
Budapest University of Technology and Economics

Faculty of Electrical Engineering and Informatics
Department of Measurement and Information Systems

Consistency Analysis of Domain-Speci�c
Languages

TDK report

Authors:

Ágnes Barta and Oszkár Semeráth

Advisors:
Zoltán Szatmári Dr. Ákos Horváth Dr. Dániel Varró

Research Associate Research Fellow Associate Professor

October 25, 2013

Kivonat

Modellvezérelt tervezés során az alkalmazási terület fogalmainak és összefüggéseinek leírására
széles körben használnak szakterület-speci�kus nyelveket (Domain-Speci�c Language, DSL). A
DSL-ek segítségével automatikusan származtathatunk egy ellen®rzött rendszermodellb®l teszt-
eseteket, vagy bizonyíthatóan helyes forráskódot. Azonban maguk a DSL nyelvek is tartal-
mazhatnak tervezési hibákat, melyek érvényteleníthetik a rendszermodellen végzett vizsgálatok
eredményeit. A dolgozat f® célja, hogy olyan eszközt biztosítsunk, amellyel formális analízist
végezhetünk szakterület-speci�kus nyelveken, fényt derítve a DSL speci�kációk ellentmondásaira
és többértelm¶ségére.

A szakterület-speci�kus nyelvek konzisztencia-vizsgálata komoly kutatási kihívást jelent, mert
(i) az összetett DSL-eken történ® logikai következtetés algoritmikusan eldönthetetlen probléma,
(ii) további elméleti nehézségei vannak a hozzáadott jólformáltsági kényszerek és a származtatott
értékek kezelésének, és (iii) olyan eszköz fejlesztésére van szükség, amit a következtetési eljárás
ismerete nélkül is használhat a nyelv tervez®je.

A TDK dolgozatunkban egy egységes keretrendszert javasolunk a szakterület-speci�kus nyelvek
konzisztenciavizsgálatára a következ® módon: (i) A jólformáltsági kényszereket és származta-
tott érték de�nícióját egységesen els®rend¶ logikai kifejezésekké fordítjuk, amelyeken SMT meg-
oldókkal végzünk következtetéseket. (ii) Approximációs technikákat alkalmazva egy hatékonyan
elemezhet® logikai fregmensbe képezzük az komplexebb nyelvi elemeket. (iii) A validációs es-
zközünket ipari modellez® eszközhöz integráltuk, amely az ellentmondásokat a nyelv szabványos
példánymodelljeiként állítja el®.

Módszerünk magja egy olyan leképezésen alapszik, amely egy származtatott attribútumokkal
és relációkkal gazdagított EMF metamodellt, OCL vagy EMF-IncQuery nyelven de�niált jólfor-
máltsági kényszereket és egy hiányos kezdeti példánymodellt vár bemenetül. Az eszköz a kezdeti
modellt kiegészíti új elemek felvételével a generált axiómák és a Z3 SMT megoldó által ismert
elméletek alapján, úgy, hogy az eredmény megfeleljen a nyelv speci�kációjának.

Az eszközünket két ipari követelményekkel rendelkez® esettanulmányon is sikerrel alkalmaztuk.
Egy brazil repül®gépgyártóval közös projektben EMF-IncQuery gráfmintákkal megfogalmazott
származtatott értékekkel és jólformáltsági kényszerekkel gazdagított EMF metamodell konzisz-
tencia vizsgálata volt a cél, hogy a fejlesztés korai szakaszában detektáljuk a nyelv hibáit. Az
R3COP ARTEMIS esettanulmányban biztonságkritikus autonóm rendszerek (pl. ipari robotok)
tesztelésének támogatása a cél, ahol az eszközünk feladata a konkrét tesztesetek el®állítása volt
az OCL kényszerekkel meghatározott absztrakt tesztleírások alapján.

1

Abstract

Complex design environments based on Domain-Speci�c Languages (DSLs) are widely used in
various phases of model driven development from speci�cation to testing in order to capture the
main concepts and relations in the application domain. A precise system model captured in a DSL
enables formal analysis and automated code or test generation of proven quality. Unfortunately,
the speci�cation of DSL may itself contain conceptual �aws, which invalidates the results of
subsequent formal analysis of the system model. The main objective of the current report is to
provide formal analysis of a DSL itself to highlight inconsistency, incompleteness or ambiguity
in DSL speci�cations.

However, the consistency analysis of DSLs is a di�cult task due to (i) decidability problems of
handling complex DSLs, (ii) theoretical challenges of supporting well-formedness constraints and
derived features, and (iii) the engineering problem of providing a DSL validation tool that is
operable by the DSL developer without any extra validation skills.

In this report, we address these challenges by providing (i) a mapping of well-formedness rules and
derived features formulated in di�erent constraint languages into �rst-order logic theories pro-
cessed by SMT-solvers, (ii) powerful approximations to map complex structures into an e�ciently
analyzable fragment of �rst order logic, and (iii) a DSL validation tool seamlessly integrated into
industrial modeling frameworks (EMF) where inconsistencies retrieved by SMT-solvers are avail-
able as regular DSL instance models.

Our DSL validation framework is based on a mapping, which takes an EMF metamodel with
derived features, a set of well-formedness constraints (captured in OCL or graph patterns of
EMF-IncQuery) and a partial model as input. This partial model is completed by introducing
new model elements to it which are compliant with the DSL speci�cation using the generated
axioms and underlying theories of the Z3 SMT-solver in the background.

We report on successful use of our validation framework in two complex case studies with in-
dustrial requirements. In a collaborative project with a Brazilian airframer, the consistency of
EMF metamodels augmented with well-formedness constraints and derived features de�ned by
IncQuery graph patterns is checked to detect design �aws in the early phase of the DSL devel-
opment. The case study of the R3COP ARTEMIS project that aims to develop safety critical
autonomous systems like industrial robots. Our validation framework supported the automatic
generation of concrete test cases from abstract test properties de�ned in standard OCL.

2

Contents

Kivonat 1

Abstract 2

1 Introduction 6

1.1 Problem statement . 6

1.2 Research Context . 6

1.3 Objectives . 7

1.4 Contribution . 7

1.5 Structure of the Report . 7

2 Motivating Scenarios and Requirements 8

2.1 DSL Development of Trans-IMA . 8

2.2 Test Generation for R3-Cop . 9

3 Preliminaries 11

3.1 Modeling, Models . 11

3.1.1 Metamodel . 11

3.1.2 Instance Model . 12

3.2 Model Query Languages . 12

3.2.1 Object Constraint Language . 12

3.2.2 EMF-IncQuery Graph Patterns . 13

3.2.3 Derived Feature . 14

3.3 Mathematical Logic . 14

3.3.1 First Order Logic . 14

3.3.2 Prover and Solver Techniques . 15

3.4 Related work . 16

3

4 Overview of the Approach 18

4.1 Functional View of the Approach . 18

4.2 Input Con�guration . 19

4.3 Validation Tasks . 20

4.3.1 General Reasoning . 20

4.3.2 Completeness and Ambiguity Check of Derived Features 21

4.4 Subsumability Check . 22

4.5 Model Generation . 22

4.6 Consistency Check . 22

4.7 Partial Snapshot . 23

4.8 Search Parameters . 24

5 DSL validation Case Study in Avionics Domain 26

5.1 DSL Validation Work�ow . 26

5.2 Introduction to the Domain . 27

5.3 Derived Type Validation . 28

5.4 Derived Reference Validation . 30

5.5 Constraint Check . 31

6 Model Generation Case Study in Laser Guided Vehicle Domain 33

6.1 Model Generation Work�ow . 33

6.2 Introduction . 34

6.3 The Model . 34

6.4 Scenario 1: Events . 35

6.4.1 Description . 35

6.4.2 Completed Instance Model . 36

6.5 Scenario 2: Layout . 37

6.5.1 Description . 37

6.5.2 Partial Snapshot . 37

6.5.3 Completed Instance Model . 38

6.6 Scenario 3: The Distance Zones . 38

6.6.1 Description . 38

6.6.2 Partial Snapshot . 39

6.6.3 Completed Instance Model . 40

4

7 Mapping DSLs to FOL Formulae 41

7.1 Strategy of the Transformation . 41

7.1.1 Structure of the Transformation . 41

7.1.2 Approximation techniques . 42

7.2 EMF metamodel transformation . 43

7.2.1 Objects . 43

7.2.2 Types . 44

7.2.3 Type hierarchy . 44

7.2.4 Reference . 45

7.2.5 Multiplicity . 45

7.2.6 Inverse edges . 46

7.2.7 Containment . 46

7.2.8 Attributes . 46

7.3 EMF instance model transformation . 47

7.3.1 Instance object . 47

7.3.2 Type . 47

7.3.3 Reference . 48

7.3.4 Attributes . 48

7.4 OCL constraint transformation . 48

7.4.1 Mapping . 49

7.5 EMF-IncQuery Graph Pattern Transformation 53

7.5.1 Structure of the Patterns . 53

7.5.2 Constraint Transformation . 54

7.5.3 Patterns as DSL elements . 56

7.6 Transformation of the Reasoning Task . 56

8 Implementation 58

8.1 Architecture . 58

8.1.1 Details . 59

8.1.2 Traceability . 61

8.2 Validation of Approach . 62

8.2.1 Experiments and runtime performance . 62

8.2.2 Testing . 63

9 Conclusions and Future Work 66

9.1 Future Work . 67

Bibliography 71

5

Chapter 1

Introduction

The design of integrated development environments (IDEs) for complex domain-speci�c lan-
guages (DSL) is still a challenging task nowadays. Generative environments like the Eclipse
Modeling Framework (EMF) [50], Xtext or the Graphical Modeling Framework (GMF) signif-
icantly improve productivity by automating the production of rich editor features (e.g. syntax
highlighting, auto-completion, etc.) to enhance modeling for domain experts. Furthermore, there
is e�cient tool support for validating well-formedness constraints and design rules over large
model instances of the DSL using tools like Eclipse OCL [57] or EMF-IncQuery [9]. As a re-
sult, Eclipse-based IDEs are widely used in the industry in various domains including business
modeling, avionics or automotive.

1.1 Problem statement

However, in case of complex, standardized industrial domains (like ARINC 653 [6] for avionics
or AUTOSAR [7] in automotive), the sheer complexity of the DSL is a major challenge itself.
(1) First, there are hundreds of well-formedness constraints and design rules de�ned by those
standards, and due to the lack of validation, there is no guarantee for their consistency or
unambiguity. (2) Moreover, domain metamodels are frequently extended by derived features,
which serve as automatically calculated shortcuts for accessing or navigating models in a more
straightforward way. In many practical cases, these features are not de�ned by the underlying
standards but introduced during the construction of the DSL environment for e�ciency reasons.
Anyhow, the speci�cation of derived features can also be inconsistent, ambiguous or incomplete.
(3) In general, a reusable method for validating di�erent requirements of complex domain speci�c
languages in a mathematically precise way.

1.2 Research Context

As model-driven tools are frequently used in critical systems design to detect conceptual �aws
of the system model early in the development process to decrease veri�cation and validation
(V&V) costs, those tools should be validated with the same level of scrutiny as the underlying
system tools as part of a software tool quali�cation process issues in order to provide trust in
their output. Therefore software tool quali�cation raises several challenges for building trusted
DSL tools in a speci�c domain.

6

1.3 Objectives

The main objective of this work is to create an automated framework to formalize DSL modeling
artifacts (including meta- and instance models, constraints and derived feature de�nitions) by
logic descriptions in order to be able to execute wide range of validation task by automated
theorem proving on it. Afterwards we would like to improve the quality of the developed DSL by
validating di�erent requirements of the domain speci�c language such as consistency, ambiguity
and completeness. Additionally we aim to decrease the development time and cost by detecting
design �aws in the early phase of DSL development and highlight reason of failure to the devel-
oper. Finally we plan to automate other development activities by generating instance models
with required features. (Like automated test case generation.)

1.4 Contribution

We propose an approach for the validation of domain speci�c languages which covers the handling
of metamodels, well-formedness constraints and derived features captured as model queries. The
essence of the approach is to prove consistency and completeness of language speci�cations by
mapping it preferably to an e�ciently analyzable fragment of �rst order logic formulae processed
by state-of-the-art SMT solvers. We also propose powerful approximation techniques to handle
complex language constructs. It is carried out by completing a prototypical initial instance models
(called partial snapshots) in accordance with the DSL speci�cation.

We also developed a research prototype tool to demonstrate the practical feasibility of our
approach. Our tool takes DSL speci�cations int the form of EMF models, which is an open
source technology widely used in the industry. Model queries are speci�ed using the standard
Object Constraint Language (OCL) and declarative graph patterns as available in the EMF-

IncQuery framework. We integrated the Z3 SMT solver, which is considered to be the most
powerful theorem prover built on high-level decision procedures. The validation results are back-
annotated to the source DSL speci�cation and to the initial partial model therefore language
engineers and domain experts may inspect those results directly in existing model editors as a
regular instance model.

Our tool has been successfully applied in case studies of two ongoing industrial projects taken
from the avionics and autonomous and cooperative robot system domain. We have carried out
initial experiments to assess the performance characteristics of our validation tool. The �rst
functional tests have been executed to assure the correct behavior of the core mapping and also
the back-annotation process.

1.5 Structure of the Report

The rest of the report is structured as follows. First the motivating scenarios will be presented
in Chapter 2. In Chapter 3 we summarize the theoretical and technical background of this work.
Afterwards in Chapter 4 we give a brief overview of the proposed DSL validation approach. As a
follow-up the case studies are detailed in Chapters 5 and 6. Chapter 7 presents the novel features
of the mapping, while the implementation details, validation and testing aspects of our work are
shown in Chapter 8. Finally we conclude the report in Chapter 9.

7

Chapter 2

Motivating Scenarios and Requirements

In this chapter two di�erent motivating scenarios are presented: (i) the Trans-IMA an MDE based
HW-SW allocation project within the avionics domain, and the (ii) the Artemis R3Cop European
research project that de�nes an automated test-case generation for autonomous robots. Common
in these two examples that a satis�ability check of the DSL can uniformly provide valuable result
on their metamodels such as (a) the unsatis�ability of their language features as it demonstrates
inconsistency in their metamodels, and (b) their satis�ability that provides example instance
models which can be used as executable test cases.

2.1 DSL Development of Trans-IMA

Trans-IMA aims at de�ning a model-driven approach for the synthesis of complex, integrated
Matlab Simulink models capable of simulating the software and hardware architecture of an air-
plane. The project aims to: (i) de�ne a model-driven development process for allocating software
functions captured as Simulink models[36] over di�erent hardware architectures and (ii) develop
an MDE based tooling platform for supporting the de�nition of the allocation process.

Figure 2.1: High-Level Overview of the Trans-IMA project

The high-level overview of the Trans-IMA development process is illustrated in Figure 2.1. The
input artifacts for the process are the Functional Architecture Model (for capturing the functional
description of di�erent systems) and the Component Library (that de�nes the available hardware
elements).

First the system architect speci�es the Platform Architecture Model from the elements of the
Component library. Based on the hardware design in the next step the system architect allocates

8

the functions from the Functional Architecture Model. The allocation itself includes two major
parts: (i) the mapping of functions de�ned in the FAM to their underlying execution elements
within the PDM and (ii) the automated discovery of available communication paths for the
various information links de�ned between the allocated FAM elements.

Finally, when the allocation is complete and ful�ls all safety and design requirements the Inte-
grated Architecture Model is automatically synthesised and ready to be simulated in Simulink.

This development environment is de�ned by eight large metamodels (more than 200 elements),
where complex EMF-IncQuery patterns are extensively used. The de�nition of such large DSLs
is a very challenging task not only due to their size (and thus complexity) but also to precisely
understand their interaction de�ned using a large number of derived features and also the relation
of these derived features relation to the speci�c safety related well-formedness constraints.

The DSL validation approach is illustrated in Chapter 5 on the simpli�ed metamodel of the
Functional Architectural Model.

2.2 Test Generation for R3-Cop

Figure 2.2

One of the most important industrial related motivation is
the Robust & Safe Mobile Co-operative Autonomous Systems
(R3Cop) European Union project. The aim of the project is a
model based test generation for autonomous agents, based on
the information about their context and the described require-
ments.

A high-level overview of the test data generation is depicted in
Figure 2.3. The approach uses the context model of the system
under test constructed by domain experts, and represents test
data as model instances conforming to this metamodel. The
test data generation algorithm is based on search-based software
engineering and uses search technique to �nd relevant and high
quality test data. The test strategy is used as input for the test data generation, that speci�es
the required test data (e.g. speci�es coverage criteria or prescibes requirements for robustness
testing).

Figure 2.3: Test generation scenario

In order to deal with the size of the model-space during the search-based generation and ensure
the �exibility of the requirement speci�cation abstraction is used on the metamodel. First an
�abstract� test data is constructed, that speci�es only �abstract� level attributes or relation (e.g.
big, near, after) instead of concrete values. Finally, a post-processing step replaces abstract

9

elements in the model with actual elements from an object library, and assigns real values to the
attributes based on the abstract relations.

This report is motivated by the previously mentioned post-processing step, where a model is given
including predi�ning constraints for di�erent model elements. This model should be transformed
to a new model, that is a valid model and ful�lls all the requirements of the metamodel and
de�ned constraints.

The Elettric80 company produces laser guided automatic forklifts (Laser Guided Vehicle, LGV),
which should operate in a warehouse and ful�ll safety and security requirements. The goal is
to test these LGVs using a black box testing method: environments are generated, during test
execution the test trace is recorded and �nally the trace is evaluated based on the requirements.
The environment of the truck is modeled using a domain speci�c modeling language, which
metamodel is presented in the next section.

A generated test case is represented using an instance model of this metamodel, that ful�lls the
requirements described by the metamodel and also the OCL constraints. Due to the two phased
test generation, �rst an abstract test data is constructed, where some OCL constraints can be
violated or abstract model elements can be used. The goal of our work is, to replace this abstract
elements, specify the attributes using concrete values and produce a concrete test data (instance
model) that ful�lls all the requirements.

10

Chapter 3

Preliminaries

In this chapter the most important theoretical concepts are presented which are necessary for
understanding. First the de�nitions of modeling, the attributes of the metamodels and instance
models are introduced. Afterwards the well-formedness constraints and components (Object Con-
straint Language, Graph Pattern and Derived Feature) are presented which can be formulated
extra rules on the model. Finally the mathematical problem solvers, the problem classes (SAT,
CSP, SMT) shown and the related work.

3.1 Modeling, Models

In this section the core concept of model-based development will be introduced.

3.1.1 Metamodel

Metamodels are the models of the modeling languages. They are used to collect the concepts. their
attributes and relations in the target domain. For example in the R3Cop project the metamodel
de�nes the structure of the warehouse, the type of elements, their relations and attributes.

In this project, the Eclipse Modeling Framework (EMF) [50] tools are used for domain speci�c
modeling and implementation framework. The most important components of the EMF are the
metamodels, that are used to de�ne the elements of the target domain. First, classes are de�ned,
with their attributes, which are mentioned the property of the class. Between classes inheritance
and references can be de�ned. The types of the reference can be association and composition and
their multiplicity can also be de�ned which should be between 0 and in�nite. References can be
directed or bidirectional, which is de�ned using 2 references.

Figure 3.1 shows the element of the metamodel of LGV. In this example the most important
elements of the metamodeling technique are represented: a world contains layouts and placed
objects (relation), the layout has a right bottom and a left up position and contains stations
(relation). All stations have one position and a placed object, which are placed on it (relations),
the placed objects have one or more neighbours which are symbolized by the near reference (rela-
tion). The placed object has position (relations) and the position has an x and an y coordinates
(attributes).

11

Station

Layout

PlacedObject

WorldPosition
x : EInt
y : EInt

stations

0..*

placedOn

1

near

0..*

objects0..*

layouts
0..*position 0..1 position1

leftUp0..1

rightBottom0..1

Figure 3.1: Element of the metamodel of LGV

3.1.2 Instance Model

The instance model is an instance of the metamodel, it is a speci�c realization of the de�ned
concepts. During modeling instance objects are created speci�ed the instance of the classes
de�ned in the metamodel, they are named and their attributes are. The template of instance
models are metamodels. The components are same as the elements of the metamodel, but the
attributes are speci�ed, the objects are concrete and the references link objects. A model is
valid if a world is created, it contains a placed object and a layout, the layout has positions
and a station, it has a placed object and a position and the placed object has a position. The
coordinates of the position are speci�ed.

3.2 Model Query Languages

In this part the languages of well-formedness constraints are introduced. To formulated the
constraints the Object Constraint Language, Derived Features and Graph Patterns are used.

3.2.1 Object Constraint Language

The Object Constraint Language (OCL) [22] [21] [38] is a declarative language, that extends the
structural metamodels using extra constraints. OCL refers to the models and it de�nes extra
constraints, rules and validates the metamodels.

Two types of OCL constraint can be distinguished. There are logical expression, which returns
with true or false. The other types is an expression which can be evaluated to with a number, or
collection of model elements. The others are constraints of method calls. Every OCL constraint
de�nes a context which points at the container class of the expression and de�nes the limited
situation in which the statement is valid.

There are many language elements, with them various constraints can be prepared. The same
constraint can also be formulated in several ways. The elements of the language are various,
containing collections, iterators, variables, functions, logical formulas, etc.

Example 1 The two types of the OCL expressions:

� Constraints of a method
context Person :: birthday () post: self.age=self.age@pre + 1

12

� Invariants
context Vechile , invariant numberOfPassengers:

self.maxPassengers >= self.traveller ->size()

The �rst example expresses that the age is increased when the birthday() method is called. The
second means that the capacity of the vehicle must be bigger than the number of passengers.

forall

A.allInstances a <

a 10time

Figure 3.2: OCL Abstract Syntax
Tree example

The OCL language has a well-de�ned syntax. Each expression
can be represented using its Abstract Syntax Tree which can
be traversed. Each AST node represents an OCL element and
the edges de�ne the relations between them. The AST repre-
sentation of the OCL expression is unambiguous. The AST of
the A.allInstances()->forAll(a: A | a.time<10) OCL expression
is shown as an example in Figure 3.2.

In this report we deal with the subset of invariants, which are
logical expressions that need to hold at anytime during the lifecycle of an object. These expres-
sions are usually used to add extra constraints to the metamodels and based on the semantic,
unspeci�ed missing attributes could be �lled out, relations or objects can be added to the model.
The queries and the other types of the invariants are not suitable for this, because they can not
be used to validate models and the attribute �lling is also impossible.

Example 2 In the following examples of the di�erent elements of the OCL are presented. The
examples are derived from the Elettric80 example.

Expression Description
p p is a variable.

null, 5, 10.2, etc. Di�erent type of literals.
p.oclIsTypeOf(Truck) If p is a Truck then it return true.

Position.allInstances() It is return the collection of Positions.
p.position The position is a reference.

p.position.y The y is an attribute.
p.y=q.y The �=� is an operation.

Event.allInstances()->forAll(..) The forAll is called on a collection.
forAll(p: Positon| ..) The p is a variable

forAll(p: Positon| p.y>=0) The body of the forAll.
exists(p: Positon| p.y=10) The body of an exists.

3.2.2 EMF-IncQuery Graph Patterns

Graph patterns [55] are an expressive formalism used for various purposes in model-driven de-
velopment, such as de�ning declarative model transformation rules, capturing general-purpose
model queries including model validation constraints, or de�ning the behavioral semantics of
dynamic domain-speci�c languages. A graph pattern (GP) represents conditions (or constraints)
that have to be ful�lled by a part of the instance model. A basic graph pattern consists of
structural constraints prescribing the existence of nodes and edges of a given type, as well as
expressions to de�ne attribute constraints. A negative application condition (NAC) de�nes cases

13

when the original pattern is not valid (even if all other constraints are met), in the form of a neg-
ative sub-pattern. A match of a graph pattern is a group of model elements that have the exact
same con�guration as the pattern, satisfying all the constraints (except for NACs, which must
not be satis�ed). The complete query language of the EMF-IncQuery framework is described
in [10], while several examples will be given below [28].

3.2.3 Derived Feature

Derived features (DF) are often essential extensions of metamodels to improve navigation, provide
path compression or compute derived attributes. The value of these features can be computed
from other parts of the model by a model query [44, 38]. Such queries have two parameters,
in case of (i) derived EReferences one parameter represents the source and another the target
EObjects of the reference while in case of (ii) derived EAttributes one parameter represents the
container EObject while the other one the computed value of its attribute.

3.3 Mathematical Logic

In this part the First Order Logic, the classes of problem and their provers are resented.

3.3.1 First Order Logic

First-order logic(FOL) is a formal language used in mathematics, philosophy and computer
science. In the FOL the domain of the model is a set of individuals which names are domain
elements. The objects are in relations each other. So the FOL contains objects, relations and
symbols which represent functions.The types of symbol are: (i.)constant symbol which symbolize
the object, (ii.)predicate symbol which sign the relation and (iii.)function symbol which refer
to the functions. All predicates and function symbols have arity. The semantics connect the
sentences to the model which is able to determine the truth. To do this an interpretation is need
which link the real objects and the symbols.

The syntax of the FOL in Backus-Naur Form:

Sentence → Atomic Sentence
| (Sentence Connector Sentence)
| Quanti�er Variable, . . . Sentence
| ¬Sentence

Atomic Sentence → Predicate(Term) | Term=Term

Term → Function(Term, . . .)
| Constant
| Variable

Connector → =⇒ |
∧

|
∨

| ⇔
Quanti�er → ∀ | ∃
Constant → A | X
Variable → a | x
Predicate → Before | Raining | TypeOf | . . .
Function → TimeStamp() | Next() | . . .

14

The sentences are connected to the model by the semantics, which is able to evaluate the truth
value of a sentence on a model. The syntax elements are introduced in the following. The term
is a logic expression which refer to an object. The terms and the predicate symbols are the
component of the atomic sentences. To create complex sentences, logical connectives are used. In
the FOL the sets of the objects can be formulated logical expressions thanks to the quanti�ers. It
has two types: the universal quanti�er (∀) and the existential quanti�er (∃). Variable is followed
the quanti�ers, which symbolize the objects. The ∀ x P(x) means that P is true of every object
x. The ∃ x P(x) means that exists x which make P true. In the FOL equality symbol can be used
to create statement. The sentences are added to the knowledge base with assertion.

Example 3 In the following, examples of the di�erent type of syntax element are shown, which
derive from the mapping of the Elettric80 example.

Example Meaning
myTruck Constant, the name of a truck.

isType!Truck(myTruck) If myTruck is a truck it returns true.
PlacedObject!placedOn(myT, myS) If myS is the station of the myT it returns true.

∀ x isType!Truck(x) If x is a truck it returns true.
∀ t isType!Truck(t) ⇔ ¬ isType!Human(t) It represents if t is a truck then t is not human.

3.3.2 Prover and Solver Techniques

In this part the problem classes (SAT, SMT, CSP) and their solvers are introduced.

Satis�ability Problem (SAT)

To de�ne the SAT language the Boole-formula should be introduced. The Boole-formula is built
up from 0, 1 logical constants, 0-1 valued variables (x1, x2, . . .xn), their negated expressions,
the

∧
(�and�) and the

∨
(�or�) operands. The variables and their negated expressions are the

literals. The result of an evaluated formula is 0 or 1. The Boole-formula is satis�ed if their
variables has an evaluation where the value of the formula is 1. The SAT is the language of the
satis�able Boole-formulas. The SAT language is in the NP class: a good evaluation is the witness
of satis�ability of the formula. The SAT has subsections which the conclusion is e�ective e.g. the
2-SAT is polinomial. Generally, the SAT is an NP-complete language, which is evidenced by S.A.
Cook and L. Levin. The SAT solver searches substitution values which make the Boole functions
true, an example SAT solver is the MiniSat [37].

Constraint Satisfaction Problem (CSP)

The formal de�nition of the CSP problem are formulated by the set of variables (X1, X2 . . .Xn)
and constraints (C1, C2, . . .Cm). All Xk variables have a Di domain which de�ne the possible
values. Every Cl constraint restrict the subset of variables, it de�ne the value combination of the
subset. A problem state is de�ned by the variable-value assignment. The assignment is complete
if every variable is in the subset. This is a solution of the CSP. Usually CSPs have �nite domain
and its variables are discrete. The Boole CSP is the special case of NP-complete problems. For
example the eight queens puzzle is a CSP. A CSP solver is e.g the Sugar [2].

15

Satis�ability Modulo Theories (SMT)

The SMT problem is a decision problem for logical formulae with combinations of background
theories expressed in classical �rst-order logic with equality. It di�erences from the SAT because
predicates over suitable set of non-binary variables are used to. SMT formulas provide richer
language than is possible with the SAT formulas.

SMT is used to software veri�cation, planning, model checking and automated test generation.
The interest theories in these applications include formalizations of arithmetic, arrays, algebraic
datatypes, functions. The SMT solvers use the standard SMT-LIB [3] language. SMT solvers
are e.g the Alt-Ergo [34], Barcelogic [49], Beaver [31], CVC4 [1], Mistral [54], SONOLAR [23],
Yices [4], Z3 [20], from them we use the Z3.

Microsoft Z3 is a theorem prover from Microsoft Research. It can be used to check the satis�a-
bility of logical formulas. Z3 is a good match for software analysis and veri�cation tools because
common software constructs map directly into supported theories. Built-in theories are the linear
arithmetic, nonlinear arithmetic, bitvectors, arrays, datatypes and quanti�ers.

3.4 Related work

There are several approaches and tools aiming to validate UML models enriched with OCL
constraints [26] relying upon di�erent logic formalisms such as constraint logic programming
[16, 17, 12], SAT-based model �nders (like Alloy) [5, 14, 33, 48], �rst-order logic [8, 19], construc-
tive query containment [43], higher-order logic [11, 27], or rewriting logics [18]. Some of these
approaches (like e.g. [17, 14, 33]) o�er bounded validation (where the user needs to explicitly
restrict the search space), others (like [19, 11, 8]) allows unbounded veri�cation (which normally
results in increased level of user interaction and decidability issues).

SMT-solvers have also been used to verify declarative ATL transformations [13] allowing the use
of an e�ciently analyzable fragment of OCL [19]. The FORMULA tool also uses the Z3 SMT-
solver as underlying engine, e.g. to reason about metamodeling frameworks [29] where proof goals
are encoded as CLP satis�ability problem. The main advantage of using SMT solvers is that it
is refutationally complete for quanti�ed formulas of uninterpreted and almost uninterpreted
functions and e�ciently solvable for a rich subset of logic. Our approach uses SMT-solvers both
in a constructive way to �nd counter examples (model �nding) as well as for proving theorems.
In case of using approximations for rich query features, our approach converges to bounded
veri�cation techniques.

One of the most relevant mapping from a subset of OCL into �rst order logic is presented in
[19], that proposes an approach using theorem provers and SMT solvers to automatically check
the unsatis�ability of non-trivial sets of OCL constraints without generating the SMT code.

Graph constraints are used in [58] as means to formalize a restricted class of OCL constraints
in order to �nd valid model instances by graph grammars. An inverse approach is taken in [15]
to formalize graph transformation rules by OCL constraints as an intermediate language and
carry out veri�cation of transformations in UML-to-CSP tool. These approaches mainly focus on
mapping core graph transformation semantics, but does not cover many rich query features of
the EMF-IncQuery language (such as transitive closure and recursive pattern calls). Many ideas
are shared with approaches aiming to verify model transformations [15, 35, 13], as they built
upon the semantics of source and target languages to prove or refute properties of the model
transformation.

16

The idea of using partial models, which are extended to valid models during veri�cation also
appears in [47, 29, 32]. These initial hints are provided manually to the veri�cation process,
while in our approach, these models are assembled from a previous (failed) veri�cation run in
an iterative way (and not fully manually). Approximations are used in [30] to propose a type
system and type inference algorithm for assigning semantic types to constraint variables to detect
speci�cation errors in declarative languages with constraints.

Our approach is di�erent from existing approaches as it can use di�erent approaches (is im-
plemented with graph based query language and also OCL) for capturing derived features and
well-formedness constraints. Up to our best knowledge, this is the �rst approach aiming to vali-
date queries captured within the EMF-IncQuery framework, and the handling of derived features
is rarely considered. Furthermore, we sketch an iterative validation process how DSL speci�ca-
tions can be carried out. Finally, we also cover the validation of rich language features (such as
recursive patterns or transitive closure) which is not covered by existing (OCL-based) approaches.

17

Chapter 4

Overview of the Approach

4.1 Functional View of the Approach

Our approach (as illustrated in Figure 4.1) aims to analyse DSL artifacts of modelling tools
by mapping them into �rst order logic formulae that can be processed by advanced reasoning
applications. The results of the reasoning is traced back and interpreted in modelling terms as
attributes of the DSLs. Linking the independent reasoning tool to the modelling one allows the
DSL developer to make mathematically precise deductions over the developed models including
di�erent validation techniques and example generations.

DSL development tools like EMF usually specify strictly two meta-levels: a language level that
de�nes the abstract syntax of the DSL and an instance level where concrete instance models can
be de�ned. To de�ne the valid models more precisely the language model can be supplemented
with derived features and some ill- or well-formedness constraints that forbids or requires some
kind of structure. (see in Chapter 3)

Similarly in the terminology of the the reasoning tools (like Z3) SMT solver this two levels can
be de�ned too: the speci�cation of the system creates the axioms of the in language level where
the consistency of the language can be checked, or di�erent properties of the language can be
proved as a theorem proving problem. By de�nition, consistent logic systems have logic model and
failed theorems have counterexamples. Those logic structures can be recovered and represented
as a standard instance model of the DSL.

In
st

an
ce

le

ve
l

Modelling Tool

La
n

gu
ag

e

le
ve

l

Reasoning Tool

Metamodel
Well-formedness

Constraints

Logical Structure

Ill-formedness
Constraints

Derived Featires

Instance Models

Consistency

Transformation Tool

1. Map DSL

2. Trace back results

Axioms

Theorems

Figure 4.1: Functional overview of the approach

18

ModellingEArtifacts

ConsistencyECheck

ReasoningEConfiguration

O
u

tp
u

t

CompletenessEandE
AmbiguityEcheck

StructuralELevel

Subsumability Check ModelEGeneration

ConstraintELevel
InstanceELevel

In
p

u
t Metamodel
EM

F
e

IQ
WellLformedness

IllLformednesse
IQ

O
C

L

EM
F

SearchUParameters

ValidationUTask

TransformationU
Tool

GeneratedUmodel

EM
FInvalidated

Example
CompleteU/U

Unambiguous

DerivedUFeatures

Counterexample

Z3

MinimalUSubsR
ConstraintUSetU

ExampleUInstance

PartialUSnapshot

Inconsistency

EM
F

Z3
EM

F

O
C

L

e
IQ

EM
F

:UEMFUmetaL
orUinstanceU

model

EMF

:UIncQuery
pattern

eIQ

:UOCL
constraints

OCL

:UZ3UartifactZ3

:UInputU/
Output

:UReasonUof
failure

LanguageELevel

Figure 4.2: Prototype tool features

4.2 Input Con�guration

Figure 4.2 shows a more detailed �gure about the input parametrization of our tool (upper part),
the implemented tasks and possible outputs (lower part) of our tool. The language level is divided
to a Structural Level that de�ne the language in a constructive way, and a Constraint Level that
restricts it. In the following those will be introduced.

Parameters in the Structural Level refer to the actual target of the reasoning process. It is im-
portant to note that the input elements are fully functional standard artifacts of the modelling
tool.

Metamodel The metamodel contains the main concepts and relations of the DSL and de�nes
the graph structure of the instance models. To enrich the expression power of the language
attributes are added to the concepts. By doing this, the language can be extended with prede�ned
domains of data types (like integers, strings) that supported by the metamodeling language.
Additionally, the some structural constraint might be speci�ed with the elements like multiplicity.

Derived Features The classes of the metamodel may contain some derived features: attributes
or references that can not be edited but automatically calculated from the rest of the model. The
model query frameworks (like EMF-IncQuery) can be used to specify evaluate the values of the
derived features by declarative queries. Those queries can be translated to logic formulae too so
the reasoning tool would handle them as the modelling tool.

To more precisely specify the range of valid instance models di�erent constraints might be added
to the DSL. Those constraints can be included to the Constraint Level of the reasoning phase to
make formal analysis over them.

Well-formedness The goal of the well-formedness constraints is to de�ne rules that have to be
satis�ed in a valid model.

19

Ill-formedness Ill-formedness constraints can be de�ned to specify faulty model structure. A
valid model is free from those fault-patterns.

Analysing purely the language level might be insu�cient in some cases: (i) theorem proving
problems might derive spurious false positives and (ii) featureless examples might be generated.
The search should be controlled by some practical preconditions.

Partial Snapshot By adding an initial structure to the Instance Level the reasoning process
will be more directed as the tool checks only the cases that contains this initial structure as a
submodel.

Our tool is capable of deriving a PS from any EMF model, and a valid PS can be automatically
transformed back to a normal instance model. So if the user does not need any of the previous
options, standard instance models also can be used.

The parameters in the Reasoning Level allows to customise the reasoning process. Beside the
few technical details like approximation level time limits the following parameters are the most
important:

Search Parameters To more precisely control the reasoning process many more logic-dependent
options can be added to the tool. Some of them might cut down the search space (like a �xed
model size), others adjust the transformation tool to be more e�cient for special tasks (like
overapproximation level).

Validation Task The tool capable of multiple reasoning task including di�erent validations,
theorem proving or model generation. Those task can be selected and parametrized here. Those
tasks are described in the following sections.

4.3 Validation Tasks

4.3.1 General Reasoning

Generally, our tool works as follows. The tool searches for an instance model which:

� Instance of the Metamodel and satis�es every structural constraints including the Derived
Features

� Satis�es all the Constraints

� Contains the Partial Snapshot

� Satis�es every Search Parameter

If our tool �nds such a model, then it will be demonstrated to the user. If the input is inconsistent,
the tool should prove that those requirements are unsatis�able. Because the validation task is
undecidable it is also possible that the tool results with �unknown� or �timeout�.

This general process is applied in each reasoning task with some modi�cations.

20

4.3.2 Completeness and Ambiguity Check of Derived Features

Derived features speci�ed by EMF-IncQuery patterns are integrated part of the DSL. By for-
malising the de�nition of the patterns some well-behaving property can be proved. In addition,
a failed validation attempts will reveal a design �aw of the language, currently we check the
completeness and unambiguousness of the DFs.

We understand completeness as follows:

De�nition 1 (Completeness of Derived Features) A derived feature is complete if
it evaluates to at least one value for every occurrence of the derived feature.
Conditional completeness is when the derived feature requires some additional condition
to be complete.
A derived feature is incomplete if there is a valid model there where no values can be
assigned to an occurrence of the derived feature.

The completeness requirement of a derived attribute or a reference is usually indicated with a
1..? multiplicity.

We de�ne the unambiguity similarly:

De�nition 2 (Unambiguity of Derived Features) A derived feature is a unambigu-

ous if it evaluates at most one value for every occurrence of the derived feature.
Conditional unambiguity is when the derived feature requires some additional condition
to be unambiguous.
A derived feature is ambiguous if there is a valid model there where multiple values can
be assigned to an occurrence of the derived feature.

The unambiguity requirement of a derived attribute or a reference is usually indicated with a
?..1 multiplicity.

C
h

e
ck

D
F

Metamodel

Constraints Partial snapshot

instance
of

assume
superset of

instance
ofassume

satisfies

defined
on

Input

DF Definition+

Counter-
example
Exists?

search faulty
corner case

Figure 4.3: Derived feature vali-
dation setup

Our tool can check the previous properties. Figure 4.3 shows
the setup of the DF validation. The validation uses the general
setup with the following exceptions:

� Instance of the Metamodel and satis�es every structural
constraints including the inspected DF (and the other
DFs) but excluding the multiplicity requirement1

� There is an instance of the source that violates the multi-
plicity constraint

The result of the validation task could be the proof of con-
ditional completeness / unambiguity of the checked DF with
respect to the Partial Snapshot and the Search Parameters, or
a valid counterexample that shows the failed instance model.

If the Partial Snapshot and the Search Parameters do not limit the search (like empty PS) then
the full completeness / unambiguity is proved. By setting the PS or the Search Parameters tool
would generate various counterexamples.

1 Not excluding the structural constraint from the multiplicity would cause �short circuit� with the last point:

multiplicity satis�ed ↔ multiplicity violated

21

4.4 Subsumability Check

A complex DSL may contains several independent well- or ill-fordmedness constraints that glob-
ally restrict the developed language. It would be very pro�table if their interaction would be
analysable. The two basic invalid interaction is where a constraint contradicts to the DSL and
where it is subsumable from the DSL. This section focuses on subsumability, the contradiction
is discussed in Section 4.6.

It is important to note that this is the traditional theorem proving scenario, where the theorem
is de�ned by a new constraint and the task is to deduce that the new constraint is implication
of the DSL speci�cation.

We de�ne subsumability as follows:

De�nition 3 (Subsumability of a Constraint) A constraint is subsumable by a DSL
speci�cation if every valid model that would satisfy the DSL speci�cation satisfy this con-
straint too.
Conditional subsubtion is when the constraint is subsumable if additional condition
holds.
A constraint is not subsumed by a DSL speci�cation if there is a valid instance model
that does not satisfy the constraint.

A subsumable constraint does not express any additional restriction over the DSL therefore it
can be removed without any change. A subsumable constraint is considered super�uous.

C
h
e
ck

C
o
n
st
r.

Metamodel

Filtered Model

Constraints Partial snapshot

instance
of

assume
superset of

instance
ofassume

satisfies

defined
on

Input

Constraint+

Exists?

not
satisfies

Figure 4.4: Subsumability check
setup

Our tool can perform subsumption checks for a target constraint
in the setup that Figure 4.4 shows. Basically it follows the gen-
eral setup with the following addition:

� The instance model does not satisfy the target constraint.

The result shows that the target is conditionally subsumable if
the Partial snapshot and the Search Parameters holds. In case of
valid constraint it also give example that shows that the target
is not subsumable. Global subsumality check can be performed
if the PS and the Search parameters does not limit the search.

4.5 Model Generation

Our tool can be specialised to generate instance models of the chosen DSL. The Partial Snapshots
and the �exible model size limit makes model generation be highly customisable. Additionally
the case study described in Chapter 6 introduces even more advanced methods.

The setup for model generation is the same as the general reasoning task represented in Figure
4.5.

The result is a valid instance model that satis�es the hints of the user drafted in the Partial
Snapshot and the Search Parameters. It is possible that those requirements are unrealizable, in
that case the failure is communicated to the user.

4.6 Consistency Check

22

Metamodel

Output Model

Constraints Partial snapshot

instance
of

superset
of

instance
of

satisfies

defined
on

Input

Figure 4.5: Model Generation
setup

The �nal validation scenario is the consistency check. Consis-
tency is a property of the whole DSL that means that there is
not any contradiction in its speci�cation. Con�icting constraints
may break this property, so they can be detected by a consis-
tency check.

The other use-case of the consistency check is the following:
the inconsistency invalidates the result of any language check
based on theorem proving (like completeness, ambiguity and
subsumability checks).

We understand the basic inconsistency as follows:

De�nition 4 (Consistency of a DSL) A DSL is consistent if it has a valid instance
model.
A DSL is inconsistent if it is not consistent (so it does not has any valid instance model).

Metamodel

Constraints Partial snapshot

instance
of

axioms
axioms

axioms

defined
on

Input

Inconsistency?

Figure 4.6: Setup of Consistency
check

The setup for model generation is the same as the general rea-
soning task represented in Figure 4.6.

If there is a result instance model then the DSL is proved to be
consistent. If there is not, it shows that the requirements in the
Partial Snapshot and the Search Parameters are infeasible. If
the Partial Snapshot and the Search Parameters are not limits
the search and the tool returns with unsatis�ability than the
DSL is proved to be inconsistent.

It should be noted that the consistency is a minimal property
of the language. Harder consistency requirements also can be
de�ned, like every class can be instantiated, or every reference
can be used. Those examples also can be checked with our tool using the appropriate Partial
Snapshots.

4.7 Partial Snapshot

Unfortunately, a standard EMF instance model is inadequate to act as an initial hint or coun-
terexample because it can not represent incomplete or incorrect initial cases well. To overcome
this limitation we created an formalism called Partial Snapshots capable for this role.

The partial snapshot (PS) is a more general instance model than the standard EMF framework
allows. To ease the edition, every object is uniquely named. Figure 4.7 presents a Partial snapshot
example and a possible completion called Completed model.

1. Unde�ned attributes: In normal EMF instance object every attribute has a value (or pre-
sented default value)2. Many use-case need the option to let some of them unde�ned, so our
tool can evaluate them freely. Point 1. shows in Figure 4.7 that the object named function1
has an unde�ned type attribute that can be �lled with the Root literal.

2 There is an 'unsettable' option in EMF that enables to unset a structural feature. Note that the unset is

concrete value opposed to unde�ned.

23

1

2

3

4
1

2

3

4

: Unfilled attributes

: Abstract objects

: Unconnected partitions

: Missing / extra edges

1

2

4

5

P
ar

ti
al

 S
n

ap
sh

o
t

C
o

m
le

te
d

m
o

d
e

l

5 : New objects

Figure 4.7: Extra options available in Partial Snapshot

2. Abstract objects: Partial snapshots allows to instantiate abstract or interface EClasses. They
are handled similarly as concrete object like they have attributes and references. The type
of an non-concrete object have to be re�ned in the validation process to a concrete subtype.
Point 2. refers to an element with an abstract FunctionalElement type that is re�ned to the
concrete Function.

3. Unconnected partitions: Every EMF instance model is arranged in a strict containment hi-
erarchy. Our approach allows to de�ne instance models that can be unconnected to specify
multiple fragments of the model. Point 3. in Figure 4.7 shows an example where there are
functions (function2 and function3) that are not yet connected to the FunctionalArchitec-
tureModel. Our tool will complete this model by linking the partitions to be a well-formed
connected graph.

4. Missing / extra edges: The Partial Snapshot editor does not automatically manage inverse
edges, so it is possible that there is a reference without the inverse one (like in point 4.
where the missing reference is indicated with dashed line). In Partial Snapshots the number
of references can exceed the bound limit of the edge multiplicities. In that case the PS can
not be completed to a valid model.

5. New objects: The Partial Snapshot act as a submodel which can be extended. It can describe
models with more object than the object in the PS. For example in point 5. in Figure 4.7
a new FunctionalInterface is added.

4.8 Search Parameters

Model size It is possible to explicitly de�ne the size of the checked models. As Figure 4.8
shows, the range of the checked models can be set to:

1. Initial only: Only the objects in the Partial Snapshot can be used; new objects cannot be
created. This option is ideal for simple model-completion tasks.

24

2. Limited to size: Models with a �xed amount of objects are checked. This option is essential
for �nding minimal examples.

3. Unlimited: Every model should be checked without having regard to its size. With this
option on the prover checks all of the the possible models.

Model size
▪ Initial only
▪ LimitedOto size
▪ Unlimited

PS
|M|
=7

PS:OPartial Snapshot
|M|:ONumber ofOEObjects in the model

Figure 4.8: Model Size

Approximation level Some DSL element (such as the
acyclicity of the containment hierarchy) is unrepresentable in
the language of the �rst order logic. To tackle this insu�ciency
we provided a method to approximate them to some limit called
approximation level. 7

25

Chapter 5

DSL validation Case Study in Avionics

Domain

To illustrate the proposed V&V technique, this report elaborates a case study from DSL tool
development for avionics systems. To create an advanced modeling environment, we augment
the metamodel with query-based derived features and well-formedness validation rules. Both of
these advanced features are de�ned using model queries. For this purpose we use the language
of the EMF-IncQuery framework to de�ne these queries over EMF metamodels.

5.1 DSL Validation Work�ow

A DSL usually speci�es a quite complex system that may contain multiple design �aw. To assist
the developer to �nd those errors we propose an iterative work�ow that de�nes the practical
order of the validation steps. By following this work�ow our tool will reveal the design �aws one
by one so with the help of the counter examples the source of the error can be easily detected.
The iterative steps can be applied on the currently developed language elements as an integrated
development task to detect the design errors immediately. Additionally, the work�ow can guide
the developer through a complete language check.

The work�ow illustrated in Figure 5.1 assumes the existence of themetamodel (captured in EMF),
its derived features (captured as graph queries) and well-formedness constraints (captured as graph
queries or OCL constraints). Basically, the validation process looks like this: �rst, each DF is
investigated by adding them to the formal DSL speci�cation (extending it with one new DF at a
time in a prede�ned order), and then by validating this speci�cation in Z3. Then, WF constraints
are validated similarly, by incrementally adding a single WF constraint at each validation step. If
one of these step fails then the user have to manually correct the the DSL artifact and continue
from the validation of the modi�ed element.

The separation to start the iterative validation process with the derived features and then con-
tinue with the WF constraints is based on the observation that each derived feature eliminates a
large set of trivial, non-conforming instance models (which are not valid instances of the DSL).
Adding a single constraint at a time to the validation problem helps identify the location of
errors the solver provides only very restricted traceability information. This eases the re�nement
in case of an erroneous DF or WF is added in the actual step based on the proof provided by
the solver.

The validation fails, if the compiled set of formulas are inconsistent (formally, no models can be
constructed within a given search limit). In such a case, the designer needs to either (i) �ne-tune

26

Metamodel
Ambiguous?
Incomplete?
Inconsistent?

Inconsistent?
Subsumption?

A 3. Check DF

4.B Correct DF

5. Check WF

6.B Correct WF

Valid
DSL

DSL Developer Tool Validation Tool

+

+ WF
constraints

Derived
features

DSL
Development

: Start workflow M : Manual step A : Automated step : Branch : End Workflow

1. 2.

4.A

M

A

6.A
M

Figure 5.1: DSL validation work�ow

the search parameters, (ii) provide a new partial snapshot or (iii) modify the DSL speci�cation
itself based on the proof outcome. If the formal DSL speci�cation with all DF and WF constraints
is validated, then it is valid under the assumptions imposed by the search parameters and the
partial snapshot.

The validation process in introduced in details:

1 A metamodel is added to the validation process. A well-formed metamodel is always con-
sistent.

2 Derived features are iteratively added.

3 The ambiguity and the completeness of the DF is automatically checked by our tool. The
consistency of the supplemented system is checked too.

4.A When every DF is checked the validation of the WF constraints proceeds. In this phase
new constraints are added to the speci�cation iteratively.

4.B If the validation fails, the newly added DF should be corrected based on the counterexam-
ples. In case of false positives or the parametrisation of the tool should be re�ned.

5 The e�ect of the constraint to the speci�cation is automatically inspected by our tool.

6.A If every constraint is correct the validation process successfully terminates.

6.B If the validation fails, the newly added constraint should be corrected. In case of false
positives or the parametrisation of the tool should be re�ned.

The rest of this chapter demonstrates how this work�ow can be applied on an industrial case
study from the avionics domain.

5.2 Introduction to the Domain

In model-driven development of avionics systems, the functional architecture and the platform
description of the system are often developed separately to increase reusability. The former de�nes
the services performed by the system and links between functions to indicate dependencies and
communication, while the latter describes platform-speci�c hardware and software components
and their interactions. The functional architecture is usually partially imported from industry
accepted tools and languages like AADL [45] or Matlab Simulink [36].

27

Function
type : FunctionType

minimumFrequencys:sEFloat

FunctionalElement

InformationLink

FunctionalArchitectureModel FAMTerminator

FunctionalInterface

FunctionalInput FunctionalOutput

FunctionalData

<<enumeration>>
FunctionType
Root
Leaf
Intermediate

subElements0..*

from 0..1to 0..1

rootElements
0..*

parent0..1

incomingLinks
0..*

outgoingLinks

0..*

model 1 data
0..*

interface
0..1

element
0..1

interface
0..1

terminator
0..1

data
0..1

Figure 5.2: Metamodel for functional architecture of avionics systems

A simpli�ed metamodel for functional architecture is shown in Figure 5.2. The FunctionalAr-
chitectureModel element represents the root of a model, which contains each Function (subtype
of the FunctionalElement). Functions have a minimumFrequency, a type attribute and multiple
FunctionalInterfaces, where each functional data is either an FunctionalOutput (for invoking other
functions) or an FunctionalInput (for accepting invocations). An output can be connected to an
input through an InformationLink.

Additionally two derived feature is added to the DSL (highlighted in blue in Figure 5.2):

� For the type EAttribute of the Function EObject a derived attribute is de�ned, which takes
a value from the enumeration literals: Leaf, Root, Intermediate based on the role of the
function in the composition hierarchy.

� FunctionalElements are augmented with the model derived EReference that represents a
reference to the container FunctionalArchitctureModel EObject from any FunctionalElement
within the containment hierarchy.

Finally, a design constraint is added:

� If an input or output is not connected to an other Function then they must be terminated
in a FAMTerminator.

In the following we show how can those rules be validated by our tool.

5.3 Derived Type Validation

The pattern de�ning the type attribute is illustrated in the right side of Figure 5.3. In Figure 5.3
we use a custom graphical and the EMF-IncQuery textual notation [9] to illustrate the queries
de�ned for these derived features. On the graphical notation each rectangle is a named variable
with a declared type, e.g. the variable _Par is as spurious Function, while arrows represent
references of the given EReference between the variables, e.g. the function This has the _Par
function as its parent. Negative application conditions are illustrated with red rectangles. The

28

@QueryBasedFeature pattern typefThism:mFunction, Targetm:mFunctionTypeCm=
{ //m -- Root bodym--

find rootElementsf_Model,mThisC;
Targetm==mFunctionType::Root;
}mor {//-- Leaf bodym--

neg find parentf_Child,mThisC;
neg find rootElementsf_Model,mThisC;
Targetm==mFunctionType::Leaf;

}mor {//-- Intermediate bodym--
find parentfThis,m_ParC;
find parentf_Child,mThisC;
Targetm==mFunctionType::Intermediate; }

Intermediate
body removed

Costraint from
Leaf body
removed

2

1

2

Modifications

This:Function

type(This,Target)

_F:NFuncArchModel

:rootElements This:Function

_Par:NFunction

:parent

_Chl:Function

:parent

Target == ‘Root’

This:Function

_F:NFuncArchModel
:rootElements

_Chl:NFuncElement

NEG:parent

Target ==N
‘Intermediate’

NEG

Target == ‘Leaf’
oror

1

2

Figure 5.3: De�nition of the type pattern (right) and the illustration of two modi�cations (left)

OR pattern bodies represent that the matches of the query is the union of the matches of its or
bodies.

Based on these the de�nition the type query has three OR pattern bodies each de�ning the value
for the corresponding enum literal of the type attribute:

� Leaf if the container EObject does not have a child function along the subFunctions ERefer-
ence and it is not under the FunctionalArchitectureModel along the rootElements EReference,
where both of these constraints are de�ned using negative application conditions (NEG).

� Root if container EObject is directly under the FunctionalArchitectureModel connected by
the rootElements EReference.

� Intermediate if container EObject has both parent and child functions.

To demonstrate our validation tool two modi�cations had performed on the pattern (also illus-
trated on the left side of Figure 5.3) to inject hypothetical conceptual �aws into the queries:

1 The pattern body representing the intermediate case has been temporally removed. This
will make the derived feature incomplete.

2 The constraint de�nes that the leaf elements cannot be referred with the rootElements
reference is also removed. This will lead to an ambiguity by making the body representing
the leaf case more permissive.

The validation process is illustrated in Figure 5.4. First (Step 1) we add the type DF to the
formal speci�cation and its consistency has been successfully validated.

Then (Step 2), the completeness of the type DF is checked resulting in a failure illustrated by
the counter example showing three functions without type creating a circle in the containment
hierarchy. Our tool visualise the counter example 1 as seen in Figure 5.5, where the invalid
elements illustrated by red notation, and the containment references with diamonds.

29

Validation step Outcome Action

7. Consistency: model

8. Completeness: model CE3 Set partial snapshot to PS1

9. Completeness: model Timeout Checked in boundend size

10. Unambiguity: model

Validation step Outcome Action

11. Consistency: T&IL

12. Consistency: IL2T

13. Subsumability: IL2T Remove WF: IL2T

Validation step Outcome Action

1. Consistency: type

2. Completeness: type CE1 Set acyclicity approximation to 2

3. Completeness: type CE2 Add missing body to type query

4. Completeness: type

5. Unambiguity: type CE3 Add missing constraint to type query

6. Unambiguity: type

Figure 5.4: Validation scenario of the type pattern

Counter Example 1 Counter Example 2 Counter Example 3

Figure 5.5: Counter Examples of the type validation

It is visible (and our tool detects it too) that almost every properties of the instance model is
correct but the containment hierarchy is unfortunately violated (n1-n3-n4 circle), so the exam-
ple is invalid. It may happen because the acyclicity of the containment hierarchy can only be
approximated in �rst order logic. In our tool this problem can be easily solved by simply raising
the level of the transitive acyclicity approximation.

In Step 3 our tool shows a valid counterexample (2nd in Figure 5.5) where an intermediate
function (named n4) does not have type attribute. This is �xed by adding back the second pattern
body with the Intermediate de�nition to the type pattern. By correcting it, the validation is
successfully executed in Step 4.

After this the ambiguity of the attribute is tested (Step 5), which fails again with a single function
node that is both a Leaf and a Root as a counter example. This counter example is also visible
in Figure 5.5. This is �xed by adding the missing NAC condition on the rootElements to the
third pattern body of type in Step 6.

5.4 Derived Reference Validation

This section presents the validation process (visible in Figure 5.6) of the derived feature model
that de�nes a reference to the container FunctionalArchitctureModel from a FunctionalElement.
The de�nition if the pattern visible on Figure 5.7. Transitive closure depicted by an arrow with
a + symbol, e.g., the parent reference between the This and _Par.

The validation scenario is illustrated in Figure 5.6. Step 7 adds the model DF to the speci�cation,
the consistency check executed successfully. Followed in Step 8 with its completeness validation,
which fails as pointed out in counter example 4 in Figure 5.8 since a model with a single Function
element does not even have anything to refer to with the model EReference.

30

Validation step Outcome Action

7. Consistency: model

8. Completeness: model CE4 Set partial snapshot to PS1

9. Completeness: model Timeout Checked in boundend size

10. Unambiguity: model

Validation step Outcome Action

11. Consistency: T&IL

12. Consistency: IL2T

13. Subsumability: IL2T Remove WF: IL2T

Validation step Outcome Action

1. Consistency: type

2. Completeness: type CE1 Set acyclicity approximation to 2

3. Completeness: type CE2 Add missing body to type query

4. Completeness: type

5. Unambiguity: type CE3 Add missing constraint to type query

6. Unambiguity: type

Figure 5.6: Validation scenario of the model pattern

This:FuncElement

model(This,Target)

Target:
FuncArchModel

:rootElements

_Par:Function

Target: FuncArchModel
:rootElements

This: FuncElement

:parent

or

+

@QueryBasedFeature pattern model(
ThisE:EFunctionalElement,
TargetE:EFunctionalArchitectureModel)E= {
find parent+(This,EParent);
find rootElements(Target,EParent);

}Eor {
find rootElements(Target,EThis); }

Figure 5.7: De�nition of the model pattern

This result represents a spurious counter example, because Functions used only with the con-
text of a FunctionalArchitectureModel. For this purpose a partial snapshot is de�ned with a
FunctionalArchitectureModel object to prune the search space and avoid such counter exam-
ples (Figure 5.8). However, its revalidation (Step 9) ends in a Timeout (more than 2 minutes)
and thus this feature can only be validated on a concrete bounded domain of a maximum of 5
model objects in Step 9.

Finally in Step 10, the unambiguity of the model DF is validated without a problem.

5.5 Constraint Check

In our running example, a design rule captures that a FunctionalData EObject with a FAMtermi-
nator cannot also be connected to an InformationLink. It is speci�ed by the terminatorandInforma-
tionLink query (see in Figure 5.9) that has two OR pattern bodies, one for the FunctionalInputs
and one for the FunctionalOutputs with their corresponding incomingLinks and outgoingLinks,
respectively. This rule is visible in the top part of Figure 5.9.

To demonstrate our tool another WF constraint is added to the DSL speci�cation expressed
by the informationAndTermintator query (Figure 5.9, bottom part), which prohibits that an
InformationLink is connected to a FAMTerminator. This constraint only di�ers from the �rst
body of the original WF constraint that it uses the inverse edges and thus it is a redundant.

Counter Example 4 Partial Snapshot 1

Figure 5.8: Counter Examlpe and Partial Snapshot of the model validation

31

FunctionalInput

IL2T(Ter,InfLnk)

:FAMTerminator

:Oterminator

:InformationLink

:to

_FD:FunctionalInput

terminatorandInformationLink(Ter,InfLnk)

Ter:OFAMTerminator

:Odata

or
InfLink:InformationLink

:OincomingLinks

_FD:FunctionalOutput

Ter:OFAMTerminator

:Odata

InfLink:InformationLink

:outgoingLinks

@Constraint
pattern InformationandTermintator(

T : FAMTerminator, I : InformationLink) =
{

InformationLink.to.terminator(I, T);
}

@Constraint
pattern terminatorAndInformation(

Ter : FAMTerminator,
InfLink : InformationLink) =

{
FAMTerminator.data.incomingLinks(Ter,InfLink);

} or {
FAMTerminator.data.outgoingLinks(Ter,InfLink);

}

Figure 5.9: De�nition of the terminatorAndInformationLink pattern (top) and informationAndTermintator pattern
(bottom)

Validation step Outcome Action

7. Consistency: model

8. Completeness: model CE4 Set partial snapshot to PS1

9. Completeness: model Timeout Checked in boundend size

10. Unambiguity: model

Validation step Outcome Action

11. Consistency: T&IL

12. Consistency: IL2T

13. Subsumability: IL2T Remove WF: IL2T

Validation step Outcome Action

1. Consistency: type

2. Completeness: type CE1 Set acyclicity approximation to 2

3. Completeness: type CE2 Add missing body to type query

4. Completeness: type

5. Unambiguity: type CE3 Add missing constraint to type query

6. Unambiguity: type

Figure 5.10: Validation scenarios for well-formedness constraints

The validation process of the WF constraints illustrated on Figure 5.10. At �rst, the consistency
validation of the WF constraint terminatorandInformationLink (Step 11) is executed with a suc-
cess. After this, the redundant informationAndTermintator is added to the system which remains
consistent (Step 12). Finally the last constraint is checked for subsumption (Step 13) and found
positive; thus it is already expressed by the DSL speci�cation and thus it can be deleted from
the set of WF constraints.

32

Chapter 6

Model Generation Case Study in Laser

Guided Vehicle Domain

In this chapter the motivating scenarios of R3Cop project are demonstrated. The di�erent cases
and the proposed solutions are presented in three case studies. Each scenario contains the re-
quirements, the reduced size instances models and the given solutions.

6.1 Model Generation Work�ow

Our tool is able to generate instance models for a given DSL. It is possible to add extra prede�ning
elements (like extra edges) to the DSL which are relevant only in the context of reasoning. Those
prede�ning language elements are used to mark special relations in the partial snapshot where
the semantic of the relation is de�ned by a constraint. For example in a domain about creating
a layout for placed object a prede�ning relation called �near� would express a relation between
the coordinates of two objects. The prede�ning constraint would look like this:

near(a, b) ⇒ The di�erence between the positions of a and b is smaller than a limit

So if there are two objects that are linked with a near reference their positions have to be �lled
in a way that satis�es the right side of the constraint.

There are many customisable elements in this process that allows the user to specify the require-
ments of the output model. that are illustrated with the general steps of the model generation
work�ow (visible in Figure 6.1).

1. The model generation takes a valid DSL as an input. Adding prede�ning elements to
the DSL to de�ne relations over the objects of a partial snapshot. Speci�cation of the
prede�ning constraints.

2. Constructing an initial model by a partial snapshot. The required feature can be denoted
by the prede�ning references.

3. In the rei�cation phase a concrete instance of the DSL will be generated that also satis�es
the constraints from the prede�ning references.

4.A In case of unsatis�able requirements the generation phase fails. The developer might re-
consider the partial snapshot.

33

Partial Snapshot Generate
Instance

A

4.A Accept model

DSL Developer Tool Validation Tool

Valid
DSL

: Start workflow M : Manual step A : Automated step : Branch : End Workflow

3. Reify

Model
acceptable?

+ Relations &
Definitions

M 4.B Correct PS

A M/5.B Refine
Valid

model

1. 2.

5.A

Figure 6.1: Work�ow of the Model Generation

4.B If the model generation succeed the result will be submitted for acceptance. The acceptance
process can be the review of the developer or a an automated process.

5.A If the result is a suitable model it will be the output of the model generation.

5.B if the result has failed to accomplish the acceptance it can be used in the re�nement of the
requirements.

6.2 Introduction

This section shows the basic scenarios used in the automated test-case generation task in the
R3Cop project. In those cases the goal is to specify the values of unspeci�ed attributes of objects
in the abstract test properties. In order to specify the concrete test cases, extra references are
added to the language to declare di�erent relations between the model elements. Those relations
are like �x is dangerously close to y� or �e event has happened before f �.

The semantics of the extra references is de�ned by using OCL rules that restricts the values of
the unspeci�ed attributes. In the case study the required structure of the environment is speci�ed
by semantic of those relations and a concrete model is needed to be rei�ed. Due to get better
presentation output we sliced the problem in 3 loosely coupled scenarios, but in the case study
all of the presented features are used together.

6.3 The Model

The presented metamodel is a reduced version, where only the important classes are shown. The
metamodel models the environment of autonomous agent. In the world there are layouts, placed
objects and events. A layout contains stations and segments which are connected to each other
and compose the �xed infrastructure. A position object de�nes a concrete position given by an
X and Y coordinates. The layout has a leftUp and a rightBottom references, which are used to
reference two positions, and de�nes the size of the layout. The segments are parts of the layouts
de�ned with their size. The placed object and the various inherited types of it represents the
movable (dynamic objects) of the environment (e.g. pallets, boxes etc.). The moving objects
are the human, truck, LGV and SUT, which are able to move alone. The LGV represents the
di�erent forklifts in the warehouse and the SUT is an LGV, which is the device under test. The
stationary objects are �xed in the environment, e.g. a rack. They are placed on the stations which

34

Station Segment
lengths:sEInt

Layout

StationaryObject

Pallet Rack

MovingObject

Truck Human

LGV

SUT

Event

PlacedObject

WorldPosition
xs:sEInt
ys:sEInt

connectedTo

0..*

stations0..* segments

0..*

events

0..*

placedOn

1

near

0..*

objects

0..*

inWarningRange 0..*
inDangerousRange 0..*

inClearRange 0..*

layouts
0..*position 0..1

position1

command 0..*

leftUp0..1
rightBottom0..1

after
0..*

before

0..*

Figure 6.2: Metamodel of the environment of the Elettric 80 case study

is de�ned using 2D coordinates. Events can be de�ned which represents the dynamic changes
of the environment during the time, e.g some movements or activities. Each event has a time
stamp, which de�nes the order of execution.

Using the metamodel some constraints can be expressed (e.g. type or numeric constrains), but
for complex requirements the metamodel in itself is insu�cient. Due to the limitations of the
metamodeling, OCL expressions are used to formulate these extension rules and these expressions
are added to the extend metamodel.

6.4 Scenario 1: Events

6.4.1 Description

Event

timeStamp : EInt

World

after
0..*

before
0..*

events 0..*

Figure 6.3: Metamodel relevant
to the Event scenario.

In this basic scenario the goal is to automatically de�ne a con-
crete time stamp for all the events based on casual ordering.
The logical ordering is de�ned by two additional references:

� before: The referred event has to happen before than this.

� after: The referred event has to happen later than this.

The absence of the references does not mean that the events can
not be in that order. Naturally those references are opposites,
so x before y ⇔ y after x is structurally enforced by the EMF
metamodel (using the inverse relations).

Concrete timestamps should be de�ned for the events based on
the ordering relations. Only one event can happen at the same
time, the time stamp of �rst one is 0. This can be formalised by
those OCL constraints:

35

I. If an event is after of an other event then the time stamp of this event should be greater
than the time stamp of the other.
Event: self.after -> forAll(v: Event | v.timeStamp >self.timeStamp)

II. A time stamp exists which value is 0. It is necessary because the partial snapshot should
contain more smaller separated graph and only one root of them can be 0.
World: Event.allInstances ()->exists(e: Event | e.timeStamp =0)

III. The time stamp of the events are greater than or equal to 0.
World: Event.allInstances ()->forAll(e: Event | e.timeStamp >=0)

IV. All events should have di�erent timestamps.
World: Event.allInstances () ->

forAll(e, v: Event |e.timeStamp = v.timeStamp implies e = v)

Partial Snapshot

The initial partial snapshot is illustrated using a graph. The ordering of events are speci�ed, the
attributes are not speci�ed.

o2

o3

o4

o5

o6

o7
after

Figure 6.4: The proposed event time stamp �lling problem

6.4.2 Completed Instance Model

The introduced problem is solved by the tool. The output completed instance model is shown in
Figure 6.5. The tool is �ll the attributes by using the OCL constraints.

Figure 6.5: The completed instance model

36

6.5 Scenario 2: Layout

6.5.1 Description

R P

P

PSH :SUT

:Rack

:Pallet

:Human

S

H

R

P

Figure 6.6: Map of the demon-
strated layout

In this world there are layouts which contain stations. The lay-
out has a size which is de�ned by coordinates of the bottom
right and the top left corners. The stations of the layout should
be placed within this rectangular area, and these items should
have di�erent coordinates. The stations contain placed objects,
which. placed objects should have the same coordinates as their
stations. A placed object can have a near reference which means
that the referenced objects are neighbours so di�erence of their
or x or y coordinates should be less than a �xed constant.

This can be formalised by those OCL constraints:

I. The position of the station is same as the position of its placed object.
World: Station.allInstances ()->forAll(s: Station | s.placed <>null implies

s.position.x = s.placed.position.x and

s.position.y = s.placed.position.y)

II. All stations have di�erent coordinates.
World: Station.allInstances ()->forAll(e, v: Station |

e.position.x = v.position.x and e.position.y = v.position.y implies

e = v)

III. All stations must be placed within the area of the layout which contains then.
World: Layout.allInstances () -> forAll(l: Layout | l.stations ->

forAll(s: Station | (l.leftUp <> null and l.rightBottom <> null)

implies l.leftUp.x < s.position.x and

l.leftUp.y > s.position.y and

l.rightBottom.x > s.position.x and

l.rightBottom.y < s.position.y))

IV. The near reference of the placed object means that the coordinates of referenced placed
objects are neighbouring.
World: PlacedObject.allInstances () -> forAll(p: PlacedObject |

p.near -> forAll(m: PlacedObject |

(p.position <> null and m.position <> null) implies

(p.position.x =m.position.x and p.position.y+1=m.position.y) or

(p.position.x-1=m.position.x and p.position.y =m.position.y) or

(p.position.x =m.position.x and p.position.y-1=m.position.y) or

(p.position.x+1=m.position.x and p.position.y =m.position.y)))

6.5.2 Partial Snapshot

The initial partial snapshot is illustrated using a map in Figure 6.6. On the map di�erent objects
are placed: there are 3 pallets, a rack, a human and a SUT. The neighbours are linked if they
must be neighbours so the lines symbolize the near references. In the initial partial snapshot the
objects and the size of the layout are de�ned and the near reference are speci�ed. The coordinates
of the objects are unspeci�ed.

37

6.5.3 Completed Instance Model

The completed instance model is shown in Figure 6.7. The positions of the placed objects and
the stations are �lled. In Figure 6.8 the positions of the object are illustrated on a map of the
warehouse.

Figure 6.7: The completed instance model

5

4

3 H S P

2 R P

1 P

0

0 1 2 3 4 5

:SUT

:Rack

:Pallet

:Human

S

H

R

P

Figure 6.8: Map of the solution

6.6 Scenario 3: The Distance Zones

6.6.1 Description

In this scenario a SUT is created which represents the tested LGV. The SUT can have three
prede�ning relations that are de�ned as follows:

I. inClearRange: the distance of two objects connected with this relation is minimum 5 meters

II. inWarningRange: the distance of two objects connected with this relation is minimum 2,
maximum 5 meters

III. inDangerousRange: the distance of two objects connected with this relation is less than 2
meters

38

The usage of this relation is motivated by the case study de�ned in the R3Cop project, because
the LGVs have to follow di�erent behaviour and should produce di�erent signals in di�erent
distance zones. In this scenario, three objects are created which are placed in the mentioned
zones, all object in di�erent zone.

The requirements can be formalised by those OCL constraints:

I. They are speci�ed mentioned the constraints of the prede�ning relations.
SUT: self.inClearRange -> forAll(p: Position | self.position <>null implies

(self.position.x-p.x) * (self.position.x-p.x) +

(self.position.y-p.y) * (self.position.y-p.y) > 25)

SUT: self.inWarningRange ->forAll(p: Position | self.position <>null implies

(self.position.x - p.x) * (self.position.x - p.x) +

(self.position.y - p.y) * (self.position.y - p.y) < 25 and

(self.position.x - p.x) * (self.position.x - p.x) +

(self.position.y - p.y) * (self.position.y - p.y) > 4)

SUT: self.inDangerousRange ->forAll(p: Position| self.position <>null implies

(self.position.x - p.x) * (self.position.x - p.x) +

(self.position.y - p.y) * (self.position.y - p.y) < 4)

II. The stations must be placed on same coordinates as its placed object.
World: Station.allInstances () -> forAll(s: Station | s.placed <>null implies

s.position.x = s.placed.position.x and s.position.y = s.placed.position.y)

III. All PlacedObject have di�erent coordinates.
World: PlacedObject.allInstances () -> forAll(e, v: PlacedObject |

(e.position <> null and v.position <> null) implies

(e.position.x = v.position.x and e.position.y = v.position.y implies

e=v))

IV. All stations are placed within the area of the layout.
World: Layout.allInstances ()->forAll(l: Layout |

l.stations ->forAll(s: Station |

(l.leftUp <>null and l.rightBottom <>null) implies

l.leftUp.x < s.position.x and l.leftUp.y > s.position.y and

l.rightBottom.x > s.position.x and l.rightBottom.y < s.position.y))

6.6.2 Partial Snapshot

10

9

8

7

6

5

4

3

2

1

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

:SUT

:Dangerous zone

:Warning zone

:Clear zone

Figure 6.9: Map of the layout with the de�ned zones

39

SUT LGV

RackRack

inWarningRange

inClearRange

Figure 6.10: The relationship of
the de�ned objects

The initial partial snapshot is illustrated by a map of the layout
in Figure 6.9. The orange circle illustrates the SUT. The red
zone is the dangerous the orange is the warning and the white
is the clear zone. A Rack has to be placed in the dangerous
zone, a LGV has to be placed in the warning zone and an other
Rack has to be place in the clear zone. The connections of the
instance objects are shown in Figure 6.10.

6.6.3 Completed Instance Model

The diagram of the completed instance model is shown in Figure 6.11. The placed objects are
placed, their attributes are �lled. Figure 6.12 shows the map of the warehouse with the placed
objects.

Figure 6.11: Complete instance model

:SUT

:Dangerous zone

:Warning zone

:Clear zone

10

9

8

7

6

5

4 R

3

2 L

1 R

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

L :LGV

R :Rack

Figure 6.12: Map of the solution

40

Chapter 7

Mapping DSLs to FOL Formulae

This chapter discusses the transformation process of the DSL artifact to SMT language in details.
The metamodel, instance model, OCL and GP are transformed to FOL formulae to be able to
perform the reasoning tasks and to solve the di�erent problems risen in the case studies.

7.1 Strategy of the Transformation

The current section introduces the main concepts used in our approach: structured transformation
process enchanted with robust approximation methods.

7.1.1 Structure of the Transformation

The goal of the transformation of the DSL is to create an axiom system called DSLF (where F
note that this is a set of logic formulae), which is satis�able only if the original DSL was consistent.
If the DSLF is satis�able then by de�nition there is an interpretation MF that satis�es DSLF .
Additionally, to back annotate the result de�ned by the MF logic structures to an actual instance
of the DSL, formally:

transformation(DSL) = DSLF and backannotated(MF) = M then

1. DSLF |= MF ⇔ M instanceof DSL
2. DSLF does not have model ⇔ DSL does not have instance

The transformation function consists of multiple di�erent transformation steps that indepen-
dently transforms the input modelling artifacts to the logic axiom system:

� The metamodel transformation creates the formulae called METAF from the metamodel
that maps the main structural features of the DSL (detailed in Section 7.2).

� The instance model transformation maps the formulae PSF from the optional partial snap-
shot (discussed in Section 7.3).

� The OCL transformation generates the formulae called WFF from the well-formedness con-
straints de�ned as OCL invariants (highlighted in Section 7.4).

41

� Finally, the Pattern transformation creates the formula set called GPF from the de�nitions
of the EMF-IncQuery graph patterns and link them to their corresponding ill-formedness
(IFF) or derived feature formulae (DFF) (explained in Section 7.5).

So the transformed DSL is partitioned in the following way:

DSLF = METAF ∪WFF ∪GPF ∪ IFF ∪DFF ∪ PSF

The Search Parameters can directly customise the mapping process, their e�ect will be detailed in
each transformation step. Our tool can execute di�erent reasoning task on DSLF . The Reasoning
task transformation prepares DSLF to create the actual input for our reasoning tool based on the
method described in Section 7.6. The reasoning tool then makes the satis�ability check on the
input formulae and provides the result, which will be interpreted in the context of the reasoning
task.

If the reasoning tool �nds the axiom system satis�able an example interpretation will be created
that explicitly de�nes every uninterpreted features of the axiom system (like how many objects in
the model, which ones are linked with a reference or what are the matches of the graph patterns).
By querying the metamodel speci�c attributes of this logic model an EMF instance model will
be created.

7.1.2 Approximation techniques

The main advantage of the SMT solvers to the normal theorem provers is that the SMT solvers
can use combinations of multiple elaborated background theorems, therefore it can e�ectively
reason over a certain set of logic problems [25]. Our choice of background theorem was the
e�ectively propositional logic (EPR)[42] as its provides logical formulae that can cover the largest
set of DSL language features.

De�nition 5 (E�ectively propositional logic) The e�ectively propositional logic is a
fragment of the �rst order logic, which contains constant variables, relations and the state-
ments in prenex form build from some existentially quanti�ed variables, then some univer-
sally quanti�ed variables, then the predicates and logical connectives.

However, expressive power of the EMF-IncQuery or the OCL language is even larger than the
SMT language itself. Some constraints such as recursively called patterns, transitive closures, set
cardinalities and check expressions can not be fully compiled into it.

EPR < SMT < EMF-IncQuery, OCL

To tackles this problem and represent problems in the required logic fragment some approxima-
tion techniques have to be deployed:

De�nition 6 (Approximations of Predicates) The PU predicate is underapproximate
(PO overapproximate) the P constraint if it satis�es the following implications for every
parametrisation:

PU ⇒ P (P ⇒ PO)

42

As a trivial example the constant true predicate is always a good overapproximation, and false
approximates every predicate under. A statement also approximates itself.

An axiom system can be also approximated if every statement are approximated in it. The
approximations of the formulae in DSLF de�ne languages with more or less instances than the
unapproximated one, as the following implications show:

DSLU
F |= M ⇒ DSLF |= M and DSLO

F 6|= M ⇒ DSLF 6|= M

This allows to validate properties of the DSLF by proving the same properties on its under- or
overapproximations.

DSLU
F satis�able ⇒ DSLF satis�able and DSLO

F unsatis�able ⇒ DSLF unsatis�able

This means that the consistency check of a domain speci�c language can be done by verifying a
more general logical structure what more e�cient to reason over.

Example 4 The objects of an EMF model are arranged in a tree hierarchy. This de�nes that
the containment graph satis�es the following properties (as described in details in Section 7.2):

� Every object is contained by an other with the exception of the root element. (This is
expressible in SMT but not in EPR.)

� The containment is acyclic. (This is not expressible in SMT.)

To express containment hierarchy in SMT the second rule have to be overapproximated like this:

� the containment graph is free from circles of maximum �ve length. (This is SMT and EPR.)

To express it containment hierarchy in EPR the �rst rule have to be omitted.

A consistency consistency check can be e�ciently executed on a problem in EPR the class, and
if the reasoning tool �nds the DLS with more general containment rules unsatis�able then the
original problem have to be unsatis�able too.

7.2 EMF metamodel transformation

Table 7.2 summarises the transformed features of the metamodel. It also presents which property
is expressible in FOL or EPR.

7.2.1 Objects

The models of the EMF framework are graph based models, where the EObjects are the nodes
and the EReferences are the edges. In Z3 models the type of EObjects is mapped to Object:
(declare-sort Object). If the number of objects is bounded then a �x-sized enum is declared.

Example 5 A model with exactly four elements can be de�ned in the following way:
(declare -datatypes () ((Object element1 element2 element3 element4)))

where element1, element2, element3 and element4 are the objects in a four element literals.

43

Features of the metamodel

EClasses E +

Class hierarchy E +

EEnums E +

EReferences E +

EAttributes E +

Multiplicity upper bound E +

Multiplicity lower bound E �

Inverse edges E +

Containment hierarchy A �
E: Expressible A: Approximable X: Inexpressible +: in EPR �: not in EPR

Table 7.1: Expressing Ecore features in Z3

7.2.2 Types

The possible types in the instance models are the classes of the metamodel. These classes are
transformed to the type indicator predicate. If an �o� object is an instance of the type Station
then the isType!Station expression is true, else it should be false.

Example 6 The declaration of the Station type:
(declare -fun isType!Station (Object) Bool)

7.2.3 Type hierarchy

The Z3 does not support inheritance between the types so the class hierarchy has to be de�ned
in an other way. The simple way to de�ne the type hierarchy of the EMF is to enumerate the
possible type cases of the type predicate combination. This is de�ned by a table, where the
columns represent types and the rows the concrete types(not abstract, not interface). The cell
represents a predicate, which is positive if the type of the row is compatible with the type of
column, and negated if it is not.

Example 7 The transformation of the previously presented metamodel is shown in the next
table. The PlacedObject is an abstract class and the inherited types can be the Rack and the
Station, where the Rack is an PlacedObject:

PlacedObject

Rack

StationplacedOn
0..1

Figure 7.1: Type hierarchy example

44

(assert (forall ((o Object))(or

PlacedObject Rack Station
Rack (and (isType!PlacedObject o) (isType!Rack o) (not (isType!Station o)))

Station (and (not(isType!PlacedObject o)) (not (isType!Rack o)) (isType!Station o))

)))

7.2.4 Reference

The references of the metamodels are the edges between the objects. Those edges are directed
and also loop edges are allowed. The references are transformed to relations. The types of the
objects on the end of the relations has to be de�ned. The de�nition of the relation is an assertion:
if the (o, t) pair satis�es the relation then the �o� is the instance of the source of the relation
and �t�is the instance of the target.

StationPosition
x : EInt
y : EInt

position
1 station

0..1

Figure 7.2: Reference example

Example 8 The de�nition of the position reference of the Station:
(declare -fun Station!position (Object Object) Bool)

The limitations of the ends of the edge:
(assert (forall ((o Object) (t Object)) (=> (Station!position o t) (and

(isType!Station o) (isType!Position t)))))

7.2.5 Multiplicity

A relation with 0..* multiplicity is the default, In other cases multiplicity assertions might be
necessary. In the n..m relation the n lower bound means that every object is in relation with n
di�erent one. The upper bound m means that there is not at most m di�erent target elements
that is in relation with the object. The lower bound which value is di�erent from 0, is transformed
into existential quanti�er, which is surrounded by an universal quanti�er which provide the type
of the source object.

Example 9 The transformation of position edge of the Station, which lower bound is 1:
(assert (forall ((src Object)) (=> (isType!Station src) (exists ((trg0 Object))

(Station!position src trg0)))))

Example 10 If the upper bound is di�erent from in�nite, it is transformed to an universal
quanti�er. This example presents when the upper bound is 1:
(assert (forall ((src Object) (trg0 Object) (trg1 Object)) (=> (and

(Station!position src trg0) (Station!position src trg1)) (= trg0 trg1))))

45

7.2.6 Inverse edges

The inverse of a reference can also be de�ned as demonstrated in the following example.

Example 11 In the previous example the station and the position edges are inverse:
(assert (forall ((o Object) (t Object)) (=> (Station!position o t)

(Position!station t o))))}

(assert (forall ((o Object) (t Object)) (=> (Position!station o t)

(Station!position t o)))

7.2.7 Containment

The objects of an EMF model are arranged in a directed tree hierarchy by the containment edges.
The acyclicity means that any object is unreachable from itself by the path of the containment
edges. If the previous statement is satis�ed, the composition graph is DAG. There should be a
root element which is represented by the root constant in Z3. Every object of the model has
exactly one parent with the only exception of the root element.

Example 12 There is containment relation between two object if there is a containment type
edge between them:
(declare -fun root () Object)

(declare -fun contains (Object Object) Bool)

The roots does not have any parent, and every non-root element have exactly one:
(assert (forall ((parent Object)) (not (contains parent root))))

(assert (forall ((o Object)) (or (= o root) (exists ((parent Object)) (and (not

(= parent o)) (contains parent o))))))

The acyclicity of the containment hierarchy is inexpressible in the SMT language so some kind
of approximation is needed. For example statement of �the containment graph of the is free
from C3 (three length circle)� overapproximate the acyclicity requirement. Increasing the size
of the forbidden circles converges to the acyclicity, and we can deal any kind of containment
inconsistency using an appropriate approximation level.

Example 13 The following SMT assertion detect the three length circles.
(assert (forall (

(circleElement1 Object)

(circleElement2 Object)

(circleElement3 Object)) (not (and

(contains circleElement1 circleElement2)

(contains circleElement2 circleElement3)

(contains circleElement3 circleElement1)))))

7.2.8 Attributes

The attributes of the metamodel are the properties of the classes. In this status of the work, only
attributes of type EInt are supported. The EMF EInt attribute is mapped to the Z3 Int type.
The attributes are transformed to relations which return the value which belong to the input
object.

46

Features of the metamodel

Instance Objects E +

Types E +

Abstract Types E +

Filled References E +

Filled Attributes E +
E: Expressible A: Approximable X: Inexpressible +: in EPR �: not in EPR

Table 7.2: Expressing Ecore features in Z3

Example 14 The declaration of the x coordinate attribute of the position class is the following:
(declare -fun Position!x (Object) Int)

If the type of object is not position then the Position!x relation must return with 0:
(assert (forall ((o Object)) (=> (not (isType!Position o))(= (Position!x o)

0))))

7.3 EMF instance model transformation

This section de�nes how instance models and partial snapshots are transformed. Table 7.2 sum-
marises the transformed features.

The analysis can be parametrized by an initial instance model of the metamodel. This initial
model can be inserted to the axiom system of the input of the Z3.

7.3.1 Instance object

The instance objects are the instances of the classes of the metamodel. They are transformed to
a function, which return with an Object. The transformed instance object must be di�erent.

Example 15 De�nition of the �o1� instance object is:
(declare -fun InstanceObject!o1 () Object)

Three instance objects are de�ned and they must be di�erent:
(assert (distinct InstanceObject!o1 InstanceObject!o2 InstanceObject!o3))

7.3.2 Type

The type of the instances must also be speci�ed.

Example 16 The type of InstanceObject!o1 is Station:
(assert (isType!Station InstanceObject!o1))

47

Features of the OCL

self E +

allInstances E +

Iterator expressions E �

Attributes E +

References E +

Condition E �

notEmpty E �

isEmpty E +

Logical operations E +

Mathematical operations E +

oclIsTypeOf E +

Transitive closure A +

let X

Ordered set X
E: Expressible A: Approximable X: Inexpressible +: in EPR �: not in EPR

Table 7.3: Expressing OCL features in Z3

7.3.3 Reference

The references should be de�ned in the following way: the reference type, the target object and
the source object must be de�ned.

Example 17 Between the InstanceObject!o1 and the InstanceObject!o2 there is an position ref-
erence:
(assert (Station!position InstanceObject!o1 InstanceObject!o2))

7.3.4 Attributes

If the attribute is �lled then the value of attribute has to transform and set.

Example 18 The x coordinates of InstanceObject!o2 is 3:
(assert (= (Position!x InstanceObject!o2) 3))

7.4 OCL constraint transformation

In this section the OCL mapping is demonstrated. In the project we deal with the OCL invariants.
We formulate constraints which should be satis�ed and that way they de�ne attribute values or
relations of attributes. The nature of these constraints is exploited and with them we can �ll out
these attributes or we show the contradiction between model and attributes.

During the mapping, at �rst we have to select a subset of the OCL elements which we want to
deal with. The transformed OCL expressions have to be selected because the number of elements
are huge. The selected elements give a wide range of practical languages. Those elements are
chosen which are very common or facilitates the construction of rules. For example: iterators,
attributes, references, boolean or mathematical expressions.

48

OCL rules represented as their AST can be visited by the AST traversal algorithm. Generally,
the mapping can be solved recursively, but there are some unusual cases which should treated as
a special case. Always with the AST recursively does not give the correct results, sometimes the
expression semantic is not equal to the technical construct. A good example is the reference=null

expression. If we resolve it recursively, then the two sides of the equal sign will be comparable
expressions, but in the �rst order logic we can't treat the null expression properly. These type
of phrase should be treated as exception and the mapping must eliminate the usage of null
expression.

The list of the supported language elements is visible in Table 7.3.

7.4.1 Mapping

In this part the most important theoretical considerations of the mapping are presented. The OCL
mapping is greatly in�uenced by the mappings of metamodel and instance model, because the
modeling dependencies between them. Therefore, constraints are transformed to SMT assertion.

Sets

The constraints usually are evaluated on a set. In this case we have the following two options:
One of them is when the Class.allInstances() formula is used. In this case the mentioned formula
is transformed to a predicate, which re�ects which type of instances have to be true the OCL
expression.

Event.allInstances()->forAll(e: Event | ..)

O
C
L

Set forAll-> (Variables) Expression

forall (Variables) =>(Pred. Expression)

()

SM
T

forall(((e Object))(=> (isType!Event e) (..)))

Figure 7.3: Transformation of the expression which contains a set

The second of them is when we de�ne the context and in the constraint refer to it with the self
element. In this case an extra forall expression should be added to the expression which contains
the translated rule. The variable of this forall is the self and the forall expression contains a
predicate which formulate type constraint.

Event: self.after->..

O
C
L

Context self Expression:

forall Variable ExpressionPred.() ()=>

.

SM
T

forall(((self Object))(=> (isType!Event self) (..)))

Figure 7.4: Transformation of the expression which contains �self� variable

Iterator expressions

The second group which is presented is the iterator expression, for example: forall, select and
exists. Except the exists, the other iterators are equivalent of the universal quanti�er in the

49

�rst order logic, which is equivalent of the forall SMT expression. The exists is equivalent of
existential quanti�er. The example shows that the variables and the expressions of iterator can
be formalized using SMT variables and expressions.

Event.allInstances()->forAll(e| e.timeStamp>=0)
O
C
L

Set forAll-> (Variables) Expression

forall (Variables) =>(Pred. Expression)

()

SM
T

forall(((e Object)) (=> (isType!Event e) (>= (Event!timeStamp e) 0)))

Figure 7.5: Transformation of the forall

Event.allInstances()->exists(e: Event | e.timeStamp=0))

O
C
L

Set exists-> (Variables) Expression

exists (Variables) and(Pred. Expression)

()

SM
T

exists ((e Object)) (and (isType!Event e) (= (Event!timeStamp e) 0))

Figure 7.6: Transformation of the exists

Attributes and References

The mapping of the attributes and references are not trivial. The attribute should be translated
to a function.

OCL int MyClass.myNumber

SMT (declare-fun MyClass!myNumber (Object) Int)

Transformation of references is complex. We distinguish based on the multiplicity: 0..1, 1 or
in�nity multiplicity. We distinguished based on the number of references: single or multiple path.
These type of references are di�erent. Now the transformation of types are introduced.

At �rst references are introduced in�nite multiplicity. This type of reference or in multiple path
the last of this type of reference imply an iterator expression, so in many cases the iterator
expressions have to be completed. The single path which multiplicity is in�nite is transformed
to a function, which is a predicate. This predicate is contained by an iterator expression which
follows the reference.

The multiple path with in�nite multiplicity is transformed to a special structure. Except the last
reference, all references attracted to a forall and their expressions contain a function which maps
the references.

l.stations.connectedTo->forAll(s|..))

O
C
L

Set

forall

-> forAll (Var.) (Reference Reference forAll () Expression->)

() => Pred. forall () => forall () =>(Ref. f. Ref. f.) Expr.Var.

Var.

Var. Var.

SM
T

(=>(isType!Layout l)(forall((h Object))(=>(forall((s Object))(=>(Layout!station l h)

(Station!connectedTo h s)))(..))))

Figure 7.7: Transformation of the expression which contains in�nity multiplicity, multiple path

50

The 0..1 or 1 multiplicity references rarely stand alone, usually they are followed by an attribute.
The single path which multiplicity is 1 is transformed to an exists expression which contains a
predicate which is transformed to the reference. If it is followed by an attribute then we have 2
functions: one of them symbolizes the attribute and the other of them symbolizes the references.
In this case helper variables are had to de�ne. This variables give the parameters of the functions.
The multiple path which multiplicity is 1 is transformed same as the previous case, but more
variables and functions which is symbolized the references are de�ned.

s.position.x < 10

O
C
L

Set -> forAll (Variable) (Var. . Reference . Attr. <)

forall (Variable) => Pred. exists (Variables) (Ref. func.and < Attr.)

Value.

Value.

SM
T

(exist((h Object)) (and (Station!position s h)(<(Position!x h)10)))

Figure 7.8: Transformation of the expression which contains 1 multiplicity, single path

The single navigation with multiplicity 0..1 is transformed to an implication. The left side of
it is an exists quanti�er construct which expression says that the reference is not null. It is
translated to an expression which states that a variable exists, which satis�es the function which
is transformed from the reference. The right side is an exists which contains the predicate which
is transformed from the reference and the other elements of the expression. Usually a reference
is followed by an attribute. In this case helper variables are de�ned which are contained by the
exists expression. The right side of the implication is same as the mapping of the references which
multiplicity is 1. The multiple navigation which multiplicity is 0..1 is same as the previous case.

p.position<>null implies p.position.x < 10

O
C
L

Set -> forAll () (Var. . Ref. . Attr. < Var. . Attr.)

forall () => Pred. exists (Var.) (Ref. and < Attr.)Attr.

Var.

Var.

Ref. <> null implies

=> exists (Var.) Ref.

SM
T

(=> (exists ((h Object))(PlacedObject!position p h)))(exists((h2 Object)) (and(

PlacedObject!position p h2) (<(Position!x h2)10))))

Figure 7.9: 0..1 multiplicity, single path transformation

Condition

The structure of the OCL condition is �if" expression �then" expression �else" expression �endif".
It is transformed to an �if" expression which exists in the SMT. The terms between the keywords
are unlocked by using the other cases. From the condition expression element is not missed.

Built-in Functions

In the OCL, there are many built-in functions, which facilitate the constraints formulation. Some
of them are transformed. One of them is the oclIsTypeOf(). It can be used in this form: variable.
oclIsTypeOf(MyType). It returns true, if the type of variable is MyType. It is translated to a function,
which returns true if the type of the received parameter is equals with the type which is referenced
with the function.

51

OCL variable.oclIsTypeOf(MyType)

SMT (isType!MyType variable)

The notEmpty() function is called on a set or collection which is available through references. It
returns true if the set or collection is not empty. This is transformed to an exists expression
which means that an object exists which is placed in the given set.

OCL variable.reference->notEmpty()

SMT exists((t Object)) (reference v t)

The isEmpty() using is same as the notEmpty(), but the meaning of it is di�erent. It returns true
if the set or collection which is called is empty. It is transformed to a �not exists� expression.
An exists is created which means that exists an object which is in the set. The created exists is
denied, and the meaning of it equals with the meaning of isEmpty.

OCL variable.reference->isEmpty()

SMT not(exists((t Object)) (reference v t)

Logical and mathematical operations

The logical and mathematical operations have equivalent in the �rst order logic. For example
the + is transformed to +, the implies is transformed to =⇒ and the and is transformed to and.
Except not, all operations have a left and a right side. Both sides contain an expression. These
expression are resolved by using the other cases which deal with the particular type.

Comparison

The comparison is happened with the �=� and �<>� signals. If boolean formulas and numbers
are compared then the transformation is same as described in the previous paragraph. There are
some special cases, one of them is the v.reference=null expression. It is transformed to an forall
expression which means that there is not two objects which is available with the reference.

OCL v.reference=null

SMT forall ((null Object)) (not (Reference v null))

The v.reference<>null is a special case. It is transformed to an exists expression which means
that exists an object which is available through the v.reference.

OCL v.reference<>null

SMT exists((null Object)) (Reference v null)

The v.reference=variable transformation is same as the previous case.

OCL v.reference=variable

SMT exists((variable Object)) (Reference v variable)

52

DF Features of model query WF

E + Classi�er constraint E +

E � EReference constraint E +

E � Acyclic pattern call E +

E � Negative pattern call E �

A � Transitive closure A +

A � (Positive) pattern call recursion A +

A � Arbitrary call graph A �

X Aggregate (eg. Count, Sum) X

X Check expressions X
E: Expressible A: Approximable X: Inexpressible +: in EPR �: not in EPR

Table 7.4: Expressing Ecore and EMF-IncQuery language features in Z3

7.5 EMF-IncQuery Graph Pattern Transformation

This section describes how EMF-IncQuery patterns can be transformed to �rst order formulae.
Table 7.4 shows which feature can be translated to SMT and EPR whether they used as well-
formedness constraints or derived features.

7.5.1 Structure of the Patterns

An IncQuery pattern consists of a parameter list and a de�nition that specify a condition over
the parameters. The parameter list is a �x sized vector of variables over the model, let us denote
it as Params. The condition is de�ned by pattern bodies that consist of constraints.

The match-set of a pattern is a relation which is explicitly transformed to SMT relations. The
satisfaction of the relation is speci�ed by the pattern de�nition that express a pattern(Params)
condition over the parameters.

Params ∈ patternMatch ⇔ pattern(Params)

Example 19 Let us take a two parameter pattern called type with the parameter list This:
Function and Target: FunctionType. The matches of this pattern are de�ned by the following
predicate:
(declare -fun pattern!type (Object enumType!FunctionType) Bool)

And the condition that de�nes the relation:
(assert (forall (

(parameter!This Object)

(parameter!Target enumType!FunctionType)) (iff

(pattern!type parameter!This parameter!Target)

(

; pattern condition over the parameters

))))

An individum vector is element of the match-set if and only if the vector satis�es one of the pat-
tern body. So The pattern condition is de�ned as the disjunction of the pattern body conditions.

53

eIQ

type(This,Target)

b2b1 b3

pattern type(This, Target) = {b1} or {b2} or {b3}

SMT ; pattern condition over the parameters

or (b1Condition) (b2Condition) (b3Condition)

Transformation of the pattern condition

The pattern body condition is de�ned by the constraints of the body, where the condition is the
conjunction of the constraints. A patten body may introduce additional existentially quanti�ed
inner variables called Vars. For example the following body of the type pattern contains two path
and three classi�er constraints:

eIQ

_P:F T:F:par

_C:F
:par

C1: FunctionalElement.parent(T, _P);

C2: FunctionalElement.parent(_C, T);

C3: Function(T);

C4: Function(_C);

C5: Function(_P);

SMT
; pattern body condition over the parameters and inner variables

exists ((_P Object) (_C Object)) (

and (C1) (C2) (C3) (C4) (C5))

Transformation of the pattern body

So the pattern condition is structured as follows:

pattern(Params) =
∨

body ∈
pattern.bodies

∃Vars
∧

constraint ∈
body.constraints

constraint(Params,Vars)

The following section de�nes the transformation method for each supported the constraint.

7.5.2 Constraint Transformation

This section provides the translation of the simple constrains of the IncQuery language to a Z3
expression.

Classi�er constraint de�nes the type of the objects that are binded to the variable. The
EMF-IncQuery constraint can be easily compiled to type predicate. This can be transformed
to the satisfaction of an isType!xxx predicate:

eIQ
This:Function

Function(This);

SMT isType!Function This

54

Path constrains in IncQuery de�nes that there is a path consists of sequence of references from
the de�ned type that leads from a variable to another. By introducing the implicit object variables
as the inner nodes of the path, the expression can be compiled into simple reference requirements.
For example The path expression constraint FunctionalElement.parent(_Chl,This) de�nes
that there is a path that starts from _Chl, ends in the _This object. If The path touches some
further object that should be referred by existentially quanti�ed implicit inner variables.

eIQ
_Chl:Function

This: Function
: parent

FunctionalElement.parent(_Chl,This)

SMT FunctionalElement!parent _Chl This

Equivalence and unequivalence of two individual can be simply de�ned as with SMT equiva-
lence relation:

eIQ
Target==‘Intermediate’

Target == ::Intermediate

SMT = Target enumLiteral!FunctionType!Intermediate

Pattern Call Constraints The pattern call constraints makes it possible to compose more
complex patterns that referring to others.

� A positive call de�nes that the substituted parameters have to create a match of the referred
pattern.

� Negative calls may introduce new negatively referenced variables. A negative pattern call
de�nes that the target pattern does not have match for the substituted old variables with
for any possible substitution of the negatively referenced parameters.

For example there is a negative pattern call from the type pattern:

eIQ

This:Function

_Chl: FuncElement

NEG: parent

neg find parent(_Child, This);

SMT

(forall ((foralChild Object)) (and

; ...

(not (pattern!parent forall!Child parameter!This))

; ...

))

55

Transitive closure approximation is an advanced lanugage element of the EMF-IncQuery pat-
tern language. The transitive closure of a two-parametrezed pattern matches on the e1 en pair if
there is a e1, e2, . . . en sequence of model elements where the pattern is matches every ei ei+1 pair.
The transitive closure of a pattern can only be approximated in �rst order logic. The detailed
process of the approximation is available in [41].

For example, predicate parent(This, P) ⇒ parent2Match(This, P) de�nes an overapproximation
of length 2 for the transitive closure of the parent EReference in the second pattern body of the
model query, in the following way:

2: parent2Match(This, P) ⇒ parent(This,P)∨ ∃m1 : parent(This,m1) ∧
parent1Match(m1 , P,This)

1: parent1Match(This, P, d1) ⇒ parent(This,P)∨ ∃m2 (m2 6= d1) :
parent(This,m2) ∧ parent0Match(m2 , P, d1 ,This)

0: parent0Match(This, P, d1 , d2) ⇒ parent(This,P)∨ ∃m3 (m3 6= d1 ,m3 6= d2) :
parent(This,m3) ∧ true

7.5.3 Patterns as DSL elements

Model query patterns are used to specify the restrictions on the structure of the DSL. The
patterns de�ned as constraints and derived features are transformed in the following way:

� Ill-formedness constraints are de�ned as a statement that the model is free from matches of
this pattern. For example in case of the pattern terminatorAndInformation the statement
looks like this:

eIQ @Constraint pattern terminatorAndInformation(T, I)

SMT (assert (forall ((T Object) (I Object)) (

(not (pattern!terminatorAndInformation T I))))

� Derived features states that the features evaluate exactly when the specifying pattern
matches the class and the value. The transformed DF type pattern looks like this:

eIQ @QueryBasedFeature pattern type(This, Target)

SMT
(assert (forall ((This Object) (Target enumType!FunctionType)) (iff

(Function!type This Target)

(pattern!type This Target))))

7.6 Transformation of the Reasoning Task

This section describes the way how the result formulae are modi�ed to express the di�erent
validation problems. Generally, the main goal is execute the proving of theorem T over the
axiom system of DSLF . Formally:

DSLF |= T

To prove this property the consistency of DSLF ∪ ¬T is checked:

56

DSLF ∪ ¬T unsatis�able → DSLF |= T
exists a model M : DSLF ∪ {¬T} |= M → DSLF 6|= T , and M is a counterexample

� Subsumability check: T states that the target constraint is satis�ed.

� Completeness check: T states that every occurrence of the derived feature has al least one
value. For example if the completeness of the model reference of the Function class is checked
then ¬T is the following assertion:
(assert (exists ((incomplete Object)) (forall ((target Object))

(and (not (Function!model incomplete target))

(isType!Function incomplete)))))

� Ambiguity check: T states that every occurrence of the derived feature has at most one
value. In case of unambiguity of the model reference of the Function ¬T looks like this:
(assert (exists ((ambiguous Object)

(target1 Object)(target2 Object)) (

(and (Function!model ambiguous target1)

(Function!model ambiguous target2)))))

57

Chapter 8

Implementation

In this chapter the most important implementation questions, decisions and steps are presented.

8.1 Architecture

Processing the
Result

Input
Parameterization

Orchestration of the Transformation
Platform specific representation /

Directing the Theorem Prover

Transformation
handler

Metamodel

Partial snapshot

Constraints

Transformation
customization

Constraint
transformer

Metamodel
transformer

Instance
transformer

smt2
in

Reasoner
handler

Reasoner
configuration

Z3

smt2
out

Representation
handler

EMF yEd Zest

Figure 8.1: Architecture of the tool

The architecture of the tool is presented in Figure 8.1. The architecture and the processing of
the statements are divided four section. First the input parametrization is introduced that:

I. The metamodel is given as eCore model by DSL speci�cation.

II. The constraints add extra rules to the problem, they can be OCL or GP constraints.

III. The partial snapshot is a special instance model which is more permissive than the EMF
instance model, it permits:

i. un�lled attributes

ii. abstract objects

iii. unconnected partitions

iv. missing or extra edges

v. new objects

The partial snapshot is created by the re�ective editor of the EMF instance model, which is
shown in Figure 8.2.

58

Figure 8.2: The created editor of
the partial snapshot

The tool is executed using the de�ned parametrization. The
transformation handler gets the input, which calls the trans-
formation components: �rst the metamodel transformer, then
the instance transformer �nally the constraint transformer. If
the transformation is successful then the SMT �le is generated
which contain the collected outputs of the previous components
which is shown in Figure 8.3.

The SMT generated input �le is passed to the reasoner han-
dler. The reasoner handler is parametrized using a reasoner cus-
tomization which de�nes the parametrization of the solver. This
component calls the Z3, and after successfully execution its out-
put is appended to the input �le. The reasoner handler parses
this output and based on the results builds the completed partial
snapshot.

Metamodel
transformer

Constraint
transformer

Metamodel

Constraints Partial snapshot

instance
of

defined
on

Instance
transformer

Figure 8.3: The production of in-
put SMT code

The result is a valid partial snapshot in the case, when the out-
put of the Z3 is not a counterexample. The result is a counterex-
ample in the following cases: (i.) inconsistency of the instance
model or (ii.) inconsistency of the constraints or (iii.) one of the
constraints can not be satis�ed. The results can represented by
di�erent visualization tool. The representation handler repre-
sents the result, if the instance model is valid it can visualize
the result in EMF, yED [59], Zest [53], in other cases the yEd
or the Zest can be used.

8.1.1 Details

In this section the details of the implementation, the most im-
portant components are presented.

Grammar

SMT code can be constructed and passed easily, using the constructed SMT grammar. Xtext [52]
is used. The language is de�ned by a generative grammar, which means a list of applicable rules
that are produce all elements of the language. The SMT grammar is based on and extends the
FOL grammar (de�ned in Chapter 3). Using the de�ned grammar the input and output SMT
�les can be parsed easily. During the transformation the de�ned symbols are used, text is not
generated so the produced SMT input is a graph of de�ned elements.

Transformation

The instance and metamodel transformation is implemented using the Xtend [51] Eclipse plugin.
The Xtend is a statically-typed programming language which is translated to Java source code.
Syntactically and semantically the root of Xtend is the Java language but is extended by extra
features, e.g. lamda expressions, powerful switch expressions and properties. With Xtend, the
model elements can be visited easily, the writing of di�erent �lters is easier when using the
lambda expressions. The code is more readable and less complex.

59

OCL transformation

The OCL rules and their contexts are given as a string. They must be read, parsed and �nally
their AST is built [24]. To achieve the goal the OCLHelper class is used which provides an API for
parsing constraints and query expressions. The context can be identi�ed by name which de�nes
the place of the constraint in the model. Its createQuery(String s) function (i.) parses the string,
(ii.) connects the elements of the constraints to the metamodel, (iii.) de�nes the type of the OCL
elements, (iv.) creates the AST and (v.) checks the syntax of the expression. The built AST
has to be visited recursively the EcoreSwich class is used. It is a switch which can manage the
inheritance hierarchy of the model. Every OCL element is associated with a method that can
be overridden by the code of mapping. The doSwitch can be called recursively so the expression
could be translated by it and the result is the SMT code of expression.

Resolution of the SMT Output

The interpretation of the generated SMT output is di�cult because the structure of the output
code is complex. The Z3 produces function compositions, so the and connection of the generated
functions is given. Every function can contain other function de�nitions, branches, logical or
numeric values and objects. These structure has to be resolved recursively and the solutions
should be evaluated. The functions are resolved and the new partial snapshot is built during the
resolving.

1: referring
declaration declaration

isType!Event

definition
isType!Event

interpretes

utility definition

isType!Event
!556 utility definition

k!552

call 1 call 2

result =
e1 ⇒ true
e5 ⇒ true

else ⇒ false

result = …

result =
fun1(fun2(x))

isType!Event(e1)=?

2: resolve
definition

3: resolve
function
composition

4: resolve
value

Model simulation

Figure 8.4: Example of the structure of the SMT output

Example 20 In Figure 8.4 an example is shown. The value of the isType!Event(e1) is searched.
The steps of the resolvation are:

1. The referring declaration of the function has to be searched.

2. The declaration has a de�nition which have to be searched and resolved.

3. The de�nition contains a function composition which has to resolved. In the example
function k!552 has to be resolved �rst.

4. With the result of the k!552 function must be parametrized the isTypeEvent!556 function
and it has to resolve the value, which returns with the value of the isType!Event(e1). It can
be true or false.

60

Figure 8.5: Traceability example

8.1.2 Traceability

The traceability is the ability to follow the lifecycle of elements, models and requirements in both
a backward and forward direction.

During the mapping process, the constraints and the metamodel do not change. Only the objects
of instance model are able to change, which changes are in�uenced by the constraints. So the
traceability of the instance model have to be solved. The possible changes are the following:

� The missing attribute value of the objects are �lled out.

� The objects which type is abstract or interface are concretised to real type.

� New objects are added to the model.

� New references are added.

The tool gives name to the instance objects automatically when the object is created. The
mapping and the Z3 do not change these names. This can be exploited when the mapping of
instance model is completed by the Z3 from the resolved output SMT code, the initial instance
model is not completed, the new one is built. This solution is usable because the existing objects
can be identi�ed with their names. Every objects which exists in the initial model has di�erent
name is granted by the tool. The new objects get name during the process of creating a new
partial snapshot which names are unique too. The attributes are identi�ed with their container
objects and the references can be identi�ed with the objects of their ends.

Example 21 In Figure 8.5 a mini initial and completed partial snapshot of the LGV case study
is presented. The compliance of the objects are symbolized by arrows. There are three new piece
of information are de�ned by OCL constraints and multiplicities of references:

� Position of pallet are �lled out. (OCL constraint)

� The position of the station is added. (multiplicity of the position reference) It is given an
individual name.

� The new position attributes are �lled. (OCL constraint)

61

Output instance model

The output partial snapshot is a special instance model, which is more permissive than the EMF
instance model. Cases which is irregular and invalid for EMF can be created so the user can see
it. If the instance model is complete and regular it can be transformed to EMF instance model.
The produced output can be the input of other programs and components.

Visualization

The visualization is very important because the result can be validated by the user. Di�erent
type of representations is realized because they can have di�erent goals. Zest can be used if
during the work feedback would be seen. yEd give a nicer solution which the user can edit in the
yEd editor that contains a lot of built-in arrangement algorithm. Figures of the model can be
saved and used for presentation, documentation. The EMF advantages is the Eclipse modelling
edition contains it. The advantage of the tool is to treat of visualisation components are isolated,
only the output is transformed to the language of the installed visualization plugins.

8.2 Validation of Approach

8.2.1 Experiments and runtime performance

At the end of the work we evaluated the runtime performance of the presented implementation
and we also tried to identify the practical boundaries of the approach.

The runtime tasks of the framework can be separated into the following four group:

� the transformation to the SMT language,

� the execution of the Z3 tool,

� the resolution of the output SMT code and

� the visualisation.

Our analysis shows that the runtime of transformation is proportional with the size of models
and the number of constraints, the resolving of the output SMT code is proportional with the size
of the parsed SMT output model and �nally the runtime of the visualization code generator is
proportional with the size of output partial snapshot. We can conclude, that the runtime of these
components is predictable, only the time of the execution of the Z3 step cannot be approximated.

We tried to analyse the in�uence of input speci�cation changes to the runtime performance of
Z3. We concluded that the complexity (and also the execution time) cannot have a lower bound,
because also small input models can be transformed to a very complex, di�cult axiom set on
which the theorem prover fails to execute in a reasonable time.

Using an average personal computer, we identi�ed, that the maximum number of nodes in the
model can be around 160 000, but using more model elements results in unreasonable execution
time.

We executed iterative tests using input instance models, which size was increased in every step.
In this test the number of elements is grown by 1 from 1 to 100. The test sequence was executed
three times and an average was calculated based on the results.

62

0,00

5,00

10,00

15,00

20,00

25,00

30,00

35,00

40,00

45,00

50,00

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78 81 84 87 90 93 96 99

R
u

n
ti

m
e

 in
 s

e
co

n
d

Number of the objects

3

2

1

Average

Figure 8.6: Performance test with models which contains maximum 100 elements

In Figure 8.6 the results of the test execution are presented. On the individual sequences there are
some peaks which could be caused by di�erent external e�ect, e.g. the processor of the computer
is busy, but the average runtimes are under 10 seconds.

0

2

4

6

8

10

12

14

16

18

20

R
u

n
ti

m
e

 in
 s

e
co

n
d

Number of objects

Figure 8.7: Performance test with models which contains maximum 45000 elements

The second test is presented in Figure 8.7. Here the maximum number of objects is grown to
about 45000 and the number of the objects was increased exponentially. The diagram shows
(blue line) that bigger number of elements do not cause signi�cant performance degradation.

Our conclusion is that the runtime performance of the tool is in�uenced by the size of metamodel,
the number of constraints and the complexity of the solved problem. The performance test of
Z3 shows that the runtime is in�uenced mostly by the complexity of the problem because the
growing of the number of elements does not cause signi�cant performance degradation.

8.2.2 Testing

Test method

We executed functional test on the implemented tool and performed systematic tests. The com-
piled set of test cases covers every implemented function.

63

The test can be divided in three phases. In the 1st phase the consistency of the model, model
query languages and the generated SMT code are examined, in the 2nd phase the consistency of
the SMT code and the generated model are checked and �nally in the 3rd phase the consistency
of the initial and completed partial snapshot is elaborated.

The steps of the mapping can not be fully isolated, there are dependencies between them, so
the test cases are not fully independent. For example the mapping of a class can be tested
alone but classes have to created in order to test the mapping of references or attributes and
also the mapping of the model query languages can not be done without the mapping of the
entire metamodel. The mapping of the base elements are tested isolated and afterwards we
systematically executed even more complex test along the dependency hierarchy.

Test case example

PlacedObject StationplacedOn
1..*

Figure 8.8: Upper bound mulitlic-
ity test case

Due to the large number of the test cases only one test case is
introduced. The selected case is the testing of the multiplicity of
references, accurately the upper bound of the reference is tested
which value is 1. In the Figure8.8 the example model is shown:
there are a PlacedObject and a Station class which is connected
by the placedOn reference which upper bound is 1.

The elements of the expected output:

� De�nition of the Object type

� De�nition of the PlacedObject class

� De�nition of the Station class

� Type hierarchy of the classes

� De�nition of the PlacedOn reference

� Declaration of the PlacedOn reference

� Mapping of the upper bound of the reference

In the following table the generated and expected results are compared. There is no di�erence
between them.

64

Expected code Generated code
(declare-sort Object) (declare-sort Object)

(declare-fun isType!PlacedObject (Object) Bool) (declare-fun isType!PlacedObject (Object) Bool)

(declare-fun isType!Station (Object) Bool) (declare-fun isType!Station (Object) Bool)

(assert (forall ((o Object)) (or(and (isType!

PlacedObject o)(not(isType!Station o))) (and(

not(isType!PlacedObject o))(isType!Station o)

))))

(assert (forall ((o Object)) (or(and (isType!

PlacedObject o)(not(isType!Station o))) (and(

not(isType!PlacedObject o))(isType!Station o)

))))

(declare-fun PlacedObject!placedOn (Object

Object) Bool)

(declare-fun PlacedObject!placedOn (Object

Object) Bool)

(assert (forall ((o Object) (t Object)) (=> (

PlacedObject!placedOn o t) (and (isType!

PlacedObject o) (isType!Station t)))))

(assert (forall ((o Object) (t Object)) (=> (

PlacedObject!placedOn o t) (and (isType!

PlacedObject o) (isType!Station t)))))

(assert (forall ((src Object) (trg0 Object) (

trg1 Object)) (=> (and (PlacedObject!placedOn

src trg0) (PlacedObject!placedOn src trg1))

(= trg0 trg1))))

(assert (forall ((src Object) (trg0 Object) (

trg1 Object)) (=> (and (PlacedObject!placedOn

src trg0) (PlacedObject!placedOn src trg1))

(= trg0 trg1))))

To test the second phase an PlacedObject and a Station is created which are connected by
the placedOn reference which model is shown in Figure 8.9. The created instance model is
transformed to SMT, then the SMT code is solved and �nally the result is parsed and the new
instance model is created has the same structure than the initial model.

Figure 8.9: The second phase of the testing

Experiences

The test cases are run repeatedly in the di�erent phases of the implementation process. During
the last running all the test cases are run correctly. The implemented tool was demonstrated
successfully in di�erent industrial projects and it performed well in the di�erent scenarios.

65

Chapter 9

Conclusions and Future Work

Scienti�c results This report summarise a new DSL validation approach where we pro-
posed logic based validation method. This approach was applied on EMF formalism and can
be generalised to other metamodeling techniques (like Meta-Object Facility (MOF)[40]). In the
case of failed validation a counterexample is generated to show the reason of the inconsis-
tency. In addition to EMF metamodel we presented themapping of OCL constraints EMF-

IncQuery graph patterns to �rst order logic formulae. To handle complex expressions of
the model query languages we used sophisticated approximation techniques. In order ensure
the decidability of the generated problem we used further approximations to map the input into
e�ectively propositional logic which is a decidable fragment of �rst order logic. We proposed
a work�ow to de�ne a validation process based on the independent validation tasks to en-
sure coverage of the whole DSL. The development of the framework supports the ongoing

research in the industrial projects, and we adapted the approach to solve di�erent validation
tasks proposed in the case studies. Finally we developed the back annotation technology to
support valid instance model generation.

Engineering results Our validation approach was implemented in a framework that covers the
whole validation process. This framework was built on extendable transformation modules.
Each module responsible for mapping of one DSL artifact, and additional modules can be added
to the framework. This framework was integrated into the Eclipse which is one of the most
popular of industrial relevant DSL development tools. To deal with standardised SMT language
an XText-based API was constructed which is able to parse and query the logic structures
of the Z3. We have created a re�ective editor for Partial Snapshots to represent more
general instance models. Those partial snapshots are compatible with the EMF instance models
because we implemented a bidirectional transformation between them so result of the model
generation part of our framework is a fully functional standard instance model. In additionally
our implementation supports two visualisation technologies: (i) Eclipse integrated Zest based
model view, (ii) and a yFiles based graph presentation approach. (Actually most of the �gures
of this report were generated in this way.)

Dissemination results Our mapping method has been successfully demonstrated during the
Trans-IMA industrial project in the avionics domain. Part of this contribution was published[46]
in the IEEE/ACM 16th International Conference on Model Driven Engineering, Languages and
Systems (MODELS 2013) conference which is won Springer Best Paper Award. The framework
was also applied in the R3-COP ARTEMIS project where the tool was used for automated
model-based test generation and was successfully demonstrated in the �nal review meeting.

66

9.1 Future Work

The �rst advancement option is the development of more sophisticated validation campaigns
that consists of multiple validation and model generation executions. Those campaigns can be
used to enumerate di�erent model results, or search models that maximize the value of a model
metric given as input. The second option can be used to generate models with maximal boundary
values for example for robustness tests.

The second goal of our future work is to extend our DSL validation process to further aspects
of the language design. For example, to avoid inconsistency in the query-based de�nition view
models (similar concepts as views in relational databases).

It would also be interesting to compare our framework to other methods that executes reasoning
tasks or consistency checks over models, in particulary to di�erent ontologies[56].

Finally, to investigate the applicability of my approach in context with the new DO-178C cer-
ti�cation standard [39] for civil avionics software development that accepts formal validation as
certi�cation artifacts.

67

Bibliography

[1] CVC4, May 2013. http://cvc4.cs.nyu.edu/web/.

[2] Sugar, October 2013. http://bach.istc.kobe-u.ac.jp/sugar/.

[3] The Satis�ability Modulo Theories Library, July 2013. http://www.smtlib.org/.

[4] The Yices SMT Solver, January 2013. http://yices.csl.sri.com/index.shtml.

[5] Kyriakos Anastasakis, Behzad Bordbar, Geri Georg, and Indrakshi Ray. On challenges of
model transformation from UML to Alloy. Softw. Syst. Model., 9(1):69�86, 2010.

[6] ARINC - Aeronautical Radio, Incorporated. A653 - Avionics Application Software Standard
Interface.

[7] AUTOSAR Consortium. The AUTOSAR Standard. http://www.autosar.org/.

[8] B. Beckert, U. Keller, and P. H. Schmitt. Translating the Object Constraint Language into
�rst-order predicate logic. In Proc of the VERIFY, Workshop at Federated Logic Conferences
(FLoC), Copenhagen, Denmark, 2002.

[9] Gábor Bergmann, Ákos Horváth, István Ráth, Dániel Varró, András Balogh, Zoltán Balogh,
and András Ökrös. Incremental Evaluation of Model Queries over EMF Models. In MOD-
ELS'10, volume 6395 of LNCS. Springer, 2010.

[10] Gábor Bergmann, Zoltán Ujhelyi, István Ráth, and Dániel Varró. A graph query language
for emf models. In Jordi Cabot and Eelco Visser, editors, Fourth International Conference
on Theory and Practice of Model Transformations, volume 6707 of LNCS, pages 167�182.
Springer, June 2011.

[11] A. D. Brucker and B. Wol�. The HOL-OCL tool, 2007. http://www.brucker.ch/.

[12] Fabian Büttner and Jordi Cabot. Lightweight string reasoning for OCL. In Antonio Valle-
cillo, Juha-Pekka Tolvanen, Ekkart Kindler, Harald Störrle, and Dimitrios S. Kolovos, edi-
tors, Modelling Foundations and Applications - 8th European Conference, ECMFA 2012,
Lyngby, Denmark, July 2-5, 2012. Proceedings, volume 7349 of LNCS, pages 244�258.
Springer, 2012.

[13] Fabian Büttner, Marina Egea, and Jordi Cabot. On verifying ATL transformations using
'o�-the-shelf' SMT solvers. In Proc. of the 15th Int. Conf. on Model Driven Engineering
Languages and Systems, volume 7590 of LNCS, 2012.

[14] Fabian Büttner, Marina Egea, Jordi Cabot, and Martin Gogolla. Veri�cation of ATL trans-
formations using transformation models and model �nders. In 14th International Conference
on Formal Engineering Methods,ICFEM'12, pages 198�213. LNCS 7635, Springer, 2012.

68

http://cvc4.cs.nyu.edu/web/
http://bach.istc.kobe-u.ac.jp/sugar/
http://www.smtlib.org/
http://yices.csl.sri.com/index.shtml
http://www.autosar.org/
http://www.brucker.ch/

[15] Jordi Cabot, Robert Clarisó, Esther Guerra, and Juan de Lara. A UML/OCL framework
for the analysis of graph transformation rules. Softw. Syst. Model., 9(3):335�357, 2010.

[16] Jordi Cabot, Robert Clarisó, and Daniel Riera. UMLtoCSP: a tool for the formal veri�cation
of UML/OCL models using constraint programming. In Proc. of the 22nd IEEE/ACM
International Conference on Automated Software Engineering (ASE'07), pages 547�548,
New York, NY, USA, 2007. ACM.

[17] Jordi Cabot, Robert Clarisó, and Daniel Riera. First international conference on software
testing veri�cation and validation. In Veri�cation of UML/OCL Class Diagrams using
Constraint Programming, pages 73�80. IEEE, 2008.

[18] M. Clavel and M. Egea. The ITP/OCL tool, 2008. http://maude.sip.ucm.es/itp/ocl/.

[19] Manuel Clavel, Marina Egea, and Miguel Angel García de Dios. Checking unsatis�ability
for OCL constraints. ECEASST, 24, 2009.

[20] Leonardo De Moura and Nikolaj Bjørner. Z3: an e�cient SMT solver. In Proceedings of the
Theory and practice of software, 14th international conference on Tools and algorithms for
the construction and analysis of systems, TACAS'08/ETAPS'08, pages 337�340. Springer-
Verlag, 2008.

[21] The Eclipse Project. MDT OCL. http://www.eclipse.org/modeling/mdt/?project=ocl.

[22] Eclipsepedia. MDT/OCLinEcore, 2013. http://wiki.eclipse.org/MDT/OCLinEcorel.

[23] Florian Lapschies. SONOLAR. http://www.informatik.uni-bremen.de/~florian/

sonolar/.

[24] Miguel Garcia. How to process ocl abstract syntax trees. 2007.

[25] Yeting Ge and Leonardo Moura. Complete instantiation for quanti�ed formulas in satis-
�abiliby modulo theories. In Ahmed Bouajjani and Oded Maler, editors, Computer Aided
Veri�cation, volume 5643 of Lecture Notes in Computer Science, pages 306�320. Springer
Berlin Heidelberg, 2009.

[26] Martin Gogolla, Jörn Bohling, and Mark Richters. Validating UML and OCL models in
USE by automatic snapshot generation. Softw. Syst. Model., 4(4):386�398, 2005.

[27] Hans Grönniger, Jan Oliver Ringert, and Bernhard Rumpe. System model-based de�nition
of modeling language semantics. In Formal Techniques for Distributed Systems, volume 5522
of LNCS, pages 152�166. Springer, 2009.

[28] Ábel Hegedüs, Ákos Horváth, István Ráth, and Dániel Varró. Query-driven soft intercon-
nection of EMF models. In Proc of the Int. Conf on Model Driven Engineering Languages
and Systems, volume LNCS 7590, pages 134�150, 2012.

[29] Ethan K. Jackson, Tihamer Levendovszky, and Daniel Balasubramanian. Reasoning about
metamodeling with formal speci�cations and automatic proofs. In Proc. of the 14th Int.
Conf. on Model Driven Engineering Languages and Systems, volume 6981 of LNCS, pages
653�667, 2011.

[30] Ethan K. Jackson, Wolfram Schulte, and Nikolaj Bjørner. Detecting speci�cation errors in
declarative languages with constraints. In Proc. of the 15th Int. Conf. on Model Driven
Engineering Languages and Systems, volume 7590 of LNCS, pages 399�414, 2012.

69

http://maude.sip.ucm.es/itp/ocl/
http://www.eclipse.org/modeling/mdt/?project=ocl
http://wiki.eclipse.org/MDT/OCLinEcorel.
http://www.informatik.uni-bremen.de/~florian/sonolar/
http://www.informatik.uni-bremen.de/~florian/sonolar/

[31] Susmit Jha, Rhishikesh Limaye, and Sanjit Seshia. Beaver: Engineering an e�cient smt
solver for bit-vector arithmetic. In Computer Aided Veri�cation, pages 668�674. 2009.

[32] Mirco Kuhlmann and Martin Gogolla. Strengthening SAT-based validation of UML/OCL
models by representing collections as relations. In European Conf. on Modelling Foundations
and Applications, volume 7349 of LNCS, pages 32�48, 2012.

[33] Mirco Kuhlmann, Lars Hamann, and Martin Gogolla. Extensive validation of OCL models
by integrating SAT solving into use. In TOOLS'11 - Objects, Models, Components and
Patterns, volume 6705 of LNCS, pages 290�306, 2011.

[34] Laboratoire de Recherche en Informatique, Inria Saclay Ile-de-France and CNRS. Alt-Ergo
SMT Solver, October 2013. http://alt-ergo.ocamlpro.com/.

[35] Levi Lucio, Bruno Barroca, and Vasco Amaral. A technique for automatic validation of
model transformations. In Proc. of the 13th Int. Conf. on Model Driven Engineering Lan-
guages and Systems, volume 6394 of LNCS, pages 136�150, 2010.

[36] Mathworks. Matlab Simulink - Simulation and Model-Based Design. http://www.

mathworks.com/products/simulink/.

[37] Niklas Eén, Niklas Sörensson. MiniSAT. http://minisat.se/.

[38] The Object Management Group. Object Constraint Language, v2.0, May 2006. http:

//www.omg.org/spec/OCL/2.0/.

[39] Special C. of RTCA. DO-178C, software considerations in airborne systems and equipment
certi�cation, 2011.

[40] omg. Meta Object Facility (MOF) Core Speci�cation Version 2.0, 2006.

[41] Oszkár Semeráth. Validation of Domain Speci�c Languages, 2013. Technical Report, https:
//incquery.net/publications/dslvalid.

[42] Ruzica Piskac, Leonardo de Moura, and Nikolaj Bjorner. Deciding e�ectively propositional
logic with equality, 2008. Microsoft Research, MSR-TR-2008-181 Technical Report.

[43] Anna Queralt, Alessandro Artale, Diego Calvanese, and Ernest Teniente. OCL-Lite: Finite
reasoning on UML/OCL conceptual schemas. Data Knowl. Eng., 73:1�22, 2012.

[44] István Ráth, Ábel Hegedüs, and Dániel Varró. Derived features for EMF by integrating
advanced model queries. In Antonio Vallecillo, Juha-Pekka Tolvanen, Ekkart Kindler, Harald
Störrle, and Dimitris Kolovos, editors,Modelling Foundations and Applications, volume 7349
of Lecture Notes in Computer Science, pages 102�117. Springer Berlin / Heidelberg, 2012.

[45] SAE - Radio Technical Commission for Aeronautic. Architecture Analysis & Design Lan-
guage (AADL) v2, AS-5506A, SAE International, 2009.

[46] Oszkár Semeráth, Ákos Horváth, and Dániel Varró. Validation of derived features and
well-formedness constraints in dsls. In Ana Moreira, Bernhard Schätz, Je� Gray, Antonio
Vallecillo, and Peter Clarke, editors,Model-Driven Engineering Languages and Systems, vol-
ume 8107 of Lecture Notes in Computer Science, pages 538�554. Springer Berlin Heidelberg,
2013.

[47] Sagar Sen, Jean-Marie Mottu, Massimo Tisi, and Jordi Cabot. Using models of partial
knowledge to test model transformations. In 5th Int. Conf. on Theory and Practice of
Model Transformations, volume 7307 of LNCS, pages 24�39, 2012.

70

http://alt-ergo.ocamlpro.com/
http://www.mathworks.com/products/simulink/
http://www.mathworks.com/products/simulink/
http://minisat.se/
http://www.omg.org/spec/OCL/2.0/
http://www.omg.org/spec/OCL/2.0/
https://incquery.net/publications/dslvalid
https://incquery.net/publications/dslvalid

[48] Mathias Soeken, Robert Wille, Mirco Kuhlmann, Martin Gogolla, and Rolf Drechsler. Ver-
ifying UML/OCL models using boolean satis�ability. In Design, Automation and Test in
Europe, (DATE'10), pages 1341�1344. IEEE, 2010.

[49] Technical University of Catalonia. Barcelogic for SMT, November 2005. http://www.lsi.
upc.edu/~oliveras/bclt-main.html.

[50] The Eclipse Project. Eclipse Modeling Framework. http://www.eclipse.org/emf.

[51] The Eclipse Project. Xtend. http://www.eclipse.org/xtend/.

[52] The Eclipse Project. Xtext. http://www.eclipse.org/Xtext/.

[53] The Eclipse Project. Zest. http://www.eclipse.org/gef/zest/.

[54] Thomas Dillig, Isil Dillig, Ken McMillan, Alex Aiken. Mistral SMT Solver, December 2012.
http://www.cs.wm.edu/~tdillig/mistral/index.html.

[55] Dániel Varró and András Balogh. The Model Transformation Language of the VIATRA2
Framework. Science of Computer Programming, 68(3):214�234, October 2007.

[56] Tobias Walter, Fernando Silva Parreiras, and Ste�en Staab. Ontodsl: An ontology-based
framework for domain-speci�c languages. In ACM/IEEE 12th International Conference on
Model Driven Engineering Languages and Systems, 12th International Conference, MOD-
ELS 2009, volume 5795 of LNCS, pages 408�422. Springer, 2009.

[57] E. D. Willink. An extensible OCL virtual machine and code generator. In Proc. of the 12th
Workshop on OCL and Textual Modelling, pages 13�18. ACM, 2012.

[58] Jessica Winkelmann, Gabriele Taentzer, Karsten Ehrig, and Jochen M. Küster. Translation
of restricted OCL constraints into graph constraints for generating meta model instances
by graph grammars. ENTCS, 211(0):159 � 170, 2008. Proc. of the 5th Int. Workshop on
Graph Transformation and Visual Modeling Techniques (GT-VMT'06).

[59] yEd Graph Editor. yED. http://www.yworks.com/en/products_yed_about.html.

71

http://www.lsi.upc.edu/~oliveras/bclt-main.html
http://www.lsi.upc.edu/~oliveras/bclt-main.html
http://www.eclipse.org/emf
http://www.eclipse.org/xtend/
http://www.eclipse.org/Xtext/
http://www.eclipse.org/gef/zest/
http://www.cs.wm.edu/~tdillig/mistral/index.html
http://www.yworks.com/en/products_yed_about.html

	Kivonat
	Abstract
	Introduction
	Problem statement
	Research Context
	Objectives
	Contribution
	Structure of the Report

	Motivating Scenarios and Requirements
	DSL Development of Trans-IMA
	Test Generation for R3-Cop

	Preliminaries
	Modeling, Models
	Metamodel
	Instance Model

	Model Query Languages
	Object Constraint Language
	EMF-IncQuery Graph Patterns
	Derived Feature

	Mathematical Logic
	First Order Logic
	Prover and Solver Techniques

	Related work

	Overview of the Approach
	Functional View of the Approach
	Input Configuration
	Validation Tasks
	General Reasoning
	Completeness and Ambiguity Check of Derived Features

	Subsumability Check
	Model Generation
	Consistency Check
	Partial Snapshot
	Search Parameters

	DSL validation Case Study in Avionics Domain
	DSL Validation Workflow
	Introduction to the Domain
	Derived Type Validation
	Derived Reference Validation
	Constraint Check

	Model Generation Case Study in Laser Guided Vehicle Domain
	Model Generation Workflow
	Introduction
	The Model
	Scenario 1: Events
	Description
	Completed Instance Model

	Scenario 2: Layout
	Description
	Partial Snapshot
	Completed Instance Model

	Scenario 3: The Distance Zones
	Description
	Partial Snapshot
	Completed Instance Model

	Mapping DSLs to FOL Formulae
	Strategy of the Transformation
	Structure of the Transformation
	Approximation techniques

	EMF metamodel transformation
	Objects
	Types
	Type hierarchy
	Reference
	Multiplicity
	Inverse edges
	Containment
	Attributes

	EMF instance model transformation
	Instance object
	Type
	Reference
	Attributes

	OCL constraint transformation
	Mapping

	EMF-IncQuery Graph Pattern Transformation
	Structure of the Patterns
	Constraint Transformation
	Patterns as DSL elements

	Transformation of the Reasoning Task

	Implementation
	Architecture
	Details
	Traceability

	Validation of Approach
	Experiments and runtime performance
	Testing

	Conclusions and Future Work
	Future Work

	Bibliography

