 Saliency and Signal Injection based methods
(Low-speed and standstill)

At medium and high-speed ranges Model-Based methods can be implemented using
the electromotive force (EMF) or flux associated with the fundamental excitation,
but at lower speeds these estimators are not able to operate as a reason of low
signal-to-noise-ratio caused by modeling uncertainty, nonlinearities, etc. [25] Zero
to low speed range is where Saliency-Based methods can be used, such as signal
injection, inductance variation-based methods and others.

3.2.1 Signal Injection based methods

Signal injection based methods widely used at low-speed sensorless control. An
additional high frequency signal can be injected into the motor in order to determine
the position of the rotor by measuring and processing the change of the injected
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signal. Based on [25] the high frequency model of PMSMs in the d-q and in the α-β
frame can be described asvd_h

vq_h

 =
Ld 0

0 Lq

 d

dt

id_h

iq_h

 (3.1)
vα_h

vβ_h

 =
L0 + L1cos(2θe) L1sin(2θe)

L1sin(2θe) L0 − L1cos(2θe)

 d

dt

iα_h

iβ_h

 (3.2)

where θe is the rotor position, Ld and Lq are the d and q-axis inductances and
L0 = (Ld + Lq)/2 and L1 = (Ld − Lq)/2. Letter h notes the high frequency compo-
nents. Injection methods can be grouped based on which axis the additional signal
is injected into.

3.2.1.1 Rotating high frequency injection

When a rotating high frequency space vector is injected into the α-β frame we can
talk about rotating signal injection. The additional signal can be written as eq. 3.3,
where Vrot_h is the amplitude of the injected component.

vinj =
vα_h

vβ_h

 = Vrot_h

cos(ωht)
sin(ωht)

 (3.3)

The angular frequency of the injected signal (ωh) is set around one tenth of the PWM
switching frequency to ensure that the shape of the injected sinusoidal signal remains
recognizable. To process the signal and extract the estimated rotor position two
typical methods are used, the negative-sequence current method and zero-sequence
voltage method.

Negative-sequence current method

If eq. 3.3 and eq. 3.2 are substituted from each other the response of the currents
can be written asiα_h

iβ_h

 =
 Is_psin(ωht) + Is_nsin(−ωht+ 2θe)
−Is_pcos(ωht) − Is_ncos(−ωht+ 2θe)

 (3.4)

where p and n denotes the positive and negative term of the high frequency response
currents. By filtering out the high frequency components in the α-β stationary frame
using a HPF and transforming the results into the d-q rotating frame, the expression
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of the currents is the followingidh

iqh

 =
 Is_psin(2ωht) + Is_nsin(2θe)
−Is_pcos(2ωht) − Is_ncos(2θe)

 (3.5)

where dh and qh notes the high frequency rotating frame. After applying a LPF the
estimated rotor position can be written as

θe = 1
2arctan

[
−LPF (Idh)
LPF (Iqh)

]
. (3.6)

Zero-sequence voltage method

The rotor position can also be extracted from the zero-sequence carrier voltage.
Based on [25] it can be written as

VRN ≈ LDCL2Vrot_h
2L2

DC − 1
2L

2
2
cos(ωht+ 2θe) (3.7)

where LDC and L2 are amplitudes of DC and second harmonics of phase self-
inductances. From this the function of rotor position can be extracted via the
following signal processing, from which the estimated rotor position can be calcu-
lated by the arctan of the results.VRN_α

VRN_β

 = LPF

VRN
2cos(ωht)
2sin(ωht)

 = LDCL2Vrot_h
2L2

DC − 1
2L

2
2

cos(2θe)
sin(2θe)

 (3.8)

The drawback of this method is that a balanced resistor network and the access
to the the neutral point of the machine are needed to measure the zero-sequence
voltage.

Enhanced PLL approach

In [17] a novel enhanced PLL (ePLL) approach is introduced for the signal pro-
cessing. In the aforementioned conventional methods the use of LPFs causes time
delay in the system and compromise the system dynamic and control performance.
The newly proposed demodulation process for position estimation can be done with-
out the use of LPFs. Compared to other existing methods the ePLL shows great
performance in the experimental results.
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3.2.1.2 Pulse high frequency injection

The difference compared to the rotating injection is the frame in which the HF signal
is injected into. At pulsating signal injection the additional signal is injected into
the d-q rotating frame instead of the α-β axes. In this category the most common
methods are the sine-wave HF injection and the square-wave HF injection.

Sine-wave high frequency injection

In this method a high frequency sinusoidal wave is injected either into the d or
the q-axis or even into both of them. The injected signal can be extracted from
the q-axis current feedback branch in the FOC loop and the rotor position can be
estimated after a filtering and processing sequence. The method will be presented
in depth in chapter 4, hence I will not go into detail here.

Square-wave high frequency injection

The basic idea of the square-wave injection is really similar to the sine-wave method,
but the injected signal has a square shape instead of the sinusoidal one. The advan-
tage of this solution is that the frequency of the injected signal can be higher then in
the aforementioned signal injection techniques. The injection can be implemented
during the current sampling by updating the PWM twice in a switching period,
which results that the acoustic noise of the HF signal can be eliminated virtually.

The response of the currents can be obtained as the following in the d-q reference
frame [25]

id̂_h

iq̂_h

 =
∫
iinjdt

LdLq

L0 − L1cos(2∆θe)
−L1sin(2∆θe)

 . (3.9)

It can be seen that the response is an alternating triangular signal in the q-axis
current, because the integral of the injected square wave’s one period (a positive
and a negative constant value following each other) is an increasing and decreasing
ramp. From eq. 3.9 the position information can be extracted several ways. Either
a PI regulator can be used to force the q-axis HF current response to zero, or the
equation can be transformed to the α-β stationary frame where the response currents
can be demodulated through a LPF [25].
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3.2.2 Methods based on monitoring the locus of the stator
space vector current

By applying this estimation method the position of the rotor can be obtained at
standstill in case of IPMSM (Ld < Lq) machines. In steady state the locus of the
space vector of the stator currents in the α-β frame becomes an ellipse. By definition,
the d-axis of the rotor points to the north pole of the rotor magnet. If the magnetic
saturation is neglected, the equation of the ellipse can be written as

Ai2α + 2Hiαiβ +Bi2β + 1 = 0. (3.10)

From this, the angle of the major axis of the ellipse is the following

θ = 1
2tan

−1
( 2H
A−B

)
. (3.11)

If the stator currents are monitored the A, B and H parameters of the ellipse can
be determined and the position of the rotor is θ̂ = θ + γu, where γu is displacement
angle caused by the armature impedance [3, 13].

3.2.3 Fundamental PWM excitation (FPE) based methods

The high frequency signal injection techniques are a robust and effective way to
estimate the rotor position, but complicated signal processing and filtering needed
in order to get an accurate position information. The aim of FPE-based estimators
is to simplify the implementation of sensorless control. In this section three common
FPE-based methods will be presented.

3.2.3.1 Indirect flux detection by on-line reactance measurement (IN-
FORM)

The first presented method is the INFORM which is the simplest one. The basis of
this method is the inductance variation, it uses that the change of magnetic conduc-
tivities in d and q-axis depends on the rotor position. If voltage state space phasors
are applied in all motor phase directions the current response can be measured and
from that the rotor position can be extracted [3]. Test vectors can be injected during
the null part of each PWM cycle while another equal vector is injected oppositely
to compensate the voltage distortion caused by the last vector. To guarantee the
effectiveness of the method three cycles are needed with one measurement each cycle
[25].
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Based on [25] when the injected voltage signals are

vsαβk = Vhe
jk 2

3π (3.12)

the current responses can be written as

d

dt
isαβk = 1

L0 − L1

[
L0 − L1e

j2(θe−jk 2
3π)
]
Vhe

jk 2
3π (3.13)

where k = 0, 1, 2 corresponds to phase a, b and c respectively. Combining these
responses from the three cycles an equation for the position can be written as the
following.

∑(
d

dt
isαβke

jk 2
3π

)
= − 3L1

L2
0 − L2

1
Vhe

j2θe (3.14)

Besides the basic usage of INFORM further additions can be done to improve the
effectiveness of the method. For example in [8] the INFORM was modified in order
to lower current ripples, decrease the switching loss and improve the dynamics. In
[18] a modified version of INFORM was introduced that used DC-link measurements
only. In this case the voltage space phasors for INFORM-position estimation are
applied directly by the inverter by interrupting the PWM-pattern for a specific
period of time.

3.2.3.2 Zero-sequence current derivaties (ZSCD) measurement method

In the ZSCD method the voltage test vectors are the six nonzero switching states
of the voltage source inverter. The injection is done only for a short time between
the normal FOC PWM waveform, the vectors are applied in pairs with the same
amplitude and to the opposite direction. The current responses contain the zero
sequence components and a Rogowski coil can be used to measure its derivatives.
The position information can be calculated as

θe = 1
n
arctan

(
Pβ
Pα

)
(3.15)

where P is the position scalar and n is the number of saliency cycles per revolution
[25].

The advantage of the method is its high performance, but on the other side the
drawback is that extra hardware is needed. To excite the zero sequence component
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the neutral point of the machine must be accessible which is not achievable in some
industrial applications.

3.2.3.3 Zero voltage vector injection (ZVVI) method

The method combines the derivation calculations of current and zero voltage vector
injection, which means that between the normal FOC PWM periods additional zero
voltage vectors are inserted. This increases the current fluctuation compared to
the regular PWM switching sequence but reduces the acoustic noise caused by the
injection technique. Based on [25] the rotor position information can be extracted
from the voltage equations of the motor during the zero switching period.(

diα
dt

+ R

Lq
iα

)
sinθe −

(
diβ
dt

+ R

Lq
iβ

)
cosθe = ψf

Lq

dθe
dt

(3.16)

From the equation it can be seen that the position of the rotor can be extracted
by measuring the currents and the current differentials in the α-β stationary frame.
The advantage of the the method is that no additional acoustic noise is generated
as no additional signal is injected into the system, furthermore the method is not
sensitive to parameters’ variation.

3.3 Fundamental Excitations based methods
(Medium and High-speed)

The aforementioned estimation techniques show great performance at standstill or
low speeds, but they have several drawbacks at higher speed ranges. As the speed
increases the losses caused by the signal injection become significant, torque ripples
and acoustic noise also apply as unwanted side effects.

Hence over a certain speed fundamental excitation or alternatively called model
based methods can be used. Mostly the common thing in these estimators is that
they can be separated to two parts. The first part is an EMF or flux estimator
which output is forwarded to the second part, the speed/position observer. This
section presents the estimator techniques in two main groups, firstly the nonadaptive
methods will be shown, followed by the adaptive ones.
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3.3.1 Nonadaptive methods

Nonadaptive methods use directly the measured currents and voltages and the equa-
tions of the PMSM machine. The advantage of these methods is the easy computa-
tion and fast response, the calculations cause almost no delay. In order to get the
position and speed precisely high accurate motor parameters are required.

3.3.1.1 Techniques using the measured DC-Link

An easy and low-cost way to get feedback from the system is measuring the DC-link
current. In [6] two energy optimizing techniques are presented via measuring only
the DC-link current of the machine and applying a V/f control. The first one is the
minimum input power method, which minimizes the average DC-link current at a
fixed voltage. The second one is the power factor method, which is based on the
shape of the DC-link current. The shape of the current depends on the phase shift
between the stator current and the stator voltage. In this case the optimum is when
the current and the voltage are in the same phase.

The main problem of the aforementioned methods is that the control is not robust,
easily becomes unstable, hence these estimators can be used only in low dynamic
applications.

3.3.1.2 Estimators using monitored stator voltages or currents

If stator voltages or currents are monitored, the position and speed can be expressed
from the equations of the PMSM. If the inverse Park and Clarke transforms are
applied on the d-q frame equations, we get the following term for the rotor position
[1, 16].

θe = arctan

vb − vc −Rs(ib − ic) − Ld
d
dt

(ib − ic) −
√

3ωe(Lq − Ld)ia√
3
(
va −Rsia − Ld

d
dt
ia
)

+ ωe(Lq − Ld)(ib − ic)

 (3.17)

The speed can be calculated as

ωe =

√(
vaRs

d
dt
ia
)2

+ 1
3

[
vb − vc −Rs(ib − ic) − Ld

d
dt

(ib − ic)
]2

ψM
. (3.18)

To obtain the initial position of the rotor at t = 0, ωe = 0 needs to be substituted
in eq. 3.17.
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Although this calculation results quick dynamic response, the method is not robust
and very sensitive to measurement noise and inaccurate motor parameters.

3.3.1.3 Flux based position estimators

The biggest advantage of flux based estimator methods is that the line voltages can
be used for the estimation process [1]. The phase-voltage equation of the stator can
be written as

vs = Rsis + d

dt
ψs (3.19)

where vs is the input voltage, is is the current, Rs is the resistance and ψs is the
flux linkage of the stator [1]. If the previous equation is written on ψs we get the
following term

ψs =
∫
es =

∫
(vs −Rsis) dt+ ψs0 (3.20)

where e is the BEMF and ψs0 is the initial position for the stator flux. If eq. 3.20 is
transformed to other reference frames, the position of the rotor can be determined
several ways. In the α-β frame θe can be obtained as

θe = arctan

(
ψα − Liα
ψβ − Liβ

)
(3.21)

where L is the winding inductance [29]. In the d-q rotating frame getting the position
is even easier, it can be calculated as

θe = arctan

(
ψd
ψq

)
. (3.22)

The problem with the simple flux estimation is the use of the pure integrator that
produces cumulative error. Noise also causes problems when this method is imple-
mented, hence the use of adaptive methods is preferred in practice.

3.3.1.4 Position estimators based on back-EMF

Based on [14] several different back-EMF methods can be found in the literature,
eg. back-EMF zero-crossing detection (only for BLDCs), back-EMF integration,
extended EMF (EEMF) or the third harmonic method. The common in all is that
they use the back electromotive force related to the rotational speed of the motor.
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In [11] a method is shown where a maximum current decaying interval (MCDI) test
cycle is added to the control algorithm. This way the back EMF can be measured
in the d-q frame, and from the measured values the rotor angle can be calculated as

θe = arctan

(
−Ed
Eq

)
. (3.23)

A method is proposed in [7] which determines the back-EMF without voltage probes.
Instead of measuring the actual voltages, the reference voltages can be used for
determining the BEMF. To get the rotor position the back-EMF was used in the
α-β reference frame, while other arguments were in the d-q frame.

θe = arctan
(
eβ
eα

)
− arctan

(
ψM
Lqiq

)
(3.24)

As the back-EMF is a subject to the reference voltages in the α-β frame, the rela-
tionship between the actual voltages and the reference ones can be expressed and
from that an expression to θe can be written as

θe = arctan

(
v∗
β −Riβ

v∗
α −Riα

)
− V

E
ωeT − arctan

(
λPM
Lqiq

)
(3.25)

where v∗
α and v∗

β are the reference voltages and V , E and T are the RMS voltages,
the back-EMF and the lag time caused by the inverter respectively. This estimator
was robust and showed great dynamic performance at the experimental results.

For IPMSMs the mathematical model in the d-q rotating frame gets complicated
because of its saliency and two trigonometric function of 2θ appears. The reason of
this is the asymmetric impedance matrix, which can be rewritten symmetrically; in
this way we get the extended EMF. Based on [1] the EEMF in the α-β stationary
frame can be written as

vα
vβ

 =
 Rs + d

dt
Ld ωe(Ld − Lq)

−ωe(Ld − Lq) Rs + d
dt
Ld

iα
iβ

+ ...

...+ {(Ld − Lq)
(
ωeid − d

dt
iq

)
+ ωeψM}

−sin(θe)
cos(θe)

 . (3.26)

As the second term is the back-EMF vector, from this equation the position of the
rotor can be extracted easily using eq. 3.27.

θe = arctan

(
−eα
eβ

)
(3.27)
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3.3.2 Adaptive methods

In the previous section it was presented that nonadaptive methods are an easy
way to estimate the position of PMSM machines, but it could also be seen that
mostly they are not robust enough and way too sensitive for the parameters. These
methods used only some measured values of the system and the estimated position
was calculated based on the model, but there was no feedback how punctual our
calculations were. To improve robustness adaptive methods started to appear.

When the mathematical model of the electric drive is known, some outputs of the
machine can be estimated or calculated. Adaptive methods use these estimated
outputs and compare to the measured ones. The aim is to minimize the error
between the measured and the calculated output by adapt the parameters of the
model.

The adaptive methods usually use the following state-space equations as the model
of the machine:

ẋ = Ax+ Bu

y = Cx (3.28)

3.3.2.1 Estimator based on Model Reference Adaptive System (MRAS)

The MRAS method consists two models, the Reference Model (RM) and the Adap-
tive Model (AM). The RM is the desired mathematical model of the machine and
can be described with eq. 3.28. The AM contains an additional part which is the
difference between the output of the two models. The equations of the AM is the
following:

˙̂x = Âx̂+ Bu+ K(y − ŷ)
ŷ = Cx̂ (3.29)

where x is the state vector, u is the input vector, y is the output vector and A, B and
C matrices are the parameters of the machine, while matrix K is a gain coefficient.
The ˆ symbol denotes that the value of the term is estimated. An example system
is presented on figure 3.2.

An error (ε) signal can be produced by the difference between the output of the RM
and the AM. Using this the dynamic error equation can be written as [2]

dε

dt
= d

dt
(x− x̂) = (A − KC)ε+ (A − Â)x̂. (3.30)
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Reference model

Adaptive model

Adaptation
mechanism

+

-

Controller
feedback

Figure 3.2: Block diagram of MRAS.

The estimated state variable can be either the rotor flux or the back-EMF. If the
values of the K gain matrix are chosen properly, the AM becomes stable and the
estimated state variables can be used for position and speed estimation. A possible
adaption mechanism can be the following

ŷ = KP (xqx̂d − x̂qxd) +KI

∫ T

0
(xqx̂d − x̂qxd)dt (3.31)

where KP and KI are proportional and integral gains and xd and xq are the states
of the machine in the d and q axis coordinates respectively [2].

3.3.2.2 Observer-based estimators

The basic idea of observers is the same as MRAS but instead of the reference model
the real motor is used. The observer can be matched the adaptive model, where the
gain matrix needs to be chosen in a way that the system is stable.

For a linear and deterministic plant the Luenberger observer can be used, while in
non-deterministic cases the stochastic Kalman filter is the suitable solution. In case
of nonlinear plants the extended Luenberger observer or the extended Kalman filter
can be used [2].

Luenberger Observer

When using a Luenberger observer the model of the motor can be described with
eq. 3.28. The model usually written in the α-β stationary reference frame, the state
space variables are the currents and the back-EMF values.
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The back-EMF in the stationary frame can be expressed as

e =
eα
eβ

 = {(Ld − Lq)(ωeid − d

dt
iq) + ωeψM}

−sin(θe)
cos(θe)

 . (3.32)

The state space model of the machine can be written as

d

dt

iαβ
eαβ

 = A

iαβ
eαβ

+ Buαβ + W

iαβ = C

iαβ
eαβ

 (3.33)

where A, B, C are matrices based on the motor model, W is the unknown lineariza-
tion error which could be neglected during the design of the observer, and

iαβs =
[
iαs iβs

]T
eαβs =

[
eαs eβs

]T
.

Similarly to the MRAS, the state space equation of the observer is almost the same
as the machine’s model, but consists an additional gain matrix to eliminate the error
between the measured and the estimated currents.

d

dt

 îαβ
êαβ

 = Â

 îαβ
êαβ

+ Buαβ + L(iαβ − îαβ)

îαβ = C

 îαβ
êαβ

 (3.34)

If the error of the currents is 0, then the estimated back-EMF values can be used
for determining the speed and the position. It should be noted that the equation
is dependent on ωe which means the observer gains are different at different speeds.
At implementation this could be handled eg. via a look-up table. The parameters of
the state space equation and the observer design won’t be presented in detail here,
as it will be shown in chapter 4.

The estimated speed and position can be calculated several ways, the easiest one is
the usage of a PI controller like tracking loop. The input of the tracking loop can
be an error formed from the estimated back-EMF values, and the KP and KI gains
can determine the dynamics of the estimation process.

In [24] a more complex PII structure was proposed instead of the regular PI one
in order to compensate the estimation error during the transient state. The second
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integral term uses the double integral of current change so that gives a boost to the
corrector mechanism when fast changes happen in the system.

In [2] several other estimator schemes were shown. One of the methods used the
actual rotor speed and the product of the id and iq currents, instead of the back-EMF
vectors in the state space model. It is also stated if a salient linear observer is used
instead of the non-salient one, then 40% improvement can be achieved in the position
estimation error. When using more complex estimator structures parameter tuning
can become difficult. Proper parameter tuning can be done via doing parameter
sweep or using novel solutions, eg. Genetic Algorithms (GA).

Using Luenberger observer can be a compromise solution among adaptive methods
as it has better performance and more robust than the MRAS-based systems but
computationally less demanding than the use of Kalman filter.

Reduced Order Observer

As in the aforementioned methods, the basic of the reduced order observer is a state
space model in the form given by eq. 3.28, where (C,A) is observable. The reduced
order observer design method is proposed in [5]. The paper states that if the y

output vector can be written as a combination of the state vectors as

y = C1x1 + C2x2, det(C2) ̸= 0 (3.35)

then, it is sufficient to design an observer only for the partial state x1. If x̂1 is the
estimation of x1, then x2 can be estimated with the following.

x̂2 = C2
−1(y − C1x̂1) (3.36)

To design the reduced order observer the original system needs to be transformed
to the following form

ẋ1 = A11x1 + A12y + B1u

ẏ = A21x1 + A22y + B2u (3.37)

and a new variable x′ can be constructed as

x′ = x1 + L1y (3.38)

23



where L1 is a nonsingular gain matrix. After substituting eq. 3.37 in eq. 3.38 and
differentiating to x′ the following term is obtained.

ẋ′ = (A11 + L1A21)x′ + (A12 + L1A22 − A11L1 − L1A21L1)y + (B1 + L1B2)u
(3.39)

For x′ an observer can be designed using the following form.

˙̂
x′ = (A11 + L1A21)x̂′ + (A12 + L1A22 − A11L1 − L1A21L1)y + (B1 + L1B2)u

(3.40)

From these, the error dynamics of the system can be described as

ẋ = (A11 + L1A21)x′. (3.41)

If A11 and A21 are known, the gains of L1 can be designed on a way that the error
tends to zero. When x̂′ is estimated, the value of x1 and x2 can be calculated using
eq. 3.38 and eq. 3.36.

In [5] it is presented that the reduce order observer is suitable to estimate both the
stator flux or the EMF. Any of them is eligible to estimate the speed and position
values and to control the system.

Sliding Mode Observer (SMO)

The sliding mode observer is really similar to the Luenberger observer, the main
difference is the calculation of the error. While in the Luenberger observer the
difference between the estimated and the measured value is the error function, in
SMO only the sign-function of the difference is used. The scheme of the observer
can be described as

˙̂x = Ax̂+ Bu+ K · sgn(y − ŷ)
ŷ = Cx̂ (3.42)

In [27] an improved method called adaptive SMO is proposed, which combines the
regular observer scheme with the SMO. A new Φ gain is also inserted into the
system, which can be described with the following set of equations.

˙̂x = Ax̂+ Bu+ K(y − ŷ) + Φ · sgn(y − ŷ)
ŷ = Cx̂ (3.43)
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3.3.2.3 Kalman Filter and Extended Kalman Filter (EKF)

The regular Kalman filters can be used on linear systems. Based on [2] the IPMSM
can be described with the following equations

ẋ = Ax+ Bu+ v

y = Cx+ n (3.44)

where v is the system- and n is the measuring disturbance, which has a white
noise character. The state space equation of the Kalman filter is the same as the
Luenberger observer, the difference between the methods is the selection of the
observer gain matrix.

The variance of v and n are given as [2]

E{v · vT} = Q · δ(t− τ) (Q positive semidefinite)
E{n · nT} = R · δ(t− τ) (R positive definite) (3.45)

where Q and R are covariance matrices. The dynamics of error ε can be expressed
as

ε̇ = (A − KC)ε+ v − Kn. (3.46)

To ensure the the optimum state estimation K must be selected properly. This can
be done via using the following form

K = PCTR−1 (3.47)

where P is the solution of the Riccati differential equation, given by eq. 3.48 with
the initial value P(0) [2].

P = AP + PAT + Q − PCTR−1CP where P(0) = E{ε(0) · εT (0)} (3.48)

In [2] it is mentioned, that the most difficult part of designing the Kalman filter is
the selection of P(0), Q and R matrices.

In case of nonlinear systems the extended Kalman filter (EKF) can be used. This
type of filter solves the problem of nonlinearity by linearizing the recently estimated
state [14]. The estimation process of a discretized EKF consists of 3 steps: the
forecasting phase, the revision phase and the update of the Kalman gain. In [14] a
solution is mentioned also, where the 2-phase stationary voltages and currents were
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taken as the inputs and outputs of the system, while the stator flux, the rotor speed
and the position were used as state variables.

The drawback of the EKF method is the calculation workload, hence it can not be
used on cheaper microcontrollers as it is computationally demanding.

3.4 Artificial Intelligence based methods

In [14] a review of artificial intelligence based methods is presented. Mostly artificial
neural networks (ANN) are used in sensorless control. A regular neural network
consists of multiple layers: an input layer, one or more hidden layers and an output
layer. The neural networks can be grouped in two main categories, the feedforward
NN and the feedback NN. Based on [14] the neural networks can be grouped as:

• Feedforward neural network

– Perceptron

– Multi-layer perceptron

∗ Error back propagation neural network (BP-NN)
∗ Radial basis function neural network (RBF-NN)
∗ Support vector machines (SVM)

– Deep learning

∗ Deep neural network (DNN)
∗ Deep belief network (DBN)
∗ Convolutional neural network (CNN)

• Feedback neural network

– Hopfield NN

– Elman NN

– Boltzmann machine

– Wavelet NN

Usually ANNs are used for connecting the voltage, current and and rotor position
of the measured phase through adaptive technology [14]. The paper also presents a
basic state equation in the α-β frame that can be used by the NN, it is given in the
following form

x̂ = Ax+ f(x, u)
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y = Cx+ v (3.49)

where

x =
x1

x2

 =
 ψM

L
ωesinθe

−ψM

L
ωecosθe

 , u =
iα
iβ

 , y =
îα
îβ

 . (3.50)
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Chapter 4

A proposed wide-speed-range
sensorless control method

In this chapter a combination of sensorless methods will be presented that could
estimate the rotor position and speed of PMSMs at both low, middle and high-
speeds. Firstly, a zero speed initial position estimator will be introduced, then a
low-speed and then a medium and high-speed method will be presented. Finally
it will be discussed how the switching between the later two methods can happen
during transient operation. This chapter mainly focuses on the theory, as the design
and the practical usage will be stated in chapter 5 in detail.

4.1 Initial position estimation: DC pulse injec-
tion

If we want to use different sensorless control methods, we must know the initial
rotor position accurately to make correct predictions. DC pulse injection can be
used for this purpose in case of a PMSM with structural saliency (Ld and Lq values
are different). It is important to note that DC pulse injection technique does not
work on SPMSMs. The method has been used for a long time and it is discussed in
detail in several papers [19, 28, 26]. The procedure consists of two easy steps.

Firstly, a low voltage short DC pulse is used to determine the rotor’s orientation
which tells us only the orientation of the d-q axes but not their direction [12]. The
pulses should be injected in all three phases which indicates current that can be
measured. We use a positive and a negative impulse just after each other to increase
the phase current and decrease it back to 0 immediately. This is repeated in the
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negative direction also. It is important to hold a short time delay before applying the
next pulse pair, in order to let all phase currents reset to 0 properly. The orientation
can be calculated from the measured peak values.

The d axis is closest to the phase in which the peak current is the largest, because
PMSMs have larger inductance in the q direction. From this information we know
the angle of the d axis in a +/-30 degrees range. The accurate offset can be calculated
using the other 2 phases’ peak currents as the following [26]

θoffset = cos(120◦)
sin(120◦)

I1 − I2

I1 + I2
(4.1)

where I1 and I2 are the differences between the maximum and minimum peak in
the other 2 phases.

Secondly a high voltage pulse is applied to the d axis to identify the rotor’s polarity.
By applying the pulse accurately to the d axis, the movement of the rotor is mini-
mized. The direction of the d axis is determined by the difference of a positive and
a negative pulse, because the north and south poles of the rotor magnets saturate
the stator coils differently.

4.2 Low-speed control: High frequency alternat-
ing signal injection

As BEMF signal is insufficient at lower speeds and standstill, state observers which
use BEMF for speed and position estimation can’t be used in low-speed range. A
possible solution for this problem is the use of different signal injection techniques.
At high frequency ranges a high frequency PMSM model can be used, which can be
obtained by transforming the elements of eq. 2.9 to high frequency terms and based
on [10] it can be written in the following form

vrdsh
vrqsh

 =
rrdh + d

dt
Lrdh 0

0 rrqh + d
dt
Lrqh

irdsh
irqsh


=
rrdh + jωLrdh 0

0 rrqh + jωLrqh

 irdsh
irqsh

 =
zrdh 0

0 zrqh

irdsh
irqsh

 (4.2)

where zrdh and zrqh are the d and q axes high frequency impedances in the actual rotor
reference frame. As the actual rotor position is not available in sensorless operation,
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we need to use the estimated rotor reference frame later in our calculations. The
position estimation error can be written as

θ̃e = θe − θ̂e (4.3)

where θe is the actual electrical rotor position and θ̂e is the estimated rotor position.

Based on [10] the model in estimated rotor reference frame can be continued as
vr̂dsh
vr̂qsh

 = R(θ̃e)−1

zrdh 0
0 zrqh

R(θ̃e)
ir̂dsh
ir̂qsh


=
zavg + zdiff

2 cos(2θ̃e) zdiff

2 sin(2θ̃e)
zdiff

2 sin(2θ̃e) zavg − zdiff

2 cos(2θ̃e)

 ir̂dsh
ir̂qsh

 (4.4)

where

R(θ) =
 cos(θ) sin(θ)
−sin(θ) cos(θ)


zavg =

zrdh + zrqh
2

zdiff = zrdh − zrqh.

The final formula for the model in the estimated rotor reference frame is the followingvr̂dsh
vr̂qsh

 =
zr̂dh zr̂ch

zr̂ch zr̂qh

ir̂dsh
ir̂qsh

 (4.5)

where zr̂dh, zr̂qh and zr̂ch are the d axis, q axis and cross-coupling high frequency
impedances [10]. We should notice that even though the actual rotor reference
frame model has no cross-coupling impedances, when the estimated rotor reference
frame is used these impedances also need to be used.

From the previous equations we get the following terms

zr̂dh = zavg + 1
2zdiffcos(2θ̃e)

zr̂qh = zavg − 1
2zdiffcos(2θ̃e)

zr̂ch = 1
2zdiffsin(2θ̃e). (4.6)

For the injection we have two options, either the alternating signal is injected only
on the d axis, or on the q axis. Injecting signals only on the d axis is better, as it
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won’t produce torque ripples. The injected signal can be written asvr̂dsh
vr̂qsh

 =
Vinjcos(ωht)

0

 . (4.7)

If high frequency inductances are much larger than the resistances the relation be-
tween iq and the error of θe will be the following [10]

ir̂qsh = − zr̂ch
zr̂dhz

r̂
qh

Vinjcos(ωht) ≈
[
Vinj
2
rdiffcos(ωht)
ω2
hL

r
dhL

r
qh

− ωhLdiffsin(ωht)
ω2
hL

r
dhL

r
qh

]
sin(2θ̃e).

(4.8)

From this estimated current the rotor position estimation can be extracted by using
a band-pass filter, a multiplication and a low-pass filter.

Figure 4.1: Signal processing for the high frequency signal injection method [10].

After the signal processing, the rotor position estimation error approximately can
be described with the following term.

f(θ̃e) ≈ VinjLdiff
2ωhLrdhLrqh

θ̃e = Kerrθ̃e (4.9)

As the estimated rotor position error is produced, the speed can be approximated
via using a PI tracking loop. To express the current rotor position the estimated
speed should be integrated. An example of the full control loop is shown on figure
4.2.

It must be noted, that the limitation of high frequency AC injection is when the Ld
and Lq inductances are equal or close to each other [21]. It can be seen also from
eq. 4.9 where the Ldiff term appears in the numerator, which becomes zero when
Lrdh = Lrqh. It also means the position error is zero independently any other values.

4.3 High-speed control: Luenberger observer

A Luenberger observer can be used for estimating the internal state of a system by
measuring only its inputs and outputs. A simple block diagram of the observer is
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Figure 4.2: An example control loop for the high frequency injection method [10].

shown on figure 4.3. In our case the BEMF of the PMSM is estimated by measuring
the stator phase currents and the voltages applied to the stator windings. The speed
and position can be determined from the estimated BEMF by using a tracking loop.

4.3.1 State space model of the observer

A general state space model of a system looks the following.

ẋ = Ax+ Bu

y = Cx (4.10)

The A, B and C matrices should be determined based on the real PMSM machine,
either more complex or simplified models also can be used.

The form of the BEMF vector can be written as eq. 4.11 if the α-β stationary
frame is used and the electrical system’s time constant is much smaller than the
mechanical one [2, 16].

e =
eα
eβ

 = {(Ld − Lq)(ωeid − d

dt
iq) + ωeψM}

−sin(θe)
cos(θe)

 (4.11)
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Figure 4.3: Block diagram of the Luenberger observer for PMSMs, where K stands
for the observer gain [15].

Based on the aforementioned formulas the state equation for PMSMs can be de-
scribed as [2, 16]

d

dt

iαβ
eαβ

 = A

iαβ
eαβ

+ Bvαβ + W

iαβ = C

iαβ
eαβ

 (4.12)

where the state variables are

iαβ =
[
iα iβ

]T
eαβ =

[
eα eβ

]T
and, based on [4, 9], the matrices can be obtained as

A =



−Rs

Ld

−ωe(Ld−Lq)
Ld

−1
Ld

0
ωe(Ld−Lq)

Ld

−Rs

Ld
0 −1

Ld

0 0 0 −ωe
0 0 ωe 0
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B = 1
Ld


1 0
0 1
0 0
0 0

 , C =
1 0 0 0
0 1 0 0



W = (Ld − Lq)(ωeid − iq)
−sin(θ)
cos(θ)

 .
When id and iq is changing there is an unknown linearization error in the system
(that’s what W stands for), but at observer design and in practise this effect is
negligible.

In this formula ωe is a constant parameter, hence we need to calculate with the actual
electrical angular frequency in our model. This means, the observer parameters
varying by the rotor speed, so the observer parameters can be determined on specific
ωe values. This can be done by using a look-up-table during operation.

The state equation for the Luenberger observer is very similar to the system’s state
space model and can be written as the following [2].

d

dt

 îαβ
êαβ

 = Â

 îαβ
êαβ

+ Bvαβ + L(iαβ − îαβ)

îαβ = C

 îαβ
êαβ

 (4.13)

As Â includes ωe, the actual rotor speed should be estimated during operation. At
observer design the L matrix needs to be determined for different speed values, and
during simulation the proper observer matrices must be chosen to the corresponding
speed via a look-up-table.

If we want to simplify our model, we can assume that Ld = Lq = Ls, and the
dependency of ωe can be neglected. This results that the A matrix does not contain
ωe at all and the observer parameters are constants. The simplified model and the
corresponding observer design steps can be found in [23]. The article states that
if the calculation steps are small enough, it can be assumed that the derivatives of
BEMF signals are zero, thus at one calculation step the BEMF is constant. The
matrices of the state space model, after the simplifications were made, can be written
as
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A =


−Rs

Ls
0 − 1

Ls
0

0 −Rs

Ls
0 − 1

Ls

0 0 0 0
0 0 0 0

 , B = 1
Ls


1 0
0 1
0 0
0 0

 , C =
1 0 0 0
0 1 0 0

 .

4.3.2 Observer design

Either the more complex or the simpler model is used, the observation can be cal-
culated as the following [2, 16].

ˆ̇x = Ax̂+ Bu+ L(y − Cx̂) = (A − LC)x̂+ Bu+ Ly (4.14)

The observer parameters should be determined in a way that the observer will
be stable during operation. The observer gain matrix L can be calculated with
Matlab’s acker function in case of a SISO (single-input single-output) system. For
MIMO (multiple-input multiple-output) systems L can be determined by solving an
equation for the characteristic polynomial of A − LC. This calculation can be done
via the following equation

det(sI − (A − LC)) = (s− p)4 (4.15)

where on the left side there is the characteristic polynomial, aka the eigenvalues of
(A − LC), while on the right side 4 poles can be found. These poles are need to
be placed during observer design by choosing the value of p. The dynamics of the
system is described by the characteristic polynomial. If a L matrix is chosen, where
(A − LC)T is negative semi-definite, then the speed observer will be stable [12].

4.3.3 Discretized Luenberger observer

In the previous sections all the models and equations were in continuous time, but the
simulations and the implemented real system are sample based, hence a discretized
observer can be constructed for better operation. If the sample time of the system
is Ts, then the continuous time system can be discretized by using the forward Euler
method, that can be written as

ADI = I + A · Ts, BDI = Ts · B, CDI = C (4.16)
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where A, B and C are the system matrices of the continuous time model, while
ADI, BDI and CDI are the matrices of the new discretized state space model. The
new model can be written as

x[k + 1] = ADIx[k] + BDIu[k]
y[k] = CDIx[k] (4.17)

where k indicates the kth time step. It can be seen from the state equation that the
continuous time derivation is changed to a time delay, thus in the observer model
shown on figure 4.3 the continuous integral also needs to be changed to a unit delay.

The design of the observer is the same for discrete time, the only difference is in the
pole placement method. If p was chosen as a continuous time pole, then its discrete
equivalent can be calculated with the pDI = e−pTs formula.

4.3.4 Extraction of rotor speed and position

The formerly presented observer is suitable to extract the BEMF values of the
system, but from that the speed and position information still needs to be estimated.
That can be done by using a PI controller-like tracking loop, which gets an error
signal as input and produces the rotor speed as output. From the angular velocity
the position can be obtained via using an integrator or it can be calculated from the
back-EMF directly.

In [2] a possible PI controller is presented, using following formula

ω̂e = KP (êαεα − êβεβ) +KI

∫
(êαεα − êβεβ)dt (4.18)

where KP and KI are the gains of the controller, εα and εβ are the current errors
(i− î) in the α-β reference frame.

Another possible solution is shown in [12], where the error signal is constructed from
the current and the previous position. It can be written as

ω̂e = KP ε+KI

∫
εdt

ε = sin(θ̂e) · cos(θ̂′
e) − cos(θ̂e) · sin(θ̂′

e) (4.19)

where ε is the input error signal and θ̂e indicates the actual estimated electrical rotor
position, while θ̂′

e denotes the previous position.
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4.4 Combining sensorless control methods

Different sensorless methods work better at different speeds, so multiple types of es-
timation required if we want to control the motor precisely at any speed. Previously
I presented three methods for zero, low and high-speed control respectively.

The initial position estimation can happen at the beginning of the operation, so the
zero speed estimation simply can be used after the process is completed. For the
other two estimators, a switching logic is required in order to keep up the control,
the whole speed range and make the estimation as precise as possible, even during
transient states. At the implementation of the switching logic I will work based on
[12], in which a speed interval is chosen, where the high-frequency signal injection
and the Luenberger observer are both active, but contributes to the estimation with
different weights.

It is mentioned in [12], if a more complex PMSM model is used the Luenberger
observer should be accurate at higher speeds than the 10% of the nominal speed. In
case of a simplified PMSM model the observer starts to get accurate around 30% of
the nominal speed, hence the switching interval should be around this area. During
the switching interval a linear transition can be used at the weights, to make the
switch between the methods as smooth as possible.
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Chapter 5

Simulation of sensorless methods

This chapter discusses how the simulation was prepared for testing the sensorless
methods. Firstly some general information of the Simulink model will be provided,
then the design of the regular FOC control loop will be presented, finally the simu-
lation of the different sensorless estimator methods will be shown.

5.1 Overview of the simulation

5.1.1 Environment

For simulations the Matlab Simulink environment was used. In order to keep the
Simulink model as simple as possible I tried to use mostly prepared items like con-
trollers or Clarke and Park transform blocks. For the electrical part of the simulation
the Simscape / Electrical / Specialized Power Systems library was used. As machine
model firstly I used the Electrical Machines / Permanent Magnet Synchronous Ma-
chine component of the library, which can be used as a BLDC or as a PMSM drive.
The model offers several settings, hence the electric machine can be parameterized
according to our needs. Later it was changed to a model provided by my advisor,
as the parameters of the original motor could not be changed during simulation,
which is required for parameter sensitivity tests. The new model implements the
mathematical equations of an IPMSM with basic Simulink blocks, hence the value
of different parameters, like Ld and Lq inductances, can be changed during simula-
tion. As a 3 phase inverter the Universal Bridge block was used where the power
electronic device was set to MOSFET / Diodes. The library also includes current
and voltage measurement sensors that were used in my simulation.
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It is worth mentioning that the parameters of the simulation should be set carefully,
because using Matlab’s auto setting could distort the results of the simulation. In
the Configuration Parameters / Solver tab it is advised to set the max step size at
least an order of magnitude lower than the fastest components step time. Using the
auto setting sometimes resulted small oscillations at the steady state of signals in
which case I suspected a wrong parameter setting at the controller. After several
tries it was found that the problem was not caused by an inappropriate parameter,
but the solver’s settings, since lowering the max step size resolved the issue.

5.1.2 Machine parameters

At the simulations the parameters of the electric drive are set almost identical to
the machine that is used at implementation. The only difference is in the value of d
and q-axis inductances, which are equal at the real machine, as it is a SPMSM. Even
though preparing the simulations on different parameters is not optimal from the
implementation point of view, but different Ld and Lq is required for some sensorless
estimator methods.

This is not a problem at the Luenberger observer, because in this case SPMSMs can
be regarded as a particular case of IPMSMs where Ld = Lq. As it was mentioned
in section 4.2 the high-frequency signal injection is operable only if Ld and Lq are
different, hence in case of SPMSMs the method might not work. This is the reason
why at the simulations equal inductances can not be used.

Considering the aforementioned things, the machine parameters that were used in
the simulation:

• Number of pole pairs: 5

• d and q axis inductances: Ld = 0.21mH and Lq = 0.43mH

• Stator resistance: Rs = 0.285 Ω

• Torque constant: Kt = 0.05917 Nm
A

• Inertia: J = 7.77 × 10−5 kg m2

• Viscous damping: F = 5 × 10−5 Nms

The parameters of the inverter bridge:

• Nominal DC voltage: 24V

• PWM switching frequency: fPWM = 10 kHz
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5.1.3 Control loop without estimation

In order to test and compare the sensorless speed and position estimators a regular
FOC control loop had to be designed, where the later estimated parameters are
known. The system is a two level cascade control, where the outer loop is a PI
speed controller and the inside loop is the current control of the d and q axis currents.
After applying the inverse Park and Clarke transformations a three phase inverter
produces the inputs of the PMSM block. The output of the machine contains all
required data such as the actual speed and position of the motor and the three phase
currents. After applying the regular Clarke and Park transformations the sampled
current values can fed back to the current controllers, while the sampled angular
velocity is attached back to the speed controller.

The sample time of the control loops are:

• Current control: Ts = 0.1ms

• Speed control: Tsω = 1ms

The controller gains in the system were designed based on the machine parameters.
The P and I values of the current controllers were calculated separately for the d
and q axis because the Ld and Lq inductances are slightly different. The transfer
function of the PI can be written as

PIid(z) = Kid

(
1 + IidTs

1
z − 1

)
and PIiq(z) = Kiq

(
1 + IiqTs

1
z − 1

)
(5.1)

where id and iq denotes the d and the q axis values. Ki and Ii can be calculated as

Kid = 0.5Ld
Td

and Tid = Ld
Rs

and Iid = 1
Tid

Kiq = 0.5Lq
Td

and Tiq = Lq
Rs

and Iiq = 1
Tiq

(5.2)

where Ld and Lq are the d and q axis inductances, Td = 3
2Ts is the dead time of

the system, while Tid and Tiq are the electrical time constants of the motor. In my
simulation the numerical values of the constants are

Kid = 0.7000 and Tid = 7.3684 × 10−4 sec

Kiq = 1.4333 and Tiq = 1.5088 × 10−3 sec.

As previously mentioned, the maximum torque can be achieved by controlling the
id current with different techniques, like MTPA. For simplicity in my simulations id
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was set to 0 constantly. Although this solution does not provide maximum torque
at higher speeds, the control performance is still sufficient and it has no effect on
the inspection of sensorless methods.

The transfer function of the speed controller is

PIω(z) = Kω

(
1 + IωTsω

1
z − 1

)
(5.3)

where Kω and Iω can be determined as

Kω = J

Ktωc
, Tω = BTdω, ωc = 1√

TωTd
and Iω = 1

Tω
(5.4)

where J is the motor inertia, Kt is the torque constant, ωc is the cutoff frequency,
B is a constant (chosen as 10 in my case) and Tdω = 3Ts + Tsω

2 is the dead time of
the speed control loop. The calculated parameters are

Kω = 0.5191 and Tω = 8.000 × 10−3 sec.

It is important to mention that using the loop with these control parameters shows
great performance when the speed and the position of the rotor are known, but in
case of using the outputs of the estimators the dynamics of the system is changed
significantly. Delays of the system are drastically increasing when the estimated ω

and θ values are fed back to the speed controller, hence quite large oscillations can
be seen in the angular velocity of the rotor. For acceptable performance in sensorless
operation, retune of the speed controller is required.

Figure 5.1 demonstrates the operation of the control loop. It can be seen that
the step response of the angular velocity follows the reference signal with minimal
overshoot while the steady state is smooth and oscillation free.

5.2 High frequency alternating signal injection

In the simulations it was assumed that the initial position of the rotor is known,
hence the first presented method is the high frequency alternating signal injection.
The method’s theory was introduced in 4.2. During the operation a low voltage
AC signal is injected into either the q or the d axis voltage, the parameters of
this signal needs to be set appropriately. Both the amplitude and the frequency of
the injected sine wave was chosen as the tenth of the nominal DC voltage and the
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Figure 5.1: Operation of the speed control loop using sensors.

inverter switching frequency [12], hence the parameters of the signal are

Vinj = 2.4V
ωh = 2π × 1 kHz.

The signal must be added to the d axis voltage directly before applying the inverse
transformations on the d-q rotating frame signals. As the signal was injected into
the d axis, the estimation process needs to use the q axis current as an input.

5.2.1 Structure of the simulation model

Firstly, the estimator processes the input q-axis current by using multiple filters
and creates a signal that is proportional to the error of the rotor position value as
described in eq. 4.9. First a band-pass filter should be applied to the input current
signal that only let through the high frequency component of iq. This is achieved
by using a series of high-pass and low-pass filters with a cut-off frequency of 1 kHz,
thus only the injected component of the AC signal remains. An orthogonal signal
component needs to be multiplied into the filtered signal, which needs to be delayed
a bit, as the filtering results delay on the input current. One more low-pass filter is
applied on the signal, that produces the output, which is a signal proportional to
the error of θe.

Secondly, a PI tracking loop produces the estimated position and speed in such a
way that the error of θe tends to zero. In order to make this loop work properly, the
estimated values must be fed back to the FOC control loop. As the input signal is
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proportional to the error of θe, in case of a correctly estimated position the input
of the controller will be zero. The values of the gains were chosen via parameter
sweep, which was done by using MATLAB’s parsim function. This allows us to sweep
multiple parameters simultaneously and to run several simulations on more CPUs
parallely. The controller gains after multiple simulations were chosen as P = 250
and I = 100000.

The injected signal is contained by the current feedback lines which results that the
raw signals are quite noisy for the current controllers. To get rid of the additional
component a low-pass filter could be applied on the q and d axis current too. During
the simulations it was found out that the filtering process adds too much delay to the
system, hence a more dynamic current and speed control could be achieved without
filtering, even with the noisy feedback signals. It is important to understand that
filtering the signals is always a trade-off between system dynamics and noisiness.
If filters are applied to the current signals, then the high-frequency noise will be
reduced and all the other signals will be smoother, but this case a slower current
controller is also required to handle the greater dead time. Furthermore, a slower
current control loop results a slower speed control loop as well. In this section both
solutions will be presented, but later, when the two estimators will be combined,
the non-filtered version will be chosen. If a more precise control is required at
lower speeds, it is worth considering to use a filtered current feedback line and
slower controllers, but in my case this estimator is used mostly in transient states,
therefore, dynamics are preferred over less noisy signals.

The numerous filters applied in this process changes the dynamics of the system
drastically. So much delay is added to the system that the original controllers are
not able to work properly anymore. The speed controller of the FOC must be
retuned in order to make the high frequency alternating signal injection method
work. The transfer function of the current controller is the same as in eq. 5.3 and
the new gains were chosen as

Kω,inj = 0.1093 and Tω,inj = 0.0380 sec.

5.2.2 Results of the simulation

With these controller parameters the estimator was robust enough to extract the
position and speed information, that can be seen on figure 5.2 and 5.3. It can be
seen that the cosine of θ is really close to the measured value, only a slight difference
is visible immediately after starting. The estimated speed signal is pretty noisy as
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filters were not used, even so the controller is able to follow the reference speed
throughout the whole process.

Figure 5.2: Position estimation with the high frequency injection method.

Figure 5.3: Speed estimation with the high frequency injection method.

On figure 5.4 the biggest drawback of signal injection methods is presented. As
a high frequency signal is added to the d-axis voltage, the HF component will be
transformed back to the abc frame as well, hence the phase currents will be distorted.
Even though the sinusoidal form somewhat visible, some kind of beat effect (like in
acoustics) can be seen.

The estimator is highly dependent on the Ld and Lq inductances, as the method
can be used only if they are not equal. On figure 5.5 a parameter sensitivity test
can be seen, where the inductances were changed during the simulation. At t =
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Figure 5.4: Phase currents with signal injection.

0.3 s the value of Ld was increased by 20% and at t = 0.45 s Lq was decreased by
also 20%. It can been seen that the first change did not effect the speed control
too much, but after the second one significant oscillations start to appear. Even
though the estimated speed got more noisy, the process was robust enough to keep
up the control. It must be mentioned that the estimator is based on the high
frequency inductances and the simulation does not consist of these kinds of effects
like saturation, hence at real motors the estimation can be even more robust for
closer Ld and Lq values.

Ld +20%Ld +20% Lq -20%Lq -20%

Figure 5.5: Parameter sensitivity test by changing Ld and Lq during the control
process.
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As previously mentioned, the noise of the estimator can be reduced by filtering the
current feedback lines. For both id and iq a first-order low-pass filter was used to
get rid of the high frequency component. At id the cut-off frequency was set to
ωh

10 , because most of the high frequency component can be found in this signal as
the additional component was injected into the d-axis. On the other hand at iq the
high-frequency component is less significant, hence the cut-off frequency was set to
ωh

5 only, to improve the dynamics slightly.

Figure 5.6: Position estimation with the high frequency injection method, when
currents are filtered.

The current controllers and the speed controller had to be retuned once again to
compensate the additional delay of the filters. The new controller parameters are

Kid,inj_filter = 0.2333 and Tid,inj_filter = 1.0368 × 10−3 sec

Kiq,inj_filter = 0.4778 and Tiq,inj_filter = 1.8088 × 10−3 sec

Kω,inj_filter = 0.0865 and Tω,inj_filter = 0.0480 sec.

On figure 5.6 and 5.7 the estimated position and speed is presented with using the
aforementioned current filters and returned controllers. It can be clearly seen that
both the position and the speed values are closer to the measured results and the
noise had been reduced visibly. In contrast, the step response is slower compared to
figure 5.3, where the steady state was reached around 0.05 seconds faster.
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Figure 5.7: Speed estimation with the high frequency injection method, when cur-
rents are filtered.

5.3 Luenberger observer

The theory of the Luenberger observer was introduced in 4.3. The observer gains
were designed both for the simplified model, where the Ld and Lq inductances are
similar, and for the more complex model (called advanced Luenberger observer from
now on), where the A matrix is dependent on the estimated speed. Both of the
observers used the discretized model, as the control loop runs in discrete time.

5.3.1 Observer design

The equation that needs to be solved each case is the following

det(zI − (ADI − LDICDI)) = (z − pDI)4 (5.5)

where the matrices are the same as in section 4.3, pDI = e−pTs , where the time
constant of the observer is −1

p
and L is the observer gain that can be written as

LDI =


giα 0
0 giβ

geα 0
0 geβ

 . (5.6)

In order to achieve great performance and get a fast enough observer the value
of p has to be chosen carefully. A too small p results a too slow observer which
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is not able to follow the system, while a too large p can cause oscillations at the
output of the observer. It is a good practise to choose p one order of magnitude
faster than the electrical time constant of the machine. In the simulation the fastest
electrical time constant is the one that corresponds to the d axis and its value is
Tad = Ld

Rs
≈ 7.3684 × 10−4 sec. To this constant at least a value of p ≈ −13500 is

required, hence a bit faster pole was chosen p = −15000, which means the discrete
pole needs to be around pDI = 0.2231.

After solving the equation the calculated gains of the simplified observer is the
following.

giα = giβ = 1.4647 and geα = geβ = −1.9313 (5.7)

For the advanced observer model the design was a bit more complicated because
the equation had to be solved for different speeds. As the gains do not change too
much for greater change in the speed, I chose a step size of ∆ω = 30 rad/s, so an
observer design was needed for every 30th value. The first equation was written for
ω = 15 rad/s and the result was used in the 0 − 30 rad/s speed range. The second
equation was written for ω = 45 rad/s and corresponded to the 30−60 rad/s range,
etc. The maximum design speed was ω = 375 rad/s, because it is already over the
machine’s top speed. Unfortunately as a reason of the more complex matrices, eq.
5.5 had 6 solutions for every ω value, which made the design even more complicated.
Most of the results were complex numbers, thus logically one of the real solutions
needed to be chosen.

After the design process was completed for all speed values, I got the results that
are presented in table 5.1, where the first value corresponds to ω = 15 rad/s, while
the last value is for ω = 375 rad/s. It can be seen even though the gains are close
to each other for different speeds, at higher angular velocity the difference between
α and β-axis values starts to increase.

Observer gains
Gain ω = 15 rad/s ω = 45 rad/s ... ω = 345 rad/s ω = 375 rad/s
giα 1.4180 1.4181 ... 1.4197 1.4198
giβ 1.4180 1.4180 ... 1.4164 1.4162
geα -1.2674 -1.2625 ... -1.1420 -1.1420
geβ -1.2674 -1.2723 ... -1.3774 -1.3867

Table 5.1: The gains of LDI for different ω values.
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5.3.2 Structure of the simulation model

The whole estimation process can be split into two main steps, firstly determine
the back EMF values via the observer and secondly get the estimated position and
speed by using only the back EMF. The input currents and voltages are given in the
α-β stationary frame, and connected directly to the observer. The structure and
the gains of the Luenberger observer block are the same that were presented on the
block diagram on figure 4.3. For the more complex model instead of constant ADI,
BDI, CDI and LDI matrices, a look-up table was used to choose the proper matrix.
At the output of the delay block the estimated internal states of the system can
be found which consists the back EMF values (eα and eβ) as the third and fourth
component.

As the back EMF values are produced, we can calculate sin(θ̂) and cos(θ̂) as in eq.
5.8 [22]. The final step is to get the estimated ω and θ which can be done by using
a PI tracking loop, similar to the one that was introduced at the end of the high
frequency alternating signal injection process. The input error signal of the PI loop
was given in chapter 4 with eq. 4.3.4.

sin(θ̂) = − êα√
ê2
α + ê2

β

, cos(θ̂) = êβ√
ê2
α + ê2

β

(5.8)

In the tracking loop besides the PI gains, signal filtering also takes place. A first-
order low-pass filter was used in order to remove the high frequency noise that is
produced by the P component of the tracking loop. The filtering process makes the
ωe output signal a bit smoother but also brings some more delay into the system.
The chosen gains of the tracker are P = 100 and I = 150000 in case of the advanced
observer, and P = 250 and I = 50000 for the simplified observer. These values
were determined by MATLAB/Simulink parameter sweep and showed acceptable
performance during the tests.

5.3.3 Results of the simulation

Even though the Luenberger observer could work with the faster speed controller,
during the tests it used the same controller as the signal injection method, because,
when the estimators are combined then the slower controller must be used anyway.
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5.3.3.1 Open-loop operation

Graph 5.8 and 5.9 demonstrates the functioning of the speed estimator in open-loop
operation. It can be seen that at low speeds (under 50 rad/s) the estimated ω is
noisy and inaccurate, hence as the theory also stated this estimator can be used
only at higher speeds. The graph also shows that over 50 rad/s the estimator works
correctly and follows the actual rotor speed value with minimal difference.

Figure 5.8: Speed estimation of the two Luenberger observers in open-loop oper-
ation.

On 5.9a it can be seen that the simplified Luenberger observer reacts slower and
it is less accurate at lower speeds. Graph 5.9b and 5.9d demonstrated that at
transient states the advanced observer shows faster response and better performance
as it is closer to the measured speed. In contrast, at steady state (figure 5.9c) the
advanced estimator has a constant oscillation with an amplitude of 0.5 rad/s, while
the simplified model results an almost constant value.

5.3.3.2 Advanced Luenberger observer

When the control performance of the observers were tested, at startup the sensor
control was used and the control process switched to the observer over 100 rad/s,
as the observer can not be used at lower speeds. Firstly the advanced Luenberger
observer will be demonstrated, followed by the simplified one.

Figure 5.11 and 5.12 show the position and speed estimation of the advanced observer
during control. It can be seen that the estimated position has a small offset compared
to the measured one, but it has no effect on the control process. At the speed diagram
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(a) Low speed estimation. (b) First transient.

(c) Steady state. (d) Second transient.

Figure 5.9: Detailed diagrams of the operation of the speed estimator.

Figure 5.10: Position estimation of the two Luenberger observers in open-loop
operation.

the oscillation at steady state appears again and has a minor effect on the speed
control at 300 rad/s.

On 5.13 the stator currents are presented, which have the expected sinusoidal form.
If we compare this to figure 5.4, we can see the biggest advantage of using the
Luenberger observer. While at the signal injection method the estimation process
effected directly to the machine as the stator currents were highly distorted, here
the observer has just indirect effects on the system. On 5.13 the wave forms also
show the oscillations at steady state.
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Figure 5.11: Position estimation of the advanced Luenberger observer in closed-
loop operation.

Figure 5.12: Speed estimation of the advanced Luenberger observer in closed-loop
operation.

5.3.3.3 Simplified Luenberger observer

Figure 5.14 and 5.15 present the performance of the simplified Luenberger observer.
At steady state the position estimation is really similar compared to the advanced
observer, but the estimated speed has no oscillation.

As expected, during transient state the simplified observer follows the speed less
accurately, but it has no effect on the control performance. During the acceleration
phase a small peak can be noticed, when the control loop switches from sensor
to sensorless operation, but this has no consequence for the control process either.
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Figure 5.13: Phase currents when the advanced Luenberger observer is used.

Figure 5.14: Position estimation of the simplified Luenberger observer in closed-
loop operation.

This effect was not visible at the advanced observer as it handled the transients
more effectively.

The stator currents in this case are also very similar to the advanced observer’s wave
forms. The main difference can be noticed at steady state, where the oscillations do
not appear this time, hence the signal shapes look slightly better.

5.3.3.4 Parameter sensitivity tests

In order to demonstrate and compare the robustness of the previously presented
Luenberger observers, parameter sensitivity tests were made. Both cases the value
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Figure 5.15: Speed estimation of the simplified Luenberger observer in closed-loop
operation.

Figure 5.16: Stator currents when the simplified Luenberger observer is used.

of Ld and Lq inductances were changed during the simulation by 40%. The first
change occurred at t = 0.3 sec when Ld was modified, then Lq was switched at
t = 0.45 sec.

In the advanced model we took advantage of the difference in inductance values,
hence it effects more to the observer, when Ld and Lq get closer to each other.
Figure 5.17 and 5.18 show the effect of parameter changes, it can be seen that while
the first value change has only minor effect, the second one (figure 5.18b) results
noticeable oscillation.
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Ld +40%Ld +40% Lq -40%Lq -40%

Figure 5.17: Parameter sensitivity test by changing Ld and Lq during simulation.

(a) +40% change in Ld at t = 0.30 sec. (b) -40% change in Lq at t = 0.45 sec.

Figure 5.18: Detailed diagrams of the effect of parameter change.

Ld -40%Ld -40% Lq +40%Lq +40%

Figure 5.19: Parameter sensitivity test of the simplified Luenberger observer.

Almost the same test was completed for the simplified model, but now the direction
of the inductance change is reversed, its results are shown on figure 5.19 and 5.20.
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(a) -40% change in Ld at t = 0.30 sec. (b) +40% change in Lq at t = 0.45 sec.

Figure 5.20: Detailed diagrams of the effect of parameter change.

As this model calculates with equal Ld and Lq the even bigger gap between them
effects the observer more. It can be seen on figure 5.20a and 5.20b that the value
changes cause a bit more noise, but the effect is negligible. It can be say that the
simplified Luenberger observer is more robust and tolerates disturbances better.

5.4 Combining the estimators

As it was previously mentioned, two estimators need to be used in order to control
the system the whole operational speed range. The most difficult part of combining
these methods is the switching logic that allows us to switch between the signal
injection method and the observer back and forth during operation. In this project
a speed range was chosen where the switching process can be done. Under 80 rad/s
the high frequency signal injection is used, while over 120 rad/s only the observer
determines the speed and position information. Between these limits a linear tran-
sition was implemented, based on the estimated rotor speed.

The switching between the methods is handled by a state machine, which has four
states: only signal injection, accelerating mixed state, only Luenberger observer and
decelerating mixed state. The mixed states have a hysteresis, in order to prevent an
immediate switch back to the previous state in case of noisy speed signal.

When the high frequency estimator is not in use, the signal injection is suspended
to reduce the unnecessary noise in the system. In case of switching back from the
observer to the injection method the high frequency signal needs to be restarted.
If it would be resumed at the begin of the mixed state, then the estimator would
not have enough time to reduce the position error and get in sync [12], hence the
additional signal is started again earlier, at 160 rad/s.

On figure 5.21 a simulation is shown, where the combined estimators were used
and the switching process is presented both directions. The first transition can be
noticed around t = 0.09 sec, while the back switch happens around t = 0.53 sec.
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Figure 5.21: Estimated speed profile with additional torque load.

Figure 5.22: Position determined by the two estimator methods.

At t = 0.25 sec a 0.12Nm load torque is added to the machine to demonstrate
the disturbance tolerance of the sensorless speed control. It can be seen that the
high frequency estimator is really noisy, especially when the additional signal is
resumed during the switch back state, however the control is still robust enough. At
higher speeds the estimation works much better, the Luenberger observer provides
a smooth signal and compensates the additional load perfectly.

Figure 5.22 demonstrates the estimated rotor position from standstill, until only
the observer is in use. Around t = 0.085 sec a short period can be seen where the
transition was done, but the estimated position remained accurate throughout.
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Figure 5.23: Switching between the signal injection and the observer.

Figure 5.24: Phase currents when the two estimators are used combined.

Figure 5.23 visualizes the linear transition between the estimators. The yellow
and green weight signal represent, what percentage is the corresponding estimator
contributes to the estimated speed. The linear transition is a bit noisy, because the
weights are calculated from the estimated speeds and the weight values from the
previous time step.

The phase currents are presented on figure 5.24, where the difference between the
signal injection and the observer is visualized perfectly. When the high frequency
component is added to the system the currents are distorted, while during the high
speed period the sinusoidal forms are look better. It can be noticed that after the
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torque load was added at t = 0.25 sec, higher currents are required to maintain the
desired speed.
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Chapter 6

Implementation

In this chapter only a short preview is shown about later works, which are related
to the implementation of the sensorless methods. The experimental environment
is shown on figure 6.1, where a Texas Instruments TMS320F283789D DSP is used
to run the implemented code. The attached BOOSTXL-3PhGaNIn VSI is a 48V ,
10A three-phase inverter equipped with INA240 current sensors, that is also man-
ufactured by Texas Instruments. The NT Dynamo Brushless DMA0204024B101
SPMSM machine can be seen on the right side of the power supply and it has the
following parameters:

• Number of pole pairs: 5

• d and q axis inductances: Ld = Lq = Ls = 0.32mH

• Stator resistance: Rs = 0.285 Ω

• Torque constant: Kt = 0.05917 Nm
A

• Inertia: J = 7.77 × 10−5 kg m2

• Viscous damping: F = 5 × 10−5 Nms

As it was already mentioned, this PMSM is a symmetric machine, where the in-
ductances are equal. The laboratory power supply produced the 24V input voltage
that was connected to the inverter.

The implemented code was generated by MATLAB, as the Simulink model was
slightly modified to be suitable for C code generation. Additional hardware specific
blocks were added to the model, which could control the analog-to-digital converters,
the PWM peripherals and the encoder. The signals of the system could be logged
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Figure 6.1: Experimental setup including the PMSM machine, the DSP and the
3 phase inverter board.

using the Simulink Monitor & Tune function, which displayed the signals on the
Scope attached to the model.

A few rudimentary tests had already been prepared on the physical environment,
where the sensor FOC control and the open-loop Luenberger observer were imple-
mented. For the first tries the results were promising as the speed and position
estimation worked correctly at higher speeds.

As future work both estimators will be implemented and tested on the real drive.
The aim of the project is to demonstrate a robust and reliable fully sensorless PMSM
system that allows to control the machine in the entire operable speed range.
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Conclusion

This report introduced several existing sensorless methods that can be used to obtain
the speed and position of PMSMs. Two of these methods were discussed in detail
and then implemented in MATLAB/Simulink.

The results showed that the combination of high frequency signal injection and
Luenberger observer is sufficient to control the machine the whole speed range,
however at lower speeds and in transient states the estimated signals were noisy
and inaccurate sometimes. It was also found that using sensorless methods made
the tune of controllers difficult as the required filters caused additional delay in the
system. Several retunes of the current and speed controllers solved the issue of
larger dead times, but it also meant that the dynamics of the system got worse and
response time was increased. In spite of all these, the control process seemed to be
robust enough and the machine reached the reference speed always, even when a
torque load was added to the simulation.

It can be said that the introduced sensorless methods worked fine in the simulations
and after implementation possibly it will be able to control a real machine using
them. Future work will examine the extent to which the simulation results can be
transferred to reality and what further implications the use of an SPMSM has. An
initial rotor position estimator can be implemented as well, that can be used in case
of the machine is in an unknown starting position.
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