101010/ OO I I i T O AT |giaior
MUEGYETE 17 8 2

Budapest University of Technology and Economics
Faculty of Electrical Engineering and Informatics
Deparment of Telecommunications and Media Informatics

Supporting multi-stakeholder industrial
processes with blockchain technology

Scientific Students’ Association Report

Author:
Bence Olah

Supervisors:

Dr. Pal Varga
Attila Frankd

2021

Contents

Kivonat
Abstract
1 Introduction

2 Related works

2.1 Blockchain Technologies
2.2 Ethereum and Solidity o0

2.3 Smart Contracts
2.4 Robust Smart Contracts
2.4.1 Access Restriction
2.4.2 Checks Effects Interactions

24.3 Emergency Stop.
244 Ownership

2.4.5 Proxy

3 Smart Contract use cases

3.1 Asset management

3.1.1 Adding new assets

3.1.2 Buyinganasset Lo L

3.1.2.1
3.1.2.2

Before calling the buyAsset function

Buying the asset

3.1.3 Increasing or decreasing quantity

3.1.4 Updating the unit price of anasset

3.2 Cooperation with the CBDC system and physical devices

4 Making transactions as a part of a company on the Ethereum

blockchain using smart contracts

ii

14

4.1 Individual and shared accounts for individual but company-bound

devices 14

4.1.1 Issues with using individual accounts 15

4.1.2 Issues with using shared accounts 15

4.2 Companies represented through smart contracts 15

4.3 Implementationo 18

5 Voting mechanism in company contracts 22

5.1 Issues with the existing methods 23

5.1.1 Issues with using a single address as an owner 23

5.1.1.1 Issues with an EOA as the owner 23

5.1.1.2 Issues with a contract as the owner 23

5.1.2 Issues with using a list of address as owners 24

5.2 Characteristics of the proposed voting mechanism 25

5.2.1 Voting contract L 25
5.2.2 Demonstration of the voting mechanism through the company

contracto 26

5.2.2.1 Halting the operation of the company 26

5.2.2.2 Restarting the operation of the company 27

5.3 Comparison of the different ownership methods 28

5.4 Comparison to Gnosis Safe L. 29

5.5 Further potential applications of the voting mechanism 29

6 Validation and Verification 31

6.1 Test casesand results oL 31

6.1.1 Accesscontrol 31

6.1.2 Non-owner functionalities 32

6.1.3 Owner management 32

6.1.4 Critical function 33

6.2 Security analysis L 34

6.2.1 Mythril 34

6.2.2 Slither 34

6.3 Validation 35

7 Summary 36

Acknowledgements

Bibliography

37

38

Kivonat

A tOobbszereplés ipari folyamatokban gyakran sziikség van adatok gyors, biztonsagos
megosztasara. Ebben a kérdéskorben az egyik aktudlis trend az ipari digitalizaciéban
a blokklancok hasznélata — azaz egyeldre ennek a lehetoségnek a vizsgalata.

A blokklanc technolégidk utat nyitottak az elosztott, biztonsagos és megma-
sithatatlan adattarolashoz. Egyes blokklancok lehetévé teszik a fejlesztoknek, hogy
kodot irjanak, amiket gyakran okosszerzédésnek neveznek, majd a kodot felirjak a
halézatra és ott futtassak azokat. A blokklanc technolégia természetébdl fakaddan
semmilyen adat nem valtoztathaté meg azutan, hogy a halézatra irodott, beleért-
ve az okosszerzodések kodjat is. Mint barmely més kod, igy az okosszerzédések
koédja is tartalmazhat hibakat, amik javitasra szorulhatnak. Ezt a javitast azonban
ugy kell eszkozolni, hogy ez kozben megfeleljen a blokklanc alapelveinek, elsésorban
azok megmasithatatlan és elosztott jellegének. Figyelembe véve a tényt, hogy sok
blokklanc publikus, valamit rosszindulata szereplok szamara is hozzaférheto a kod,
kiemelkedd jelentéséggel bir a robosztus okosszerzddések fejlesztése, amik a leheto
leghiztonsagosabbak, és képesek megbirkdzni a lehetséges sériilékenységekkel. Még
mindig vitatott, hogy az okosszerzodések frissitése elfogadhato-e, mivel ez megsérti
a fent emlitett elveket — és ha elfogadhato, akkor hogyan kellene frissiteni.

Ebben a dolgozatban az okos-szerzédések robosztussagat novelé megvaldsitasi
mintdk mellett egy olyan moédszert is bemutatok, amely kiegésziti a hibdk javita-
sat és az okosszerzodések frissitését célzd, mar létezd megoldasokat egy szavazast
megvalosité mechanizmussal. Egy miivelet elvégzéséhez vagy az okosszerzodés éalla-
potanak megvaltoztatasdhoz egy csoportnak szavaznia kell, hogy egyetértenek-e a
javasolt valtoztatasokkal. Ezzel a fejlesztoknek lehetdségiik nyilik, hogy egyszertien
megvaldsitsanak egy szavazas-alaptu dontéshozatali mechanizmust, amellyel elérhetd
az elosztott, demokratikus frissitési és allapotvaltoztatasi folyamat. A bemutatott
modszer célja, hogy kozelebb hozza az okosszerzédések frissitési folyamatat a blokk-
lanc technoldgia alapelveihez azaltal, hogy az megfelel a decentralizaltsag elvének,
mikézben a hagyomanyos eljarasok, amelyek soran egy vagy tobb ember hajtja végre
a frissitéseket - de szinte kizarolag egy cimrol valosul meg - megsértik ezt az elvet.

Abstract

In multi-stakeholder industrial processes, fast and secure data sharing is often re-
quired. In this area, one of the current trends is the usage of blockchains in industrial
digitalization — more precisely, recently the examination of this possibility.

Blockchain technologies provide a way for distributed, secure, and immutable data
storage. Some types of blockchains allow developers to write code, known as smart
contracts or chaincode, that can be deployed to the network and are able to execute
their code. Due to the nature of blockchains, no data can be changed after writing it
to the network, including the code of smart contracts. However, just like any other
code, smart contracts can contain bugs that need to be fixed while still adhering to
the main concepts of blockchains, especially their immutability and decentralized
feature. Considering the fact, that many blockchains are also public, and the code
is accessible to malicious parties, it is paramount to develop robust smart contracts,
that are as secure as possible and can deal with the potential vulnerabilities. It is still
debated if updating contracts is acceptable since it violates the two aforementioned
features, and if it is acceptable, how it should be done.

In this paper I present a method that enhances the existing solutions for fixing
bugs and upgrading contracts with a voting mechanism. To perform an action or
to change the state of the contract, a group of people has to vote whether they
agree with the proposed changes. This allows developers to easily implement a
voting-based decision-making mechanism that enables a decentralized, democratic
update or state change process. The proposed method aims to bring the process of
updating contracts closer to the core principles of blockchains by adhering to the
decentralization concept, compared to the usual way, when updating is performed
by one person or a group of people, but almost exclusively from one address, which
contradicts the decentralization principle.

i

Chapter 1

Introduction

Since the introduction of Bitcoin [1] in 2008, blockchain technologies gained pop-
ularity among companies and tech enthusiasts alike, lately even going mainstream
thanks to the success of cryptocurrencies. While individual users mainly interact
with the most popular blockchains such as Bitcoin or Ethereum [2] and use them as
a speculative asset or a store-hold of wealth, companies can see different values in
the usage of blockchains. Even though some companies — e.g. Tesla — hold significant
amounts of Bitcoin and had accepted it as a form of payment in the past, the ma-
jority of them uses a customized, mostly private blockchain to amend their existing
tools or to support cooperation with other companies in their supply chains. Some
of the most notable industries that benefit greatly from the usage of blockchains in-
clude healthcare, energy, financial sectors, Internet of Things (IoT), supply chains,
and smart cities [3]. Multi-stakeholder processes include at least two parties, com-
monly from different industries, that could connect in many different ways — such as
through the Arrowhead framework that is based on Service Oriented Architecture
principles [4]. The players in multi-stakeholder processes are in a partnership, and
cooperate in one or more fields, such as decision-making, governing, logistics, and
manufacturing processes. These partnerships highly value the properties provided
by blockchain technologies, namely: security, fault tolerance, high reliability, and
immutability [5]. Figure 1.1 illustrates an example of a multi-stakeholder supply
chain, the type of stakeholders, and the some of the services they offer to each
other. Beside exchanging goods, data is also exchanged in these partnerships.

Although the main features are mostly the same for all blockchains, their level of
presence might differ. Ethereum, for instance, allows developers to create smart
contracts, moreoverany participant of the network is able to see every transaction
that happened on the chain. This, combined with its strong immutability feature
makes the impact of having vulnerabilities in the code devastating. Therefore, it is
crucial for developers to create robust and secure smart contracts that are resilient
to attacks and can mitigate the effects caused by the exploitation of a vulnerability.
Utilizing the industry-standard best practices and patterns significantly decrease
the number of possible attack vectors, however, some of them make contracts con-
form less to blockchain’s decentralization principle, which could be a problem in
industrial use cases. In multi-stakeholder scenarios, or even within the same com-
pany, decentralization, trust, and control are key factors for an efficient workflow

and maintaining long-term operation and partnership. Furthermore, accounts on
blockchains are generated from a private key which, — as its name suggests — cannot
be shared with anyone, therefore, it is challenging to control or limit specific abili-
ties in industrial settings when many devices with individual accounts are under the
same ownership or managing entity.

Supplier Company Customer

..

Supply Chain | ’\? - -

0 -~
Services Fhs %
_ Resource Information
& Sharing Sharing ' ¥ Marketing v
4 [
Research % ‘T
And g Inventory
Development Transportation Production

———> Material/Product Flow
----------- + Information flow
<+———— Service management

Figure 1.1: An illustrative example of a multi-stakeholder
supply chain [4]

In this paper, I propose an approach that allows companies to exert control over
their devices while also leaving them as a separate entity with the potential of fine-
grained authorization control and spending limits. To enhance this ability, I further
propose a method that gives companies the potential to utilize an on-chain decision-
making mechanism that supports corporate governance by enabling owners to vote
on specific proposals. This mechanism is not exclusive to companies or organizations.
Furthermore, it can be useful for numerous decentralized applications and even to
amend the capabilities and characteristics of existing smart contract design patterns,
since their usage is of paramount importance to the development process of robust
smart contracts.

The solutions have been validated and verified through use cases presented in this
paper. The work presented Chapters 4 and 5 are my novel contributions, together
with the actual smart contract design and implementations presented in Chapter 3
— together with the applications of design patterns aiming for robustness.

Chapter 2

Related works

2.1 Blockchain Technologies

A blockchain is a special form of a distributed database, where records, or transac-
tions get stored by grouping individual transactions into blocks. Each block consists
of a header and a body. The block header stores information about the block itself,
like the creation time and the block number. Additionally, it also stores information
about the preceding block by including the hash of it, thus creating a structure of
consecutive blocks. Due to the fact that every information about a block is hashed
and stored in the following block, tampering with any data is very difficult since it
would require the recalculation of the hash value of every subsequent block, which is
practically infeasible under real conditions. Fach transaction is signed with the pri-
vate key of the sender which makes it impossible for anyone to impersonate someone
on the network or alter their transaction data.

There are many characteristics of blockchain technologies that vary widely depend-
ing on the concrete implementation. Some blockchains are public and permissionless,
while others are private. There are also major and fundamental differences in terms
of the applied consensus mechanisms between various blockchains. Further infor-
mation, a comprehensive analysis of the characteristics, and a blockchain taxonomy
can be found in [6].

2.2 Ethereum and Solidity

Ethereum [2] is one of the most popular blockchains right now. It is public and
permissionless, meaning anyone can join the network without restriction. A great
advantage of Ethereum is that it is not only able to record cryptocurrency trans-
actions, but also allows developers to create applications that can be deployed to
the network. These applications are known as smart contracts, and network partici-
pants can interact with them. Smart contracts are commonly written in Solidity [8],
a language resembling JavaScipt and C++, and after deploying them to the network,
they run on the Ethereum Virtual Machine.

Public / Permissionless Private / Permissioned
Monax Ripple
- Ethereum NXT Zcash | Bitcoin
[
7]
©
Q . :
= Logic-Oriented Transaction-Oriented Logic-Oriented Transaction-Oriented
) Blockchains Blockchains Blockchains Blockchains
4
(<]
=
Counterparty Burstcoin | Dash Litecoin
| Monero
5} (Hyperiedger) Multichain
=~ | RootStock Fabric
(7]
o
c
(=]
< - o o
1 Logic-Oriented Logic-Oriented Transaction-Oriented
5 Blockchains Blockchains Blockchains
X
(=]
[

Figure 2.1: Blockchain taxonomy [7]

Ethereum distinguishes two types of accounts: everyone with a keypair on the net-
work has an Externally Owned Account (EOA), while the second type consists of
the deployed contracts. They both have a public address that can be used by other
accounts to identify them, and both can receive funds, but contracts cannot initiate
transactions without themselves being the recipient of another one. Transactions
that change the state of the blockchain cost gas, which has to be paid in ether, the
native currency of Ethereum. The amount of gas used is proportional to the compu-
tational resources that the particular transaction uses, so developers are incentivized
to write simple and efficient code to reduce costs.

2.3 Smart Contracts

Smart contracts are self-executing codes that run on specific blockchains. Not every
blockchain is capable of running smart contracts, out of those that support this
feature, one of the most widely used is one Ethereum. As mentioned earlier, a
very common programming language used by developers in the Ethereum ecosystem
to create smart contracts is Solidity, however, there are alternatives to it, such
as Vyper [9], which is a Python-like language. Any participant can create smart
contracts and deploy them to the network, but deploying costs gas just like any
other transaction does that modifies the blockchain.

The complexity and capabilities of smart contracts vary widely, ranging from those
that provide very basic functionality to the immensely complex decentralized ap-
plications like Aave [10], a lending application, or Augur [11], which is a betting

platform. An analysis of decentralized finance (DeFi) applications, including decen-
tralized exchanges, asset management, and debt markets, can be found in [12].

Ethereum also supports the creation of tokens, which are described by smart con-
tracts compliant with one of the token standards, for example, the ERC-20 standard.
Major tokens can be exchanged on decentralized exchanges like Uniswap [13]. ERC-
721 tokens are non-fungible tokens, meaning every token is unique. These tokens
are commonly used to represent the ownership of different assets such as property
rights, paintings, artworks, collectible items, etc.

2.4 Robust Smart Contracts

It is crucial for a smart contract to be safe and bug-free , since deployed contracts
cannot be updated. This means that the developers have no way to patch the already
deployed smart contracts as they can release security fixes for traditional software,
so the code will contain the bug forever, leading to the possibility of exploits, that
can cause serious losses, just like it happened in the case of the infamous TheDAO
attack [14]. A classification of the most common attacks against blockchains and
smart contracts, including the one used against TheDAO, can be found in [15].

The definition of smart contracts can go wrong in various different ways — the un-
derlying reason is mostly the lack of technical understanding. In order to avoid
such defects, creators of smart contracts should follow certain best practices and
rigorously validate and verify the behavior of the smart contract before unleashing
it in the wild. A good reference on the possible smart contract defects can be found
in [16], where the authors provide ideas on preventing such defects, as well as de-
scribing the effects of such errors in Ethereum-based blockchains. When discussing
smart contracts on Ethereum, further description of best practices to avoid security
vulnerabilities can be found in [17] and in [18].

In this section, I give a brief introduction and description of some of the existing
and widely used patterns that are of great importance for developing robust and
secure smart contracts.

2.4.1 Access Restriction

Public functions in Solidity can be called by anyone on the network, either by
an account or by another contract. Obviously, this is not acceptable most of the
time, since it can pose serious security risks, especially, if a contract handles funds
on behalf of other accounts. To be able to exert control over the identity of the
caller, or even the time of the call, the Access Restriction pattern is implemented
in contracts. Using this pattern, developers can write such functions that ensure a
transaction can only be completed if specific preconditions hold. The most common
use case of this pattern is to check if a caller is authorized to call a given function:
most commonly, they check if the caller is the owner of the contract, and if not,
the transaction is reverted automatically. Other use cases include a time constraint,
meaning, a function can only be called or an action can only be taken if a specific

amount of time has passed. Developers can check against a given state, and only
allow the calling of the function if the state of a given variable is desired.

2.4.2 Checks Effects Interactions

The Checks Effects Interactions pattern is a best practice used when there is an ex-
ternal call in a function. Contracts can call other contracts, and when this happens,
the called contract executes its own code. This allows an attacker to create such
contracts that act in a malicious way, circumventing the intended control flow of
the transaction. The most common way to do this is when the malicious contract
re-enters the originally called contract before the previous transaction could have
been completely executed. This allows the attacker to exploit the weakness of a
vulnerable contract, which is the order in which the checks of conditions, setting
variables, and calling external contracts happen. If an external call precedes the
lines that check if the caller is authorized to call the function or the setting of vari-
ables, the attacker can re-enter the function as long as the gas runs out, or — in
the usual case when the aim is to steal funds — the contract runs out of ether. To
mitigate this risk, a function should first check the eligibility of the caller, and other
preconditions that might be required to hold. Then, contrary to what the common
practice might be in other cases, the state variables should be updated, even though
the actions have yet to happen. Lastly, the external call should be made. This
way, if a malicious contract re-enters the original, all variables are updated, thus
rendering the re-entrancy attack ineffective.

2.4.3 Emergency Stop

If a vulnerability is discovered in a smart contract, it is virtually impossible to fix it.
Even if some patterns allow upgradeability to some degree, creating and deploying
the new version of the contract can take a significant amount of time, which is
not acceptable due to the risk of serious, harmful, and destructive effects that can
be caused by exploiting the vulnerability. The Emergency stop pattern helps to
mitigate this risk by giving developers a tool that allows certain functions to be
stopped by an authority in case of an unforeseen, serious event that poses a great
risk to the contract and its assets. This way, critical functions can be shut down
to protect assets of the contract until the vulnerability gets fixed. Depending on
the implementation, the halting of the contract might be permanent if there is no
way to fix the vulnerability and it poses a serious threat. A good reference point
could be OpenZeppelin’s [19] Pausable contract module [20] that implements the
Emergency Stop pattern and could be used by other contracts to take full advantage
of the benefits that it provides.

2.4.4 Ownership

The Ownership pattern is widely used by developers due to its crucial role in smart
contracts. This pattern is actually a type of the Access Restriction pattern, in which
accessing to certain functions is restricted to one address. Most of the time it is the
address that deployed the contract and therefore is considered to be the owner of it.
While it might be a type of another pattern, it is worth noting on its own, since it
is one of the most commonly used patterns, so much so that OpenZeppelin created
a contract module [21] that provides the required functionality while also allowing
of the ownership role for the management.

2.4.5 Proxy

OpenZeppelin proposed a method to solve the problem of upgrading already de-
ployed smart contracts caused by the immutability feature of the blockchain. By
default, deployed contracts cannot be modified; however, changing certain variables,
writing special functions, and separating logic and storage can enable developers to
upgrade features or even whole smart contracts if needed. The authors proposed sev-
eral ways to this method in a blog post [22] on OpenZeppelin, called Prozy Patterns.
Every method faces the same problem of separating storage, which makes it possi-
ble to update the underlying logic without losing data or needing costly rewrites.
They achieve this by using a permanent proxy contract, an intermediary between
the caller of the called contract, and the called contract itself. This contract does
nothing but forwards calls to the logic contract and the result back to the caller. It
does not change at all, its address remains the same so the callers do not notice any
change when updates happen to the logic contract. When developers update or add
some functions, they deploy a new logic contract that contains the updated code,
and the proxy contract will then communicate with this new contract. This way,
the changing of the logic is completely transparent to the callers.

The proposed ways are Inherited Storage, Eternal Storage, and Unstructured Storage.
Each of them solves the problem, but they have some characteristics which make one
preferred over the other. Namely, the structure of the Unstructured Storage makes
it the best choice in the majority of use cases, because it is fairly easy to implement,
and the existing contracts do not need to be modified at all, they can be used with
the proxy without any changes. (This approach is very similar to the Contract Relay
Pattern found in [23], and the Prozy Delegate pattern found in [24], however, the
Contract Relay Pattern is an outdated version that is not recommended to use due
to its inability to return result values.) Further details and some important things
about the Unstructured Storage, and sample contracts can be found in [25] and [26].

Chapter 3

Smart Contract use cases

The initial idea that motivates my work is that the usage of blockchain technologies
brings many benefits to stakeholders in numerous industries, including manufactur-
ing, finance, and trading.

In this chapter, I present a system of smart contracts that manages the exchange of
assets, keeps ownership records of them, and handles payments utilizing an ERC20
compliant [27] smart contract. The solution presented here realizes a supply chain
management tool, where an asset can be tracked throughout the whole chain, in-
cluding suppliers, manufacturers, wholesalers, retailers, and customers. Blockchain’s
immutability, traceability, and transparency features can build trust and provide ac-
countability in this scenario, while also speeding up payments compared to legacy
solutions. It can also serve as a trading platform where both B2B, B2C, and C2C
transactions can take place.

This solution — i.e. the system of smart contracts — was a part of a central bank
digital currency (CBDC) project that demonstrated a CBDC system and its inte-
gration and cooperation with industrial smart contract applications. The project
was funded by the Hungarian National Bank (MNB), and carried out by a selected
research group at BME that I became part of, during the project.

The use case solutions presented in this chapter provides a visible, physically avail-
able environment for my research. The work presented in the upcoming chapters
are my novel contributions, together with the actual smart contract design and im-
plementations presented in this chapter — together with the applications of design
patterns aiming for robustness.

3.1 Asset management

For managing and keeping track of availability, amount, and ownership of different
types of assets, there is an asset contract. This contract stores every asset type and
their parameters, such as the address of the owner, the available quantity, and the
unit price. Anybody can add a new type of asset, view and buy existing assets, and
manage their own assets. An owner can increase or decrease the quantity available
for purchase, and update the unit price of a given asset that they have.

Anything that has to do with the assets happens on the asset contract, but managing
payments is the responsibility of the token contract. The token contract keeps track
of the balances of the individual accounts, verifies transactions, and transfers funds
between accounts.

The asset contract is linked to the token contract, so every time someone buys an
asset, the token contract needs to be called, and is also called by the asset contract.
It is similar to when someone wants to sell their house, they ask a real estate agent
to sell the house on their behalf. The agent is not the owner of the house, but they
are authorized by the seller to sell it.

The following sections describe the actual functions that the stakeholders can use
in the various scenarios.

3.1.1 Adding new assets

A user can add a new asset that they want to sell by calling the createAsset function.
This function takes two parameters: the first one is the unit price, that specifies how
much one unit of the new asset costs, and the second one is the quantity of the new
asset that is up for sale. The new asset will have a unique ID, that identifies the
asset, and the asset will be tied to the caller of the function (the seller of the asset).

3.1.2 Buying an asset
3.1.2.1 Before calling the buyAsset function

By default, calling only the buyAsset function of the asset contract will result in
reverting the transaction because the asset contract is not allowed to transfer funds
on behalf of the buyer. To prevent this, before buying a specific asset by calling the
buyAsset function, the buyer must call the approve function of the token contract
first that authorizes the asset contract to initiate the transfer of the funds from
the account of the buyer to the account of the seller. The allowance is passed as a
parameter of the approve function as well as the address of the asset contract. After
calling this function, the asset contract will be authorized to spend money from the
buyer’s account (but not more than the allowance), so it is recommended to call the
approve function every time before buying an asset with the exact amount given as
the parameter.

3.1.2.2 Buying the asset

To buy an asset, a user has to call the buyAsset function with two parameters: 1)
the ID of the asset, 2) the number of units he/she wants to buy. If the requested
amount exceeds the available amount of the given asset, the transaction will be
reverted. This function will call the transferFrom function of the token contract,
which transfers the total amount of money that needs to be paid to the seller for
the assets. If the buyer has authorized the asset contract to transfer the necessary
amount from their account before trying to buy the asset, and they have sufficient

funds, the transaction will be successful, and the buyer becomes the new owner of
the asset(s).

getAssets() P

¢ Asset[]

buyAsset(uid, quantity) ———————

payment(buyerID, sellerID, amount) ——»

buyAsset(uid, quantity) ———————)

payment(buyerID, sellerID, amount) —!

f struct Asset {

address owner;

uint unitPrice;
uint maxQuantity;

}

mapping (uint256 => Asset) assets;

uid

\. /

Figure 3.1: Sequence chart of buying assets

3.1.3 Increasing or decreasing quantity

It is necessary for an owner to be able to update the available quantity of an asset.
It might be needed, for example, if there is a restock or some units become damaged
and are no longer in a condition to be up for sale. In this case, the owner of an
asset can call the addAsset or the removeAsset function to increase or decrease the
quantity, respectively. Both functions take to parameters: the ID of the asset, and
the difference between the old and the new quantities. In case of the removeAsset
function, if the quantity to be subtracted is larger than the current quantity, the
transaction will be reverted and the existing quantity will not be changed. The
quantity of a given asset can only be change by its owner.

3.1.4 Updating the unit price of an asset
Another useful feature is the ability to change the unit price of an asset. One thing

to keep in mind is that it is not possible to differentiate between units of the same
asset. Changing the unit price results in every unit costing the new amount of

10

money thereafter. If it is needed to have a separate batch of an asset that costs
more or less than the others, a new asset has to be created with the new price and
the quantity of the batch.

3.2 Cooperation with the CBDC system and
physical devices

In order to deploy the smart contracts in the described context, a suiting blockchain-
type had to be chosen. Because of previous experiences, I developed and imple-
mented the contracts of the system in Solidity [8] — hence I needed to deploy them
to an Ethereum-based network. For this purpose, the solution that suited the given
use case and requirements best was to host a private Ethereum network instead
of using the Ethereum Mainnet or other public Ethereum test networks. This was
mainly because of security and convenience considerations, since the participants of a
private network can be limited to trusted stakeholders, and — regarding convenience
— transaction fees did not have to be paid or testnet ethers required, thus allowing
more scalability and cost-effectiveness. I set up and hosted the private Ethereum
network in an environment that provided an API for devices and the CBDC system,
thus they were able to connect to the blockchain.

LA A

End Users Central Bank Financial
Institution

CBDC Smart Contract
(on Hyperledger Fabric)

&

Bridge Logic
between different types of
BC Networks

et

Smart Contract
(on a Private Ethereum network)

L

Senvice / Asset Logistics Senvice / Asset
Provider Provider Consumer
P ' nor

AN

Asset Seller Asset Asset Buyer
(Duck Generator) (Small Duck) (Black Pond)

Figure 3.2: The simplified view of the complete system [28§]

11

Figure 3.2 depicts the simplified view of the complete system, which consisted of (i)
the CBDC system, (ii) the bridging logic, (iii) the asset management application,
and (iv) the physical devices.

The asset management application connected to the CBDC blockchain through the
bridging logic, which enabled the CBDC system to issue digital currency to the
accounts on the Ethereum blockchain. These accounts were tied to the devices that
handled the assets, therefore in response to a transaction, the appropriate actions
could be taken.

In order to demonstrate the different scenarios, a series of interactions and transac-
tions occurred between an asset manufacturer, a courier, and a buyer. The devices
that had these roles were two robotic arms and a conveyor belt, where the arms
represented the roles of the manufacturer and the buyer, while the conveyor belt
served as the courier. First, the manufacturer produced and sold the asset — which
was a rubber duck — to the courier, then the courier sold the asset to the buyer. In
the process of the transactions, the asset management application interacted with
both the physical devices and the CBDC system. As a transaction was approved, (i)
the payment went through the bridging contract, (ii) the ownership of the asset got
transferred in the asset management contract, and (iii) the seller’s device physically
moved the asset to the buyer’s device.

Figure 3.3 presents the physical environment in which the stakeholders have actually
exchanged the assets - in this case: rubber ducks. This physical setup provided an
excellent base to my work, since each ownership change in the smart-contract had
a physical effect: the provider blue robotic arm put the asset to the conveyor belt
(belonging to another stakeholder), which then moved it to the buyer, which could
then take it both physically and ownership-wise in the smart-contract. The creation
of this physical environment was a result of another Scientific Student’s Association
paper, presented in the previous year by my peers in our laboratory [29].

Figure 3.3: The physical demonstration environment - in this
case two blue robotic arms on the producer side,
and one robotic arm at the buyer side; the logis-
tics is provided by a conveyor belt in between.
This environment was provided as part of [29]

12

In this chapter, I presented a system that handles the exchange of assets on behalf
of both individual users and companies. However, companies — that might have
multiple hundreds of different devices with separate accounts — have very differ-
ent requirements and use cases than individual users do, consequently, they need a
solution to efficiently manage accounts that are under their supervision and admin-
istration.

In the next chapter, I am going to present an approach that gives companies the
ability to manage the authorization and spending limits of those accounts that are
under their control.

13

Chapter 4

Making transactions as a part of a
company on the Ethereum
blockchain using smart contracts

The benefits of using blockchain (BC) technologies for recording transactions usually
outweighs the drawbacks of it. The speed, reliability, security, immutability and
traceability, to name a few advantages provided, can be of great value for most
companies. However, there could be obstacles in some special cases.

One of the basic principles of many blockchain scenarios is that the ledger is dis-
tributed, so there are no authorities, and every account is equal. These are usually
useful, but in a business-to-business case or within some industrial setting, it might
be needed to have some sort of authority over a group of accounts. Companies are
usually organized hierarchically, and consist of many divisions or even have sub-
sidiaries. Since a division is a part of a company, there are certain dependencies —
and divisions are often not autonomous entities, so it is restricted what they can do.
Logically, it doesn’t make sense to give away accounts that are fully independent to
every device the company wants to connect to the blockchain (or use its ledger).

Companies’ acceptance of using blockchain technologies in their operations can only
be improved if the problem of authority over their own accounts is solved, or if there
is a viable alternative that overcomes the related obstacles.

4.1 Individual and shared accounts for individual
but company-bound devices

Suppose there are multiple companies that are working together, or are part of
a supply chain, for example, the manufacturer, suppliers, shipping companies etc.
They are considering using blockchain to track where each part of the product or
the final product itself is in the supply chain.

Let’s look at an archetypical shipping company. They might have devices such as
cranes, chain-hoists, robotic arms or conveyor belts in their parcel center, where they

14

want to keep track of the locations of the assets (in this case: packages). Tracking
can simple mean that we know for each given point of time: which robotic arm has
the asset or which conveyor belt is carrying it.

The abstract model for tracking "ownership" of assets in this setting is that when
the device takes or handles a given asset, it takes the "ownership" for it as well. The
device does not only create a record in an event log about this, but at the same time
"pays" for the ownership, as well.

As an example: if a robotic arm picks up a package, it sends a transaction to the
blockchain that it has the package, and "pays" a token at the same time (it might
be the case that a robotic arm can only handle a predetermined number of packages
a day). Since these devices are in the same company (or the same division), they
have to be grouped together on blockchain, and establish some form of hierarchy.

4.1.1 Issues with using individual accounts

A possible solution could be that every device has an own account on the given
blockchain, with an own balance. This way it is obvious where an asset is and which
device handles it, since the device becomes the ’owner’ of the asset. The problem
with this approach is that it is not possible to deauthorize a device to handle assets,
because every account (i.e., externally owned account on the Ethereum blockchain)
has the same rights, and is independent of the other accounts. Another problem
is that anybody on the blockchain can see the exact location of every asset (which
device handles it). For example, the manufacturer doesn’t need to know the exact
location of an asset in the supplier’s factory (even if it is just an account address),
it only needs to know which member of the supply chain has the particular asset.

4.1.2 Issues with using shared accounts

The other approach could be that every device use the same account. It solves the
problem of individual locations, but introduces many more. Obviously, an outside
party could not tell the exact location, but nobody else either. The company would
not be able to tell where an asset is without individual identifiers, such as wallet
addresses. The other problem is even worse: since every device uses the same
address, every one of them knows the private keys of the account, so they could
send any transaction they wanted to, which is unacceptable and could cause serious
losses.

4.2 Companies represented through smart con-
tracts

On many BC platforms (i.e. including the Ethereum blockchain), it is possible to
deploy smart contracts, which is a huge advantage compared to other blockchains

15

without this feature. Using smart contracts, it is possible to solve the aforementioned
problems.

One possible solution is the following. Every company is represented as a smart
contract on the blockchain, where it has an address, just like the externally owned
accounts, making the use of smart contracts invisible to the outside world. Inside
the smart contract, there are two key-value lists: the first one (i.e., authorized) tells
if an address is part of the company and therefore allowed to initiate transaction on
behalf of the company. The other one (i.e., allowance) stores the maximum amount
each address is allowed to spend from the company’s balance. The combination of
the two lists makes it possible to easily manage the individual limits and rights of
every device of the company.

Using this approach, every device has an own, unique address, so it is known exactly
where an asset is, and it is possible to keep a history of previous transactions of each
device.

The company’s smart contract has to be deployed by an administrator of the com-
pany, who will authorize and manage the allowances of the accounts that are in the
same logical group that the smart contract represents (e.g. a floor, office, division,
the whole company).

In this initial example, the group is a company, but it can be any subset or superset
as well. Initially, every individual address is excluded from the list of authorized
addresses, so none of the accounts can initiate transactions on behalf of the company.
The authorized addresses are added by the administrator, and by default, their
allowance is 0. Allowances also have to be defined explicitly for each address to
ensure that every account has the sufficient allowance and to prevent overspending.
The administrator can also deauthorize addresses. In this case, the address will no
longer be able to initiate transactions in the name of the company, and at the same
time, the allowance of the address will be set to 0 to prevent inconsistencies in the
state of the contract.

The transaction steps on how an asset’s ownership gets exchanged in our model is
depicted by Figure 4.1. The blockchain stores various Asset Contracts and Token
Contracts. The Asset Contract stores the ownership information regarding the given
asset — in this case, bound to the Company address. The Token Contract stores
information of the token balances of the individual wallets as well as the balances of
company contracts, and transfers the tokens between them. Besides, as the Figure
shows, the company takes care of authorising and keeping track of the allowances
of their "devices' (that are represented as wallets).

Those devices that are parts of a company, instead of calling the main contract
(that handles transactions, assets etc), have to call the contract of the company.
The individual devices do not have separate balances, instead they can spend
from the company’s balance, as long as their allowance is enough to pay for the
asset. If the caller address is authorized in the company, and the total cost of the
transaction is less than the allowance of the caller, the company contract will handle
the transaction and buy the asset. In this case, the bought asset will be owned by
the company contract, so the outside world will only know which company has the
asset, but not the exact device inside the company. The company contract will

16

m

| Token Contract [N
Wallet 11... 2. Approve (ass
4. transferFrom (companyContract, value)

——3.buyAsset— -
Company 1... Asset Contract [ReWIEIE el o}

ownership

auth, allowance auth, allowance
auth...

T
0
Figure 4.1: Steps of a transaction initiated by a member of a

company

record the transaction and the address of the device that initiated the transaction.
After the transaction, the buyer device’s allowance will be lowered by the amount
of the transaction cost.

Representing companies as smart contracts has multiple benefits, such as:

o Authorization management

e Set spending limits to prevent overspending

 Realistic ownership (an asset is owned by a company, not by a device)
o Hides the exact address from the outside world

o Assets can still be tracked inside the company

This method also allows that a device can be a part of multiple companies at same
time, and can initiate transactions on their own, not in the company’s name while
being registered as a member of one or more companies. This is safe and does
not present any threat to the company’s balance, because the individual accounts
don’t have tokens (that belong to the company) tied to their addresses, so it is not

17

possible that an address uses the company’s funds and becomes the owner of the
asset instead of the company. Besides this, accounts can have own funds that they
can spend however they want. This is completely independent of their allowances
at specific companies.

By utilizing the presented approach, the problems discussed earlier can be solved
efficiently and transparently. At the same time, it is easy to implement and ready
to be incorporated into the existing workflow by only requiring the updating of the
address of the recipient on devices. The result will be realistic in terms of hierarchy
and ownership, and the authorization of devices can be managed quickly and easily.

4.3 Implementation

An implementation of the contract was made to demonstrate that the idea of com-
panies as smart contracts is in fact a possible solution to the initial problem. The
code was written in Solidity [8] and the 0.8.4 compiler version was used to compile
the contract.

Figure 4.2 shows the class diagram of the Company contract. It can be seen that the
constructor needs the address of a token contract (i.e., the address of a deployed,
ERC20 compliant token contract) and the address of another contract (that (in
the example) manages the ownership of assets), so they have to exist when the
company contract is deployed to the blockchain. However, this implementation can
be changed whenever the model changes.

Figure 4.3 shows the class diagram of the Asset contract, which the Company con-
tract communicates with. It also needs the address of the same token contract that
the Company contract uses, to ensure correct token transfers. Like in the case of
the Company contract, the address of the token contract can be changed later. In
the event of the Asset contract changing its token contract address, it is the respon-
sibility of the administrators of the companies to change their addresses accordingly
and keep them up to date at all times.

Figure 4.4 shows the class diagram of the ERC20 token contract. Any contract can
be used as a token contract that is ERC20 compliant. The Asset contract calls the
transferFrom method inside of its buyAsset method to initiate the payment for the
assets. For the payment to be successful, any buyer, whether it is an externally
owned account or a contract, has to approve the asset contract to transfer funds on
their behalf.

The contracts were deployed to a private Ethereum blockchain, then a series of test
were carried out, including buying from an unauthorized address, buying from an
address that is authorized but has an insufficient allowance to buy an asset, buying
from an address that is authorized and has sufficient allowance to buy an asset,
calling methods from a non-admin address that can be called only from the admin
address, etc.

The contract behaved as expected and every test case was successful during the test.

18

Company

Private:
admin: address
txNo: uint256
tokenContract: ERC20
assetContract: Contract
assetContractAddress: address
authorized: mapping(address=>bool)
allowance: mapping(address=>uint256)
transactions: mapping(uint256=>Transaction)
individual Tx: mapping(address=>Transaction[])

External:
authorizeAddress(_address: address)
revokeAuthorization(_address: address)
setAllowance(_address: address, _amount: uint256)
getAllowance(_address: address): uint256
setTokenContract(_address: address)
setAssetContract(_address: address)
create Asset(_price: uint256, _quantity: uint256)
buyAsset(_uid: uint256, _quantity: uint256)
getTransactions(): Transaction[]
getTransactions(_address: address): Transaction[]
transferOwnership(_address: address)

Public:
<<modifier>> onlyOwner()
constructor(_tokenContract: address, _assetContract: address)

T

<<struct>>
Transaction

device: address
assetld: uint256
value: uint256

Figure 4.2: Class diagram of the Company contract

19

AssetContract

Private:
owner: address
uid: uint256
eHUF: ERC20
assets: mapping(uint256=>Asset)

External:
createAsset(_price: uint256, _quantity: uint256)
buyAsset(_uid: uint256, _quantity: uint256): bool
addAsset(_uid: uint256, _quantity: uint256)
removeAsset(_uid: uint256, _quantity: uint256)
updateUnitPrice(_uid: uint256, _newUnitPrice: uint256)
getAssets(): Asset[]
setTokenContract(_newTokenContractAddress: address)
Public:
<<event>> AssetCreated(_owner: address, _uid: uint256, _maxQuantity: uint256)
<<event>> AssetBought(_seller: address, _buyer: address, _uid: uint256, _quantity: uint256)
<<event>> AssetAdded(_owner: address, _uid: uint256, _quantity: uint256)
<<event>> AssetRemoved(_owner: address, _uid: uint256, _quantity: uint256)
<<event>> AssetUnitPriceUpdated(_owner: address, _uid: uint256, _oldUnitPrice: uint256, _newUnitPrice: uint256)
constructor(_tokenContract: address)

<<struct>>
Asset

owner: address
unitPrice: uint256
maxQuantity: uint256

Figure 4.3: Class diagram of the Asset contract

20

<<Interface>>
IERC20

<<Abstract>>
Context

Internal:
_msgSender(): address
_msgData(): bytes

External:

totalSupply(): uint256

balanceOf(account: address): uint256

transfer(recipient: address, amount: uint256): bool

allowance(owner: address, spender: address): uint256

approve(spender: address, amount: uint256): bool

transferFrom(sender: address, recipient: address, amount: uint256): bool
Public:

<<event>> Transfer(from: address, to: address, value: uint256)

<<event>> Approval(owner: address, spender: address, value: uint256)

<<Interface>>
IERC20Metadata

External:
name(): string
symbol(): string
decimals(): uint8

JAN

ERC20

Private:
_balances: mapping(address=>uint256)
_allowances: mapping(address=>mapping(address=>uint256))
_totalSupply: uint256
_name: string
_symbol: string

Internal:
_transfer(sender: address, recipient: address, amount: uint256)
_mint(account: address, amount: uint256)
_burn(account: address, amount: uint256)
_approve(owner: address, spender: address, amount: uint256)
_beforeTokenTransfer(from: address, to: address, amount: uint256)
Public:
constructor(name : string, symbol : string)
name(): string
symbol(): string
decimals(): uint8
totalSupply(): vint256
balanceOf(account: address): uint256
transfer(recipient: address, amount: uint256): bool
allowance(owner: address, spender: address): uint256
approve(spender: address, amount: uint256): bool
transferFrom(sender: address, recipient: address, amount: uint256): bool
increaseAllowance(spender: address, addedValue: uint256): bool
decreaseAllowance(spender: address, subtractedValue: uint256): bool

Figure 4.4: Class diagram of the ERC20 token contract

21

Chapter 5

Voting mechanism in company
contracts

Major decisions that affect the operation or the long-term strategy of the entire
company usually don’t come from one person. Most of the time, a specific group,
such as the board of directors, makes these decisions by voting on a given question.
The board of directors usually consists of key people that represent the interests of
shareholders of the company, and indirectly, the interest of its users or consumers.

In Solidity, one of the most commonly used patterns is the Ouwnership pattern.
This pattern allows the creator of the contract to write functions that can be only
called by one account, which is the one that represents the creator. This gives the
developer nearly unlimited power and authority over the contract, and the possibility
to do whatever action or modification they want. In this case, the users of the
contract have no choice but to blindly trust the developers that they won’t impose
any changes that they don’t agree with or that contradict the original goal of the
contract.

This is probably unacceptable in the real world, even in the case of a company that
is fairly centralized in terms of decision-making and changing its policies, yet the
ownership pattern and many contracts virtually do exactly this. They — uninten-
tionally — centralize the power to make modifications to the state of the contract
or change certain variables that ultimately affect the way how a contract works or
behaves.

In the following, I am going to summarize the problems associated with the existing
solutions, namely, the one-address method that the Qwnership pattern and numer-
ous contracts use. I am also going to give a brief explanation of why it would be
inadequate to use a list of owners instead of one owner without applying further
control mechanisms. Then, I'm going to give a detailed explanation of the proposed
method that solves numerous problems of the mentioned existing methods.

22

5.1 Issues with the existing methods

5.1.1 Issues with using a single address as an owner

When the owner (or admin; the two terms are interchangeable in this case, since
these are not differentiated roles most of the time) of the contract is just one address,
it is stored as a variable in the contract. The owner’s address can either be an EOA
(Externally Owned Account) or a contract address. We should look at each case
separately because each of them poses different types of risks, but both of them
have the same fundamental problem, that is the problem of being a single point of
failure, and having too much power without any control.

5.1.1.1 Issues with an EOA as the owner

In the case of the owner being an EOA| the biggest problem we have to deal with is
the human factor, meaning, we have to fully trust a single person that they will not
act in a malicious way. Furthermore, it gives them an opportunity for blackmailing
since they are capable of causing serious and wide ranging negative effects. Even if
we ignore the human factor, and we have a very strong reason to assume that the
owner can be fully trusted, the risk of the account being hijacked, or the private keys
of the account becoming compromised is still there. If that happens, the attacker
gains full control over the account and can do anything that the owner can, which
would also lead to the aforementioned serious problems.

5.1.1.2 Issues with a contract as the owner

When the owner of a contract is another contract, the problems we face are very
similar to the ones that arise when the owner is an EOA, however, there are some key
differences. If the owner of the contract is an EOA, every action is directly initiated
by that one address (and therefore, by one person most of the time), causing a very
high level of dependency on one person, directly. But if the owner is a contract
itself, the aforementioned problems affect the owned contract more indirectly, and
the level of dependency is highly defined by the concrete implementation of the owner
contract. The owner contract can call any function, but we can’t be sure what the
actual trigger is that initiates an action. Those can be wide-ranging factors from the
case when one address can directly initiate the action without any other checks or
actions, thus basically single-handedly controlling the owned contract through the
owner contract, making the owner contract a proxy contract, to the case when there
are multiple, complex mechanisms built in the owner contract that greatly reduces
the significance of one person’s action and leads to a more decentralized decision
making when implemented correctly.

Unfortunately, this high level of uncertainty makes it very hard to trust an out-
side party and to give them full control over our contract, therefore there needs
to be another solution that the developers have more control over, but with great
decentralization features.

23

5.1.2 Issues with using a list of address as owners

Previously, we saw that EOAs and contracts cannot be a viable alternative as an
owner because of their characteristics that give them too much power and make
them a single point of failure. It is clear now that it’s not sufficient if one address
controls the contract, therefore an ideal solution would implement a design that
somehow utilizes the power of decentralized governance, which obviously requires
multiple addresses that will collectively decide on changes and proposals.

The first thing that would come to mind — instead of one address as an owner, which
is stored as a variable in the contract — is to use a list of addresses that stores which
accounts are in the group of owners regarding the given contract. In this case, every
account that is on the list becomes an owner, where every account has the same rights
and they are equal in every way. Seemingly, this achieves the desired goal of having
a decentralized decision-making system, however, there are serious problems with
this approach. This, in fact, achieves the goal of having multiple parties in charge
instead of just one, thus making the ownership and governance more democratic,
but it still has the same fundamental problem as the EOA ownership does, namely,
having too much power, and in this case, multiplied by the number of owners. Every
owner account has unlimited power over everything in the contract, just like if there
was only one owner, including the ability to add or remove owner addresses. In this
case, we assume that (i) the group of owners represents the highest level of authority
in the scope of the contract, and (ii) there is no other party that appoints or removes
members, which then would become the problem of the EOA or contract ownership.

If one of the owners was malicious and tried to change the state of the contract or
alter it in some way, it would be quite easy for the other owners to reverse the changes
and restore the original state, but they would not be able to prevent the attack in
any way. If there are no events emitted when something changes that requires
owner privileges, the modification of the contract state can remain unnoticed for a
significant amount of time, which can lead to a state where too much contract data
gets compromised, making it harder for other owners to restore the original state.
Furthermore, a malicious owner could remove every other owner from the list of
owners, making themselves the sole owner and taking over the contract, practically
reducing the ownership to an EOA ownership. It could be argued that this is an
even more severe problem than the problem of EOA since in this case there are many
individual accounts that pose the same risks as the single-address ownership does,
but multiplied by the number of owners, even worse, any owner can appoint new
owners that further deepens the problem and raises the probability of an attack.

We can see that many serious problems arise when there are multiple owners with
the same, unlimited authority, and without any built-in mechanism which would
constrain the influence one owner can exert over both the contract state and the
other owners. To solve these problems, specific control mechanisms have to be added
to this pattern to make it as safe and robust as possible while still utilizing the power
and benefits of multiple ownership.

24

5.2 Characteristics of the proposed voting mech-
anism

My proposed method aims to provide a solution to those problems both developers
and users have to face when using the previously described methods.

To equip the company contract with real-world-like features and to offset the afore-
mentioned weaknesses of the commonly used patterns, I propose a voting mechanism
that enables companies to develop a contract with features resembling the role of
the board of directors. As discussed earlier, the responsibility and the right to make
certain decisions or modifications cannot be of a single person, instead, it has to
be the competence of a group. This pattern also uses a list to store the addresses
of those accounts that are the owners of a contract but additionally, complements
it with some features that significantly reduce the likelihood of a successful attack.
Moreover, these features prevent one or even multiple malicious owners (the exact
number depends on the actual implementation and settings of the given contract)
from taking control over the contract.

Developers can create their functions in such way that fully fits their requirements
and necessities, meaning, they can implement the voting mechanism as a part of
almost any function, and they have the ability to further customize them as needed.
Often, functions that are considered to be critical, or those that can potentially have
a detrimental effect on the assets, operation, or reputation of the company, will have
the built-in voting mechanism, which, when activated, is going to create a proposal
with a timeframe within which board members can vote on that proposal.

5.2.1 Voting contract

The core of the proposed pattern is the voting contract. As developers implement
the proposed method, the functions they deem critical will be creating proposals in
the form of voting contracts when an owner calls a function or initiates an action
that requires validation from the other owners. This contract manages the whole
procedure of voting, including keeping track of the individual votes and making sure
every owner can cast their votes only once. It also determines the outcome based
on the number of votes, the individual choices, and the threshold that is set by the
contract in addition to taking the timeframe into account. The contract creation is
done by the main contract that implements the voting mechanism, and it does not
require additional user interaction. The functions of the voting contract can only
be called by the host contract to prevent voter fraud or any other manipulation or
interference with the voting process. After the deadline has passed or a majority
has been reached, the contract does not allow any further votes to be cast and the
result is final.

25

5.2.2 Demonstration of the voting mechanism through the
company contract

I will demonstrate the capabilities, functionality, and usage of the proposed pattern
through one of the company contract’s functions, which is a critical function and
has a very drastic effect on the operation of the contract.

A good example of a critical function could be a function called voteForSuspension,
which has very similar functionality to the Emergency stop pattern presented in [24]
and in [30], which halts the normal operation of a contract in case of an unforeseen
event, such as discovering a vulnerability in the contract that could lead to serious
losses. This pattern does this by utilizing the Access Restriction pattern to only
allow a certain address to call the function that acts as the circuit breaker.

5.2.2.1 Halting the operation of the company

As opposed to the Emergency stop pattern, which poses the previously discussed
risks, the voteForSuspension function works in the following way: the default state
is the normal operation when the contract is working as it is supposed to, and there
are some addresses added to the list of owners (let n be the number of owners).
When an event that is so serious it threatens the contract due to its severity or
uncertainty happens, and one of the owners calls the voteForSuspension function,
the operation of the contract is halted immediately. At the same time, a proposal to
stop the operation indefinitely is created with a predefined deadline, and an event is
emitted to let the other owners know there is an emergency and they need to vote
either for or against the halting of the operation.

The first caller of the function, who initiated the halting has already automatically
voted for the proposal, so they do not need to cast a vote separately. Other owners
can vote by calling the voteForSuspension function, just as they would do if they
wanted to stop the function in an emergency. The function takes one argument —
a boolean value — that denotes the intention of the caller. Given the name of the
function is "voteForSuspension', calling the function with a true value indicates that
the caller wants to stop the operation or agrees with the proposal and votes for the
halting, otherwise, calling with a false value means the caller wants to vote against
it.

For the proposal to be accepted and to make the changes of the contract state to
stay in effect indefinitely, the majority of the owners have to vote in favor of the
halting within the given timeframe. When this happens, the proposal is accepted,
and those owners who have not cast their votes so far cannot do so anymore. If the
majority of the owners voted against the proposal, the normal operation is resumed
immediately as the majority is reached. If a majority decision cannot be reached
within the given timeframe, the normal state will be restored. This ensures that a
possible attack will be limited in time, as the remaining owners will vote against
the halting of the contract as soon as possible, and even in the worst-case scenario,
the operation will be restored as the proposal expires due to the lack of a majority
decision.

26

At any given point in time, only one proposal can be active on a specific subject.
The lifecycle management is done by the contract, as it makes sure that there are
no overlapping proposals on the same subject.

5.2.2.2 Restarting the operation of the company

If the contract is in an emergency state, and the proposal to halt the operation
has passed, the contract will remain in the same state indefinitely. In order to
restart the operation, one of the owners has to call the voteForSuspension function,
but this time, with a false value that indicates the motive for voting against the
suspension. This also automatically creates a proposal just like when an owner
halts the operation. However, in the case of restarting the operation, the initial
vote does not change the state of the contract immediately. The reason behind
this is that the majority of the owners had previously voted in favor of stopping
the normal operation. Consequently, there is a high probability that the initiation
of the emergency state was because of a legitimate threat and not as a result of
an attack. If the restarting happened immediately as one of the owners called the
function, it would present an opportunity for an attacker to put the contract into
unsafe state, thus allowing both them and any additional attacker to exploit the
vulnerability that led to the emergency state.

@ create proposal,... @ vpte true @ vote true @ result,...

. @ voteForSuspension(false)

&

Attacker

® ° @ voteForSuspension(true)

Owner 1

Y ° @ voteForSuspension(true)

Owner 2

Vv

Vv

Vv

Figure 5.1: An attacker trying to restart the operation

27

Owners have to vote in favor of lifting the suspension with a false value, while if they
do not agree with restarting the contract, they have to vote against the proposal
by calling the function with a true value. If the majority of owners voted false,
the contract will be restarted. In case the majority voted true, i.e. they still see it
justified to keep the contract in a suspended state, or there is no majority decision
in either way at the end of the given timeframe, the contract will remain suspended.

Figure 5.1 depicts a sequence when one of the owners is a malicious actor trying to
restart the operation while the contract is still vulnerable due to some conditions.
The attacker initiates the lifting of the suspension by calling the voteForSuspension
function with a false value, which creates a proposal and automatically votes on
it. As the real owners get notified about the proposal, they vote against it, thus
nullifying the attack and keeping the contract in a suspended state to protect it
until it can be safely restarted. Note that the other owners do not necessarily have
to cast a vote against the proposal, as it will expire without a majority decision,
resulting in an unchanged state. This further increases the resiliency and robustness
of the contract, as it does not require immediate human interactions in case of an
attack.

5.3 Comparison of the different ownership meth-

ods
Tvbe of access control One address List of Voting
yP EOA Contract addresses mechanism
Number of malicious
owners required to 1 1 1 >n/2!
carry out an attack
Severity of threat very high high medium-high low
Risk of a successful attack high high medium low
Probability of restoring . .
normal state after attack | VCY low | very low low - high very high

Table 5.1: Comparison of capabilities of methods to deal with a potential attack

Table 5.1 provides a comparison of the four discussed ownership methods. Some of
the aspects — such as severity or risk — are not necessarily quantifiable, so a value
was assigned to them on a scale from "very low" to "very high" based on the impact
and loss of control over the contract caused by an attack. In the case of a contract
being the owner, while — in practice — it might take more than one malicious owner
to carry out an attack, from the perspective of the owned contract, it is still a single
point of failure and the owned contract heavily depends on it.

Lin case of requiring a simple majority to pass the proposal, where n is the number of members

of the board. The threshold can be set higher to achieve a supermajority, for example, two-thirds
or even unanimous decision to further reduce the possibility of a successful attack

28

5.4 Comparison to GGnosis Safe

The demonstrated company contract complemented with the voting mechanism
shows many similarities to the Gnosis Safe [31] Multisig wallet in terms of func-
tionality, however, there are fundamental differences between the two approaches.

The Gnosis Safe Multisig works by utilizing the contract as an owner approach. The
developers of the contract have to create a new contract which is called a Safe. At
the time of creating the Safe, the addresses of the accounts that will serve as the
owners of the main contract have to be added to the Safe, along with the threshold
that is required for a transaction to be executed. After it is done, the Safe contract’s
address has to be set as an owner (or admin) in the main contract. From this point in
time, certain functions and actions will require the owners to sign each transaction in
order to execute them. The number of signers has to reach the predefined threshold,
otherwise, the transactions will not be valid and cannot be executed. Note that this
method does not allow the developers to differentiate between functions based on the
threshold requirement. Each transaction will require the same amount of signatures
to be qualified as valid and accepted.

The proposed voting mechanism allows developers to set an arbitrary threshold for
each function to meet the requirements of the specific use case. This can be especially
important in use cases where the contract represents the board of directors of a
company or even legislative bodies where different legislation need different types
of a majority to pass, for example, a simple majority, qualified majority, or even
double majority. In the case of a company, different actions might not be of the
same importance, e.g. halting the operation might require a simple majority, while
revoking an owner’s authorization would need a qualified majority (three-fifths, two-
thirds, etc.). Using the voting mechanism, this can be achieved easily, while it is
not as straightforward or very difficult to do with a multisig wallet.

In summary, despite the fact that the Gnosis Safe and the example use case are very
similar in their functionalities, the two solutions have different goals. The Gnosis
Safe aims to help manage digital assets, while the proposed method’s broader goal
is to support the governance of companies utilizing blockchain technologies.

5.5 Further potential applications of the voting
mechanism

As the proposed method is a voting system, the demonstration contract and its use
case is just a subset of all the use cases it can be applied to. To give an illustration
of further use cases, let’s look at a company, whose board votes on a budget or
target that will be set for a specific goal, e.g. funds for an upcoming project, the
production target for the next year, the amount of premium that will be paid out to
shareholders, deciding what charity they will donate to, etc. These are all use cases
when the choice is not a binary value, so members are not restricted to casting a
yes or no vote, but they can vote with a value they see fit to the case. In this case,
either the value that had the most votes will be the result that is going to be applied

29

to the goal (for example, deciding on the production target), or the total budget
could be allocated proportionally to the result if it is a viable alternative according
to the specific use case (for example, in the case of supporting a charity).

In essence, the proposed voting mechanism is a tool to support decision-making and
governance in the case of multi-stakeholder applications, and it could be utilized
almost any time there is a question or problem that needs to be decided on or a
consensus needs to be reached on a particular matter.

30

Chapter 6

Validation and Verification

In this chapter, I present test results to verify that the proposed mechanism works
as it is supposed to.

I implemented the proposed mechanism in Solidity, using the 0.8.4 version. The
contract that has been tested is the Company contract presented in Chapter 4,
complemented with the voting mechanism. The critical function is the one that
suspends the operation of the contract, and it requires a simple majority to pass a
proposal.

Test cases were written to test the core functionality of the contract and verify
the correct behavior. I used Hardhat [32] as the development environment, with
Waffle [33] as the test framework. The contracts were deployed to the local Hardhat
Network which is intended for development and testing purposes.

6.1 Test cases and results

6.1.1 Access control

Testing the company contract
v/ Company contract deployed
v' Check token contract address
v' Check asset contract address

Testing access control

Trying to authorize an address from an unauthorized address (55ms)

Trying to deauthorize an address from an unauthorized address (41ms)
Trying to set allowance from an unauthorized address

Trying to reauthorize an address (43ms)

Trying to propose an owner from an unauthorized address

Trying to withdraw an owner from an unauthorized address

Trying to suspend operation from an unauthorized address

Trying to change the token contract address from an unauthorized address
Trying to change the asset contract address from an unauthorized address
Checking if the allowance is correct when setting it (55ms)

Checking if the allowance is correct when revoking authorization (80ms)
Checking if a previously authorized address is unable to buy an asset after deauthorization (91ms)
Checking if the token contract address is updated when changing it (115ms)
Checking if the asset contract address is updated when changing it (121ms)

N N N N N N NENENEN

Listing 6.1: Testing basic functionality and access control

31

Listing 6.1 shows the results of those test cases that check whether all the necessary
contracts were deployed correctly to the network, as well as the tests that verify the
access control features. It covers the uses cases where the functionality of the Access
Control pattern is essential, such as in the event of an unauthorized user, ie. not an
owner, trying to invoke functions that can potentially have damaging effects, thus
requiring owner privileges.

6.1.2 Non-owner functionalities

Asset creation
v Trying to create an asset from an unauthorized address
Creating the asset from an authorized address
v’ Checking the owner of the asset
v' Checking asset price
v’ Checking asset quantity

Listing 6.2: Testing the creation of assets

Test cases that can be seen in Listing 6.2 and Listing 6.3 verify that the main
functionality of the contract, which is to manage asset transactions initiated by
company members in the name of the company, works correctly. It also incorporates
checking additional access control features to verify that only authorized company
members can purchase assets and they cannot exceed their allowance in the process.

Asset purchase
v Trying to buy a non-existing asset (73ms)
v' Trying to buy an asset from an unauthorized address
v’ Trying to buy an asset without a sufficient allowance (61ms)
v' Trying to buy too many units of an asset (84ms)
Buying the asset from an authorized address
V' Checking the owner of the asset
V' Checking if the company has paid for the asset
V' Checking if the previous owner got the money
V' Checking if buyer’s allowance is reduced

Listing 6.3: Testing the functionality of purchasing assets

6.1.3 Owner management

Owner management
v/ Adding an owner (40ms)
v' Removing an owner (48ms)
v Trying to remove the last owner

Listing 6.4: Testing the management of owners

Those test cases that aim to verify the correctness of the management of owners,
specifically, adding and removing addresses from the list of owners, are shown in
Listing 6.4. It also shows that the last owner cannot be removed, which would leave
the contract without any owners, thus preventing a state that leads to catastrophic
consequences. The tests regarding access control in owner management functions
have been covered in Section 6.1.1.

32

6.1.4 Critical function

Suspension of operation
v' Checking if the Suspended event is emitted when suspending operation (58ms)
V' Checking if the create function is disabled in suspended state
v' Checking if the buy function is disabled in suspended state

Suspending operation
Waiting 5 seconds...
v’ Checking if the operation is resumed after the voting duration is over without enough votes
(5043ms)
v’ Checking if the operation is resumed after the majority of owners voted against suspension
(1028ms)
Waiting 5 seconds...
v’ Checking if the operation is still suspended after the voting duration is over and the majority
of owners voted for it (5029ms)

Resuming operation

Waiting 5 seconds...

V' Checking if the operation is still suspended after the voting duration is over without enough
votes (5050ms)

v’ Checking if the operation is still suspended after the majority voted against resuming (91ms)

V' Checking if the operation is resumed after the voting duration is not over and the majority of
owners voted against suspension (110ms)

41 passing (21s)

Listing 6.5: Testing the critical function

Listing 6.5 shows the testing of the voting mechanism by calling the critical function,
which suspends the operation of the company. The tests were carried out in a
scenario where three addresses were appointed as owners, all of them being EOAs.
Some test cases require a certain amount of time to pass to simulate the timeframe
in which owners are allowed to cast their votes. During the tests, the timeframe for
voting was set to 5 seconds.

The first series of tests verify that in a suspended state the operation is indeed
suspended, thus not allowing the invoking of specific functions, namely, those that
create and purchase assets in the name of the company.

The next block is to verify the correct functionality of the implemented voting
mechanism in case of suspending the operation. Test cases cover the instances when
the proposal expires, gets accepted, or gets rejected.

The test cases in the third block cover those situations when the contract is already
in a suspended state, and the owners try to resume the operation.

| | | | |
File | % Stmts | % Branch | % Funcs | % Lines |Uncovered Lines

————————————————————— e B e] B
contracts/ | 100 | 81.08 | 100 | 100 | |
Company.sol | 100 | 79.17 | 100 | 100 | |
Asset.sol | 100 | 91.67 | 100 | 100 | |
EHUF . sol | 100 | 100 | 100 | 100 | |
Voting.sol | 100 | 78.57 | 100 | 100 | |
—————————————————————] B B E i]
All files | 100 | 81.08 | 100 | 100 | |

| | | | |

Listing 6.6: Code coverage of the tests

33

The code coverage for all tests can be seen in Listing 6.6. The implemented contract
is a proof-of-concept to demonstrate the validity of the proposed methods, so the
complete, comprehensive testing was not the goal here, hence the less than hundred
percent branch coverage.

6.2 Security analysis

To discover as many vulnerabilities as possible, I ran static and dynamic security
analysis tools on the implemented contracts. The tools I used for this purpose
were Mythril and Slither, which are capable of detecting vulnerabilities in smart
contracts, including but not limited to reentrancy vulnerabilities, unchecked tokens
transfers, and functions allowing unauthorized parties to destruct the contract.

6.2.1 Mythril

Mythril is a security analysis tool that uses symbolic execution, SMT solving and
taint analysis to detect security vulnerabilities in smart contracts (more specifically,
in the EVM bytecode of the contract) [34]. The full list of vulnerabilities detected
by Mythril can be found in its module listing [35]. By default, Mythril uses 22 as
the recursion depth for the symbolic execution engine. To increase the number
of explored states, therefore lowering the possibility of uncovered states and bugs
remaining in the code, Mythril was run with double recursion depth compared to
the default value.

docker run -v ~/contracts:/tmp mythril/myth analyze /tmp/Company_voting.sol --max-depth 44
The analysis was completed successfully. No issues were detected.

docker run -v ~/contracts:/tmp mythril/myth analyze /tmp/Voting.sol --max-depth 44
The analysis was completed successfully. No issues were detected.

Listing 6.7: Results of testing through Mythril

Listing 6.7 shows that as a result of security analysis through Mythril, there has been
zero known vulnerabilites found in the company smart contract with 44 recursion
depth.

6.2.2 Slither

Slither [36] is a static analysis framework for Solidity. It converts Solidity smart
contracts into an intermediate representation, therefore it is able to preserve se-
mantic information that would be lost in transforming Solidity to bytecode [37]. It
complements the use of dynamic analysis tools, such as Mythril, it is able to find
more/different vulnerabilities, and it can highlight code optimization opportunities.
The list of vulnerabilities detected by Slither — along with the information about
them and the detectors — can be found in [36].

34

Slither marked some points of the contract that could possibly be vulnerable to
reentrancy attacks. This was caused by the critical function containing external
calls that precede states changes. While generally, this is not a good practice due
to its violation of the Checks-Effects-Interactions pattern, in this case, this is the
contract that creates the voting contract, which also only allows the contract that
created it to call its functions, thus reducing the risk of unwanted or malicious
actions.

Compiled with solc

Number of lines: 986 (+ @ in dependencies, + @ in tests)
Number of assembly lines: @

Number of contracts: 7 (+ @ in dependencies, + @ tests)

Number of optimization issues: 13
Number of informational issues: 42
Number of low issues: 6

Number of medium issues: 5

Number of high issues: @

Listing 6.8: Results of testing through Slither

Listing 6.8 shows the summary and the assessment of the security analysis that was
conducted using Slither. The medium issues were the aforementioned, likely false-
positive reentrancy vulnerabilities, and the others were mostly informational ones,
a number of them coming from the testing of the related contracts. This shows that
Slither found zero serious, high-risk vulnerabilities during testing.

6.3 Validation

The proposed approaches had been validated using thorough testing and case stud-
ies. Both the company contract and the voting mechanism met the requirements of
the specifications and fulfilled their purposes, as they functioned according to their
intended objectives discussed in Chapter 4 and Chapter 5, respectively.

35

Chapter 7

Summary

In this paper, I gave a brief introduction to blockchain technologies and smart con-
tracts, along with the state of the art regarding their applicabilities to industrial use
cases, and their provided benefits to stakeholders from different industries. I identi-
fied different challenges that these entities have to face when preparing to incorporate
the usage of blockchains and smart contracts into their business operations. These
challenges include the creation of robust smart contracts, and decentralized, trusted
cooperation and decision-making both inside and between companies.

In Chapter 2, I presented the technical background of my work, namely, (i)
blockchain technologies in general, (ii) Ethereum and Solidity, that I used for my
work, and (iii) the purpose of smart contracts. I also detailed the importance of
developing robust smart contracts, and presented some patterns that are commonly
used by developers to increase the resiliency of their contracts.

In Chapter 3, I presented the results of my work in an industrial scenario, where I set
up a private Ehtereum-based blockchain and developed a system of smart contracts
that realized an asset management application that cooperated with a CBDC system
on a separate blockchain through bridging between networks.

In Chapter 4, I gave a detailed explanation of the problems that may arise in in-
dustrial and corporate applications. Then, I proposed an approach that gives com-
panies the power to manage the authorization and spending limits of the accounts
individually that are under their control. I gave an illustration of how this can be
incorporated into an industrial setting through the example of a manufacturing line.

Then, in Chapter 5, I detailed the problems of the existing smart contract owner-
ship and access control methods. To provide a possible solution to these problems,
I proposed a voting-based decision-making mechanism that aims to address the
shortcomings of these patterns and can support industrial applications by allowing
stakeholders to vote on specific proposals. Then, I assessed the characteristics and
capabilities of the discussed methods.

Finally, in Chapter 6, I verified and validated my solution by demonstrating the
results of testing and security analysis that was conducted to confirm its effectiveness
and discover potential bugs and vulnerabilities in the contracts.

36

Acknowledgements

I would like to express my gratitude to my supervisors, Dr. P&l Varga and Attila
Franké for all their advice and continuous support.

The research was supported within the framework of the Cooperation Agreement
between the National Bank of Hungary (MNB) and BME.

37

Bibliography

1]

[9]

[10]
[11]
[12]

[13]

S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” Cryptography
Mailing list at https://metzdowd.com, 03 2009.

V. Buterin, “Ethereum whitepaper: A next-generation smart contract and de-
centralized application platform,” 2013.

U. Bodkhe, S. Tanwar, K. Parekh, P. Khanpara, S. Tyagi, N. Kumar, and
M. Alazab, “Blockchain for industry 4.0: A comprehensive review,” IEEFE Ac-
cess, vol. 8, pp. 79764-79800, 2020.

D. Kozma, P. Varga, and G. Soo6s, “Supporting digital production, prod-
uct lifecycle and supply chain management in industry 4.0 by the arrowhead
framework—a survey,” in 2019 IEEE 17th International Conference on Indus-
trial Informatics (INDIN), vol. 1, pp. 126-131, IEEE, 2019.

P. Varga, J. Peto, A. Franko, D. Balla, D. Haja, F. Janky, G. Soos, D. Ficzere,
M. Maliosz, and L. Toka, “5g support for industrial iot applications— chal-
lenges, solutions, and research gaps,” Sensors, vol. 20, no. 3, 2020.

P. Tasca and C. Tessone, “A taxonomy of blockchain technologies: Principles
of identification and classification,” Ledger, vol. 4, 02 2019.

T. Fernandez-Caramés and P. Fraga-Lamas, “A review on the use of blockchain
for the internet of things,” IEEE Access, vol. 6, pp. 32979-33001, 05 2018.

“Solidity programming language.” https://soliditylang.org/. Accessed:
2021-10-23.

“Vyper.” https://vyper.readthedocs.io/en/latest/index.html. Accessed:
2021-10-24.

“Aave — open source defi protocol.” https://aave.com/. Accessed: 2021-10-25.
“Augur.” https://augur.net/. Accessed: 2021-10-25.

F. Schéar, “Decentralized finance: On blockchain- and smart contract-based
financial markets,” 2021.

“Uniswap.” https://uniswap.org/. Accessed: 2021-10-25.

38

https://soliditylang.org/
https://vyper.readthedocs.io/en/latest/index.html
https://aave.com/
https://augur.net/
https://uniswap.org/

[14]

[15]

[16]

[19]
[20]

[21]

[22]

I. Mehar, C. Shier, A. Giambattista, E. Gong, G. Fletcher, R. Sanayhie, H. Kim,
and M. Laskowski, “Understanding a revolutionary and flawed grand experi-
ment in blockchain: The dao attack,” Journal of Cases on Information Tech-
nology, vol. 21, pp. 19-32, 01 2019.

S. Sayeed, H. Marco-Gisbert, and T. Caira, “Smart contract: Attacks and
protections,” IEEE Access, vol. 8, pp. 24416-24427, 2020.

J. Chen, X. Xia, D. Lo, J. Grundy, X. Luo, and T. Chen, “Defining smart
contract defects on ethereum,” IEEE Transactions on Software Engineering,
pp. 1-1, 2020.

M. Wohrer and U. Zdun, “Smart contracts: Security patterns in the ethereum
ecosystem and solidity,” in 2018 International Workshop on Blockchain Ori-
ented Software Engineering (IWBOSE), pp. 2-8, 2018.

A. Mense and M. Flatscher, “Security vulnerabilities in ethereum smart con-
tracts,” in Proceedings of the 20th International Conference on Information
Integration and Web-Based Applications € Services, iiWAS2018, p. 375-380,
Association for Computing Machinery, 2018.

“Openzeppelin.” https://openzeppelin.com/. Accessed: 2021-08-02.

“Openzeppelin pausable.” https://docs.openzeppelin.com/contracts/4.x/
api/security#Pausable. Accessed: 2021-10-21.

“Openzeppelin ownable.” https://docs.openzeppelin.com/contracts/4.x/
api/access#0wnable. Accessed: 2021-10-21.

“Proxy patterns.” https://blog.openzeppelin.com/proxy-patterns/. Ac-
cessed: 2021-08-02.

M. Wéhrer and U. Zdun, “Design patterns for smart contracts in the ethereum
ecosystem,” in 2018 IEEE International Conference on Internet of Things
(iThings) and IEEE Green Computing and Communications (GreenCom) and
IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data
(SmartData), pp. 1513-1520, 2018.

“Design patterns.” https://github.com/maxwoe/solidity_patterns. Ac-
cessed: 2021-07-28.

“Upgradeability using unstructured storage.” https://blog.openzeppelin.
com/upgradeability-using-unstructured-storage/. Accessed: 2021-08-02.

“Proxy upgrade pattern.” https://docs.openzeppelin.com/
upgrades-plugins/1.x/proxies. Accessed: 2021-08-02.

“Eip-20: Erc-20 token standard.” https://eips.ethereum.org/EIPS/eip-20.
Accessed: 2021-10-28.

I. Kocsis, L. Gonczy, A. Klenik, P. Varga, A. Franké, and B. Olah, “CBDC-
based smart contract ecosystems,” Technical report, BME-MNB, 2021.

39

https://openzeppelin.com/
https://docs.openzeppelin.com/contracts/4.x/api/security#Pausable
https://docs.openzeppelin.com/contracts/4.x/api/security#Pausable
https://docs.openzeppelin.com/contracts/4.x/api/access#Ownable
https://docs.openzeppelin.com/contracts/4.x/api/access#Ownable
https://blog.openzeppelin.com/proxy-patterns/
https://github.com/maxwoe/solidity_patterns
https://blog.openzeppelin.com/upgradeability-using-unstructured-storage/
https://blog.openzeppelin.com/upgradeability-using-unstructured-storage/
https://docs.openzeppelin.com/upgrades-plugins/1.x/proxies
https://docs.openzeppelin.com/upgrades-plugins/1.x/proxies
https://eips.ethereum.org/EIPS/eip-20

[29]

T. Mrazik, K. Szabd, and B. Téth, “Dynamic industrial workflow execution
supported by service discovery,” in Conference of BME Scientific Students’
Association, 2020.

“Solidity patterns.” https://github.com/fravoll/solidity-patterns. Ac-
cessed: 2021-07-28.

“Gnosis safe” https://gnosis-safe.io/. Accessed: 2021-10-23.
“Hardhat.” https://hardhat.org/. Accessed: 2021-10-25.

“Walffle” https://getwaffle.io/. Accessed: 2021-10-25.

“Mythril” https://github.com/ConsenSys/mythril. Accessed: 2021-10-25.

“Mythril modules for wvulnerability analysis.” https://mythril-classic.
readthedocs.io/en/master/module-1list.html. Accessed: 2021-10-25.

“Slither, the solidity source analyzer.” https://github.com/crytic/slither.
Accessed: 2021-10-25.

J. Feist, G. Grieco, and A. Groce, “Slither: A static analysis framework for
smart contracts,” 2019 IEEE/ACM 2nd International Workshop on Emerging
Trends in Software Engineering for Blockchain (WETSEB), May 2019.

40

https://github.com/fravoll/solidity-patterns
https://gnosis-safe.io/
https://hardhat.org/
https://getwaffle.io/
https://github.com/ConsenSys/mythril
https://mythril-classic.readthedocs.io/en/master/module-list.html
https://mythril-classic.readthedocs.io/en/master/module-list.html
https://github.com/crytic/slither

	Kivonat
	Abstract
	Introduction
	Related works
	Blockchain Technologies
	Ethereum and Solidity
	Smart Contracts
	Robust Smart Contracts
	Access Restriction
	Checks Effects Interactions
	Emergency Stop
	Ownership
	Proxy

	Smart Contract use cases
	Asset management
	Adding new assets
	Buying an asset
	Before calling the buyAsset function
	Buying the asset

	Increasing or decreasing quantity
	Updating the unit price of an asset

	Cooperation with the CBDC system and physical devices

	Making transactions as a part of a company on the Ethereum blockchain using smart contracts
	Individual and shared accounts for individual but company-bound devices
	Issues with using individual accounts
	Issues with using shared accounts

	Companies represented through smart contracts
	Implementation

	Voting mechanism in company contracts
	Issues with the existing methods
	Issues with using a single address as an owner
	Issues with an EOA as the owner
	Issues with a contract as the owner

	Issues with using a list of address as owners

	Characteristics of the proposed voting mechanism
	Voting contract
	Demonstration of the voting mechanism through the company contract
	Halting the operation of the company
	Restarting the operation of the company

	Comparison of the different ownership methods
	Comparison to Gnosis Safe
	Further potential applications of the voting mechanism

	Validation and Verification
	Test cases and results
	Access control
	Non-owner functionalities
	Owner management
	Critical function

	Security analysis
	Mythril
	Slither

	Validation

	Summary
	Acknowledgements
	Bibliography

