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Chapter 1

Introduction

The Web Real-Time Communication (WebRTC) technology has revolutionized the way we
interact in today’s digital world [1]. WebRTC is a critical enabler for applications, such
as videoconferencing, live streaming, and online gaming. These real-time applications
fundamentally differ from traditional "bulk" Web applications, like email, file transfer or
browsing, due to the strict requirement on latency and jitter (latency variation) imposed on
end-to-end data transfer. Indeed, a videoconferencing application becomes unusable if the
time it takes for the network to transfer audio/video frames between participants exceeds
about 300 ms and delay variation surpasses 40-60 ms [2]. Certain real-time applications,
like cloud-based video-gaming or online auctions, pose even more demanding delay/jitter
requirements. WebRTC is a suite of open standards that enables standard Web browsers to
run such real-time communication applications, driving popular audio/video conferencing
services (MS Teams, Google Meet, Facebook Messenger, Discord [3]), digital assistants
(Amazon Alexa [4]), cloud-gaming (Microsoft Xbox Cloud Gaming, [5]), live broadcasting/
streaming (Twitch [6]), and online security systems (Ring.com [3]). The wide variety of
use-cases created a large market valued at 4 billion USD in 2022 [7].
Figure 1.1 shows WebRTC usage before and during the COVID-19 pandemic as the per-
centage of total page loads over the years. The most salient feature is that the popularity
of real-time communications increased sharply during worldwide lockdowns, letting mil-
lions of people to switch to remote work overnight. Usage fell after the lockdowns, but
still stabilized at three times the popularity before the pandemic.
WebRTC is the de-facto way to build real-time Web services today: it is supported by all
major browsers, offers great performance and quality, and makes it relatively easy to build
new real-time services on top. On the other hand, WebRTC uses lots of legacy protocols
(like Voice over IP (VoIP) [8]), which makes it difficult to use it in today’s Internet.
For instance, WebRTC sessions may break when the network path contains a middlebox
(network address translator (NAT), firewall, or load-balancer) between the sender and the
receiver. With the growing popularity of NAT-traversal protocols (ICE, STUN, TURN,
[9]), however, this causes fewer problems these days. Nevertheless, there remain two major
WebRTC limitations that currently go unsolved:

1. the complexity of scaling out WebRTC sessions to potentially thousands or hundreds
of thousands of users (session scaling),

2. the difficulty in deploying WebRTC servers close to users in a geographically dis-
tributed setup (geographic scaling).
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Figure 1.1: The growth in use of WebRTC during the COVID-19
pandemic [1].

To understand the session scaling problem, consider a worldwide live-streaming service
where a publisher posts an audio/video stream online and an arbitrary number of viewers
can watch the stream in real-time. An example of such a service is a live feed from a
scientific conference where remote viewers can post questions online, or the live broadcast
of a large-scale e-sports event. Suppose that initially there are only a handful of viewers, so
a single WebRTC media server is enough to broadcast the stream to all viewers. However,
if the number of online viewers grows beyond the capacity of a single server, then the
server becomes overloaded. Unfortunately, the default WebRTC communication model
does not allow established connections to be moved dynamically across servers, since in
WebRTC, every communication session is bound permanently to a concrete endpoint (e.g.,
a particular WebRTC media server). Even distributing a session over multiple servers is
already beyond the capabilities of most open-source WebRTC servers [10]. Our evaluations
(see later) show that the popular Jitsi [11] WebRTC media server also suffers from this
limitation: in our experiments, a single Jitsi media server with limited resources stops
working after 15 users try to join.
The left panel of Figure 1.2 shows this setup, where all users are bound to a single server.
An obvious solution would be to scale out the session to two or more servers; e.g., we could
organize the servers into a media distribution tree topology. The right side of Figure 1.2
shows that the same user base is now distributed to two servers. This, as we will show
later with evaluations, allows a session to be scaled beyond the capacity limit of a single
server, solving the session scaling problem.
The other WebRTC limitation we address in this work is geographic scaling. Consider
a WebRTC based video-conferencing application. The upper part of Figure 1.3 shows a
setup where the first participant who joins a video-conferencing session is located in the
USA. Typically, video-conferencing applications decide to host the media server serving a
video-conferencing session closest to the first participant, so the media server will also be
hosted in the USA. Then, if a large number of participants join the session from Europe,
they will be connected through the media server located in the USA, which results large
latency due to the physical distance. If the US participant leaves the session, the rest of
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Figure 1.2: Session scaling limitation with WebRTC on the left
and scaling with our service on the right.

the participants will continue to use the same US server since, recall, there is no way to
move WebRTC connections around.
In this context, geographic scaling means to exchange real-time traffic as close as possible
to users. The lower part of the Figure 1.3 shows an ideal setup, the audio/video streams
of EU participants would be exchanged over a server located in the EU, yielding minimal
latency, and only traffic that must cross continents would experience large delay (but this is
unavoidable). Earlier work showed that Jitsi [11] also suffers from the geographic scaling
limitation, in that the built-in geographic scaling solution does not provide significant
improvement in terms of latency [12].
The major contribution of this work is the design and implementation of a new real-time
communications architecture that supports sharing sessions across multiple servers (session
scaling) and across multiple geographic locations (geographic scaling). We use our design
to build a conferencing application and, using real audio-video traces and servers deployed
to the US and EU, we show that the new real-time communications architecture reliably
delivers smaller delay than state-of-the-art WebRTC conferencing applications [11, 12].
The rest of this work is structured as follows. Chapter 2 gives a brief description of
the background needed to understand WebRTC and its protocols, and dives deeper into
session scaling and geographical scaling issues. Chapter 3 explains the design of our new
real-time communications architecture and describes how it provides both session scaling
and geographical scaling. Chapter 4 presents our implementation and the main challenges
we solved during the development. Finally, Chapter 5 presents experimental evaluations
comparing our new architecture to a commercially available WebRTC service and finally
Chapter 6 concludes the work and describes future work.
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Figure 1.3: Geographic scaling limitation with WebRTC on the
top and geographic scaling with our solution.
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Chapter 2

Background

2.1 Real-Time Communication

Real-Time Communication (RTC) refers to almost instantaneous, low-latency communi-
cation. Examples of RTC include:

• VoIP: Enables real-time voice communication over the Internet.

• Video conferencing: Enables real-time video communication over the Internet.

• Online gaming: Updating game information or remote rendering of the game itself
in real-time.

• Remote rendering: Rendering complex scenes or images on a remote server and
streaming the video back to the user’s device.

• Telehealth: Experts give medical consultation over a video conference using custom
Internet of Things (IoT) devices.

RTC has revolutionized businesses and the individuals’ live by allowing remote collabora-
tion, worldwide teamwork, and instant connectivity. However, RTC has its own challenges.
It requires a reliable and high-speed Internet connectivity to ensure a stable connection.
But even with a good Internet connection, certain complicating factors may deteriorate
user experience.

• Network congestion: Network congestion occurs when a network component be-
comes overloaded by the excessive amount of data. Congestion usually results packet
loss, leading to audio/video glitches.

• Latency: The time it takes for packets to traverse the network. RTC use-cases
require latency to be as low as possible.

• Technical issues: A poorly written client or server, a hardware issue, or even a
misconfigured middlebox can easily interfere with the stringent delay requirements
of RTC applications.

In order to minimize latency, RTC requires various protocols to facilitate seamless and
efficient data transmission. In the following sections, we discuss the typical protocols used
for efficient low-latency data transmission.
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2.2 WebRTC

WebRTC is an open-source technology that enables real-time communication within Web
browsers. WebRTC was standardized in 2010 [8] and from then, only minor changes made
to the standard. WebRTC consists of multiple protocols and Application Programming
Interfaces (APIs) that allow developers to build custom voice, video, peer-to-peer file
sharing and real-time data exchange applications. In this chapter, we review the most
important services and components that comprise WebRTC, including session initiation,
media transport, APIs, media servers and scaling.
The core components of WebRTC include three main technologies:

• Clients

• Media and application servers

• Protocols and APIs for session establishment and media transport

A WebRTC client is a software that uses the WebRTC API to enable RTC between
browsers and devices. WebRTC clients can be implemented in any programming language.
WebRTC media servers are relaying between WebRTC clients to process audio, video, and
data streams. They are necessary when the session requires advanced media handling,
such as group calls, recording, transcoding, or broadcasting. There are multiple popular
open-source media servers available, including Kurento, LiveKit, Jitsi, and Ant Media [7].
WebRTC application servers are responsible for hosting the application logic, serving the
user interface of a WebRTC service using web technologies, and implementing the signaling
functions needed for clients to establish sessions. Standard WebRTC distributions usually
include the application server.
In summary, the WebRTC client is basically your browser. The user interface is accessible
through the application server, while the media server will relay the media if needed. This
architecture is shown in Figure 2.1. Here, the clients are web browsers, initiating a We-
bRTC session through the application server, and they communicate through a WebRTC
media server.

Figure 2.1: A WebRTC architecture where clients initiating a ses-
sion through and application server and transmit me-
dia over a media server.
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2.2.1 Initiating a session

Initiating a WebRTC session is a standard process if the clients, media servers, and ap-
plication servers have direct IP-level connectivity. However, if the network path contains
one or mode middleboxes that modify IP addresses and/or transport protocol ports (e.g.,
NAT), then clients and servers will not be able to identify their own public IP addresses.
For such cases, the Interactive Connectivity Establishment (ICE [9]) protocol is a standard
NAT-traversal utility included in WebRTC that helps clients behind a NAT to connect
to a server. Figure 2.2 shows the updated reference scenario of Figure 2.1 extended with
NAT-traversal.

Figure 2.2: WebRTC architecture, where clients are behind NATs.
Clients initiating a session through the application
server and get their addresses from the Session Traver-
sal Utilities for NAT/Traversal Using Relays around
NAT (STUN/TURN) servers using the ICE protocol.
After finding out their address they will communicate
through the TURN server.

ICE allows the agents to discover enough information about their topology to potentially
find one or more paths by which they can establish a data session. This is performed by
ICE agents engaging in a candidate exchange process through a signaling server, whose
purpose is to find a pair of publicly usable transport addresses that allow the agents to
establish a data session between themselves.

• Transport address can be a directly attached network interface (host address).

• Transport address can be on the public side of NAT (server-reflexive address).

• Transport address can be allocated from a TURN server (relayed address). A TURN
server can relay media packets between clients if their public IP addresses are not
visible.
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ICE will try to match each candidate to create candidate pairs. Note that not every
candidate will be used. For example, if one agent is behind NAT, it will create a host
candidate with its directly attached network interface. This candidate will not be usable
because it will be not visible behind the NAT.
It is important to notice that the transport address of WebRTC clients and servers is used
permanently during the entire lifetime of the communication session, because clients iden-
tify media servers through this address and also the other way around. If there’s a change
in address, the WebRTC session will break. This limitation is critical for session shar-
ing and geographical scaling, since it prevents WebRTC sessions from being moved across
servers (to avoid overload) or distribute WebRTC sessions across multiple geographic loca-
tions (to minimize latency over a heterogeneous user base). Custom commercial solutions
exist to solve this problem, but these are typically proprietary, complicated and cause
massive overhead [12].

2.2.2 Media Transport

Media processing and sending involves several steps to capture, encode, decode, and render
audio and video in real-time:

1. Media Capture: Capture media from input sources such as webcam, microphone,
or screen sharing.

2. Media Encoding: Sending media requires encoding to a suitable format. With
these codecs, the raw media size is reduced and the quality remains acceptable.
WebRTC supports multiple codecs, like Opus, VP8, or H.264 [13].

3. Media Packaging: Segment the encode media streams into Real-time Transport
Protocol (RTP) packets.

4. Media Transport: Sends RTP packets through User Datagram Protocol (UDP) or
Transmission Control Protocol (TCP). Peer-to-peer communication will use the raw
RTP packets. In the case of a TURN server, the RTP packets will travel encapsulated
in TURN packets.

5. Media Reception: On the receiving end, the media packets are received and re-
assembled.

6. Media Decoding: The media packets are decoded into raw media.

7. Media Rendering: The received audio is played through speakers or headphones
and video frames are presented on the screen or within a video element on the Web
page.

Figure 2.3 shows the previously mentioned process. There are three important components
on the figure besides the whole process:

1. WebRTC has access to the microphone, webcam, and screen share thanks to the
MediaStream API.

2. With WebCodecs [14], it is possible to edit the captured raw media streams in real-
time.

3. Processing power is required during media capture, encoding, decoding, and render-
ing.
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Figure 2.3: Media transport pipeline from capturing until render-
ing.

2.2.3 APIs

There are two main sets of APIs connecting to WebRTC [15]. The first set of APIs allows
media and generic application data to be sent to and received from another browser or
device implementing the appropriate set of real-time protocols. The second set of APIs
allows local media, including audio and video, to be requested from a platform.
Sending and receiving media and generic application data from another browser or device
requires the below WebRTC APIs [16]:

• RTP Media API: This API allows web browsers to send and receive media stream
over a peer-to-peer connection.

• RTCPeerConnection API: Enables real-time audio, video, and data communica-
tion between web browsers using a peer-to-peer connection established through ICE
candidates and signaling.

• Peer-to-peer Data API: This API allows web browsers to establish direct con-
nections and exchange data without relying on central servers.

The MediaStream API [17] is a web standard that provides developers a toolset to capture,
manipulate and stream media. It gives access to audio and video streams from various
sources, such as webcam, microphone, and screen sharing. The main concept of the Me-
diaStream API is to gather multiple streams into one MediaStream object that represents
a continuous stream of data.
The key components and functionality of the MediaStream API are as follows:

• MediaStreamTrack: Represents media of a single type that originates from one
media source in the User Agent.

• MediaStream: Group several MediaStreamTrack objects into one unit that can be
recorded or rendered in a media element.
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• MediaDevices: Entry point to the API used to examine and get access to media
devices available to the User Agent.

• getUserMedia(): Prompts the user for permission to use their web camera or other
video or audio input.

2.2.4 Media servers

Media servers facilitate the processing, routing, and distribution of media streams between
peers. Media servers act as intermediaries, helping to overcome network limitations, en-
hance performance, and enable add-on features in real-time communication applications.
A media server also provides the following features:

• Signaling and Session Establishment: Exchange session information, establish
connections, and negotiate capabilities between peers.

• NAT Traversal and Firewall Traversal: Establish connectivity between peers
and handle scenarios where direct peer-to-peer connections are not possible due to
NATs.

• TURN: TURN servers may be included in the media server to relay media traffic
between peers where connectivity is not feasible due to restrictive NATs.

• Media Processing and Transcoding: Mix multiple audio and video streams,
apply filters and effects, and adapt media to different formats or bitrates.

• Recording and Archiving: Store media for later viewing.

• Analytics and Quality Monitoring: Monitor performance and user experience
online.

Media servers provide great functionality and flexibility, but they may introduce extra
latency and add additional costs compared to peer-to-peer connections. Media servers
require physical servers and staff to manage them.
Media servers are divided into two groups based on the stream forwarding model: Selec-
tive Forwarding Units (SFU) and Multi-point Control Units (MCU). An SFU utilizes an
"RTP mixer" to selectively forward media streams on a per-endpoint basis. This is done
by selectively transmitting media to each endpoint based on the list of active speakers, un-
muted participants, etc. [18]. Selectively routing media, SFUs usually cause higher CPU
costs. On the other hand, an MCU [18] does not distinguish RTP sessions. Every user
in a session will receive every other stream in parallel and the desired stream is selected
at the client’s side. This approach scales poorly and requires a huge network bandwidth.
The difference between an SFU and MFU shown in Figure 2.4: the SFU forwards only the
selected streams, while an MCU sends all streams to every connected client. Both kinds
of a media server have their own place, but SFU solutions are more widespread because
of the enhanced scalability.

2.2.5 Scaling

Scaling WebRTC services is difficult [19]. This is mostly attributed to the below issues:
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Figure 2.4: The difference between SFU and MCU media servers.
The SFU only forwards the selected streams for client,
while the MCU forwards every stream for every client.

1. How can media be shared between media servers?

2. How to synchronize data between media servers?

3. How can the application server manage multiple media servers?

4. How to keep low latency and good QoS?

5. How does the cost change with different scaling strategies?

Due to the above complexities, most popular WebRTC frameworks simply avoid scaling
WebRTC sessions across multiple servers all together [10], fixing each WebRTC session to
a particular server for its entire lifetime. In this way media servers can be as simple as
possible. However, the capability of a single server is now a hard threshold on the number
of users that can join a session. This is a massive problem for certain applications, like
live streaming, which often involve thousands or hundreds of thousands of users.
The main motivation behind this work is to allow media servers to share sessions. While
this requires more complex session handling logic and requires media servers to commu-
nicate among themselves, the obvious advantages are that it allows to join an arbitrary
number of users into a single session (recall session scaling) and it facilitates deploying
servers as close as possible to users in order to reduce latency (recall geographic scaling).
For this, however, we will need to redesign the real-time communication stack from scratch.
Most importantly, we will use Quick UDP Internet Connections (QUIC) as the transport
protocol, which will obviate the need for NAT traversal and public IP addresses. This
also means that it is not important to hold records about the clients in media server any
more, which will allow us to simplify media servers to only processing and relaying media
and scale media servers to any number of clients.

2.3 QUIC

QUIC [20] is the foundation for WebTransport [21] protocol, providing a reliable and
efficient transport layer for web communication. QUIC is a secure general-purpose and
connection-oriented protocol that creates a stateful interaction between a client and server.
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• QUIC builds on top of UDP instead of TCP, what is used in Hypertext Transfer Pro-
tocol (HTTP) and WebSocket. Using a quick handshake, QUIC reduces connection
establishment time, enabling faster data transmission.

• QUIC is capable of multiplexing multiple independent streams of data into a single
QUIC connection. This reduces the overhead for establishing multiple connections.

• QUIC enables seamless migration of connections between different network interfaces
or IP addresses.

• QUIC has an adaptive congestion control mechanism that dynamically adjusts the
data transmission rate based on network conditions.

• QUIC connections are secured by Transport Layer Security (TLS) by default.

Figure 2.5 compares the QUIC handshake to the well-known TCP/TLS handshake. Cru-
cially, the TCP/TLS handshake consists of twice the number of messages than QUIC,
since QUIC combines the negotiation of cryptography and transport parameters into a
single exchange.

Figure 2.5: Comparison of the TCP/TLS and QUIC handshake.

Figure 2.6 shows an established QUIC connection. Endpoints communicate by exchanging
QUIC frames, which carry control information and application data between endpoints.
QUIC packets are encapsulated as UDP datagrams to facilitate deployment in existing
systems and networks.
Each QUIC connection may contain multiple streams. Streams are ordered collections
of data. Bidirectional streams let both endpoints submit data, whereas unidirectional
streams let just one endpoint send data. The generation of streams is constrained, and
the maximum quantity of data that may be transferred is limited, using a credit-based
system. QUIC places transport control fields inside the encryption envelope, so QUIC has
minimal exposure to the public network.
Currently, there is no standard way to send media over QUIC, but several approaches and
research prototypes have been developed by industry leaders and academic institutions.
These approaches aim to enhance media delivery, improve user experience, and leverage
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Figure 2.6: A QUIC connection with its components.

the benefits of QUIC’s fast and reliable transport services. The four major initiatives are
RTP over QUIC by Technical University Munich, Media over QUIC Transport (MOQT)
by Twitch, Rush by Meta (formally known as Facebook), and QuicR by Cisco.

2.3.1 RTP over QUIC

RTP over QUIC [22] enables the transport of real-time data using QUIC streams and
datagrams. The QUIC implementation must support the datagram extension and provide
a way to determine the maximum datagram size for RTP packets.
RTP over QUIC takes a different approach to multiplexing compared to traditional RTP
sessions. It uses flow identifiers instead of network addresses and port numbers to multiplex
multiple RTP sessions over a single QUIC connection. QUIC does not provide built-in
de-multiplexing for flows on datagrams, but applications can implement de-multiplexing
mechanisms if required.

2.3.2 Media over QUIC Transport

MOQT [23] (fromally Warp) is a media transport protocol over QUIC. MOQT allows
producer of media to publish data and have it consumed via subscription by any number
of endpoints, providing high scale and low latency. MOQT utilizes the QUIC network
protocol, either directly or via WebTransport, for the distribution of media.
MOQT is created to cooperate with various Media over QUIC (MoQ) streaming formats.
These MoQ streaming formats specify the policies for discovery and subscription, as well
as the encoding, packaging, and mapping of content to MOQT objects. Most importantly,
MOQT creates a separate QUIC stream per each group of frames in the media.

2.3.3 Rush

Rush [24] is a bidirectional application-level protocol for ingesting live video on top of
QUIC. Rush is intended to support new audio and video codecs, flexibility in the form
of additional message types, and multi-track capability. Additionally, by using QUIC
streams, Rush allows apps the opportunity to manage data delivery guarantees.
Rush separates each frame into a different QUIC stream. After sending one frame per
stream, the stream is closed and a new one is opened for each new frame.
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2.3.4 QuicR

QuicR [25] is a unified media delivery protocol over QUIC. QuicR aims to provide ultra-
low latency for applications, such as interactive communication and gaming. It is based on
a publish/subscribe model where entities publish and subscribe to media objects. QuicR
uses one or more relays where the clients can publish media to and request media from.
This relay architecture enables efficient large-scale deployments. Failure of a relay has a
minimal impact on clients, as relays can easily redirect each client to a different relay.
QuicR uses named objects to send audio and video. Named objects are application level
chunk of data with a unique name, a limited lifetime, and priority. Each named object
represents a synchronization point in an audio or video stream. By putting media into
named objects, QuicR can use other QUIC-based media mappings like Rush and MOQT.
In addition, named objects can be cached in intermediate QuicR media relays, which
allows QuicR to work similarly to a Content Distribution Network (CDN) for extreme
scalability.

2.3.5 The QuicR delivery tree

One of the most useful features of QuicR is that it allows relays to be organized into
a logical distribution tree topology [26], as shown in Figure 2.7 and Figure 2.8. The
distribution tree is rooted in a particular relay, called the origin relay, which is responsible
for controlling the namespace for a specific application. Publish messages are issued in
the direction of the tree’s origin relay and down from the root to the leaves towards
the subscribers of the object. Note that the origin relay does not constitute a limit on
scalability, because all users connected to a leaf relay will exchange media through that
relay and hence only the traffic bisected by the root will cross the origin. Furthermore, it
is easy to scale the tree by deploying a separate relay topology per application. The tree
topology is not mandatory in QuicR, it is chosen as the default distribution topology only
for its simplicity.

Figure 2.7: Single relay QuicR delivery tree [26].

Figure 2.7 shows a streaming architecture rooted in the Origin relay for the domain of
tw.com. In this architecture, the Publisher publishes its media on channel 22, while media
consumption happens at the Subscriber, which subscribed for every message received on
channel 22.
Figure 2.8 shows a two layer deliver tree. In this example, we have 4 participants where
Alice is the only publisher, while everybody else is a subscriber. Alice publishes a high
and low resolution stream. While Bob subscribes to the low resolution stream only, the
others subscribe to every stream. All subscriptions are sent to the origin relay and the
on-path relays cache these subscribes making a short-circuited delivery of published data
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Figure 2.8: Multi relay QuicR delivery tree with one publisher
and three subscriber [26].

at the relays. This means that Alice sends the low resolution stream to Bob through only
the A relay, while the others get the streams originated from the origin relay.
We found QuicR relay topologies ideal for our work for a number of reasons. First, QuicR
naturally supports session scaling, since publishers and subscribers can be connected to
any relay, but they can still communicate via the relay topology. QuicR will handle relay-
to-relay communication automatically. Second, geographic scaling is also easily supported
by deploying a relay to each geographic location of interest and joining these to a common
origin. Since it naturally supports both session scaling and geographic scaling, we will
build our new scalable RTC architecture on top of the QuicR media transport protocol.
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Chapter 3

Architecture design

With the help of the QuicR standard, we build a new RTC service addressing the session
scaling and geographic scaling of typical WebRTC-based services. In Section 2.2.5, we
found that both session scaling and geographic scaling require the need to be able to share
sessions between servers. Since QuicR uses a similar approach to the CDN services, it is
capable of cache data while relaying media between clients. In this chapter, we dive into
the architecture of the system we built on top of QuicR and the required workflows to
transfer real-time media.
Our architecture consists of three main components: Media plane, Control plane, and the
client itself. We also discuss the workflows that allow clients to create, join, and delete
sessions.

1. Media Plane: The media plane will handle the relaying of all audio and video data.
This media plane resembles to a CDN.

2. Control Plane: The control plane is responsible to establish a connection between
the client and the media plane without communicating with the media plane.

3. Client: The client will be able to generate audio and video traffic to test the system.

The overall architecture is depicted in Figure 3.1. Clients establish connections through
the application server and then exchange media through the relays.
Session establishment requires a set of commands between the client and the application
server. Commands exist to a create a session, join an existing session, and delete an
existing session. The application server will process every command from the clients and
notify the clients if something changes with the session they participate in. We decided to
create a design where the application server will never communicate with media servers.
This makes it possible for the application server to distribute this information to its clients,
improving scalability.
We organize the relays into a tree topology, where only the leaf relay servers are accessible
to clients through the cloud load-balancer. This ensures an even traffic distribution over
the relays, making session scaling and geographical scaling possible. In the media plane we
use a two-level tree, where we have a single origin relay and multiple leaf relays. Session
sharing among the leaf relays occurs through the origin relay. Our architecture allows the
operator to create as many parallel relay trees as needed; this makes sure that the origin
relay never becomes a bottleneck.
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Figure 3.1: The architecture of our service.

3.1 Media plane

A CDN is a group of geographically distributed servers that forward and cache content
close to end users. CDNs allow quick transfer of assets needed for loading Internet content,
including HTML pages, JavaScript files, images, and videos. CDN are popular among
large-scale service providers like Meta, Netflix, and Amazon.
Using a CDN will help improve the performance of a service because the hosted media
can be cached on the edge of the network. Therefore, users do not need to communicate
with the origin server, which has all the media. Also, it will help to reduce the required
bandwidth within our service. The advantages of utilizing a CDN are:

• Improving load times.

• Reducing bandwidth cost.

• Increasing content availability and redundancy.

• Improving security.

Figure 3.2 shows the Origin server, CDN relays, and clients connected to each other. The
Origin server has all the content and the CDN relays are connected to this server on a
high-speed link, while users are connected to the relays on the regular network. Thanks to
caching, the CDN servers can store content for the users. If some content is not available,
they will ask this content from the origin server via a high-speed link.
In the case of large data such as video, the relays use the publish/subscribe model. This
model will enable the users to subscribe to a specific content and get the data chunks
when they want it. Also, if a user wants to upload something, the relay can subscribe to
the user’s feed, and the user can publish data chunks to the relay.
Since all communication occurs via the cache and potentially via multiple relays, end-to-
end latency may increase substantially. One of the most interesting conclusions of our
work is the finding that despite the added latency due to caching, the CDN architecture
is still perfectly capable of serve RTC use-cases without prohibitive delay penalty (see the
evaluations later). At the same time, the CDN model will allow us to scale our system to
essentially any number of clients and geographic locations in the cloud.
To demonstrate the use of the CDN model in our architecture, Figure 3.3 shows mea-
surement results from the earlier work [28]. This work used data centers (red squares)

18



Figure 3.2: A possible distribution of a CDN network [27].

and Speedtest.net server (green circles) to evaluate latency increase between clients and
servers that are further apart. The red star designates the client’s location where the tests
originate. The results show that a CDN-like media plane architecture indeed supports
both session scaling and geographic scaling.

Figure 3.3: Demonstrate the increasing latency that accompanies
access to servers that are further from the client,
where the client is the red star [28].

3.2 Control plane

The control plane is the bridge between clients and the media plane. In our case, the
control plane is the application server which enables clients to initiate sessions.
The application server in WebRTC use-cases communicates with the media servers, which
makes it harder to scale the number of media servers. Because of this reason, we decided
that the application server will not communicate with the media servers. The application
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server knows a single access point to the media servers’ load-balancer, and this is enough
for the clients to publish and subscribe media.
The application servers have to following tasks:

• Register sessions and users.

• Join clients into an existing session.

• Notify clients.

• Provide reachability information for clients to the media servers.

For this work, we are implemented a control plane component from scratch.

3.3 Client

The client side of our architecture plays a pivotal role in the orchestration of sessions and
serves as a vital component in traffic generation. Clients are endowed with the respon-
sibility of initiating and managing sessions. To initiate and manage sessions, the client
should be able to do following tasks:

• Create a new session.

• Delete a session.

• Join into an already existing session.

• Leave a session.

• Publish media stream.

• Subscribe to a media stream.

Session management is happening through a client written by us, while media publishing
and subscribing is the job of the QuicR-based media plane.

3.4 Workflows

The client has four commands, which means three different workflows for initiating and
managing sessions. These three commands are the following:

1. createRoom: Creating a named session.

2. joinRoom: Joining into a named session.

3. deleteRoom: Deleting a named session.
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3.4.1 createRoom

The Figure 3.4 shows the process of creating a new session. The client first sends a
createRoom message to the application server. Then the application server will create a
record about the created room and the registered user and send back an acknowledgment
message to the client that the room is created and the client can start publishing media
to the media server.

Figure 3.4: The process of creating a room.

3.4.2 joinRoom

Figure 3.5 shows how the joinRoom command works. There is an existing room where a
user is publishing media, and another user joins into this room. The application server
implements the joinRoom command similarly to the createRoom workflow, with two ex-
ceptions. First, the application server will not create a new room record, just update the
clients participating in the same room. Second, every other client in the same room gets
a newUser message with information about the new client’s stream information.
The new client starts to publish its media stream and subscribes to every other media
stream in the same room. In addition, every other client in the same room will subscribe
to the new client’s media stream.

Figure 3.5: The process of joining a room.

21



3.4.3 deleteRoom

Figure 3.6 shows how a client can delete a room. First, the client will stop publishing media
and unsubscribe from every other media stream. Then, the client will send a deleteRoom
message to the application server. The application server will delete the room from the
records and the clients within the room. However, before the application does it, it will
notify every other client in the room that the room is deleted, so stop the publishing media
and unsubscribe from every other stream. At the end, the client gets an acknowledgment
of the room deletion.

Figure 3.6: The process of deleting a room.
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Chapter 4

Implementation

In this chapter, we describe the implementation details of our system, including the media
server, application server, and the client. The media server will serve us as the media
plane and the application server is the control plane. The key goals of the implementation
were to achieve session scaling and geographic scaling. In the subsequent sections of this
chapter, we describe the implementation details of each component of the system.

4.1 Media server

There are multiple available implementations for the Media over QUIC standard (see Sec-
tion 2.3), such as RTP over QUIC, MOQRT, Rush, and QuicR. We decided to use QuicR
because it has the most developed code among the listed implementations. However, it
can be replaced by any other implementation from the MoQ Internet Engineering Task
Force (IETF) working group easily (recall, the application server never communicates with
the media relays, which makes relays easy to replace).
We used the existing QuicR implementation called QUICRQ. QUICRQ is a media server
that uses the QuicR implementation for media transport. It is written in C. Note that
QUICRQ is not a commercial grade software. This means that not all parts of the im-
plementation are fine tuned. QUICRQ provides an executable named quicrq_app, which
makes it possible to use it in four different modes:

• Origin: The origin server can be a relay between users and relays at the same time.

• Relay: Relays media between producer and consumer. It supports caching and
selective dropping to optimize the media transmission performance.

• Producer: Endpoint which generates the media stream.

• Consumer: Endpoint which receives the media stream.

Regarding media processing and relaying, we did not have to modify the code at all.
However, we added new functionality to implement logging for evaluation purposes. Our
logging functionality will report for each packet sent or received the following information:

• Timestamp: The Unix timestamp for each packet in the sending and receiving
momentum.
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• Length: The length of the packet.

• Group ID: The group id of the sent frame.

• Object ID: The object id of each object in a group.

4.2 Application server

The application server is the bridge between the clients and the media servers. When a
client wants to use our service, they have to register themselves through the application
server. If they are registered, they can create sessions or connect to existing sessions.
During this process, the clients provide information about themselves, while application
server provides information about the media servers, the connection details, and media
descriptors.
The benefits of using an application server is to be able to keep the media plane as
simple as possible. If the media server handles these tasks too alongside with processing
and relaying the media, it can stress out the media server causing performance and/or
reliability degradation. In this setup, we were able to use QUICRQ, which does not store
information about the sessions at all. This makes it possible to create an application server
that does not communicate with the media server at all. By eliminating the communication
between the media server and the application server the session scaling and geographic
scaling become easier to implement.
The application server was written in the Go programming language. Go is an open-
source programming language that makes it simple to build secure, scalable systems. Go
implements a variant of the Communications Service Provider (CSP [29]) model, in which
channels are the preferred method for two threads (called goroutines in Go) to share data.
A goroutine is a lightweight user-space thread-like parallel process. This approach is the
opposite of the frequently used model, where data shared globally across threads. This
means low latency with intercommunicating goroutines and makes it possible the share
data between goroutines via channels.
Go is a good fit for writing our application server, because it needs to receive messages
constantly and in parallel from the clients and process them quickly. In this way, we
can start a goroutine, which handles the incoming messages and creates new goroutines
to process the received messages and send responses to the clients. The main goroutine
handles the incoming messages, which has three types:

1. createRoom <room name>: A client can create a room with a specified room name.

2. joinRoom <room name>: A client can connect to a room with a specified room name.

3. deleteRoom <room name>: A client can delete a room with a specified room name.

Figure 4.1 shows how the joinRoom message is handled by the application server. The
message receiver goroutine is responsible for receiving messages from the clients, while
the handler goroutine is responsible for processing the message. The message handler will
spawn a new goroutine after finishing the message processing. The notify goroutine will
notify every client in the room via a newUser message.
The room and client information is stored in the following structure by the application
server.
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Figure 4.1: The process of processing a joinRoom messages within
the application server.

• Room

– Id: Identifier of the room.
– Users: List of clients in the room.
– Server: Media server’s address and port.

• User

– Id: Identifier of the client.
– Conn: Connection context for the client.

4.3 Client

Our service cannot be used without a client. The client is a piece of software, which makes
it possible for users to connect to a service. The client is able to initiate a session through
the defined messages, such as createRoom, joinRoom, and deleteRoom. The client is also
able to ingest media into our service through quicrq_app. With quicrq_app, we were
able to ingest a prerecorded video stream into our service and simulate actual traffic.
As the client and the application server share a significant amount of code, the client is also
written in Go. The clients communicate with the application server through WebSocket
and use the message types described above. The client has a Command-Line Interface
(CLI) interface, letting the user to type commands (like joinRoom, or deleteRoom) that
will be sent to the application server for processing.
The main challenge was scaling the number of clients. To make the number of rooms and
clients configurable for our evaluations, we wrote a test script as well. The script creates
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background processes for each client and pipe commands into these processes. In this way,
we can test performance and identify the maximum number of users our application server
and media server can handle in parallel with restricted resources.
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Chapter 5

Evaluation

In this chapter, we conduct a series of extensive evaluations to understand whether the
proposed CDN architecture can deliver the real-time latency requirements and demon-
strate that our design supports session scaling and geographic scaling beyond what the
state-of-the-art WebRTC systems can provide. Our results show that our system has simi-
lar performance as the widely used Jitsi WebRTC media server distribution [11, 12], while
it can perform session scaling and geographic scaling as well.

5.1 Deployment model

In order to obtain a fair evaluation, we created a deployment model so that our service
and Jitsi are compared with equal resources. We consider four deployment scenarios:

1. Baseline deployment, where both the services and the traffic generator are deployed
on the same machine (baseline).

2. Local traffic generator with remote services located in Europe. We used this scenario
to demonstrate session scaling (local-relay-eu).

3. Local traffic generator with remote services located in the USA (local-relay-us).

4. One traffic generator and server in the USA (New York), and one traffic generator
and server in Europe. We used this scenario to demonstrate geographic scaling.

The traffic generator in each case was a laptop running Ubuntu 22.04 with the following
hardware: Ryzen 3 4300U (4 cores, 4 threads), 16 GB of RAM, and 1 Gigabit Ethernet.
This was enough to generate enough traffic to compare our service with Jitsi.
During the evaluations we measured three standard media transmission quality metrics:
the round-trip-time (RTT), defined as the average time between sending a packet and
receiving a response, jitter, defined as the mean delay variation, and packet loss, measured
as the ratio of the number of packets lost at the destination and the total number of packets
sent. High RTT and jitter can cause problems, such as dropped packets or delayed audio
and video playback. The acceptable scale of RTT is everything below 300 ms [2], and for
both the RTT and the jitter the smaller the better.
For the Jitsi measurements, we used webrtcperf to generate realistic WebRTC traffic.
Webrtcperf is an open-source project, which automatically joins a room, plays back media,
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and measures performance. For the measurements with our system, we used the test
scripts described in Chapter 4 to generate traffic and measure the media transmission
quality metrics.

5.2 Session scaling

First, we measured the effects of session scaling on Jitsi and our system. We compared
three scenarios in the baseline deployment model:

• Single Jitsi: Jitsi service with 1 CPU and 1 GB of memory

• Single Relay: Our service with a single relay with 1 CPU and 1 GB of memory.

• Two Relays: Our service with two relays, both with 1 CPU and 1 GB of memory.

We ran these scenarios with varying number of users, in particular, 2, 10, 15, 20 users.
The RTT can be seen at Figure 5.1, while the jitter results are given on Figure 5.2. The
packet loss in every scenario was negligible, always remaining under 0.5%, except for the
scenario where Jitsi was measured with 20 users where traffic loss was 100% (i.e., all traffic
was lost).

Figure 5.1: Changes of RTT with scaling the number of users.

Our most important observations are as follows. At small load (2 users), Jitsi produces
much smaller RTT and jitter than our system does. We believe this is the consequence of
the extra delay introduced by the cache(s) in the QUICRQ relays in our system. However,
we note that the RTT and jitter caused by our system still guarantee good quality media
transmission. However, as the load increases, the advantages of session scaling become
more apparent. With 10 and 15 users, Jitsi and our system produce similar RTT and
jitter. However, Jitsi stops working with 20 users due to exhausting the resources of the
single server. In contrast, QUICRQ keeps working, but the RTT is much higher now,
which indicates resource exhaustion for the 1-relay case. As the number of relays is scaled
to 2, we can see a significant improvement in the RTT, which demonstrates the usefulness
of session scaling.
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Figure 5.2: Changes of jitter with scaling the number of users.

We note, however, that at small load the RTT, and especially the jitter, are worse with 2
relays than with 1 relay. This is because of the load-balancing mechanism, which randomly
distributes users’ joinRoom messages across the relays. This results that some users are
connected through 2 relays even at small load, which shows up in our measurements as
worse RTT and jitter. The negative effect of session scaling is low, and at high loads
session scaling clearly delivers significant improvement.

5.3 Geographic Scaling

Next, we demonstrate the importance of geographic scaling. With geographic scaling, users
are always connected to the closest server. In this way, users that are located close to each
other exchange information over the same local relay in a short-circuit way, and only send
data through the remote relay if they want to publish media for remote subscribers using
the other relay.
Figure 5.3 and Figure 5.4 show the difference between Jitsi and our service in terms of
RTT and jitter in different deployment scenarios.
Our observations are as follows. First, the RTT clearly rises as the distance is longer, but
for both services, it remains under 300 ms [2]. In addition, jitter is lower with our service
than with Jitsi. This may be a positive effect of caching, that can smooth delay variation
over large distances.
To understand the effects of geographic scaling, consider again the video-conferencing
service discussed previously. Recall, in this scenario the first user joins from the US, so
the video-conferencing server is deployed into the US, and then lots of users join from the
EU and the US-based user leaves. Since with traditional WebRTC services like Jitsi users
are pinned to media servers for the entire lifetime of the session and sessions cannot be
moved or shared across media servers, all users are now in the EU yet they exchange media
traffic over a remote server located in the US. This means they experience a performance
as in the local-relay-us scenario, i.e., 117 ms RTT and 101 ms jitter. In contrast, our
system is geographically scaled across a US-based and an EU-based relay. Thus, all EU-
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Figure 5.3: RTT comparison of Jitsi and QUICRQ with different
scenarios.

based users can exchange traffic over a local, EU-based relay. This corresponds to the
results for the local-relay-eu scenario for QUICRQ, i.e., 45 ms RTT (about 2.5 times as
small as with Jitsi, or 40% of the RTT of Jitsi) and 37 ms jitter (about 2.7 times as small
as with Jitsi, or 36% of the jitter of Jitsi). This clearly demonstrates the positive effects
of geographic scaling.

Figure 5.4: Jitter comparison of Jitsi and QUICRQ with different
scenarios.
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Chapter 6

Conclusion

The WebRTC technology reshaped the way we ecommunicate in the digital world. It
serves as the de-facto way for developing RTC applications, including videoconferencing,
live streaming, and online gaming. These applications set a strict requirement for latency
and jitter, different from traditional Web services. As we have witnessed, the demand for
RTC solutions has increased over the years, especially during the COVID-19 pandemic,
when millions of individuals had to work remotely.
Despite the success of WebRTC, certain limitations have remained unresolved. The issues
of session scaling and geographic scaling have posed significant challenges. The former
challenge involves the complexity of scaling out WebRTC sessions to accommodate an
increasing number of users, while the latter addresses the difficulty of deploying WebRTC
servers as close to users as possible.
In response to these challenges, this work presents a new RTC architecture designed to ad-
dress both session scaling and geographic scaling. We explored the complexity of WebRTC
and its protocols, delving into the core issues that hinder its scalability and efficiency. Our
design and implementation introduced a solution that enables the distribution of sessions
across multiple servers and multiple geographic locations, enhancing the performance of
large-scale RTC applications.
To validate our approach, we built a new application server with a custom client and
conducted comprehensive evaluations using a QuicR media plane with prerecorded video
streams. We deployed our service into two cloud data centers, one in the USA and another
in the EU. Our results show that for large sessions, our RTC architecture delivers a
consistent performance improvement over the state-of-the-art WebRTC applications, such
as Jitsi, while it reliably provides session scaling and geographic scaling.
The impact of WebRTC on RTC services cannot be overstated, and as the technology
continues to evolve, it becomes even more important to address its limitations. This work
presents a new approach to build a future of RTC services with improved scalability and
user experience. We believe this is an important step toward addressing the challenges
of WebRTC’s session scaling and geographic scaling limitations. However, there is more
work to do in the future, such as:

• Experiment with different QUIC-based media servers and understand the conse-
quences of caching to media performance.

• Write a real video-conferencing server that is accessible from a standard Web
browser, using the webcam and microphone of users as media source.
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