---”IIIIIIIIIII;;;:...:!!! Oioio
MUEGYETEM 1782

Budapest University of Technology and Economics
Faculty of Electrical Engineering and Informatics

Department of Telecommunications and Media Informatics

Semantic Segmentation Mask-Guided Image

Generation with Diffusion Models

Students’ Scientific Conference (TDK)

Author:

Katica Bozsd

Advisor:

Dr. Balint Pal Gyires-To6th

Andras Béres

2023

Contents

Kivonat
Abstract
1 Introduction

2 Theoretical Background
2.1 Classical Image Augmentation Methods,
2.2 Key Branches of Generative Models
2.2.1 Generative Adversarial Networks
2.2.2 Variational Autoencoders L.
2.2.3 Diffusion models
2.2.4 Generative learning trilemma L0000
2.3 Denoising Diffusion Probabilistic Models
2.3.1 Forward diffusion - adding noise
2.3.2 Reverse diffusion - removing noise
2.3.3 Complete pipeline
2.4 Classifier Free Guidance o

2.5 Guiding Techniques
3 Research objectives

4 Methods and implementation
4.1 Dataset e e
4.2 Model Design L

4.3 Trainingo

ii

10
11

12

13

14

4.3.1 Hardware and software environment

4.3.2 Hyperparameters o e
4.4 Inferene
5 Results
5.1 Metric-based Evaluation oo oo
5.1.1 SSIM . . .
5.1.2 FID
51.3 KID o
5.1.4 Pixel accuracy and IoU o 0oL
5.2 Visual Evaluation o
521 Testmasks
5.2.2 Modified test masks
5.2.3 Hand painting L o L
5.2.4 Comparison with larger models
5.2.5 Generating unconditional samples L.
5.2.6 Upscalingresults oL
5.2.7 Limitations L L

6 Summary and future work

Bibliography

Appendix

19
19
19
21
22
23
23
23
24
25
25
28
28

30

31

33

37

Kivonat

Onvezetd jarmiirendszerek esetében a deep learning folyamatok nagy mértékben tamasz-
kodnak a kiegyensilyozott adathalmazra - aminek Osszedllitasa komoly kihivast jelent,
hiszen némely mintdk rendkiviil ritkan fordulnak eld, pl. kiilénleges id6jarasi koriillmények
vagy pedig specialis objektumkompozicidk. A klasszikus adatdusité technolégidk képessé-
gei korlatozottak, a mély neurdlis hal6 alapi megoldasok sokkal hatékonyabbnak bizonyul-
hatnak ezen teriileten. Egy érdekes generativ ag, a nem rég teret nyerd diffizié alapi meg-
kozelités, mely zajbol allit el6 Gj képeket. Nagy fékuszt kapnak a 'text2image’ metddusra
épiil6 megoldasok, melyek szovegbemenet segitségével teszik vezérelhet6vé a generdlasi fo-
lyamatot. Nem oldanak meg azonban minden problémat. Ezen modellek hatalmasak, atlag
felhasznalok szaméara nem elérhet6ek tanitdsi és futtatasi komplexitasuk miatt. Tovabb4,
a szoveg alapi bemenetek nem nyujtanak teljesen explicit kontrollt a generalas folott,
kiilonosen olyankor amikor az objektumok relativ helyzetét kell meghatirozni egy adott
képen. A feladat ezen probléma orvoslasa volt egy szemantikus szegmentacioval vezérelt
difftiziés modell implementaldsival és specialisan varosi adathalmazon vald betanitasaval.
A megoldas soran tetszoleges 6nvezeté domainbe tartozo jelenetek generalhatéak, ezaltal

bévitve a hidnyos adathalmazokat.

Abstract

In the autonomous mobility industry, deep learning pipelines heavily rely on balanced
data - a challenging feat to achieve, due to the scarcity of rare case samples such as unique
weather conditions or specific traffic scene setups. Traditional data augmentation tech-
niques are limited, deep learning based methods may provide more advanced solutions
on this field. One of the intriguing branches of generative Al is the emergent diffusion-
based approach, offering to generate novel images from random noise distribution. These
cutting-edge solutions now mostly employ a ’text2image’ approach, enabling systems to
generate images guided by textual prompts. However, challenges remain: these advanced
models are vast, potentially putting them out of reach for average users due to their
training and deployment complexities. Furthermore, these textual inputs are yet to offer
full explicit control over generation, especially when specifying the relative positioning
of objects within an image. The task at hand was to propose a solution to this limita-
tion by integrating a semantic segmentation based control mechanism into a generative
diffusion model and demonstrate its effectiveness on the automotive domain. Through
this approach, arbitrary self-driving scene setups can be produced, therefore enriching

insufficient datasets.

ii

Chapter 1

Introduction

Deep neural networks have revolutionized image generation, finding widespread applica-
tion in fields such as arts [1], entertainment, medical science [2], and the development of
autonomous driving systems [3][4]. A particularly captivating branch of generative Al is
the emergent diffusion-based [5] approach. This method hinges on training a model adept
at noise prediction, capable of iteratively crafting images from a standard noise distribu-
tion during inference. As many advancements have aimed to enhance the controllability
of image generation, cutting-edge solutions now mostly employ a ’text2image’ approach,

enabling systems to generate images guided by textual prompts [6].

However, two challenges stand out: advanced models are vast, potentially putting them
out of reach for average users due to their training and deployment complexities. Con-
ventionally, these models are accessible via online API's and platforms, but such avenues
rarely provide a transparent view of the inner workings or the ability to fine-tune on
custom datasets. Secondly, while textual prompts are innovative, they are yet to offer
complete explicit control over generation, especially when specifying the relative position-
ing of objects within an image. Although some fields might not prioritize this feature,

many could significantly benefit from enhancements in this area.

Autonomous driving systems is a domain where there is an insatiable demand for diverse,
and sometimes very specific training data. The collection process, especially for rare
scenarios such as pre-accident object positioning, poses challenges not only in terms of cost,
but also in feasibility, therefore acquiring such recordings could be a pivotal achievement.
Textual prompts may help to generate images where the composition is simple, e.g. ’a
red car at the cross-roads’, but when there is a particular idea about the scene setup, e.g.
10 cars with multiple colors at different directions around likewise interacting humans, a

pure text-based description is hardly applicable.

Semantic segmentation maps could mean a more reasonable alternative, since they possess

a greater descriptive power on the pixel-level. The goal is to facilitate automotive data en-

! Application Programming Interface

richment through offering control by mask-guidance. Classes occuring on groups of image
pixels may be influenced directly in this manner, while also enabling multiple utilization
possibilities of the model: Companies typically possess at least a minimal amount of train-
ing data containing semantic segmentation masks. By the help of a mask-guided diffusion
model, these could be used ’out-of-the-box’, generating multiple versions (e.g. colors of
cars change) of the same scene setup. The initial masks may be further modified (e.g. via
basic image editing tools), providing even more unige inputs for the model. To illustrate

the effectiveness of the method, even handmade drawings may be used as inputs.

In this work I introduce a semantic segmentaion mask-guided model, trained specifically
for self-driving environment data generation. I leveraged the Berkeley Deep Drive dataset,
which comprises traffic participant frames annotated with semantic segmentation. Out-
comes validated the concept of using such masks for scene control, while highlighting the
method’s potential for scalability. Furthermore, my implementation is designed to be
compact and minimal, enabling everyday users to grasp, experiment with, and adapt this

approach to address their unique challenges and ideas in generative image modeling.?

2repository will be published later at https://github.com/kajc10/semseg-guided-diffusion

https://github.com/kajc10/semseg-guided-diffusion

Chapter 2

Theoretical Background

2.1 Classical Image Augmentation Methods

Classical data augmentation methods can typically be divided into two principal categories:

photometric and geometric augmentations [7].

Photometric augmentations - typically referred to as color augmentations - do not modify
the intrinsic structure of the data, but nonetheless, produce a visually distinct output.
Some of the more common ones in this category include contrast adjustments, brightness

modifications, saturation enhancements, and hue shifts.

Although these augmentations provide diversity in the visual appearance of the data,
they primarily act on the pixel values, therefore they do not facilitate any structural

modifications to the underlying scene of the image.

original contrast brightness saturation hue

Figure 1: Color augmentation examples

On the other hand, geometric augmentations are designed to address this limitation. These
methods introduce structural changes to the image, thereby altering the composition and
layout of the scene. Some commonly used geometric augmentations are resizing, cropping,
flipping (both horizontal and vertical), and rotating. By employing these techniques, the
objects’ relative positions within the image can be altered, which can lead to more diverse

scene compositions and enhance model generalization.

original resizing cropping horizontal flip vertical flip rotating

Figure 2: Geometric augmentation examples

In a standard dataloader, these augmentation functions can be applied with a probability
factor p, allowing the model to learn from both the original and the modified data concur-
rently. Furthermore, the parameters governing these augmentations, such as the degree of
rotation or the intensity of brightness change, can be fine-tuned to optimize the model’s
performance. Adjusting these parameters is often an empirical process, influenced by the

nature of the dataset and the specific problem at hand.

For both photometric and geometric methods, it is worth noting that while they serve as
a means of data enrichment, they do not inherently produce entirely new scene configura-
tions. The primary advantage of using these methods is to reduce the model’s tendency to
overfit by providing variations of the same sample. To create explicit scene configurations
or generate novel content, there is a need to pivot towards deep dearning-based methods,

which are equipped with more advanced tools for such purposes.

In the subsequent sections, deep learning-based augmentation and generation methods

will be addressed, focusing on their capabilities and potential to enrich datasets further.

2.2 Key Branches of Generative Models

Generative deep learning models are dedicated to understanding and replicating the in-
herent distribution of given data. By effectively learning the ’essence’ of a dataset, these
models are capable of generating new data samples that can be considered as drawn from
the same distribution as the training data. The preservation of the intricate relationships
and patterns in the original data can often lead to insightful and creative synthetic outputs.
Among the diverse list of generative models, three branches are particularly noteworthy
due to their distinct capabilities and broad applications: Generative Adversarial Networks
(GANSs) [8], Variational Autoencoders (VAEs) [9], and Diffusion Models [10].

2.2.1 Generative Adversarial Networks

GANSs operate on the concept of a zero-sum game between two components: a generator
and a discriminator. The generator creates synthetic data, while the discriminator evalu-
ates this data against the real dataset. The aim is for the generator to produce data that

the discriminator cannot distinguish from the real dataset. This adversarial process drives

the generator to create increasingly realistic data, useful for creating diverse and complex
scenarios. However, the training of GANs can be challenging due to issues like training
instability and the phenomenon known as mode collapse [11]. In this situation, the gen-
erator starts to produce a restricted range of samples, limiting its diversity. Furthermore,
it is essential to note that GANs do not offer a direct representation of the data’s density
function [8] [12], which could constrain their utility in assignments that demand in-depth

data exploration.

2.2.2 Variational Autoencoders

VAEs [13] assume that the data is generated by some latent (hidden) variables and aim
to model the data distribution explicitly. A typical VAE comprises an encoder, which
translates the input data into a latent space, and a decoder, which then recreates the
data from this latent representation. For clarification, the ’autoencoder’ phrase is used
due to the model’s encoder-decoder structure. Owing to their probabilistic nature, VAEs
excel at managing uncertainty and creating new data efficiently. These models can be
particularly advantageous when it is vital to understand the data and manipulate the
latent variables [14]. However, due to some simplifying assumptions in their design, the
samples generated by VAEs may lack the sharpness or realism found in those produced
by Generative Adversarial Networks (GANs) [15].

2.2.3 Diffusion models

Diffusion models [5] represent another distinctive approach for data generation. Tradition-
ally, these models propose a stochastic process to gradually transform the data distribution
into a known distribution, typically Gaussian, through a sequence of small, noise-adding
steps. This diffusion process can be reversed to generate new data samples. Diffusion
models do not require an explicit likelihood function and can model complex data dis-
tributions, which offer a great deal of flexibility. Although they can be computationally
intensive during the generation process, the diversity and quality of the data they generate
could greatly enhance the robustness of deep learning models that are lacking diverse data
[16].

While there have been developments that transition the diffusion process to latent space -
commonly termed as "Stable Diffusion" [17] - using expansive network architectures, and
some recent advancements [18] [19] have even moved away from the classical noise intro-
duction strategy to predicting VQ (Vector Quantization) [20] tokens directly, this study

adheres to the foundational noise prediction approach of the original diffusion models.

2.2.4 Generative learning trilemma

After addressing the potential methods, a design choise had to be made. The generative
learning trilemma [21] (see on Figure 3) provides guidance in deciding which branch is
most suitable for a given task. The three features taken into consideration are quality,
diversity and speed. GANs are able to produce high quality samples fast, but lack diversity.
VAEs excel at fast sampling and model coverage, but fail to produce high quality samples.
Finally, diffusion models are adept at producing diverse, high quality samples, at the cost

of speed.

The current goal is to aid automotive data enrichment, for which quality and diversity are
crucial, but fast sampling is not, since the model will not be deployed to an edge device.
After evaluating the possibilities based on the generative trilemma, the optimal choice was

to use diffusion models.

High

Generative Quality . Denoising

Adversarial . « Diffusion
- mpl ;N

I\clwurks/- Sa pics { \ Models

i Fast

Sampling

Variational Autoencoders,
Normalizing Flows

Figure 3: Generative learning trilemmal

2.3 Denoising Diffusion Probabilistic Models

Denoising Diffusion Probabilistic Models (DDPM) [5] constitute a popular basis for
diffusion-based generative models, and they serve as the foundation for the experiments
in my study. This subsection aims to present the primary concepts behind DDPM and
to briefly explain its functioning. For a deeper understanding and more technical details
- especially regarding mathematical derivations - the reader is encouraged to consult the
original paper and supplementary explanatory blog posts [22][23][24]. I would like to high-
light that the following technical summary is processing the content of an excellent video

summary [25] about the topic.

"https://developer.nvidia.com/blog/improving-diffusion-models-as-an-alternative-to-gans-part-1/
accessed: 2023.11.01.

DDPM’s main approach originates from the concept proposed by the authors of Deep
Unsupervised Learning using Nonequilibrium Thermodynamics [10], who articulate their

methodology as follows:

"The essential idea, inspired by non-equilibrium statistical physics, is to sys-
tematically and slowly destroy structure in a data distribution through an iter-
ative forward diffusion process. We then learn a reverse diffusion process that
restores structure in data, yielding a highly flexible and tractable generative

model of the data’

Taking inspiration from these insights, the authors of DDPM demonstrate that such model

can be used for effective data synthesis.

While DDPM may initially seem complex, the underlying idea is rather simple. An zg
image is taken as input, and Gaussian noise is progressively added over a series of T steps,
leading to a significantly distorted version. Subsequently, a neural network is trained with
a specific objective: for a given noisy image at timestep ¢, it should identify the precise
noise introduced during that step, allowing the image to move closer to its state from the
preceding timestep ¢t — 1. Essentially, the network learns to predict the noise added at each
specific timestep. The overarching aim is to systematically reverse the noise, moving from
the heavily distorted image back to the original. Once the model is adeptly trained, the
process can begin with an image that is purely noise. By consistently feeding this noisy
image into the network and subtracting its denoising predictions, the noise steadily fades,

revealing a synthesized image by the end of the iterations.

The following subsections offer further clarification on the mechanics of this forward and

backward process.

2.3.1 Forward diffusion - adding noise

The forward process is responsible for gradually applying noise (sampled from a normal
distribution) over lots of steps (authors used 1000, this is what I applied as well) to an zg
data sample until it turns into complete noise. This can be formulated as a Markov chain?
of T steps, illustrated on Figure 4. The distribution of the noised image can be described

as:

Q(1€t|l‘t71) = N(!Et; VA 61&5137&71751‘,[)

Here t is a timestep (1-T), xo is a data sample from the real data distribution g(z)(zg ~
q(z)), Bt is variance (0-1) and [is the Identity matrix. The j; variance can be fixed as a
constant or scheduled over the T timesteps. In the original DDPM paper linear scheduler

is used, increasing from f; = 0.0001 to S = 0.02. Based on literature [26], a cosine

“https://en.wikipedia.org/wiki/Markov_chain accessed: 2023.11.02.

https://en.wikipedia.org/wiki/Markov_chain

scheduler is more effective, therefore I decided to rather use that. Note that q(xt|zi—1) is
still a normal distribution defined by the mean (1/1 — Bix¢—1) and variance (5:1).

Figure 4: Forward diffusion

With the help of the so called 'Reparameterization trick’®, a sampled image x; can be

expressed as:

Xt

=1—Bxi_1+ /B

Fortunately, this can be further derived into a closed-form formula. This way we can

directly generate noisy image for an arbitrary timestep t in a single step, thus making

the process much faster. After defining oy, &; and ¢ as:

The formula can be written as :

ar=1—p
¢

@t:Hai
i=1

e~ N(0,1)

T = Jouxri—1 + V1 — aze

= ooy 172 + /1 — opop_1€
= Voo 10i—oxi—3 + /1 — cpap_1aq e

= Jor_1...a10070 + /1 — ap_1...a1 008

=>

Ty = V&tl'() + \/]. — &ts

*nttps://theaisummer.com/latent-variable-models/#reparameterization-trick

accessed:2023.11.02.

https://theaisummer.com/latent-variable-models/#reparameterization-trick

2.3.2 Reverse diffusion - removing noise

Noising an image is fairly simple via the closed-form formula. Doing the opposite and
removing the noise is a more complicated task. Directly predicting xy could be an option,
but authors found that this leads to worse sample quality than their other proposals. A
normal distribution needs mean and variance (N'(p,0?)), but the variance can be fixed,
therefore it is enough to predict the mean of the Gaussian distribution at each
timestep. To make it computable, Variational Lower Bound? is applied. For further math
derivation and explanation, see [24]. Mean Squared Error (MSE) can be computed between
w and predicted p, however, the objective of predicting the mean can be reformulated into

the objective of directly predicting the noise.

This way, a simplified objective (referred to as such in the original paper) can be written

as:

Lsimple = Et,:]co,s[||5 - 59(3}7&’ t)||2] (2'2)

When a network is capable of predicting the current noise at a given ¢, the process can be
applied iteratively. Noise is predicted, then removed from the noisy image, thus forming
a bit less noisy image. When starting from t=T, by t=1, a clean, novel image is created.

See Figure 5.

Diffusion model
(U-Net)

Figure 5: Reverse diffusion

*https://yunfanj.com/blog/2021/01/11/ELBO.html accessed: 2023.11.02.

https://yunfanj.com/blog/2021/01/11/ELBO.html

2.3.3 Complete pipeline

The authors of DDPM provided the following algorithm to define the complete training

pipeline:

Algorithm 1 Training

1: repeat

2: xo ~ q(zo)

3: t ~Uniform({1,...,T})

4 e ~N(0,1)

5 Take gradient descent step on

Volle — €0 (Varzo + 1 — aye, t) &

6: until converged

An image is sampled from the training dataset, along with timesteps and noise from a
normal distribution. Noised variations of it are generated at each timestep ¢ via forward
diffusion. As described above, this can be formulated as: z; = v/ayxo ++/1 — age . Then
the model takes x; and ¢ as input and predicts the actual noise on the image between ¢
and t — 1. MSE? loss is calculated between the predicted and the original noise. Through
optimization for this loss, the model learns to predict current noise present in an image

between ¢ and t — 1 timesteps.

A trained model can be used for generating new samples, using the following algorithm.

Algorithm 2 Sampling
cxp ~N(0,1)
cfort=T,...,1do
z2~N(O,I)ift >1,else z=0

1
2
3
4: Ti_1] = \/% (xt — \}%@(%J)) + 04z
5
6

. end for

: return x

Here €y(x,t) denotes the model’s output for x; (sampled from a normal distribution) and

t. The output is the predicted noise on noisy image at timestep t.

Clarifying point 3-4) it should be noted that extra noise is not added when ¢t = 1. Thus

the denoising function has two forms:

t>1:
Bt

1
=\t T T
ﬁt(\/1*0@

®Mean squared error - https://en.wikipedia.org/wiki/Mean_squared_error accessed: 2023.11.02.

Ti_1] = eg(xe, 1)) + \/ Pre

10

https://en.wikipedia.org/wiki/Mean_squared_error

L B
Va, i

To aid in better grasping the topic, supplementary Python code snippets have been in-

Ti—1 69($t7t))

cluded in the appendix, as referenced in Code Listing 6.

2.4 Classifier Free Guidance

In the field of generative diffusion models, producing specific outputs (controlled genera-
tion) is often challenging. Classifier Guidance [27] proposed an initial approach to tackle
this problem: train a separate image classifier and use its gradients to guide the image
generation process towards the desired output. However, this strategy incurs a significant

computational overhead, since it requires training an extra model.

Classifier Free Guidance (CFG) [28] offers a more streamlined solution: without the need
for supplementary networks, it enables precise image synthesis via a process known as con-
ditioning. It circumvents the need for an additional image classifier by jointly optimizing
a single neural network for dual tasks simultaneously. In this context, an unconditional
model generates output based solely on the learned data distribution, without specific
conditions or classes. In contrast, a conditional model produces output based on both the
learned data distribution and specific conditioning. This conditioning can be integrated
through a minimal architectural modification. An extra conditioning parameter is passed
to the network as well - which may be drawn for varying fields, further explained at Section

2.5 Guiding Techniques.

Central to CFG is the bridging between the outputs of the conditional and unconditional
models, a concept captured in the CFG paper’s equation 6. This extrapolation allows for
a seamless blend between the two modes, enhancing the model’s versatility. The model
is parameterized as pg(z|c), leveraging the same score estimator but incorporating the
identifier ¢ as a component of its input. For unconditional updates, ¢ is set to 'None’.
By randomly assigning ¢ to the unconditional class identifier during the training phase,
CFG concurrently masters the creation of both generalized samples of the distribution
and controlled outputs. This duality empowers precise image synthesis with reduced

computational needs.

A pivotal element in this process is the guidance weight. It modulates the balance between
the conditional and unconditional outputs, ensuring the generated output aligns with the
desired condition while maintaining authenticity. However, it is worth noting a potential
drawback of CFG: during the inference step, two forward passes through the network are
required (one unconditional and one conditional pass), which may have implications on

efficiency and processing speed.

11

2.5 Guiding Techniques

Diffusion models offer various ways to control their outputs.

One of the most versatile and intuitive methods for guidance is using textual descriptions.
With models like OpenAl’'s CLIP [29], there is an effective fusion between vision and
language models. CLIP, for instance, can be used to guide the generative diffusion models
by providing textual prompts. These prompts can vary from simple attributes like 'sunset’
to complex descriptions like ’a tranquil beach during sunset with children playing’” Such
models essentially learn the intricate relationship between visual and textual data, enabling

more descriptive and customized image generation.

As previously touched upon in CFG, using class labels is another predominant method
for guiding image synthesis. By associating a specific label with the image data during
training, the model can then generate images corresponding to that class upon request.
For instance, a model trained with labels like 'cat’ or ’dog’ can produce images of cats or

dogs respectively when provided with the single class label.

Rather than using text or class labels, some techniques opt to apply another image as a
source of inspiration or reference. In this method, an input image or a portion of an image
is provided to the model, which then modifies, enhances, or recreates based on the learned
distribution and the given reference. This technique is particularly useful in tasks like
style transfer, image-to-image translation, or even in scenarios where the desired output

is a variation of an existing image.

Low-resolution images may also be used as conditioning inputs, especially when the goal is
to produce upscaled or ’super-resolution’ [30] versions of the images. These low-resolution
images serve as references during the generation process, aiding the model in understanding
the fundamental structures and patterns of the original content. By using them as a
baseline, the model is guided to enhance and refine details, ultimately resulting in a high-
resolution image that retains the essence of the original while boasting superior clarity

and definition.

Another promising technique for guiding the outputs of diffusion models is through se-
mantic segmentation, referred to as 'semseg-mask conditioning” While the foundational
concept of using semseg (semantic segmentation) masks to guide generative models might
have precedence in literature [31], its application in the automotive-specific domain re-
mains largely unexplored. Moreover, the methods for incorporating such masks can vary
significantly, and a standardized architecture has not yet been established. Hence, exper-

imentation in this field remains both relevant and warranted.

12

Chapter 3
Research objectives

While current state-of-the-art models such as Stable Diffusion XL!' and Midjourney v52
are adept at text-driven guidance, their proficiency wanes when it comes to precise object
positioning — a critical factor in domains such as autonomous mobility. The need for
generating detailed and accurate traffic scenes for deep learning algorithms in these appli-
cations demands a higher degree of control than what broad-spectrum generative models

can offer.

The goal of this study is to address this challenge, via introducing a semantic segmentation
mask-guided model, specifically trained for automotive data generation. The model should
not only grasp the intricacies of vehicular scenes, but also provide a precision level that is

challenging for generic generative models to match.

The transformative potential of the method should be demonstrated during a systematic
series of experiments. A U-Net [32] based architecture will be implemented and extended
to enable control via semantic segmentation masks. A public traffic participant dataset will
be acquired and preprocessed. The model will be trained and its utilization possibilites will
be showcased during multiple examples: 1) image generation with semantic segmentation
mask-guidance 2) image generation with manually modified masks 3) image generation

via hand-made drawings. All results shall be evaluated both visually and metrically.

Subsequent chapters will detail the essential steps to achieve the declared objectives, en-
compassing dataset preparation, baseline training, model design with guidance integration,

and an in-depth evaluation of the results.

https://stability.ai/stable-diffusion accessed: 2023.10.29.
*https://docs.midjourney.com/docs/model-versions accessed: 2023.10.29.

13

https://stability.ai/stable-diffusion
https://docs.midjourney.com/docs/model-versions

Chapter 4
Methods and implementation

Although this work builds around the semantic segmentation guidance, a simpler baseline
was established in the early phases. As a result, this yielded two implementations, an
unconditional model, that does not incorporate any guidance, only generating novel images
from the data distribution, and the one that can be guided via semantic segmentation

masks.

The pipeline on Figure 6 could be followed during both methods.

Data
Preprocessing

Evaluation

A 4

Inference

h 4

Model Training

Y

Model Design

h 4

Figure 6: Implementation pipeline

4.1 Dataset

Having a comprehensive dataset establishes a base for any Deep Learning experiment.
Berkeley Deep Drive [33] is a public, diverse large-scale urban dataset, in which 100K
driving videos were collected from more than 50K rides, resulting in more than 100 million
frames in total. Annotations are available for several tasks, such as lane detection, object

detection, and for the main motive of my work, semantic segmentation as well.

There were a total of 8000 semantic segmentation annotations - stored as polygons in .json
files - that needed to be processed for the current use-case. Also, the original images have
a resolution of 1280x720, which is unfeasible for model training. To resolve these issues,
720x720 center-crops were created and downscaled to 128x128 resolution, while the json
annotations have been also processed and saved as 128x128 semseg maps, supplied with
a colorbook containing class-color mappings for all 19 classes. Via these mappings, masks

can be modified or even novel ones can be created.

At the end of the 'Data Preprocessing’ step, 7000 training images with corresponding

masks were ready for training, while 1000 pairs were left untouched for testing purposes.

14

Samples from the dataset (center-cropped and resized to 128x128) are presented on

Figure 7. Even on this small subset, it can be observed how diverse the dataset is.

Figure 7: BDD samples

The colorbook presented on Figure 8 may be used for altering already existing maps or
creating new ones. It is also stored as a json file containing explicitly the classes and

corresponding RGB values. Since these values are read runtime, mappings can be even

modified if necessary.

-~ - = N o+ & o~ o~ - 0
Z 3 5 € 5 > % ® 8 3 5 B3 & § g & %

o o o < 3 c a © 5 &8 € a
“ & = W 5 g & 3 = = = = a ©
S § S Q 3 a & = = 2 a : x
b1 =~ [] — [t rey O [— @O
(] Q 3 > ‘9'_ ‘g o 3
S o 2 F = B

(=]

3] ¥ b=
=3 =9 a

Figure 8: Generated colorbook

Finally, a concrete example of an image-semseg pair is showcased on Figure 9. It has to be
noted that during data loading, the colors are mapped to classes which are then one-hot

encoded! although this will be addressed further in a later section.

"https://medium.com/hackernoon/what-is-one-hot-encoding-why-and-when-do-you-have-to-use-it-
€3c6186d008f accessed: 2023.10.30

15

Figure 9: Example of image and corresponding semseg mapping

For the sake of transparency, see the dataset summary on Table 1.

Table 1: Summary of used datasets

’ name ‘ set ‘ resolution ‘ number of samples | number of classes

BDD | train 128x128 7000 19
BDD | test 128x128 1000 19

4.2 Model Design

Typically a U-Net is used for diffusion models. This is what I applied as well, although
I had to strive for a relatively low computational cost architecture, therefore I ommited
the Cross-Attention [34] modules which are present in a standard implementation. My
architecture (see Figure 10) consisted of 3 downscaling blocks [downscale, DoubleConv,
DoubleConv], followed by 3 bottlenecks [DoubleConv] and finally 3 upscaling blocks [up-
scale, DoubleConv, DoubleConv]. DoubleConv layers are defined as [Conv2d, GroupNorm,
GELU, Conv2d, GroupNorm]| [35][36]. Timestep is integrated during the forward call
via Transformer sinusoidal position embedding [34]. It is passed to the following blocks
through an embedding layer[SILU, Linear]| [37] : downl, down2, down3, upl, up2 and up3.

Up to this point this model is identical to a model designed for unconditional training.

The incorporation of the semantic segmentation mask is the feature that makes my imple-
mentation unique. The masks are one-hot encoded, therefore creating a more meaningful
format for the neural network. When having 19 classes, the shape of an input tensor is
Bx19x128x128 (following a [B,C,H,W] order).

The semantic segmentation mask is passed through a simple DoubleConv block ([Conv2d,
GroupNorm, GELU, Conv2d, GroupNorm]) - with having 'num_ classes’ (19) input chan-
nels, and 128 output channels. The original input image is passed through a similar layer,
but with having 3 input and 128 output channels. It was essential to match the output
channel numbers, thus this way feature values can be added when a conditional training is

in effect. Concatenation would have not worked, since Classifier Free Guidance takes un-

16

conditional steps as well, when None labels are passed, a channel number mismatch would

emerge. Without any Attention blocks, the total number of parameters was 88,842,371.

128x128x128 oupput
28
f2exi2gx1g > p: E 3x128x128
input image
Ix128x128
optional input j
semseg mask
19x128x128 256x64x64 | :>2 6x64x64
down1 up2
512x32x32 512x32x32
down2 [> up1

4 A
[Fraeere] 512x16x16
V

024x16x16 |q> f0zdxioxis |

Figure 10: The utilized U-Net-like architecture

4.3 Training

4.3.1 Hardware and software environment

GPU power is indispensable for sufficient training. A Docker container, running on a DGX
station containing 4 NVIDIA V100 cards (used 1) was provided by the university. Access

was ensured through SSH-connection.

The exact software and hardware setup:

e System: Ubuntu 18.04.6 LTS

o CPUs: 40 pcs Intel(R) Xeon(R) CPU E5-2698 v4 @ 2.20GHz
e GPUs: 4pcs Tesla V100-DGXS-32GB (1 used)

o CUDA version: 11.7

e Memory: 257866 MB

VS Code served as a development environment, which bridged the gap between the cluster
and my local machine. A conda environment was created for the installations, to which

the packages neccessary for Diffusion were added.

The code was prepared in Python language, heavily relying on the PyTorch library. Wandb
was used as a logger tool, which enabled to continuously monitor the progress of the time-

taking diffusion trainings.

17

4.3.2 Hyperparameters

For the training dataset, containing 7000 128x128 images, trainings took approximately 7
days, with a batch-size of 64 and a total epochs of 1300 on a single NVIDIA V100 GPU.

AdamW was used as an optimizer and a learning rate of 0.0003 was set. Noising steps
were set to 1000 for the diffusion, just as suggested in the original paper. Exponential
Moving Average (EMA) [38] was also introduced and proved to be more stable then the

basic model.

4.4 Inferene

After loading the trained model, inference can be issued. Due to the nature of CFG,
the trained model can be used in an unconditional and conditional manner as well. In
order to test the results of the semseg-guidance experiment, masks need to be passed
as conditioning. In my implementation, this can be done effortlessly via providing a
mask path in a yaml configuration file. The only crucial rule is to use the colors of the
colorbook (whose path is also defined in the yaml) and provide a 128x128 semseg mask.
The dataloader handles the class mapping and one hot encoding, finally the iterative
denoising process will yield novel images with the help of the trained model. Denoising a
single sample, with conditioning enabled, takes approximately 1 minute and 15 seconds.
Due to batching, the processing time is not directly proportional to the number of samples,

acquiring multiple samples at the same time is more efficient.

Inference time was measured for multiple batch sizes, see them at Table 2.

Table 2: Inference times for different batch sizes (1000 steps)

samples | conditional time (mm:ss) ‘ unconditional time (mm:ss) ‘

1 01:15 01:11
2 01:35 01:31
4 02:19 02:15
8 03:47 03:41
16 04:58 04:48
32 08:58 08:42
64 21:12 20:47

18

Chapter 5

Results

For testing purposes, 1000 image-semseg pairs were set aside. Utilizing these segmentation
masks, 1000 novel images were generated via the trained mask-guided model. These
serve as a basis for evaluation. Although an additional unconditional baseline model was
trained, results and evaluation focuses on the semantic segmentation-guided model, as it

encompasses all features and advantages of the unconditional model as well.

5.1 Metric-based Evaluation

Although visual validation in this field is compelling, metric based evaluation is indispens-
able as well. In this section multiple possibilities will be addressed for a comprehensive
view. SSIM, FID and KID are the standard metrics in the realm of generative models,

therefore investigating their yielded results was expected.

5.1.1 SSIM

The Structural Similarity Index (SSIM) [39] is a metric designed to gauge the perceived
quality of an image when compared to an original reference image. The SSIM is based
on three comparison measurements: luminance, contrast, and structure. Its formula is

defined as:

(2ptapy + c1)(204y + c2)
(3 + 1y + 1) (0F + 05 + c2)

SSIM(z,y) = (5.1)

Where:

e z and y are the two images being compared.
e [is the average of image x.

e iy is the average of image y.

19

2

2 is the variance of image x.

o« O

2 . . .
* 0, is the variance of image y.

e 04y is the covariance of x and y.

e c¢; and cy are constants given by:

C1 = (k‘lL)2 (52)
o = (koL)? (5.3)

Where:

o L is the dynamic range of the pixel-values (usually 2rumber of bits per pixel _ 1)

e k1 =0.01 and ko = 0.03 are commonly used values.

The SSIM metric it is typically calculated using a sliding Gaussian window of size 11x11,
this is what I applied as well. The possible values range from -1 to 1: -1 meaning perfect

anti-correlation, 0 indicating no similarities, and 1 perfect similarity.

For all 1000 image and corresponding generations the SSIM was calculated. The overall
average was 0.6818, indicating a satisfactory level of similarity. To further investigate
the results, I logged the lowest and highest value pairs to separate folders. The saved
results made it clear that the lower values were caused by the day-night shifts. This is
understandable, since the metric is based upon contrast and luminance, a good structure

is not enough to yield high results.

—

S5IM: 03380

S5IM: O.118%

Figure 12: Low SSIM value pair example 2

20

High value pairs turned out to be more close color-wise. They also did alter the scene,

but with introducing rather smaller modifications - like color of a single car.

S5IM: 0_3028%

Figure 13: High SSIM value pair

5.1.2 FID

The Fréchet Inception Distance (FID) [40] is a metric designed to evaluate the quality of
generated images by comparing the statistical distribution of features extracted from a pre-
trained Inception network [41] (think of these as embeddings). Essentially, it calculates the
Fréchet distance between two multivariate Gaussian distributions, one from the generated
images and one from real images. A lower FID score indicates that the two sets of images

are more similar in terms of their statistics.

Given two sets of images, real and generated, the FID is computed as:

FID(z, g) = ||pte — ,ugH2 + Tr(Xz + 3y — 2(29529)0'5) (5.4)
Where:

o x represents the feature vectors of the real images and g represents the feature vectors

of the generated images.

e py and pg are the means of the feature vectors for the real and generated images,

respectively.

« ¥, and ¥, are the covariance matrices of the feature vectors for the real and gener-

ated images, respectively.

e Tr stands for the trace of a matrix.

FID was calculated by the torchmetrics library!, using a pre-trained Inception V32 net-
work, resulting in an average of 0.4533. It is important to note that lower FID values
indicate better image quality and more similarity to the real dataset, but the scale is not

strictly linear.

"ttps://torchmetrics.readthedocs.io/en/stable/image/frechet_inception_distance.html
accessed: 2023.11.02.
https://pytorch.org/hub/pytorch_vision_inception_v3/ accessed: 2023.10.30.

21

https://torchmetrics.readthedocs.io/en/stable/image/frechet_inception_distance.html
https://pytorch.org/hub/pytorch_vision_inception_v3/

5.1.3 KID

Kernel Inception Distance (KID) [42] is another metric that provides a measure of the
similarity between two sets of images. KID computes the similarity in feature space (also
utilizing embeddings from an Inception model). While different kernel functions can be
applied, KID is most commonly associated with a polynomial kernel, though variants using
other kernels, like Gaussian, exist. One of the key advantages of KID is that it provides

an unbiased estimate of the population Maximum Mean Discrepancy (MMD).

Given two sets of images, real and generated, the KID is typically computed as:
KID(z, g) = E[x(z,2")] + E[x(g,¢')] — 2E[x(z, 9)] (5.5)
Where:

o x and 2’ are independent sets of feature vectors extracted from real images.
e g and ¢ are independent sets of feature vectors extracted from generated images.

o k(+,-) is the kernel function.

For the polynomial kernel commonly used with KID, the kernel function is defined as:
k(a,b) = (aTb+ c)? (5.6)

Where ¢ is a constant, often set to 1, and d is the degree of the polynomial, frequently

chosen as 2.

However, if one were to use the Gaussian kernel, it is defined as:

k(a,b) = exp <_||a—b||2> (5.7)

202

Where o is the kernel width.

It is important to note that when samples come from the same distribution, MMD (and
thus KID) is expected to be close to zero, indicating that the two sets of images are similar

in the feature space.

I used the KID implementation from the torchmetrics library®. Default values were used,
except for ’subset_ size’, which was set as 100. Degree of the polynomial kernel function
was 3 and KID value for the dataset was calculated as 0.0081.

*nttps://torchmetrics.readthedocs.io/en/stable/image/kernel inception_distance.html,
accessed: 2023.11.01.

22

https://torchmetrics.readthedocs.io/en/stable/image/kernel_inception_distance.html

5.1.4 Pixel accuracy and IoU

Although SSIM, FID, and KID are standard methods for generative model evaluation,
due to the sensitivity of SSIM and FID and for better coverage, a fourth method was
intoduced. A pretrained semantic segmentation network was deployed to produce masks

for both original and generated images.

Defining P as the correctly classified pixels and T as the total pixels, Pixel Accuracy is
given by:
. P
Pixel Accuracy = T (5.8)

For Intersection over Union (IoU), where I represents the intersection and U the union of

the predicted and ground truth segmentations:

I
IoU = i (5.9)
Using a pretrained Mask2Former® model (trained on Cityscapes[43] at a different resolu-
tion), the evaluation on 128x128 resolution BDD images revealed an average IoU of 0.3706
and a notably impressive pixel accuracy of 0.8162. The achieved pixel accuracy means that
the model classified over 81% of the pixels correctly, underscoring the diffusion model’s
ability to authentically reproduce the broader segmentation structures. While the IoU,
influenced by resolution and dataset variations, might seem modest, the commendable
pixel accuracy provides a testament to the mask-guided model’s overall effectiveness in

crafting structurally coherent images.

Subsequent sections will present visual evidence further affirming the experiment’s success.

5.2 Visual Evaluation

5.2.1 Test masks

In this subsection some examples of the 1000 test images are presented.

PR - | -
— S

Figure 14: Test masks
‘https://huggingface.co/facebook/mask2former-swin-large-cityscapes-semantic
accessed: 2023.11.01.

23

https://huggingface.co/facebook/mask2former-swin-large-cityscapes-semantic

Figure 15: Generated images based on the corresponding input
masks on Figure 14

Out of this set of samples, I would point out last picture (bottom row, most right). The
human figure is translucent. This is due to the imbalanced data, unfortunately the model
was lacking human references. On the rest of the samples it can be seen that the model

had no problems with vehicle generation. Further examples at Appendix A.0.28.

5.2.2 Modified test masks

Although there were varying scene setups in the test set, custom controllability can be

better showcased via modifying those masks.

An example of the initial mask, the original image, and the generated images before any

alteration:

Figure 16: Original image, mask and generated image
After modifying the mask via adding an extra car, the structure of the gener-

ation changed as expected, the object was inserted into the appropriate place.

Figure 17: Modified mask and generated image
It should be noted that the lines changed; however, since this was not annotated on the
semseg mask, it is a natural behaviour. This observation could pave the way for poten-
tial improvements. For instance, a custom parameter might be introduced to adjust the
model’s tendency to preserve the original color nature of the photo. While this modifica-
tion offers potential for other use-cases, the current implementation remains a robust tool

for data enrichment.

24

5.2.3 Hand painting

This approach is among the more intriguing ones. Users can create new images by design-
ing hand-drawn masks in a basic image editor, leveraging the established colorbook. A
streamlined pipeline has been developed to effortlessly produce images from these hand-
crafted sketches.

Figure 18: Rough hand painting

While the generated images might lack the intricate details seen in outputs from precise

semantic masks, the enhanced user control and hands-on experience make up for it.

5.2.4 Comparison with larger models

While larger text2image’ based generative models can produce visually stunning results
at higher resolutions, guiding them with prompts does not always achieve the desired

outcomes.

Consider the following as the baseline image:

Figure 19: Reference image for comparison

An example generated using Midjourney’s v5 model® is given below. The prompt provided,
based on the reference image, was: ’view from inside car, grey car in front, red firetruck

front right, high tree front left, tall buildings in the background, realistic —v 5.0’

Shttps://docs.midjourney.com/docs/model-versions accessed: 2023.10.30

25

https://docs.midjourney.com/docs/model-versions

Figure 20: Generated using Midjourney’s v5 model
Despite the impressive quality seen on Figure 20, the generated image does not perfectly

reflect the scene setup described in the prompt.

Similarly, results from Stability AI’s Stable Diffusion® showcased the same challenges. The
used prompt was: 'view from inside car, grey car in front, red firetruck front right, high
tree front left, tall buildings in the background, realistic’. I also intentionally selected the

"ads-automotive’ styling in the options in hope of more specialized results.

https://stablediffusionweb.com

Figure 21: Generated using Stability Al’s Stable Diffusion

®nttps://huggingface.co/spaces/stabilityai/stable-diffusion accessed: 2023.10.30

26

https://huggingface.co/spaces/stabilityai/stable-diffusion

A human might interpret images differently than an AI model, therefore I conducted an

additional experiment. I utilized ChatGPT’s” new ’image2text’ feature, and asked it to

generate an input prompt for the 'text2image’ generator models.
" g’* .

Please describe the image! You should yield a text prompt, that can be used as an input for

text2img models.

A bustling city street lined with tall modern skyscrapers. ncluding a gray car and a

the scene. The atmosphere is typical of a busy urban setting.

Figure 22: Input prompt generated via ChatGPT
Using the yielded prompt: ’A bustling city street lined with tall modern skyscrapers. Ve-
hicles, including a gray car and a red bus, are navigating the road. The overcast sky looms
above, casting a muted light over the scene. The atmosphere is typical of a busy urban set-
ting.’, image synthesis was attempted again, but as before, could not achieve an identical

output:

{ ps:/ﬁllediffusiunweb.(om

Figure 23: Generations via Al generated prompts
(Midjourney left, StableDiffusion right)

The examples highlight that relying solely on prompts with large, generalized models does
not offer the fine-grained control and accuracy that a specialized semseg-guided model can

provide.

"https://chat.openai.com/ accessed: 2023.11.01.

27

https://chat.openai.com/

5.2.5 Generating unconditional samples

Due to the nature of Classifier Free Guidance, a segment of the training was carried out
without labels, enabling the model to familiarize itself with the intrinsic patterns of the
dataset. Samples queried without mask-labels yielded randomised outcomes, exhibiting

somewhat more blurriness compared to samples queried from the unconditional baseline

model.

Figure 24: Samples queried without mask-guidance
Despite the unsharp results, it is evident that the model effectively captured the essence

of the automotive dataset.

5.2.6 Upscaling results

It is worth highlighting a supplementary experiment conducted during the study. While
128x128 image generations adequately demonstrate a model’s capability in capturing the
essence of a dataset, human perception often finds higher resolutions aesthetically more
pleasing. Directly scaling up the model’s architecture is not a viable approach due to
the prohibitive computational demands. Instead, leveraging advanced deep learning tech-
niques for this purpose seems more practical. For this experiment, I employed a pretrained
super-resolution model® to upscale the generated images. The overarching scene composi-
tion remained unchanged, but refined details did not scale up accordingly. Potentially, a
model explicitly trained on the BDD dataset might offer enhanced outcomes, but exploring

that avenue remained beyond the current study’s scope.

8https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/upscale
accessed: 2023.10.30

28

https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/upscale

Example B

Figure 25: Synthesized images and their 4x upsampled versions

Figure 25 shows that while the upscaled images retain the overall scene, they lack sharpness
and detail in accordance with the resolution. This is likely attributable to the upscaler’s

training on a different data domain. A diffusion-based upscaler, specifically trained on the

29

BDD dataset, could potentially enhance even imperfect low-resolution inputs, resulting in

more lifelike upscaled imagery.

5.2.7 Limitations

While my model has been adeptly trained to generate objects such as cars, vegetation,
buildings, and the sky at arbitrary locations, its performance falters when generating
certain objects like human figures. This limitation can be attributed to the insufficient
training samples of such classes. As illustrated in Figure 26, the model correctly iden-
tifies the spatial position for the human object, but fails to provide an accurate texture

representation.

Figure 26: Challenges in human figure generation
To further understand the model’s limitations, I conducted an analysis of the class distri-
bution within the training data. Figure 27 provides a visual summary of the pixel-wise
occurrence of each class. Utilizing this information, the model’s performance can poten-
tially be enhanced by supplementing it with more training samples from underrepresented
classes.

1e7 Pixel Counts for Each Class

Pixel Count
w

L]
L

() 2 e & Q> NS & S o - e
R &{'}) 6\(\0-‘ & & d]\ \\C‘f 5’\05 O 6@\ 4:\ {-:00 R & R & & 'b\(\ 2o 8
& @ 3 @ RO U ¢ < & G
NCIP R ESE SO ¢
O é’b \5%' © 6\0
Class

Figure 27: Class distribution analysis in training data

30

Chapter 6
Summary and future work

Throughout my work, a series of systematically planned steps were undertaken. Datasets
and model architecture for two distinct training types were prepared. Semantic segmenta-
tion mask-guidance was integrated by modifying a standard U-Net-like architecture. Using
a DDPM-based diffusion model, I managed to train an unconditional baseline and also a
semantic mask-guided model on a 128x128 resolution. An efficient pipeline was developed,

streamlining data processing, training, and testing for each setup.

I have demonstrated that semantic segmentation masks offer clear control over scene gen-
eration. This versatility was highlighted through various applications: mask-guided, mod-
ified mask-guided, and hand-painted drawing-guided generation. In addition to visual
evidence, I conducted multiple metric-based evaluations, affirming the stability of my
method. While the resolution of the images generated might not rival that of larger,
cutting-edge models, the degree of control surpasses what is typically achieved by mere
text prompting. This claim is bolstered by a comparison with leading text-guided models

for a specific object-compositioning task.

Looking forward, there are multiple avenues for improvement. One promising direction is
incorporating Vector Quantized (VQ) encodings. As highlighted by [18], noising the en-
coded tokens and directly predicting the denoised versions (instead of noise) could provide
both speed and scalability benefits. At the architectural level, while Attention mechanism
was previously excluded due to its computational overhead, reintegrating it alongside VQ
encodings could enhance generations, without imposing a drastic increase in computational
demands. Finally, given the evident potential for visual improvement through upscaling,
developing a dedicated diffusion model tailored to the BDD dataset for this specific goal
could substantially enhance the quality, yielding more captivating and visually appealing

outcomes.

31

Acknowledgement

The research presented in this work has been supported by Continental Automotive Hun-

gary Ltd.

I would also like to extend my gratitude to Dr. Balint P4l Gyires-Téth and Andras Béres

for their guidance and expertise, which significantly contributed to this study.

32

Bibliography

1]

A .-S. Maerten and D. Soydaner, “From paintbrush to pixel: A review of deep neural

networks in ai-generated art,” arXiv preprint arXiv:2302.10913, 2023.
I. U. Haq, “An overview of deep learning in medical imaging,” 2022.

M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L. D.
Jackel, M. Monfort, U. Muller, J. Zhang, et al., “End to end learning for self-driving
cars,” arXiv preprint arXiv:1604.07316, 2016.

X. Chen, H. Ma, J. Wan, B. Li, and T. Xia, “Multi-view 3d object detection network

for autonomous driving,” 2017.

J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,” Advances
in neural information processing systems, vol. 33, pp. 6840—6851, 2020.

C. Zhang, C. Zhang, M. Zhang, and I. S. Kweon, “Text-to-image diffusion model in
generative ai: A survey,” arXiv preprint arXiv:2303.07909, 2023.

N. E. Khalifa, M. Loey, and S. Mirjalili, “A comprehensive survey of recent trends in
deep learning for digital images augmentation,” Artificial Intelligence Review, vol. 55,
03 2022.

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio, “Generative adversarial networks,” Communications
of the ACM, vol. 63, no. 11, pp. 139-144, 2020.

D. P. Kingma, M. Welling, et al., “An introduction to variational autoencoders,”
Foundations and Trends® in Machine Learning, vol. 12, no. 4, pp. 307-392, 2019.

J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and S. Ganguli, “Deep unsuper-
vised learning using nonequilibrium thermodynamics,” in International conference on
machine learning, pp. 2256-2265, PMLR, 2015.

T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen,

“Improved techniques for training gans,” 2016.

b

I. Goodfellow, “Nips 2016 tutorial: Generative adversarial networks,
arXiv:1701.00160, 2016.

arXiv preprint

33

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[22]

[23]

[24]

D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv preprint
arXiw:1312.6114, 2013.

C. Doersch, “Tutorial on variational autoencoders,” arXiv preprint arXiv:1606.05908,
2016.

Z. Xiao, K. Kreis, and A. Vahdat, “Tackling the generative learning trilemma with
denoising diffusion gans,” arXiv preprint arXiv:2112.07804, 2021.

S. Azizi, S. Kornblith, C. Saharia, M. Norouzi, and D. J. Fleet, “Synthetic data from
diffusion models improves imagenet classification,” arXiv preprint arXiv:2304.08466,
2023.

R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer, “High-resolution
image synthesis with latent diffusion models,” in Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pp. 10684-10695, 2022.

D. Rampas, P. Pernias, and M. Aubreville, “A novel sampling scheme for text- and

image-conditional image synthesis in quantized latent spaces,” 2023.

P. Pernias, D. Rampas, M. L. Richter, C. J. Pal, and M. Aubreville, “Wuerstchen:

An efficient architecture for large-scale text-to-image diffusion models,” 2023.

E. Agustsson, F. Mentzer, M. Tschannen, L. Cavigelli, R. Timofte, L. Benini, and
L. V. Gool, “Soft-to-hard vector quantization for end-to-end learning compressible

representations,” Advances in neural information processing systems, vol. 30, 2017.

7. Xiao, K. Kreis, and A. Vahdat, “Tackling the generative learning trilemma with
denoising diffusion gans,” arXiv preprint arXiv:2112.07804, 2021.

L. Weng, “What are diffusion models?,” lilianweng.github.io, Jul 2021. Available:
https://lilianweng.github.io /posts/2021-07-11-diffusion-models/".

S. Karagiannakos and N. Adaloglou, “Diffusion models: toward state-of-the-art image

generation,” 2022. Available: https://theaisummer.com/diffusion-models/.

Steins, “Diffusion model clearly explained!,” December 2022. Avail-
able: https://medium.com/@steinsfu/diffusion-model-clearly-explained-
cd331bd411664a56.

Outlier, “Diffusion models | paper explanation | math explained,” June 2022. Avail-

able: https://youtu.be/HoKDTa5jHvg.

A. Q. Nichol and P. Dhariwal, “Improved denoising diffusion probabilistic models,”
in International Conference on Machine Learning, pp. 8162-8171, PMLR, 2021.

P. Dhariwal and A. Nichol, “Diffusion models beat gans on image synthesis,” Advances

in neural information processing systems, vol. 34, pp. 8780-8794, 2021.

34

[28]

[29]

[31]

J. Ho and T. Salimans, “Classifier-free diffusion guidance,” arXiv preprint
arXiv:2207.12598, 2022.

A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry,
A. Askell, P. Mishkin, J. Clark, et al., “Learning transferable visual models from natu-
ral language supervision,” in International conference on machine learning, pp. 8748—
8763, PMLR, 2021.

W. Yang, X. Zhang, Y. Tian, W. Wang, J.-H. Xue, and Q. Liao, “Deep learning for
single image super-resolution: A brief review,” IEEE Transactions on Multimedia,
vol. 21, pp. 3106-3121, dec 2019.

L. Zhang, A. Rao, and M. Agrawala, “Adding conditional control to text-to-image dif-
fusion models,” in Proceedings of the IEEE/CVF International Conference on Com-
puter Vision, pp. 3836-3847, 2023.

O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for
biomedical image segmentation,” in Medical Image Computing and Computer-Assisted
Intervention—-MICCAI 2015: 18th International Conference, Munich, Germany, Oc-
tober 5-9, 2015, Proceedings, Part III 18, pp. 234-241, Springer, 2015.

F. Yu, H. Chen, X. Wang, W. Xian, Y. Chen, F. Liu, V. Madhavan, and T. Darrell,
“Bdd100k: A diverse driving dataset for heterogeneous multitask learning,” 2020.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser,
and I. Polosukhin, “Attention is all you need,” Advances in neural information pro-

cessing systems, vol. 30, 2017.

Y. Wu and K. He, “Group normalization. arxiv,” arXi preprint arXiv:1803.08494,
2018.

)

D. Hendrycks and K. Gimpel, “Gaussian error linear units (gelus),’
arXiw:1606.08415, 2016.

arXiv preprint

S. Elfwing, E. Uchibe, and K. Doya, “Sigmoid-weighted linear units for neural network
function approximation in reinforcement learning,” Neural networks, vol. 107, pp. 3—
11, 2018.

D. Busbridge, J. Ramapuram, P. Ablin, T. Likhomanenko, E. G. Dhekane, X. Suau,
and R. Webb, “How to scale your ema,” arXiv preprint arXiv:2307.13813, 2023.

J. Nilsson and T. Akenine-Moller, “Understanding ssim,” ArXiv, vol. abs/2006.13846,
2020.

M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter, “Gans trained
by a two time-scale update rule converge to a local nash equilibrium,” Advances in

neural information processing systems, vol. 30, 2017.

35

[41]

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-
houcke, and A. Rabinovich, “Going deeper with convolutions,” in Proceedings of the

IEEE conference on computer vision and pattern recognition, pp. 1-9, 2015.

M. Binkowski, D. J. Sutherland, M. Arbel, and A. Gretton, “Demystifying mmd
gans,” 2021.

M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke,
S. Roth, and B. Schiele, “The cityscapes dataset for semantic urban scene under-
standing,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 3213-3223, 2016.

36

Appendix

Preparing alpha, alpha hat, beta:

def cosine_noise_schedule(self):
t = torch.linspace(0, 1, self.noise_steps)
return reversed(self.beta_start + (self.beta_end - self.beta_start)

* (1 + torch.cos(torch.tensor(np.pi) * t)) / 2)

self.beta = self.cosine noise_schedule() .to(device)
self.alpha = 1. - self.beta
self.alpha_hat = torch.cumprod(self.alpha, dim=0)

Noising function (closed form):

def noise_images(self, x0, t):
sqrt_alpha_hat = torch.sqrt(self.alpha_hat[t])[:, None, None, None]
sqrt_one_minus_alpha_hat = torch.sqrt(l - self.alpha_hat[t])[:, None, None, None]
e = torch.randn_like(x0)

return sqrt_alpha_hat * x0 + sqrt_one_minus_alpha_hat * e, e

Algorithm 1 - training:

for epoch in range(args.epochs):
for batch_idx, (images, labels) in enumerate(tqdm(dataloader)):
images = images.to(device)
t = diffusion.sample_timesteps(images.shape[0]) .to(device)
X_t, noise = diffusion.noise_images(images, t)
predicted_noise = model(x_t, t)

loss = mse(noise, predicted_noise)
optimizer.zero_grad()

loss.backward()

optimizer.step()

37

Algorithm 2 - sampling:

model.eval()
with torch.no_grad():
x = torch.randn((n, 3, self.img_size, self.img_size)) .to(self.device)
for i in tqdm(reversed(range(l, steps)), position=0):
t = (torch.ones(n) * 1i).long().to(self.device) #timestep.. used for indexing
predicted_noise = model(x, t)
alpha = self.alphal[t][:, None, None, None]
alpha_hat = self.alpha_hat[t][:, None, None, None]
beta = self.beta[t][:, None, None, None]
if i > 1: #if not last, add noise
noise = torch.randn_like(x)
else:
noise = torch.zeros_like(x)
x = 1 / torch.sqrt(alpha) * (x - ((1 - alpha) / (torch.sqrt(l - alpha_hat))) * predicted_noise)

+ torch.sqrt(beta) * noise

model.train()
x = (x.clamp(-1, 1) + 1) / 2
x = (x * 255).type(torch.uint8)

return x

38

Figure A.0.28: Test masks and corresponding generations

3

NeJ

	Kivonat
	Abstract
	Introduction
	Theoretical Background
	Classical Image Augmentation Methods
	Key Branches of Generative Models
	Generative Adversarial Networks
	Variational Autoencoders
	Diffusion models
	Generative learning trilemma

	Denoising Diffusion Probabilistic Models
	Forward diffusion - adding noise
	Reverse diffusion - removing noise
	Complete pipeline

	Classifier Free Guidance
	Guiding Techniques

	Research objectives
	Methods and implementation
	Dataset
	Model Design
	Training
	Hardware and software environment
	Hyperparameters

	Inferene

	Results
	Metric-based Evaluation
	SSIM
	FID
	KID
	Pixel accuracy and IoU

	Visual Evaluation
	Test masks
	Modified test masks
	Hand painting
	Comparison with larger models
	Generating unconditional samples
	Upscaling results
	Limitations

	Summary and future work
	Bibliography
	Appendix

