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Kivonat

A különböző szoftveres megoldások egyre több feladatot látnak el biztonságkritikus rend-
szerekben. Példaként lehet említeni a gépjárművek kormányműjét, vagy akár a repülőgé-
pek, atomerőművek irányítórendszerét. Ami ezen rendszerekben közös, az egy esetleges
hiba következménye: hatalmas anyagi veszteség, súlyos környezeti kár, vagy akár ember-
életek elvesztése.

Ezen biztonságkritikus szoftverkomponensek egyrészt kritikusak a rendszer működése
szempontjából, másrészt meglehetősen összetettek. A komponensek helyes működését ga-
rantálni kell, ami miatt különféle módszereket lehet bevetni. A tesztelés egy bevett módszer
hibák keresésére, éppen ezért minden, biztonságkritikus rendszerek fejlesztését szabályozó
szabvány elvárja a használatát. Ugyanakkor a tesztelés önmagában a helyességet nem tudja
igazolni. Egy merőben más megközelítés a formális verifikáció, ami a szoftver matematikai
modelljét elemezve ad egy bizonyítást a szoftver helyességére vagy egy ellenpéldát egy hiba
jelenlétének tanúsítására. Egy ellenpélda — egy hibás teszt nyomához hasonlóan — egy
hibához vezető útvonalat ír le a rendszerben, és elemezni lehet a hiba okának feltárása
érdekében. Azonban egy komoly probléma, hogy minél összetettebb a vizsgált rendszer,
annál összetettebb lesz az ellenpélda is, és nehezebb az értelmezése. Egy ipari rendszer
esetén az ellenpélda több száz vagy akár több tízezer utasítást tartalmazhat, amiknek
nagy része irreleváns a hiba elhárításához.

A munkám célja egy olyan módszer kidolgozása, ami képes a hiba helyét megálla-
pítani az ellenpéldákban anélkül, hogy azokat futtatni kéne. A módszer egy irodalomban
ismert algoritmuson alapszik, ami a leggyengébb előfeltétel alapú érvelést használ ellenpél-
dák vizsgálatára. Munkám során továbbfejlesztettem az algoritmust, hogy a hiányosságait
kijavítsam, valamint, hogy képes legyen a biztonságkritikus rendszerek verifikációs sajá-
tosságait kezelni. Az algoritmus eredményét egyéb heurisztikákkal kombinálva a módszer
egy pontszámot rendel a vizsgált szoftver utasításaihoz, ami az adott utasítás hibához való
hozzájárulását jelzi. Ezt követően, a pontszámok értelmezésével a fejlesztő képes megha-
tározni, hogy a vizsgált kód mely kis részében keresse a hiba okát. A módszert C nyelvű
szoftvereken, valamint ipari partnerektől származó PLC kódokon értékelem ki, és hasonlí-
tom össze a hatékonyságát az eredeti algoritmuséval.
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Abstract

Nowadays, different kinds of software are responsible for numerous features in safety-
critical systems. Examples range from the steering mechanism of vehicles to the control
system of airplanes or nuclear powerplants, but what binds them together is the con-
sequences of a potential failure: substantial financial loss, catastrophic environmental
damage, or the loss of human lives.
These safety-critical software components are essential for the correct functionalities of the
system; however, they tend to be quite complex as well. To ensure the correctness of these
components, different measures need to be taken. Testing is an efficient way of finding
errors, and every standard regulating the development of safety-critical systems requires
extensive testing. However, testing alone cannot prove the absence of errors. On the
other hand, formal verification takes the mathematical model of the software and yields
a mathematical proof of safety; or a counterexample to prove the presence of an error. A
counterexample — similarly to a trace of a failing test — describes a path in the system
leading to a failure and can be analyzed to find the cause of the issue. However, the more
complex the system is, the more complex and difficult to understand the counterexample.
In the case of industrial code, the counterexample will contain hundreds or even tens of
thousands of lines of instructions, most of which are possibly irrelevant to understanding
the cause of the underlying issue.
The goal of this paper is to present a method for localizing faults in counterexamples
without executing them. The method is based on a novel algorithm from the literature
that uses a weakest precondition-based reasoning to analyze the counterexample for the
cause of the failure. In my work, I improved the algorithm to combat its shortcomings
and for it to be able to handle the peculiarities of safety-critical software. I combined
the algorithm with other heuristics to assign a score to each statement in the program
that indicates that instruction’s contribution to the error. By interpreting the scores, the
developer can identify a small portion of the code to check for the cause of the failure.
The method is evaluated on examples of C code as well as on industrial PLC code, and
the result will be compared to the original algorithm.

ii



Chapter 1

Introduction

Nowadays, different kinds of software-driven gadgets are becoming part of our everyday
lives. Almost everyone carries a smartphone in their pocket, different types of wearable
electronics are on the rise, and even simple household appliances have gained smart fea-
tures. The same phenomenon of heavy reliance on software can be observed in the industry
as well, as software-driven solutions tend to be more cost-effective than traditional electro-
mechanical solutions. It follows that the number of software-driven components heavily
increased in the so-called safety-critical systems as well. Examples for safety-critical sys-
tems range from the steering mechanism of vehicles to the control system of airplanes or
nuclear power plants, but what binds them together is the consequences of a potential fail-
ure: substantial financial loss, catastrophic environmental damage, or the loss of human
lives.
A typical example of an error leading to a catastrophe is the failed launch of Ariane 5
[22], the rocket of the European Space Agency (ESA). After years of development costing
about 7 billion dollars, Ariane 5 was supposed to launch on the 4th of June 1996. However,
the rocket self-destructed only after 37 seconds after launch. After extensive investiga-
tion, the report stated that the missile was destroyed due to a software bug. One of the
components stored the rocket’s velocity as a 64-bit floating-point number, while another
stored it as a 16-bit integer (a legacy from Ariane 4). These components were part of the
navigation subsystem. As the conversion between these two formats failed, the rocket lost
its ability to navigate, deviated from its designated path, and finally self-destructed to
avoid crashing back down on Earth. In the accident, half a billion-dollar worth of cargo
was destroyed. However, should this kind of issue be in the reactor’s control system of a
nuclear powerplant, the result could have been another Chernobyl.
The correct behavior of safety-critical components is of utmost importance. To this end,
different measures must be taken to identify errors in the system and to prove its correct-
ness.
Testing is an efficient way of finding errors, and every standard regulating the development
of safety-critical systems requires extensive testing. However, testing alone cannot prove
the absence of errors, only their presence.
Another completely different approach is formal verification that takes the mathematical
model of the software and yields a mathematical proof of safety. Formal verification is a
computationally demanding task: it takes all possible states of the software into account,
and even the simplest programs can have an immense or even infinite state space. There
have been numerous breakthroughs during the past two decades in the field of formal
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verification and verification methods, becoming part of the development cycle of safety-
critical software systems more and more; some standards even require it.
However, there are still challenges when it comes to the application of formal verification.
The result of a formal method is either proof that unsafe behavior is unreachable or a
counterexample. A counterexample — similarly to a trace of a failing test — describes
a path in the system leading to a failure and can be analyzed to find the cause of the
issue. Unfortunately, the more complex the system is, the more complex and difficult to
understand the counterexample will be. In the case of industrial code, the counterexample
will contain hundreds or even tens of thousands of lines of instructions, most of which are
possibly irrelevant to understanding the cause of the underlying issue.
The goal of this paper is to present a method for localizing faults in counterexamples
without concretely executing them. The method is based on a novel algorithm from the
literature that uses a weakest precondition-based reasoning to analyze the counterexample
for the cause of the failure. In my work, I improved the algorithm to combat its shortcom-
ings and I extended the approach to handle the peculiarities of safety-critical software. I
combined the algorithm with various heuristics to assign a score to each statement in the
program that indicates that instruction’s contribution to the error. By interpreting the
scores, the developer can identify a small part of the code to check for the cause of the
failure, or even an IDE support can be provided based on the approach.
The proposed method is evaluated via a custom implementation in the open-source ver-
ification framework Theta on examples of C code and industrial PLC code, provided by
our industrial partner CERN. The results are compared to the original algorithm.
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Chapter 2

Background

This chapter presents the necessary background to understand my work, including the
formal and algorithmic background.

2.1 First-order logic

Although mathematical logic has several branches, this paper focuses on first-order logic
(FOL) [14]. First-order logic has vast expressive power; however, the satisfiability of a
first-order formula is generally undecidable algorithmically. Nonetheless, there are specific
theories [13] (theory of integer arithmetic, theory of arrays, or theory of bit-vectors, for
example) that give interpretation to the symbols of a first-order formula, thus loosening
the underlying problem and making the satisfiability problem decidable (under certain
circumstances).
An SMT-problem (Satisfiability Modulo Theory) [8] is a decision problem for logical for-
mulas, in which, when given a first-order formula and the theories used in it, a solver can
decide whether there exists a substitution of variables in the formula to concrete values
so, after the substitution, the formula evaluates to true; or the formula is unsatisfiable.
An assignment is a pair in which the first component is a symbol, and the second is an
element of the domain of the symbol, also called the value of the symbol.
The model of a first-order formula is a set of assignments, where there are no two assign-
ments for the same symbol, there is an assignment for each symbol, and after substituting
each symbol for their value, the formula evaluates to true.
A first-order formula is satisfiable if it has at least one model, while a first-order formula
is unsatisfiable if it has no model satisfying it.

Example 2.1. Given a first-order formula (x < 5 ∧ x ≥ 3 ∧ y > 7) where x and y
are symbols, and their domain is the set of integers (x, y ∈ Z). An example of an
assignment is (x = 4). An example model is {(x = 4); (y = 8)}, as substituting these
values into the formula, it evaluates to true: (4 < 5 ∧ 4 ≥ 3 ∧ 8 > 7) = ⊤. As there
exists a model, the formula is satisfiable. It is worth to be noted that multiple models
may exist. For example {(x = 3); (y = 8)} is also a model of the formula.
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If the formula is (4 < x ∧ x < 5), where x, y ∈ Z, then the formula is unsatisfiable,
as there is no integer between 4 and 5. However, if x, y ∈ R then it is satisfiable as
{(x = 4.5)} satisfies it.

Specialized software, so-called SMT solvers [30], are developed to solve SMT problems.
Each SMT solver tends to use a different approach and excels in solving formulas efficiently
using a unique set of theories (linear arithmetics, non-linear arithmetics, arrays, or bit-
vectors, among others).
SMT solvers accept the SMT-problem in Conjunctive Normal Form (CNF) where the
conjuncts are also called assertions.
Let the F = F1 ∧ F2 ∧ ... ∧ Fn SMT-problem be unsatisfiable. The unsatisfiable core of
F is UC ⊆ {F1; F2; ...; Fn} subset of the assertions making up F given that the SMT-
problem constructed with the elements of UC as assertions is also unsatisfiable. An UC
unsatisfiable core of F is also a minimal unsatisfiable core of F if every proper subset of
UC is satisfiable as an SMT problem. It is worth noting that SMT solvers are capable
of calculating the unsatisfiable core of SMT-problems; however the cores are usually not
minimal [26].

Example 2.2. Given a first-order formula (x < 5 ∧ x > 4 ∧ y > 7) where x, y ∈ Z.
The unsatisfiable core UC of the formula is {(x < 5); (x > 4)} as the first-order
formula (x < 5 ∧ x > 4) is unsatisfiable. UC is also a minimal unsatisfiable core, as
both (x < 5) and (x > 4) is satisfiable on its own.

It is worth to be noted that {(x < 5); (x > 4); (y > 7)} is also an unsatisfiable core,
but not minimal as removing (y > 7) leads to an unsatisfiable proper subset.

2.2 Formal representation of programs

This section presents a formal representation of programs upon which the formal verifica-
tion and fault localization methods are based.

2.2.1 Control Flow Automata

Computer programs can appear in multiple different formats, for example, in the form
of source code. It is easy to read and understand, while on the other hand, the binary
created from the source code is not (easily) readable or understandable by a developer,
but a computer can execute it without problems. Formal representation is needed to be
created from programs to support the formal verification of computer programs.
One of the representations mentioned above is the Control Flow Automata (CFA) [10].
The CFA is a (V, L, l0, E) tuple, where:

• V = {v0, v1, ...} is the set of variables that are present in the program. Each vi ∈ V
has a Dvi domain.

• L = {l0, l1, ...} is the set of control locations. It can be interpreted as the possible
values of the program counter.

• l0 ∈ L is the initial location, which is active at the start of the program.
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• E ⊆ L × Ops × L is the set of transitions, where L is the set of control locations,
and Ops is the set of operations. A transition is a directed edge between two control
locations, one operation (or statement) labeling each of them. An operation can be:

– vi = expr: A deterministic assignment of a variable, where the value of the
right-hand side expression expr becomes the value of the left-hand-side variable
vi ∈ V .

– havoc vi: A non-deterministic assignment of a variable, where the value of
the variable vi ∈ V can be anything valid based in its domain Dvi . Non-
deterministic assignments are useful for modeling data coming from the user or
other programs.

– [cond]: A guard; a transition with a guard can only be executed if the expression
inside the guard evaluated to true.

In summary, a CFA can be represented as a directed graph, where the nodes are the
program locations, and the labeled edges are the transitions between the locations. The
labels stand for the operations during the transition.
The transitions that end in li are said to be the incoming transitions of li, while the
transitions that start in li are said to be the outgoing transitions of li. The location
with no incoming transition is the initial location, while the location with no outgoing
transition is a terminating location. The location li is branching if it has at least two
outgoing transitions; it is non-branching if it is not the initial location, a terminating
location, and it is not a branching location.
Formally, each transition has exactly one operation associated to it. However, CFAs are
often depicted in their compact form. In the compact form, a transition can have multiple
operations associated to it. A compact transition (li, {op1, ..., opn}, l′i) is equivalent with
a set of transitions {(li, op1, l1i ); (l1i , op2, l2i ); ...; (ln−1

i , opn, l′i)}, where l1i , ..., ln−1
i ∈ L are

non-branching locations.

1 void main() {
2 int a, b;
3

4 scanf("%d", &a);
5 scanf("%d", &b);
6

7 while(a != 0) {
8 int c = a;
9 a = b % a;

10 b = c;
11 }
12 }

(a)

l1

l01

l2 l02

l12

l22l3

havoc a

havoc b [a ̸= 0]

c := a

a := b%a

b := c
[a = 0]

(b)

l1

l2

l3

havoc a
havoc b

[a ̸= 0]
c := a
a := b%a
b := c

[a = 0]

(c)

Figure 2.1: The Euclidean algorithm written in C (a), and the corresponding CFA it
simple (b) and in compact form (c)
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Example 2.3. On the left side of Figure 2.1, there is an implementation of the Eu-
clidean algorithm written in C. In the middle is a CFA that corresponds to the pro-
gram on the left. There are two examples of non-deterministic assignment (havoc a
and havoc b), three examples of deterministic assignment (c := a, a := b%a and
b := c), and two examples of a guard ([a ̸= 0] and [a = 0]). The same CFA can be
seen in its compact form on the right-hand side. The compact form can be created
by removing the non-branching locations (highlighted with gray in the middle) and
concatenating the labels on the corresponding transitions.

2.2.2 The state-space of a CFA

Each program has its state-space, which is the set of all the possible, reachable states,
and transitions between them. A state represents a control location and the values of the
variables at a certain point in the operation of the program, while the transitions the oper-
ations the program carries out. One (concrete) state of the program is a (li, d1, d2, ..., dn)
tuple, where:

• li ∈ L is the current location,

• d1, d2, ..., dn are the values of the variables, where di ∈ Dvi , n = |V | and di = vi.

As a CFA can represent a program, we need a method to construct the state-space of the
program from the CFA. Given the current state is (li, d1, d2, ..., dn), li denotes a specific
location in the CFA. Let us take a transition (li, op, l′i) ∈ E leaving this location and
modifying the state of the program. Based on op, the following state is:

• If op is a deterministic assignment vk := expr, then the following state is
(l′i, d1, ..., d′

k, ..., dn), where dk is the value of expr, in which all variables are sub-
stituted by their d1, ..., dk, ..., dn values. In short, the new value of vk becomes the
expression, while the other variables remain unchanged.

• If op is a non-deterministic assignment havoc vk, then the following state is ambigu-
ous. The following state can be (l′i, d1, ..., d′

k, ..., dn), where d′
k ∈ Dvk

. In short the
value of vk can be any value that is possible based on its domain, while all other vari-
ables remain unchanged, so the number of following states is the size of the domain
Dvk

.

• If op is a guard [cond], then the following state is (l′i, d1, ..., dn), if cond evaluates to
true based on the values d1, ..., dn. If it evaluates to false, the transition cannot be
executed. It follows that the construction of a CFA needs to be careful, so for every
state, a transition exists, for which all guards evaluate to true, or else a deadlock
occurs.

Example 2.4. Let the current state be (l1, 3, 4), where l1 is the current location,
while 3 and 4 are the respective values of variables x and y. Moreover, let the tran-
sition be (l1, op, l2). Based on op:

• If op is deterministic assignment x := 2, then the following state is (l2, 2, 4).
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• If op is non-deterministic assignment havoc y, then the set of possible following
states is: {(l2, 3,−∞); ...; (l2, 3, 0); (l2, 3, 1); ...; (l2, 3,∞)}, if Dy = Z.

• If op is guard [y = 4], then the following state is (l2, 3, 4).

• If op is guard [y ̸= 4], then the transition cannot be executed.

The only thing left is to determine the initial state of the state-space. The CFA has
an initial location that can be used, but the value of every variable must also be given.
For example, in programs where uninitialized variables contain memory garbage (usually
that are written in C, C++), there are multiple initial states, and it is non-deterministic,
which one will be chosen. On the other hand, if uninitialized variables are automatically
initialized to a specific value, often 0 (for programs written in a managed environment,
such as Java, C#, or PLC), then there is only one initial state.

2.2.3 Predicate transformer semantics

Edsger Dijkstra first described predicate transformer semantics [21] to define the formal
semantics of imperative programs. They are built on first-order and Hoare logic [18] and
define the semantics of the operations in a program.
A first-order formula satisfies the concrete state (li, d1, d2, ..., dn) of the program if by
replacing the symbols in the formula by their respective values d1, d2, ..., dn from the state
the formula evaluates to true.
When describing predicate transformer semantics, the semantics is defined along the Hoare
triple {P}st{R}, where P, R ⊆ S (sets of states) and st ⊆ S × S (relation on states).
{P}st{R} means that ∀s, s′ ∈ S. (s ∈ P ∧ (s, s′) ∈ op) =⇒ s′ ∈ R. P is called
precondition, R is called postcondition, s is called initial state and s′ is called final state.
An intuitive meaning is that if P holds when st is executed, then R will hold as well.
By definition, P and R are sets of states. However, they can also be defined as first-order
formulas that denote a set of states that satisfy the formula. This latter definition happens
to be more beneficial for reasoning about computer programs.

Example 2.5. Let us have the following Hoare triple: {x = 0} x := x + 1 {x = 1}.
In this instance, the first-order formula x = 0 is the precondition and satisfies all
sates of the program where the value of variable x is 0. Similarly, x = 1 is the
postcondition and satisfies all states of the program where the value of variable x is
1. The statement x := x + 1 binds the precondition and postcondition together. It
denotes a set of operations that all increase the value of variable x by 1.

Given a precondition P ⊆ S and a statement st ⊆ S×S, then their strongest postcondition
[25] R is post(P, st) = R = {s′|∃s. s ∈ P ∧ (s, s′) ∈ st}. R is the strongest postcondition
as ∀R ⊆ S. {P}st{R} =⇒ post(P, st) ⊆ R. If the postcondition is characterised by a
first-order formula, then the strongest postcontition implies any postcondition satisfied by
the final state of any execution of st, for any initial state satisfying P . Based on statement
st:

• post(P, x := expr) = ∃x0. x = expr[x → x0] ∧ P [x → x0], where x0 is a fresh
variable, and expr[x → x0] is expr where all occurence of x is replaced by x0, if st
is deterministic assignment x := expr,
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• post(P, havoc x) = ∃x0. x = P [x → x0], where x0 is a fresh variable if st is non-
deterministic assignment havoc x,

• post(P, [cond]) = P ∧ cond, if st is guard [cond].

Example 2.6. Some examples for strongest postconditions for the precondition x ≥
5 ∧ y ≥ 3. Based on the operation:

• post(x ≥ 5 ∧ y ≥ 3, x := x + y + 10) = ∃x0. x0 ≥ 5 ∧ y ≥ 3 ∧ x := x0 + y + 10

• post(x ≥ 5 ∧ y ≥ 3, havoc x) = ∃x0. x0 ≥ 5 ∧ y ≥ 3

• post(x ≥ 5 ∧ y ≥ 3, [x ≥ 10]) = x ≥ 5 ∧ y ≥ 3 ∧ x ≥ 10 = y ≥ 3 ∧ x ≥ 10

A dual concept is the weakest precondition. Given a postcondition R ⊆ S and a state-
ment st ⊆ S × S, then their weakest (liberal) precondition [7] P is pre(st, R) = P =
{s|∀s′. (s, s′) ∈ st =⇒ s′ ∈ R}. P is the weakest precondition as ∀P ⊆ S. {P}st{R} =⇒
P ⊆ pre(st, R). If the precondition is characterised by a first-order formula, then any pre-
condition satisfying the initial state implies the weakest precondition, for any execution
of st and for any final state satisfying P . Based on statement st:

• pre(x := expr, R) = R[x → expr], where R[x → expr] is R with all occurence of x
is replaced by expr, if st is deterministic assignment x := expr,

• pre(havoc x, R) = ∀x0. R[x → x0], where x0 is a fresh variable if st is non-
deterministic assignment havoc x,

• pre([cond], R) = cond =⇒ R, if st is guard [cond].

Example 2.7. Some examples for weakest preconditions for the poscondition x ≥
5 ∧ y ≥ 3. Based on the operation:

• pre(x := x + y + 10, x ≥ 5 ∧ y ≥ 3) = x + y + 10 ≥ 5 ∧ y ≥ 3

• pre(havoc x, x ≥ 5 ∧ y ≥ 3) = ∀x0. x0 ≥ 5 ∧ y ≥ 3

• pre([x ≥ 10], x ≥ 5 ∧ y ≥ 3) = x ≥ 10 =⇒ (x ≥ 5 ∧ y ≥ 3)

The dualism of the strongest postcondition and weakest (liberal) precondition comes
from the following equivalence and is commonly used for bidirectional software analy-
sis: (post(P, st) =⇒ R) ⇐⇒ (P =⇒ pre(st, R)). This dualism is depicted in Figure
2.2.

2.3 Formal verification

There are numerous algorithms and methods that can check the erroneous behavior in a
program. This section presents model checking as a general approach and Counterexample-
Guided Abstraction Refinement (or CEGAR for short) as an algorithm to help verify
computer software.
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S S

pre(st, R)

P

post(P, st)

R

st

Figure 2.2: An illustration of the strongest postcondition and weakest precondition

2.3.1 Model checking

Given a formal model and a formal requirement (or statement), model checking [5] [17]
will decide whether the given requirement holds for the given model. The model is safe if
mathematical proof exists that the requirement holds for the model. Also, the model is
unsafe if mathematical proof exists that the requirement does not hold for the model. It
is worth noting that the proof of unsafeness is often an example for which the requirement
fails.

Model
checking

Requirement Model

Safe Unsafe

Proof Counterexample

Figure 2.3: The model checking procedure

Model checking is a general approach, and it is not used exclusively for software verifi-
cation. The notion of model, requirement, and checking needs to be given in terms of a
program in order to apply model checking for computer software.

• Let the model be the CFA, as it is a formal representation of the program.

• Let the requirement be that no error location is available. An error location is
a particular control location in the CFA, which yields an error if the control ever
reaches it.
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• Let the checking method be an algorithm that can prove whether the control is able
ever to reach an error location or not. One possible method is a systematic traversal
of the state-space that checks whether a state with an error location for control
location or error-state is reachable in it; however, this method is nearly impossible
to execute due to the state-space explosion.

The model is said to be safe if the requirement holds, and unsafe if the requirement does
not hold.

1 void main() {
2 int a, b;
3

4 scanf("%d", &a);
5 scanf("%d", &b);
6

7 while(a != 0) {
8 int c = a;
9 a = b % a;

10 b = c;
11 }
12

13 assert(b != 0);
14 }

(a)

l1

l2

l3

l4 le

havoc a
havoc b

[a ̸= 0]
c := a
a := b%a
b := c

[a = 0]

[b ̸= 0] [b = 0]

(b)

Figure 2.4: The Euclidean algorithm written in C (a), and the corresponding CFA it
simple (b) and in compact form (c)

Example 2.8. On the left side of Figure 2.4, there is the Euclidean algorithm written
in C. In line 9, there is an assertion. The corresponding CFA can be seen on the
right side. It can be observed that the assertion is mapped as two separate branches.
The first branch continues the normal flow of the program (l4), while the other branch
marks it as an error location (le). The error location is only entered if the condition
in the assertion evaluates to false.

2.3.2 CEGAR

The Counterexample-Guided Abstraction Refinement (CEGAR) [16] [27] is an abstraction-
based model checking algorithm that has been effectively used to verify computer software.
It can use a CFA, among other formalisms, as an underlying model, and it can check for
reachability in the state-space, among others, as a requirement.
The size of a program’s state-space depends on the number of control locations, the number
of variables, and the size of those variables’ domain. Out of these, the domain size has
the most significant impact on the final size. In the case of two 32-bit integer variables
in a program, then at least 232 ∗ 223 = 264 ≈ 1019 states are needed to be represented. If
the program had at least eight integer variables with 32-bit integer domains, more states
would be needed to store the possible values than the number of atoms in the universe.
This phenomenon is called the state-space explosion, and efficient algorithms are needed
to handle it.
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CEGAR uses abstraction to circumvent state-space explosion. It operates in the abstract
state-space that consists of abstract states. An abstract state is the set of concrete states
A (concrete) state is an error-state if it has an error location as its control location. It
follows that an abstract state is an abstract error-state if it contains at least one concrete
error-state.

Abstractor Refiner

Initial precision

Safe Unsafe

Proof Counterexample

Abstract counterexample

Refined precision

Figure 2.5: The CEGAR-loop

The core of the algorithm is the so-called CEGAR-loop (Figure 2.5) that consists of two
distinct parts: the abstractor and the refiner. In the first part, the abstractor is responsible
for building the abstract state-space from the model with a given precision. The abstractor
also checks whether an abstract error-state is reachable. As an abstract error-state is an
over-approximation of the possible error-states, if no abstract error-state is reachable, then
no concrete error-state is reachable; thus, the requirement holds for the model.
However, if an abstract error-state is reachable, the abstractor produces an abstract coun-
terexample (Figure 2.6.a): a path from the initial state to the abstract error-state. Next,
the refiner decides whether the counterexample is feasible or spurious.
If a concrete error-state inside of it is reachable, then the abstract counterexample is
feasible (Figure 2.6.b), so the model fails the requirement. The path from the initial state
to the concrete error-state acts as a counterexample.
On the other hand, if a concrete error-state is not reachable, then the abstract coun-
terexample is spurious (Figure 2.6.c), the reachability of the abstract error-state is the
result of the over-approximation. In this case, the precision of abstraction needs to be
refined so that the abstract error-state does not contain the unreachable error-state. The
precision refinement algorithms are typically built on either unsatisfiable cores or Craig
interpolation.

Example 2.9. Let us assume that the abstractor returned an abstract counterex-
ample seen in Figure 2.6.a. The counterexample starts in the initial abstract state
as1, goes through as2 and terminates in the abstract error-state as4. The abstract
state-space is an over-approximation of the concrete state-space, so the same abstract
state-space can represent multiple concrete state-spaces.

First, assume that the concrete state-space is the one that can be seen in Figure 2.6.b.
In this case, the abstract counterexample is feasible, as there is a path (highlighted
with red) from the initial state (s1) to the error state (s8). As a concrete error-state
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as1 as2

as3 as4

(a) An abstract
counterexample

as1 as2

as3 as4

s1

s2

s3

s4

s5

s6

s7

s8

(b) A feasible abstract counterexample

as1 as2

as3 as4

s1

s2

s3

s4

s5

s6

s7

s8

(c) A spurious abstract counterexample

Figure 2.6: An abstract counterexample and two possible underlying concrete state-
spaces

is reachable, CEGAR will terminate with an unsafe result, with the path (highlighted
with red) as a counterexample.

Alternatively, assume that the concrete state-space is the one that can be seen in
Figure 2.6.c. In this case, the abstract counterexample is spurious, as there is no
path from the initial state (s1) to the error-state (s8). The next step is to refine the
precision to separate the error-state (s8) from the abstract error-state (as4). After
the refining step, as4 will not contain the error-state (s8), so it will cease to be an
abstract error-state; a newly created abstract state, containing s8, will be the new
abstract error-state (containing the states from as4 below the dash-dotted line).

The CEGAR loop keeps repeating itself until it either proves that no abstract error-state is
reachable, thus, the requirement holds or gives an example of how a concrete error-state is
reachable, thus proving that the requirement does not hold. Each time an abstract error-
state is reachable and the refiner proves that the concrete error-state inside is unreachable,
the abstraction refines by separating the abstract error-state into at least two other parts.
With each refinement, the number of abstract states grows; however, it cannot grow beyond
the number of concrete states, which causes the algorithm to terminate at some point.
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It is worth noting that multiple types of abstraction can be used with CEGAR: it can use
predicate abstraction [28] just as easily as explicit-value abstraction [10] or different kinds
of product abstraction [11].

2.3.3 Counterexamples

A counterexample [16] is a path from an initial state to a concrete error state. For-
mally, the counterexample of a CFA is an alternating sequence of states and operations
(s0, op0, s1, op1, ..., opn−1, sn, where s0 is an initial state and sn is an error state and opi is
the operation performed to move the execution from si to si+1.
It follows that the values of the program variables can be extracted from the states along
with the locations. Using the locations, the path in the CFA can be reconstructed easily.

l1

l2

l3

l4 le

x := 0
i := 0

[i < 2]
x := x + i
i := i + 1

[i ≥ 2]

[x = 3] [x ̸= 3]

(a)

l1, x = 246, i = 985

l01, x = 0, i = 985

l2, x = 0, i = 0

l02, x = 0, i = 0

l12, x = 0, i = 0

l2, x = 0, i = 1

l02, x = 0, i = 1

l12, x = 1, i = 1

l2, x = 1, i = 2

l3, x = 1, i = 2

le, x = 1, i = 2

x := 0

i := 0

[i < 2]

x := x + i

i := i + 1

[i < 2]

x := x + i

i := i + 1

[i ≥ 2]

[x ̸= 3]

(b)

Figure 2.7: An example CFA (a) with a counterexample (b)

Example 2.10. A counterexample for a CFA (Figure 2.7.a) can be seen on the right
side of the Figure 2.7. The CFA depicts a simple program that sums the first two
positive integers in the variable x and asserts that the sum should be 1 + 2 = 3.
However, the program is written in a way that it treats zero as the first positive
integer. As a result, the sum of the first two integers will be one, and the assertion
will fail.

Figure 2.7.b depicts a path leading to an error-state, or in other words a counterex-
ample. The counterexample is an alternating list of states and operations, and each
state contains (as per the definition in Section 2.2.2) a location and an exact value
for each variable.

It is worth noting that there is no information about the initial values of the variables,
so there are multiple initial states of the CFA. However, the counterexample requires
one concrete initial state, so one will be chosen arbitrarily. Another noteworthy
observation is that the loops of the CFA are unrolled in the counterexample: the
counterexample contains the steps of the loop the number of times the loop is executed
(two in this instance).
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2.4 Fault localization

Formal verification is a valuable tool for finding errors in a program but provided we know
of an error, finding its cause is an entirely different matter. The goal of fault localization
[35] is to identify the locations of the fault automatically to point the developers in the
right direction when they try to fix it. For the sake of generality, there are methods that
not only detect the location of the faults but offer a fix for them as well; however, these
methods are not investigated in this paper.
The traditional tools of fault localization are well known and widely used: logging, asser-
tions, breakpoints, and profiling. Although helpful, these methods are all manual.
Slicing-based methods are often used for fault localization. An important solution is
static slicing [34], which analyzes the data and control dependencies inside the program
and removes all instructions irrelevant to the failure. Static slicing is effective but tends
to leave unnecessary instructions in the slice. Dynamic slicing [2] addresses this issue by
incorporating runtime information from a failed test case. The core idea of slicing-based
methods is that the slice is many times smaller than the original program, so it is easier
to find the cause of the issue in the slice.
Statistics and spectrum-based methods [1] usually require more than a single failed execu-
tion. They usually require multiple execution traces (i.e., a whole test suite) and analyze
which part of the code was executed during a passing and a failing trace. Processing this
information, these methods can pinpoint the most likely statements to cause the actual
failure. Advanced statistics-based methods use machine learning [4] or data mining [15]
as well.
Program state-based techniques also rely on successful executions. Usually, the states
of the program during a successful execution are compared to the states of the program
during a failed execution. An effective and popular algorithm called delta debugging [36]
tries to modify the states of the failed execution by using information from the successful
execution step-by-step (hence the name delta debugging) and re-executes the modified
failing trace to find the cause of the issue.
Model-based methods usually take a model of the program and either use a formal speci-
fication, an oracle implementation, or successful executions to find the cause of the fault.
These methods tend to use model checking algorithms [24], but some solutions use sym-
bolic execution [29] as well.
The common part of the previous approaches is that they all require additional data from
the user besides an error to determine the cause. Unfortunately, there are cases when a
test suite is not available or creating an oracle is infeasible. Formal verification usually
finds hidden, obscure errors missed by the rigorous testing, so the statistical information
around the failure might be lacking. Moreover, there are cases of mission-critical systems
where the cause of the error is a hardware design fault [6]. In these cases, the hardware
faults need to be corrected in software, and usually, there is no test suite dedicated for
that.
Some algorithms only require a failing trace to work and are generally applied in cases
where additional information is not available or expensive to produce. Out of these algo-
rithms, some examples target a particular domain, such as function block diagrams [31]
and there are algorithms that can work on a more generic CFA formalism [33].
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2.4.1 Whodunit

As mentioned earlier, there are numerous methods available that localize faults in pro-
grams. However, they usually require additional information, like multiple successful or
failing traces, or use expensive model checking or constraint solving. In contrast, Wang et
al. (2006) [33] devised a single path-based method for reasoning about software failures
using weakest preconditions. The algorithm will be called Whodunit in this paper, owing
to the title of the article it was published in.
The input of the algorithm is a counterexample (s0, op0, s1, ..., opn−1, sn), where the last
state is an error state. The counterexample describes the failing trace in the program.
Moreover, we can conclude that the last operation, opn−1 is a guard [¬c] which comes
from the failed assertion.

l1

l2

l3 le

x := 1

[x = 0] [x ̸= 0]

(a)

l1, x = 246

l2, x = 1

le, x = 1

x := 1

[x ̸= 0]

(b)

Figure 2.8: An example CFA (a) with a counterexample (b)

Example 2.11. An example of this statement can be seen in Figure 2.8. Since error
locations are created from assertions, the input transition of the error location will
always be labeled by a guard, which is the negated assertion.

Weakest preconditions are generally used in model checking methods to refine the preci-
sion based on an infeasible abstract counterexample. However, Whodunit uses weakest
preconditions for a different reason. The input counterexample is feasible, so weakest pre-
conditions are used to find a minimal set of conditions needed by the program to stay on
the same path without violating the assertion.
The core idea of the algorithm is the infection chain. The infection chain is a list of pred-
icates starting from the failed assertion c. The next step is calculated from the previous
step by applying a modified weakest precondition predicate transformer WP (st, R):

• WP (x := expr, R) = R[x→ expr]

• WP (havoc x, R) = R

• WP ([cond], R) = R ∧ cond

• WP ({op0, op1, ..., opn}, R) = WP (op0, WP (op1, ..., WP (opn, R))...))

There are two differences compared to the weakest precondition:

• The first difference is the result of the non-deterministic assignment havoc x. In
the concrete counterexample, each variable is assigned an exact value, including the
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non-deterministically assigned variable x in this case, so it is not needed to apply
the original transformer. Non-deterministic assignments model inputs and will be
required later on, but they are not part of the infection chain.

• The second difference is the result of the guard [cond]. The concrete counterex-
ample is a concrete, executable path in the program, so it is known that every
guard evaluates to true. Taking this information into account, WP ([cond], R) =
pre([cond], R) ∧ cond = (cond =⇒ R) ∧ cond = cond ∧R.

Example 2.12. Some examples for the modified weakest precondition:

• WP (x := x + y + 10, x ≥ 5 ∧ y ≥ 3) = x + y + 10 ≥ 5 ∧ y ≥ 3

• WP (havoc x, x ≥ 5 ∧ y ≥ 3) = x ≥ 5 ∧ y ≥ 3

• WP ([x ≥ 10], x ≥ 5 ∧ y ≥ 3) = x ≥ 10 ∧ (x ≥ 5 ∧ y ≥ 3)

• WP ({x := x+y+10, [x ≥ 10]}, x ≥ 5∧y ≥ 3) = WP (x := x+y+10, WP ([x ≥
10], x ≥ 5∧y ≥ 3)) = WP (x := x+y+10, x ≥ 10∧(x ≥ 5∧y ≥ 3)) = x+y+10 ≥
10 ∧ (x + y + 10 ≥ 5 ∧ y ≥ 3)

In the end, the infection chain of counterexample (s0, op0, s1, ..., opn−1, sn) where the last
operation, opn−1 is a guard [¬c] is

WP ({op0, op1, ..., opn−1}, c) = c′ ∧ (c′
0 ∧ c′

1 ∧ ... ∧ c′
l) ,

where c′ is transformed from the given assertion c through variable substitutions in case of
deterministic assignments, and each c′

i is transformed from a guard [cond] through variable
substitutions in case of deterministic assignments. It is worth noting that the resulting
formula is a list of conjuncts, and each guard in the counterexample adds a new conjunct,
while each assignment transforms one or more conjuncts.
A formula f ′ is transformed from formula f if it can be created from f by variable substitu-
tions. An operation opi is a transforming statement of f if opi is deterministic assignment
x := expr and during the creation of f ′, x is substituted for expr.

Example 2.13. Let us assume that we have f1 = (x ≥ 5) and f2 = (y ≥ 3) and an
operation op as x := x+y+10. In this case f ′

1 = (x+y+15) and op is a transforming
statement of f1. op is not a transforming statement of f2, as the variables written
by op are not in f2.

Given a counterexample (s0, op0, s1, ..., opn−1, sn) and a formula f the set of transforming
statements of the formula is

TS({op0, op1, ..., opn−1}, f) ={opi | opi is a transforming statement of f

when calculating WP ({op0, op1, ..., opn−1}, f)} .

The input valuation is a set of assignments that assigns an exact value to each input
variable of the program. The input valuation I can be extracted from the counterexample:
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the input variables are identified by non-deterministic assignments, while their values can
be extracted from the state.

Example 2.14. Let us assume, that our program has two input variables x and
y. This means, that there are (at least) two non-deterministic assignments in the
program: one for x and one for y. In this case the input valuation I can be I = (x =
4) ∧ (y = 3) if the counterexample assigns 4 to variable x and 3 to variable y.

The main theorem behind Whodunit is that the SMT problem constructed using the infec-
tion chain and the input valuation of the assertion is unsatisfiable. This theorem is called
the proof of infeasibility. More formally, given a counterexample (s0, op0, s1, ..., opn−1, sn)
where the last operation, opn−1 is a guard [¬c], the proof of infeasibility is:

I ∧WP ({op0, op1, ..., opn−1}, c) = ∅.

Generally, the proof of infeasibility consists of a set of conjuncts. The input valuation is
a set of valuations for each input variable, while the infection chain was shown to consist
of a set of conjuncts: the transformed assertion and the transformed guards. Given, that

(I0 ∧ I1 ∧ ... ∧ Im) ∧ c′ ∧ (c′
0 ∧ c′

1 ∧ ... ∧ c′
l) = ∅,

there exists a minimal set of conjuncts of I and a minimal set of conjuncts of WP ({...}, c)
denoted respectively by Isub and WPsub, such that Isub∧WPsub = ∅. We call Isub∧WPsub

the minimal proof of infeasibility. An algorithm for calculating the minimal proof of
infeasibility can be seen in Algorithm 2.1.

Algorithm 2.1: Minimal proof of infeasibility
input : I, WP ({...}, c)
output: Isub, WPsub

1 Isub ← I, WPsub ←WP ({...}, c)
2 for each c′

i conjunct ci ∈WPsub do
3 drop c′

i from WPsub

4 if Isub ∧WPsub = ∅ then
5 drop c′

i permanently
6 else
7 add c′

i back to WPsub

8 end
9 end

10 for each I ′
i conjunct Ii ∈ Isub do

11 drop I ′
i from Isub

12 if Isub ∧WPsub = ∅ then
13 drop I ′

i permanently
14 else
15 add I ′

i back to Isub

16 end
17 end
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Whodunit combines the previous steps to identify the cause of the assertion failure. Given
a counterexample (s0, op0, s1, ..., opn−1, sn), where opn−1 is [¬c], Whodunit first calculates
the infection chain WP ({op0, op1, ..., opn−1}, c) step-by-step. During this process, the
transforming statements of each conjunct in the infection chain are recorded as well. In
each step, while calculating the infection chain, the intermediate result is checked. There
are two outcomes:

1. The infection chain becomes empty before reaching the start of the counterexample:
WP ({opi, opi+1, ..., opn−1}, c) = ∅. In this case, WPsub needs to be calculated as
soon as the infection chain becomes unsatisfiable and all conjuncts in WPsub are
considered as the cause of the failure.

2. The infection chain is calculated successfully: WP ({op0, op1, ..., opn−1}, c) ̸= ∅. In
this case Isub and WPsub is calculated and their conjuncts are the cause of the
assertion failure.

In the end, the transforming statements corresponding to the remaining conjuncts in
WPsub are denoted as the cause of the failure: {s | s ∈ TS(f) if f ′ ∈ WPsub}. The
algorithm can be seen in Algorithm 2.2.

Algorithm 2.2: Whodunit
input : A counterexample (s0, op0, s1, ..., opn−1, sn), where opn−1 is [¬c]
output: Subset of TS({op0, op1, ..., opn−1}, c) causing the assertion failure c

1 WP ← c
2 for i← n− 1 to 0 do
3 WP ←WP (opi, WP )
4 if WP = ∅ then
5 calculate WPsub

6 return {s | s ∈ TS(f) if f ′ ∈WPsub}
7 end
8 end
9 calculate Isub and WPsub

10 return {s | s ∈ TS(f) if f ′ ∈WPsub}

Example 2.15. An example of the Whodunit algorithm can be seen in Figure 2.9.
The C code describes an algorithm calculating the difference between two numbers
received as parameters. This difference must be positive, as seen in the assertion
in Line 14. However, the direction of the comparison in Line 4 is wrong, so the
assertion fails. An example for the failure is x1 = 3 and x2 = 4 which will lead to
diff = −1. The counterexample goes through lines 2, 3, 4, 5, and 14.

Whodunit starts in Line 14 by the assertion diff ≥ 0. The next step is Line 5.
Since it is a deterministic assignment, the conjuncts in WP are transformed, and
the transformation statements are recorded: Line 5 transforms the assertion. The
next step is Line 4. As it is a guard, a new conjunct is added to WP . However, the
algorithm stops here, as WP is unsatisfiable at this moment.

At the end of the algorithm, the transforming statements related to the conjuncts in
WP are blamed for the assertion failure. In this case, Line 5 is the culprit. It can
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1 int compute_diff(int x1, int x2) {
2 int diff;
3 if(x1 != x2) {
4 if(x1 < x2) {
5 diff = x1 - x2;
6 }
7 else {
8 diff = x2 - x1;
9 }

10 }
11 else {
12 diff = 0;
13 }
14 assert(diff >= 0);
15 }

(a) An example function in C

Line WP TS(diff ≥ 0) WP = ∅
14 (diff ≥ 0) no no
5 (x1− x2 ≥ 0) yes no
4 (x1 < x2) ∧ (x1− x2 ≥ 0) no yes

(b) The execution of Whodunit

Figure 2.9: An example for Whodunit in action

be seen that the issue is indeed the assignment in Line 5, but one might argue that
the guard in Line 4 is at least equally if not more at fault here.
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Chapter 3

Fault localization in formal
counterexamples

This chapter presents a method for analyzing the counterexamples produced by the for-
mal CEGAR algorithm. It also presents the algorithms used in the method, as well as
the methodology and reasoning behind the solution. Finally, this chapter introduces a
prototype implementation that serves as a proof of concept.

3.1 Overview of approach

Safety is an essential aspect of the development of safety-critical systems. To ensure safe
behavior, safety-critical systems are submitted to rigorous testing procedures required by
every standard regulating the development of said systems. However, testing has its limits,
as it can only prove the presence of errors, not the absence of them. Moreover, although
there are methodologies to design test suites, testing is not guaranteed to find the errors
in the system.
Formal verification uses an entirely different approach to testing. It automatically scans
the whole state-space of the system, it can find every error, even the most obscure ones,
and it is able to prove that the system is safe. Nowadays, more and more standards
regulating safety-critical systems require the application of formal methods.
However, from the point of view of a simple developer, there are limitations on the ap-
plication of formal methods. Formal methods usually require knowledge in the area for
different reasons:

1. The system under verification and the requirement need to be formalized, as formal
methods work on mathematical models.

2. Formal methods tend to have many parameters that modify the behavior of the
algorithm, and it is usually required to choose them based on the properties of the
system under verification for the best possible performance.

3. The result of formal methods needs to be analyzed and possibly mapped back to the
source code of the system.

The first issue is usually handled by applying different solutions together. Formal veri-
fication tools tend to have language frontends that can parse industrial code written in
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standard languages like C, Java or PLC, and create the formal model without explicit
knowledge in the area. A similar approach is the usage of assertions as requirements, as
assertions are part of every language (or standard library).
The second issue presents more of a challenge. Choosing the parameters of a formal
method requires extensive knowledge of that algorithm, and choosing the wrong parame-
ters might make the verification impossible. In recent years, with the intense increase in
the computation capacity, a new method became available to solve this issue. Advanced
tools tend to use feature detection and a dynamic portfolio [3] to analyze the system and
decide the best parameters for verification.
However, the last issue still persists. Analyzing the results of formal methods requires
knowledge of that method and usually takes an immersive amount of effort. Model check-
ing methods check all states of a system, and in an unsafe case, a counterexample is
reported. The counterexample represents a path, a list of states in the state-space of the
system. However, the bigger the system is, the bigger the counterexample might be (in
terms of number of variables).
In the case of industrial systems, it is especially common that the system consists of
hundreds of thousands of lines of codes and has thousands of variables. An issue deep in
the state-space of such a system would yield an enormous counterexample that would be
extremely difficult to analyze. However, analyzing the counterexample would have its own
issues:

1. The system is developed by multiple developers, who only know a part of the system.
Many developers have to interact even to understand the counterexample.

2. If the system is developed inside a framework, the developers need to understand
the exact inner workings of the framework to understand the counterexample: even
if a third party developed the framework. As an example, CERN tends to develop
PLC code inside the UNICOS framework [23].

The aforementioned issues are similar to the difficulties that development teams face during
system tests or when they analyze the logs of system crashes. To try and ease the burden,
fault localization methods come to the rescue that try to find the cause of issues in the
system. Fault localization methods are automatic, although they usually require some
information about the software: the very least a known fault.
The main goal of this paper is to present a method for assisting the development of safety-
critical systems to adopt the application of formal verification. Safety-critical systems are
usually developed according to a more rigid waterfall model, where the testing step is
done after the implementation and by an independent team. In this scenario, additional
information like a complete test suite with adequate coverage for fault localization to
work is likely unavailable during the implementation phase to assist the developers in
finding core issues. Thereby, this paper presents a method combining a model checking
method with a fault localization approach that analyzes the counterexamples produced
by the formal algorithm and does not rely on any additional information besides the
counterexample.
The overview of the approach can be seen in Figure 3.1. The first step requires language
frontends that can parse industrial C, PLC, or other types of code and create a CFA from
them. The language frontends are also tasked with extracting an assertion from the source
as well. Using the CFA and the assertion, the CEGAR algorithm is executed as a model
checking method. If the algorithm concludes its input is safe, the whole process terminates
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Figure 3.1: The overview of the approach

with a safe result (and a proof for that). However, should the CEGAR algorithm terminate
with an unsafe result, the counterexample will be analyzed further.
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The fault localization method requires a formal counterexample and the failed assertion as
input and analyzes the counterexample. After that, using information from the language
frontends and from the analyzed counterexample, the source code will be annotated with
information regarding the cause of the failure. This annotated source code accompanies
the counterexample as part of the unsafe result of the method.

3.2 Producing counterexamples

The approach described in the previous section requires a formal method for the coun-
terexample. Generally, many model checking methods produce a counterexample, which
all essentially share the same format. However, the task at hand usually indicates the
formal method to use.
Bounded model checking [12] is one of the earliest examples of model checking. Bounded
model checking checks the state-space until a certain depth (or bound) is reached. If
it encounters an error state until then, it can provide a counterexample. However, it is
only able to prove correctness if the state-space is smaller than the bound. With optimal
configuration parameters, bounded model checking is an effective tool for finding issues
but generally has a bad performance when it comes to proving correctness.
In this method, I opted for an abstraction-based model checking algorithm, as it is gener-
ally able to prove correctness, as well as find errors effectively, although abstraction-based
methods are computationally more expensive than bounded model checking. Out of the
abstraction-based methods, I chose CEGAR as a tool of convenience. CEGAR is well
known, has been profoundly studied in the past two decades, and is heavily configurable.
For the sake of generality, it needs to be mentioned that the fault localization method is
independent of the model checking method used. Moreover, the counterexample may even
come from a failed test case: the trace of the test need to be formalized for that.
However, a limitation is that each algorithm might use slightly different formalization
as input, and the fault localization method highly depends on the predicate transformer
semantics. CEGAR enables us to work with reasonably simple statements, as it only re-
quires three: deterministic assignments of simple variables, non-deterministic assignments
of simple variables, and guards: the ones defined by the CFA formalism. Should the
counterexample be a failed C test case, additional statements arise: if statements, while
statements, assignments to arrays, structs, pointers, among others. It is possible to sup-
port more kinds of statements by declaring their formal semantics through the predicate
transformers, but for the sake of simplicity, the rest of the paper works with strict CFA
semantics.

3.3 Fault localization

This section presents the used fault localization method. Should the formal verification
fail, the fault localization will analyze the produced counterexample. Fault localization
builds on an improved Whodunit algorithm and introduces a novel method for assigning
scores to the lines of the source code: the higher the score, the more likely it is that that
line contributes to the failure of the assertion.
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3.3.1 Limitations of Whodunit

All in all, Whodunit [33] has a decent performance when it comes to fault localization.
However, the algorithm has multiple shortcomings that limit its usefulness:

1. Whodunit only denotes assignments as causes of a failure (see Algorithm 2.2). How-
ever, there are obviously situations where the issue is in the condition of a guard.
Moreover, there are situations where no assignment is needed for a failure: I/O
intensive applications tend to have an infinite cycle in their core. In each cycle,
input is read by a non-deterministic assignment, and the data is processed. There
might be assertions that fail due to a missing check of the input. In this case, the
counterexample only contains guards and non-deterministic assignments (relevant
to the assertion failure), and Whodunit ignores them both. An example can be seen
in Listing 3.1.

1 void main() {
2 int a;
3 int b = 2;
4 while(true) {
5 scanf("%d", &a);
6 if(a) {
7 b = b * b;
8 assert(!a && b);
9 }

10 }
11 }

Listing 3.1: An assertion failure caused by non-deterministic assignments

2. Whodunit is likely to terminate early based on the exact formalization of the asser-
tion. Language frontends tend to allow multiple assertions in the source code. In
this case, a new variable (usually called __assertion_failure) is introduced in the CFA
with 0 as a starting value. Should the first assertion fail in the source code, the value
of this variable will be set to 1. Should the second assertion fail, the value will be set
to 2, and so on. In the end, a single global assertion is defined, asserting the value
of this variable to be precisely 0 (a.k.a. no assertion failed).
If Whodunit is applied to such input, it will terminate the algorithm when
__assertion_failure is assigned. At this point, there are two clauses in the WP :
__assertion_failure = 0 coming from the assertion, and __assertion_failure = 1 coming
from the assertion, which is a contradiction: the algorithm will terminate without
really finding the underlying cause of the failure. An example can be seen in Fig-
ure 3.2: Whodunit would determine that the cause of the assertion failure is the
assignment in Line 13.

3. Finally, the algorithm for calculating the minimal proof of infeasibility (see Algo-
rithm 2.1) is generally ineffective. The algorithm in itself contains a cycle iterating
through all conjuncts in WP and I, and for each conjunct, it checks unsatisfiability.
Generally, these checks are encoded as SMT problems, but solving SMT problems
is resource-intensive and time-consuming. Decreasing the number of SMT problems
to solve could improve the performance considerably.
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1 void main() {
2 int n;
3 int s = 1;
4

5

6 scanf("%d", &n);
7

8 for(int i = 0; i < n; i += 2) {
9 s += 2;

10 }
11

12 assert(s % 2 == 0);
13

14

15

16

17 }

(a)

1 void main() {
2 int n;
3 int s = 1;
4 int __assertion_failure = 0;
5

6 scanf("%d", &n);
7

8 for(int i = 0; i < n; i += 2) {
9 s += 2;

10 }
11

12 if(s % 2 != 0) {
13 __assertion_failure = 1;
14 }
15

16 assert(__assertion_failure == 0);
17 }

(b)

Figure 3.2: An example program (a) and an equivalent version depicting the formaliza-
tion used by typical language frontends (b)

Example 3.1. Let us assume, that WP = (x > 5) ∧ (x < 4) ∧ (y = 4).
To minimize WP , three SMT-problems will be checked: (x > 5) ∧ (x < 4),
(x > 5) ∧ (y = 4) and (x < 4) ∧ (y = 4). Out of these three options only the
first is unsatisfiable, so WPsub = (x > 5) ∧ (x < 4).

3.3.2 Improving Whodunit

To improve upon the issues described in the previous section, the original algorithm de-
scribed in Algorithm 2.2 was modified at multiple places. First of all, the issue of only
blaming deterministic assignments is addressed. Next, the algorithm will be modified to
handle the peculiarities of language frontends. Finally, a new, more effective algorithm is
introduced for finding the minimal proof of infeasibility.

3.3.2.1 Including guards in the set of transforming statements

Generally speaking, the guards that share variables with the assertion (in any of its trans-
formed state) are the guards interesting regarding the failure of the assertion. To capture
this, let an operation opi be a guard statement of f if opi is a guard [cond] and the inter-
section of the set of variables in cond and the set of variables in any f ′ created by variable
substitutions from f is not empty.
Similarly to the definition of the set of transforming statements, given a counterexample
(s0, op0, s1, ..., opn−1, sn) and a formula f , the set of guard statements of the formula is

GS({op0, op1, ..., opn−1}, f) ={opi | opi is a guard statement of f

when calculating WP ({op0, op1, ..., opn−1}, f)} .
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Taking this new set of statement into account, the algorithm should be modified to return
both the transformation and guard statements of the formulas in WPsub, or more formally,
return {s | s ∈ TS(f) ∪GS(f) if f ′ ∈WPsub}.

Example 3.2. Take, for example, the C program in Listing 3.1. The assertion is
states that (a = 0) ∧ (b ̸= 0). This can fail very easily in a single cycle: let a be 1.
The rest of the algorithm follows according to Table 3.1.

Calculating the minimal proof of infeasibility will leave us with WPsub = (a = 0) ∧
(a ̸= 0). As it can be seen, there is no transformation statement associated with
any of the conjuncts in the minimal proof of infeasibility, so the original algorithm
would have terminated without giving a single result. In contrast to that, the improved
algorithm will "highlight" the condition of the if statement in Line 6, as it is a guard
statement of conjunct (a ̸= 0) ∈WPsub.

Line WP TS(...) GS(...) WP = ∅
8 (a = 0) ∧ (b ̸= 0) no no no
7 (a = 0) ∧ (b ∗ b ̸= 0) yes no no
6 (a = 0) ∧ (b ∗ b ̸= 0) ∧ (a ̸= 0) no yes yes

Table 3.1: An execution of the modified Whodunit algorithm

3.3.2.2 Applying the algorithm iteratively for the whole counterexample

To address the issue of early termination, the algorithm was modified to take an iterative
approach. In a nutshell, one iteration of the algorithm takes an assertion and determines
the cause. Then it calculates a new assertion to use in the next iteration until the start
of the counterexample is reached.
The goal of every fault localization method is to identify statements responsible for an
assertion failure. However, a more generalized version of this goal can be to explain the
causes of key decisions in the program that ultimately lead to the assertion failure. This
corresponds with the idea that the issue might not be a faulty instruction but instead the
path that the program ultimately takes for the given inputs.
The algorithm starts by accepting a (s0, op0, s1, ..., opn−1, sn) counterexample and a c
assertion: it also holds, that the last operation opn−1 is the guard of the negated assertion
[¬c]. The first iteration of the algorithm executes the original Whodunit algorithm on this
input. At the end of the iteration, there are two possibilities:

1. The algorithm terminated as it has reached the start of the counterexample.

2. The algorithm terminated as WP became unsatisfiable due to an internal contra-
diction.

In the first case, the iterative algorithm should terminate as well by reporting the cause.
However, in the second case, the question arises: why did that internal contradiction
occur? The input of the algorithm is a single (erroneous) path of the program, so the
root cause of every issue, including the presence of an internal contradiction, is the path
it took. To find the cause of the internal contradiction, the question is why the program
would take that path?
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The paths in a program are diverging at guards. To answer the previous question, the
nearest guard to the place where the previous iteration concluded should be found. The
key observation is that by negating this guard, we have a counterexample (the remaining
part of the original from the nearest guard), an assertion (the negated guard), and the
last operation of the counterexample is the negated assertion. Given these inputs, the
Whodunit algorithm can identify the causes of why the counterexample took that path.
After the second iteration has terminated, the same reasoning can be made for a third
iteration, then a fourth, and so on. To summarize, the algorithm of Iterative Whodunit
can be seen in Algorithm 3.1.

Algorithm 3.1: Iterative Whodunit
input : A counterexample (s0, op0, s1, ..., opn−1, sn), where opn−1 is [¬c]
output: Statements causing the assertion failure c

1 ST ← ∅, CEX ← (s0, op0, s1, ..., opn−1, sn), C ← c
2 while true do
3 ST ← ST ∪ Whodunit(CEX, C)
4 CEX ← CEX \ operations and states processed by Whodunit

5 if end of CEX reached then
6 return ST
7 end
8 l← arg maxi opi ∈ CEX is guard [cond]
9 CEX ← (s0, op0, s1, ..., opl, sl+1), C ← ¬cond : opl is [cond]

10 if end of CEX reached then
11 return ST
12 end
13 end

Example 3.3. Let us take the program in Figure 3.2.b as an example. The assertion
fails for n = 0, and the counterexample goes through lines 2, 3, 4, 6, 8, 12, 13, and
16. The rest of the Iterative Whodunit algorithm follows.

In the first iteration, the counterexample is lines 2, 3, 4, 6, 8, 12, 13 and 16, while
the assertion is __assertion_failure = 0. The first iteration of Whodunit will conclude
that the assignment in Line 13 is the cause of the failure. Whodunit processed lines
13 and 16, so they are removed from the counterexample.

The following assertion will be the nearest guard, which is the guard in Line 12. As
a result, the counterexample for the next iteration will be lines 2, 3, 4, 6, 8, and 12,
while the assertion will be s%2 = 0 (the negation of the guard). The second iteration
will conclude that Line 3 is the cause of the assertion failure (as n is 0, the cycle was
not executed). Whodunit processed lines 3, 4, 6, 8, and 12, removing them from the
counterexample.

The following assertion will be the nearest guard. However, there are no more guards
in the counterexample; the start of the counterexample has been reached, the algorithm
terminates.

The output of the algorithm is the union of statements the iterations blamed for the
failures: Line 3 and Line 13. After analyzing the program, we can conclude that
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the real cause of the issue is indeed the assignment in Line 3 (it should assign an
even value for the assertion to hold), which the original algorithm would not have
discovered.

3.3.2.3 Improving the algorithm for finding the minimal proof of infeasibility

The final issue of Whodunit is the ineffective minimal proof of infeasibility algorithm.
The original algorithm described in Algorithm 2.1 iterates through all of the conjuncts
and checks whether the proof of infeasibility is still unsatisfiable without them: if so, it
removes the conjunct; if not, it leaves it in place.
Unfortunately, this algorithm results in multiple calls to an SMT-solver: an SMT-problem
will be constructed for each conjunct. Moreover, due to the structure of the SMT problems,
interactive solvers do not have an advantage either.
Whodunit uses the minimal proof of infeasibility instead of the proof of infeasibility to
make the result more precise: the operation only removes conjuncts, so fewer statements
will be reported at the end of the algorithm. However, instead of using the minimal proof
of infeasibility, the "almost minimal proof of infeasibility" would also suffice. If it is smaller
in the number of conjuncts than the actual proof of infeasibility and only slightly larger
than the actual minimal proof of infeasibility, the result would only report a couple more
lines to consider. Moreover, the bigger the counterexample is, the less it actually influences
the final result of the algorithm.
A way to implement the "almost minimal proof of infeasibility" is to use the unsatisfiable
core of the proof of infeasibility. SMT-solvers implementing the unsatisfiable core work
towards a minimal unsatisfiable core, even if they do not always find it. On the other
hand, an immense advantage of using unsatisfiable cores is that it requires only one call
to the SMT-solver: the unsatisfiability of the proof of infeasibility should be checked, and
the unsatisfiable core calculated.

Example 3.4. Let us assume, that WP = (x > 5)∧ (x < 4)∧ (y = 4). To minimize
WP , one SMT-problems will be checked: (x > 5) ∧ (x < 4) ∧ (y = 4). As it is
unsatisfiable, the unsatisfiable core can be queried: UC = {(x > 5), (x < 4)}. Using
the unsatisfiable core, WPsub = (x > 5) ∧ (x < 4).

3.3.3 The complete algorithm

The complete algorithm summarizing the changes made to the original Whodunit algo-
rithm can be seen in Algorithm 3.2. The core of the algorithm is the Whodunit algorithm
defined between lines 1 and 13. This version calculates guard statements and returns them
as part of its answer compared to the original. Moreover, it uses unsatisfiable cores to
calculate the "almost minimal proof of infeasibility."
In lines 14-26 is the Iterative Whounit algorithm also introduced in Algorithm 3.1. The
Iterative Whodunit executes the improved Whodunit algorithm in multiple iterations: it
finds new suitable assertions to continue the reasoning between iterations.

3.3.4 Scoring mechanism

The accuracy of the algorithm can be increased even more by introducing a scoring mech-
anism into the algorithm. This mechanism will assign a score to each statement of the
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Algorithm 3.2: The improved Whodunit algorithm
input : A counterexample (s0, op0, s1, ..., opn−1, sn), where opn−1 is [¬c]
output: Statements causing the assertion failure c

1 Function Whodunit(CEX, C) is
2 WP ← C
3 (s0, op0, s1, ..., opn+1, sn)← CEX

4 for i← n− 1 to 0 do
5 WP ←WP (opi, WP )
6 if WP = ∅ then
7 WPsub ← UC(WP)
8 return {s | s ∈ TS(f) ∪GS(f) if f ′ ∈WPsub}
9 end

10 end
11 Isub, WPsub ← UC(I ∧WP)
12 return {s | s ∈ TS(f) ∪GS(f) if f ′ ∈WPsub}
13 end
14 ST ← ∅, CEX ← (s0, op0, s1, ..., opn−1, sn), C ← c
15 while true do
16 ST ← ST ∪ Whodunit(CEX, C)
17 CEX ← CEX \ operations and states processed by Whodunit

18 if end of CEX reached then
19 return ST
20 end
21 l← arg maxi opi ∈ CEX is guard [cond]
22 CEX ← (s0, op0, s1, ..., opl, sl+1), C ← ¬cond : opl is [cond]
23 if end of CEX reached then
24 return ST
25 end
26 end

source code: the higher the score is, the more likely it is that the statement is the cause
of the assertion failure.
A common wisdom of software debugging is that the source of the issue is close to its ob-
servable effect. Translating it to the language of fault localization, the previous statement
means that the cause of the assertion failure is usually close to the assertion itself. The
original Whodunit algorithm considered this phenomenon. However, this led to the early
termination of the algorithm and caused it to miss the real cause multiple times.
By applying Whodunit iteratively, the result can be lost in the result of multiple iterations.
Usually, the statements in fault are the ones returned by the first couple of iterations; later
iterations instead serve as additional might-be-useful information.
To incorporate this information into the improved Iterative Whodunit algorithm, each
statement will be assigned a score based on the number of iterations required for that
statement to be reported. To assign a score based on this information, the mathematical
functions i−1 or e−i can be used, where i is the number of iterations.

29



One last issue that needs to be solved is the issue of statements that are in a cycle. Such
statements might be returned by multiple iterations as well. In this case, I opted to sum
the scores of the different iterations, as a statement returned by multiple iterations might
be worth investigating. The iteration-wise decreasing nature of the score ensures that a
statement returned by multiple iterations does not suppress other lines worth investigating.

3.4 Implementation

A prototype implementation was created to serve as a proof-of-concept for the method
introduced in this chapter (Figure 3.1). The implementation builds upon Theta [32],
an open-source, generic, modular, and configurable model checking framework developed
by the Critical Systems Research Group of Budapest University of Technology and Eco-
nomics. The implementation can consume preprocessed C files as input and execute fault
localization on them. Moreover, the implementation is integrated with PLCverif [19], a
tool supporting the formal verification of PLC programs developed by CERN.

3.4.1 Theta

Theta [32] is an open-source, generic, modular and configurable model checking framework.
Theta can receive problems in various engineering formats, including C or statecharts.
It converts the input to one of its supported formal representations using a dedicated
frontend. Theta supports the formal representations Control Flow Automata (CFA) [10],
Symbolic Transition Systems (STS) [27], or Timed Automata (XTA) [9].
The core of Theta is the abstraction-refinement-based CEGAR algorithm. For the sake
of extensibility, the CEGAR algorithm is independent of the formalisms. However, it
still needs information from the formalisms. This information is provided to the CEGAR
algorithm by interpreters (see Figure 3.3), which depend on a specific formalism.
Theta provides a generic SMT solver interface that the analysis algorithms can depend on.
This interface supports incremental solving, unsatisfiable cores, and interpolants as well.
Typically, the interpreter calls the SMT solver interface when abstract successor states
need to be calculated or by the refiner when the feasibility of an abstract path needs to be
checked. Theta currently provides only one implementation of the SMT solver interface,
which uses an older version of Microsoft’s Z3 [20] solver.

3.4.2 Fault localization framework

The formal verification and fault localization algorithms and the approach described in
Figure 3.1were implemented in Theta.
The CEGAR algorithm of Theta was given a CFA, with the requirement being that a
designated error location is unreachable. The assertion was extracted from the guard
leading to the error location. Given a CFA, Theta’s CEGAR algorithm can be configured
via multiple parameters that are independent of the output of an unsafe program: the
counterexample.
The counterexample Theta produces is an alternating list of states and the operations
between them, starting from the initial location and ending in the error location. The fault
localization method described in Section 3.3 was implemented in Java for easy integration
in Theta. The algorithm directly consumes the counterexample produced by Theta and
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Figure 3.3: The simplified architecture of Theta

outputs a map in which statements from the counterexample are assigned a score (Figure
3.4).

3.4.3 Language frontends

The implementation described in the previous chapter is independent of the language
frontend as of yet. It follows that a language frontend needs to provide the following two
features:

1. It needs to be able to parse a project in the source language and generate a CFA
from it.

2. It needs to be able to process the annotated counterexample and map the scores
back to the source code.

3.4.3.1 C frontend

Theta can parse preprocessed C codes and create a CFA from them out of the box via one
of its tools. The input of the tool is a preprocessed C file. The tool creates a CFA based on
different configurations: the generated CFA might depend on the integer representation
mode, among others. Besides the CFA, the tool provides a traceability model that maps
each location in the CFA to lines in the source code and each transition to a statement.
The fault localization implementation can extract source code information from the trace-
ability model and use it to map the scores in the annotated counterexample back to the
source code level.
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Figure 3.4: The data between the steps of the implementation

3.4.3.2 PLC frontend

PLCverif [19] is a tool supporting the formal verification of PLC programs developed
by CERN. Architecture-wise, PLCverif processes PLC projects and generates an internal
formal representation of them. Then, the formal representation is converted to the formal
representation of one of the supported verification backends: CBMC, NuSMV, or Theta.
After the verification succeeds, the result, including the counterexample, is parsed and
mapped back to the PLC level.
To do so, PLCverif maintains a traceability model containing a mapping from the internal
representation of PLCverif to the formal representation of the backend. Using the trace-
ability model, it is possible to extract source code information and map the annotated
counterexample back to the source code level.

3.5 The scope and limitations of the approach

This section analyzes the theoretical scope and limitations of the approach and the addi-
tional limitations of the implementation.

3.5.1 Theoretical scope and limitations

To apply the approach, the input program needs to be formalized into a CFA. Variables
and control flow are generally easy to formalize; however, there are pitfalls. The common
issue tends to be the formalization of pointers in native languages like C and handling
compound data structures like structs, unions, or arrays.
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CFAs define only simple variables. Thereby, structures are usually decomposed, unions are
mapped to a variable with a type capable of handling bitwise operations, and arrays are
supported as a custom type. However, the support for pointers is generally a complicated
issue to solve, as it requires a complex memory model heavily increasing the required
computational power.
The CEGAR algorithm can be applied to multiple formalisms besides CFA. It supports
symbolic transition systems or timed automatons as well that produce a similar counterex-
ample. So the question is whether the fault localization method supports counterexamples
from different formalisms?
The core of the fault localization algorithm Whodunit is the weakest precondition predicate
transformer that also defines the formal semantics of the operations of a CFA. Other
formalisms use other kinds of operations, and the formal semantics of these operations
can also be defined by the weakest precondition. Generally, if the weakest precondition
defines the operations of a formalism, Whodunit can analyze the counterexample produced
by CEGAR for that formalism.

3.5.2 Limitations of the implementation

The implementation depends on multiple software components, each contributing its own
limitations. Generally, the language frontends only support a part of their language. The
C frontend:

• Pointers are not supported.

• Function invocation is supported only by inlining: recursion is not supported.

• Unions are not supported.

• Only standard C files are supported. Pre-ANSI C syntax is not supported.

• Preprocessor directives are not supported.

• Support for floating points is algorithmically limited.

PLCverif has a similar list of limitations. The most notable one is that it only supports
the grammar for the Siemens flavor of PLC code (with the grammar for the Schneider
grammar being under development).o
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Chapter 4

Evaluation

This chapter presents the evaluation of the method presented in this paper. The algorithms
are evaluated using a custom implementation with code from a standard fault localization
benchmark and industrial code provided to us by CERN.

4.1 Case study

This section presents a case study describing the whole approach. The subject of the case
study is the program in Listing 4.1 that reads a number in each iteration of an infinite
cycle and performs some operation based on its value. The assertion to check can be seen
in Line 8.

1 void main() {
2 int a;
3 int b = 2;
4 while(true) {
5 scanf("%d", &a);
6 if(a) {
7 b = b * b;
8 assert(!a && b);
9 }

10 }
11 }

Listing 4.1: An example C program for the purpose of the case study

4.1.1 Providing the CFA

The first step of the approach described in Figure 3.1 is to parse the C code and create a
CFA. The CFA of the code in Listing 4.1 can be seen in Figure 4.1.
As it can be seen, the assertion has been modified. The assertion in the CFA asserts that
a variable named __assertion_failure is zero. This variable is set to zero at the beginning
of the program and set to one in the transition between l7 and l8. This part of the code
corresponds to the original assertion: it is implemented as a small branch in l6, l7 and l8
by setting __assertion_failure to one if the original assertion does not hold.
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l0

l1

l2

l3

l4

l5

l6

l7

l8

le

__assertion_failure := 0

b := 2

[true]

havoc a

[a ̸= 0]

b := b ∗ b

[¬((a = 0) ∧ (b ̸= 0))]

__assertion_failure := 1

[(a = 0) ∧ (b ̸= 0)]

[¬(a ̸= 0)]

[__assertion_failure ̸= 0][__assertion_failure = 0]

Figure 4.1: The CFA generated from the code in Listing 4.1

4.1.2 Executing the CEGAR algorithm

Given a CFA and an error location, the CEGAR algorithm can be executed. CEGAR
will determine that the program is unsafe, as the error location is reachable. A suitable
counterexample can be seen in Table 4.1.
By checking the counterexample step-by-step, it can be seen that the value of the variable
__assertion_failure is indeed 1 at the end, so the assertion is violated. It can also be seen,
that for values a = 1 and b = 4 the original assertion (between s6 and s7 does indeed not
hold.

4.1.3 Fault localization

The modified Whodunit algorithm will consume the counterexample in Table 4.1 to deter-
mine the cause of the assertion failure. The result of the algorithm can be seen in Table
4.2.
The fault localization algorithm will require three iterations. The first iteration will de-
termine that assertion __assertion_failure = 0 assertion fails, as the variable was assigned
the value 1 a step before. In the second iteration, the assertion is the negated guard in the
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State Operation Location a b __assertion_failure

s0 l0 122 224 86
__assertion_failure := 0

s1 l1 122 224 0
b := 2

s2 l2 122 2 0
[true]

s3 l3 122 2 0
havoc a

s4 l4 1 2 0
[a ̸= 0]

s5 l5 1 2 0
b := b ∗ b

s6 l6 1 4 0
[¬((a = 0) ∧ (b ̸= 0)]

s7 l7 1 4 0
__assertion_failure := 1

s8 l8 1 4 1
[__assertion_failure ̸= 0]

s9 le 1 4 1

Table 4.1: A counterexample for the CFA in Figure 4.1

Iteration Counterexample Assertion Cause
1 (s0, ..., s9) [__assertion_failure = 0] __assertion_failure := 1
2 (s0, ..., s7) [(a = 0) ∧ (b ̸= 0)] [a ̸= 0]
3 (s0, ..., s3) [false]

Table 4.2: Fault localization for the counterexample in Table 4.1

previous operation stating that (a = 0)∧ (b ̸= 0). The algorithm concludes that the cause
of this failure is the condition in the guard created from the condition of the if statement in
Listing 4.1: [a ̸= 0]. The third iteration terminates immediately as the assertion would be
false, which can never come to pass. As there are no more guards in the counterexample,
the algorithm terminates.
In the end, the algorithm returned two statements responsible: __assertion_failure := 1 and
[a ̸= 0]. However, they were returned by two different iterations, so the scoring mechanism
will assign a different score value to them. Assuming the scoring function is i−1 where i is
the number of iterations, __assertion_failure := 1 will be assigned the score 1, while [a ̸= 0]
will be assigned the score 0.5 as it is seen in Table 4.3.

Statement Score
__assertion_failure := 1 1.0

[a ̸= 0] 0.5

Table 4.3: The result of the fault localization
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4.1.4 Interpreting the results

To interpret the result, the statements in Table 4.3 need to be mapped back to the source
code in Listing 4.1. Using the traceability model created by the model, we can map
statement __assertion_failure := 1 back to Line 8 (the assertion itself) and statement [a ̸= 0]
to Line 6 (the if statement).
Based on the result, the most likely cause of the assertion failure is the assertion itself.
Ignoring this result, which is present because of how programs are formalized, the next
candidate is the if statement. We can see that the condition of the if statement and the
assertion are indeed in contradiction, so further changes are required by the developer.

4.2 Evaluating on C programs

The algorithm was evaluated on the Siemens TCAS (Traffic Collision Avoidance System)
from the Software-artifact Infrastructure Repository (SIR) that models an aircraft conflict
detection system and is commonly used to evaluate fault localization methods. The bench-
mark is based on a C code of 173 lines that implements a collision-avoiding algorithm.
The benchmark also contains 40 variations of the C code, each injected with a fault that
causes an assertion failure.
The algorithms were evaluated on whether they were able to find the issue in hand, the
number of statements returned, and the required time. To compare the result with the
original Whodunit algorithm, the original was run with two iterations to circumvent the
early termination issue mentioned in Section 3.3.1. Some results can be seen in Table 4.4
with the variants being randomly selected to be represented here. The entire table can be
found in Appendix A.1.

Variant Original Whodunit Modified Whodunit
Size Time Found Size Time Found

v1 6 0.76 yes 14 (8) 0.37 yes
v9 6 0.73 yes 12 (6) 0.38 yes
v10 15 0.72 no (1) 23 (16) 0.39 yes
v14 8 0.73 yes 16 (8) 0.39 yes
v15 11 0.78 yes 20 (13) 0.40 yes
v20 9 0.76 no (2) 17 (11) 0.37 yes
v34 15 0.78 no (1) 25 (17) 0.39 yes
v35 3 0.74 no (1) 16 (4) 0.37 yes
v40 8 0.79 yes 20 (8) 0.38 yes

Table 4.4: The result of the fault localization

The size of the result was measured in lines of code, while the time was in seconds. The
Found column contains whether the injected error was in the instructions returned by the
algorithm. If it was not found, the number in the parentheses represents the distance to
the nearest line returned in lines of code. The Size column of the Modified Whodunit
contains the size of the returned instruction set. In parentheses is the size of the returned
instruction set until the iteration that the offending instruction was returned with.
As it can be seen, the original algorithm is not always able to find the faulty lines. On the
other hand, the modified algorithm manages to do that. The original algorithm returns
fewer lines as the cause of the fault. Although the modified algorithm returns twice as
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many lines on average, many of these superfluous instructions are part of the result due to
the iterative approach. Only considering the first few iterations, the number of returned
lines is only slightly larger.
The most significant difference is the time required by the algorithms. On average, the
modified algorithm requires half the time required by the original.

4.3 Applying the approach to industrial PLC code

The proposed algorithm and the implementation were also tested using PLC code. CERN
provided us with three PLC projects. All three projects contained multiple assertions, but
for the sake of computational feasibility, only one assertion was checked at a time. Five
assertions were checked altogether: three from one project and one-one from the other
two. The criteria for selecting the assertions were that they have to be proven correct by
PLCverif.
During the tests, faults were inserted into the source code of the project manually. Af-
ter that, the formal verification was expected to return an unsafe result, and the fault
localization method was used to point out the issue. To compare the result with the
original Whodunit algorithm, the original was run with two iterations to circumvent the
early termination issue mentioned in Section 3.3.1. Moreover, two kinds of faults were
differentiated: one that would be formalized as a faulty deterministic assignment and one
that would be formalized as a faulty guard.
Project A and Project B were part of the UNICOS base library, a standard library used
by all PLC projects inside CERN. Ensuring the proper functioning of these components
is of utmost importance, as a failure in them could affect hundreds of programs. Due to
computational feasibility, one assertion was selected from both projects. Project C, on the
other hand, is a PLC program implementing a safety procedure. Three assertions were
chosen from this project for the test.

Pro. Size Ass. Fault Original Whodunit Modified Whodunit
Size Time Found Size Time Found

A 141 A assignment 8 0.76 yes 17 (10) 0.37 yes
guard 0 0.76 no (∞) 17 (10) 0.38 yes

B 768 A assignment 15 2.41 yes 82 (20) 1.25 yes
guard 16 2.28 no (5) 86 (33) 1.31 yes

C 2312

A assignment 25 7.63 yes 217 (31) 3.11 yes
guard 29 8.03 no (32) 208 (34) 3.67 yes

B assignment 25 7.27 no (167) 236 (45) 3.12 yes
guard 28 7.52 no (34) 212 (22) 3.84 yes

C assignment 32 7.42 yes 204 (41) 3.24 yes
guard 28 7.26 no (47) 187 (35) 3.42 yes

Table 4.5: The result of the fault localization

The results of the testing can be seen in Table 4.5. The size of the project and the result
were measured in lines of code, while the time was in seconds. The Found column contains
whether the injected error was in the instructions returned by the algorithm. If it was not
found, the number in the parentheses represents the distance to the nearest line returned
in lines of code. The Size column of the Modified Whodunit contains the size of the
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returned instruction set. In parentheses is the size of the returned instruction set until the
iteration that the offending instruction was returned with.
As it can be seen, the original algorithm was not able to find the faults injected into guards.
However, generally, it was able to find lines close to the fault at hand. In one case (Project
A, Assertion A), the original algorithm returned an empty result. Early termination has
also hindered the original (Project C, Assertion B, fault injected to assignment).
The Modified Whodunit algorithm managed to always return the offending line. However,
the size of the returned instruction set was significantly larger. Considering that the results
should be interpreted in the order of decreasing scores, it can be seen that the first couple
of iterations always returned the line in question, and it was only slightly higher than the
size of the result of the Original Whodunit.
However, the most significant difference was in the time required by the algorithms to
execute. Generally, the modified algorithm terminated in almost half the time required
by the original, even considering that the modified performed much more iterations.

4.4 Summary

The proposed method and implementation were evaluated using both C programs and
industrial PLC codes. All in all, we can conclude that the modified algorithm has better
performance, tend to find the causes better than the original, but achieves this at the cost
of generally returning more instructions. Another lesson is that in most cases, it is not
necessary to run iterations until the start of the counterexample: it is enough to stop after
the first few iterations.
However, the results warrant further investigation. It would be beneficial to compare
the Modified Whodunit algorithm with other fault localization algorithms and with other
standalone tools as well. Moreover, it would be advantageous to check the effect of a
maximum number of iterations option to the Modified Whodunit algorithm.
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Chapter 5

Conclusion

This paper presented an approach to apply a custom fault localization method for formal
counterexamples. The approach uses an abstraction-refinement-based model checking al-
gorithm to produce counterexamples and a weakest precondition-based fault localization
algorithm.
The fault localization method is based on an algorithm from the literature. The short-
comings of the algorithm were identified and I extended the algorithm to support better
fault localization and to be used in various industrial settings.
A prototype implementation was developed to check the viability of the approach. The
implementation is capable of processing C programs and PLC code as well. The approach
was tested with a C benchmark designed for fault localization methods and using industrial
PLC implementation as well. The result showed that the new algorithm improved in
performance, found the cause of the failure more often in return for less precise results.
As a summary, a novel approach was introduced that was successfully applied to fault
localization problems on formal counterexamples, and the method was proven to work on
industrial code as well.

5.1 Future work

In the future, I plan to work on the limitations of the implementation as well as evaluate
the approach more thoroughly:

• The algorithm should be compared to other state-of-the-art methods from literature.

• It should be examined whether there is a need to maximize the iteration count.

• The limited floating-point support should be addressed, as floating points are often
used in critical embedded systems.

• The fault localization algorithm should be extracted into a standalone tool so that
other formal verification backends of PLCverif may take advantage of it.
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Appendix

A.1 TCAS benchmark data

Variant Original Whodunit Modified Whodunit
Size Time Found Size Time Found

v1 6 0.76 yes 14 (8) 0.37 yes
v2 11 0.79 yes 20 (12) 0.38 yes
v3 15 0.78 no (1) 28 (17) 0.37 yes
v4 13 0.79 yes 21 (13) 0.34 yes
v6 13 0.75 no (1) 22 (15) 0.41 yes
v7 12 0.78 no (2) 24 (14) 0.35 yes
v8 7 0.71 yes 16 (8) 0.37 yes
v9 6 0.73 yes 12 (6) 0.38 yes
v10 15 0.72 no (1) 23 (16) 0.39 yes
v11 14 0.82 yes 23 (15) 0.35 yes
v13 7 0.72 no (4) 16 (8) 0.35 yes
v14 8 0.73 yes 16 (8) 0.39 yes
v15 11 0.78 yes 20 (13) 0.40 yes
v20 9 0.76 no (2) 17 (11) 0.37 yes
v21 8 0.83 no (1) 18 (9) 0.38 yes
v22 10 0.85 yes 21 (10) 0.40 yes
v23 11 0.73 yes 22 (12) 0.34 yes
v26 7 0.79 yes 15 (9) 0.38 yes
v27 6 0.73 no (2) 16 (7) 0.36 yes
v29 10 0.77 yes 19 (10) 0.37 yes
v30 11 0.75 no (1) 23 (14) 0.37 yes
v31 13 0.71 yes 24 (13) 0.32 yes
v32 8 0.82 yes 18 (9) 0.41 yes
v33 11 0.76 no (2) 23 (13) 0.39 yes
v34 15 0.78 no (1) 25 (17) 0.39 yes
v35 3 0.74 no (1) 16 (4) 0.37 yes
v36 12 0.76 yes 21 (13) 0.35 yes
v38 11 0.73 no (2) 20 (12) 0.36 yes
v40 8 0.79 yes 20 (8) 0.38 yes

Table A.1: TCAS benchmark data
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