
Budapest University of Technology and Economics
Faculty of Electrical Engineering and Informatics

Department of Measurement and Information Systems

Controlling SAT/SMT solvers with decision
diagrams to support abstraction-based model

checking

Scientific Students’ Association Report

Author:

Nóra Almási

Advisor:

dr.Vince Molnár

2020

Contents

Kivonat i

Abstract ii

1 Introduction 2

2 Preliminaries 4

2.1 Model checking . 4
2.1.1 Modeling formalisms . 4
2.1.2 Kripke structure . 4
2.1.3 Symbolic transition system . 5

2.2 Satisfiability problems . 5
2.2.1 Calculating every solution . 6
2.2.2 Solvers . 6

2.3 Decision diagrams . 6
2.3.1 Binary decision tree . 6
2.3.2 Binary decision diagram . 6
2.3.3 Multi-value decision diagram . 7

2.4 Logic-based model checking techniques . 7
2.4.1 Path-based techniques . 8

2.4.1.1 Bounded model checking 8
2.4.1.2 k-induction . 8

2.4.2 Abstraction-based approaches . 8
2.4.2.1 CEGAR . 9
2.4.2.2 Predicate abstraction . 9
2.4.2.3 Explicit-value abstraction 9

2.5 Related approaches in AllSAT solvers . 10

3 Flexible Computation of Multiple Solutions of SMT Formulas 12

3.1 The loop solution . 12

3.2 Substitution diagram . 13
3.2.1 Constructing the diagram . 14
3.2.2 Default next nodes . 16
3.2.3 Comparison to the loop solution . 16

3.3 Use cases . 17
3.3.1 Retrieving all solutions . 17
3.3.2 Retrieving a specific number of solutions 17
3.3.3 Only k values of each variable are relevant 18

4 Implementation 19

4.1 Design and architecture of the software library 19
4.1.1 Theta framework . 19
4.1.2 The AllSolutionSolver solver module 19

4.2 Implementation details . 20
4.2.1 All solution solvers . 20
4.2.2 Factories . 20
4.2.3 Variable substitutions . 21
4.2.4 Expression nodes . 22
4.2.5 Cursors . 22

4.2.5.1 MapCursor . 23
4.2.5.2 NodeCursor . 23
4.2.5.3 SolutionCursor . 23

4.2.6 Solver . 23
4.3 Integration into Theta . 23

4.3.1 Predicate abstraction . 24
4.3.2 Explicit-value abstraction . 24
4.3.3 Supported configurations . 24

5 Evaluation 25

5.1 Benchmark models . 25
5.2 Benchmark results . 25

5.2.1 CFA results . 26
5.2.2 XSTS results . 26
5.2.3 Overall evaluation . 27

6 Conclusion and Future Work 32

6.1 Conclusion . 32
6.2 Future work . 32

Acknowledgements 33

Bibliography 34

Kivonat

Kritikus rendszerek tervezésekor a helyes működés kulcsfontosságú: az esetleges tervezé-
si hibák ilyenkor hatalmas anyagi kárt, vagy akár személyi sérüléssel járól baleseteket is
okozhatnak. A hibamentesség a hagyományos tesztelési módszerekkel nem bizonyítható,
ennek belátásához (vagy legalábbis közelítéséhez) a lehetséges viselkedések kimerítő vizsgá-
lata szükséges. Ehhez adnak támogatást a különböző formális verifikációs módszerek, ahol
a rendszereknek megfeleltetett tervezési modellek helyessége a matematikai precizitással
belátható.

Az egyik ilyen módszer, a logikaalapú szimbolikus modellellenőrzés vezető technikája
az ellenpélda-vezérelt absztrakció finomítás (Counterexample-Guided Abstraction Refine-
ment, CEGAR). A módszer egyre finomabb absztrakciókon iterálva vizsgálja a modellt,
ezzel elkerülve az irreleváns részek vizsgálatát. Predikátumabsztrakció használatakor az
állapottér-felderítés során megoldandó az AllSAT-probléma, ahol a feladat egy adott lo-
gikai kifejezésre az összes őt igazzá tevő kiértékelés megtalálása. Ennek megoldására már
állnak rendelkezésre AllSAT-megoldók, a kutatás célja az eddigieknél rugalmasabb, az al-
kalmazási terület igényei szerint testreszabható megoldó tervezése, amit sikerrel lehetne
alkalmazni a különböző modellellenőrzési módszereken belül is.

Dolgozatomban egy olyan megoldást javaslok, ahol az AllSAT megoldóknál sokkal
kiforrottabb és szélesebb körben elérhető SAT/SMT megoldók felhasználásával a megol-
dásokat döntési diagram strukturába szervezem, és ez a struktúra nem csak a kompakt
tárolást, hanem a megoldások lekérdezésének vezérlését is végzi. Várható, hogy a megoldás
a modellellenőrzőkben jelenleg használt módszerhez képest versenyképes lesz, emellett a
funkciókör bővítése szélesebb körű alkalmazhatósághoz vezethet. Fontos kiterjesztés, hogy
a módszer nem csak SAT, de SMT megoldókkal is működik, tehát a változók nem csak
bináris értékűek lehetnek. Dolgozatomban kitérek az emiatt felmerülő új kihívásokra, és
ezekre a különböző felhasználási területek igényeihez igazodó megoldásokat javaslok. A
módszert implementálom egy konfigurálható modellellenőrző keretrendszerben, integrá-
lom már létező algoritmusokkal, és teljesítményét mérésekkel vizsgálom.

i

Abstract

When designing critical systems, correct operation is crucial: design errors may lead to
serious economical consequences or even accidents with personal injuries. Freedom from
errors cannot be proved with traditional testing methods; to show (or at least approximate)
correctness, an exhaustive examination of all possible behaviors is required. Various formal
verification techniques facilitate this process, where the correctness of the design models
corresponding to the systems can be demonstrated with mathematical precision.
One such technique is logic-based symbolic model checking, where the leading approach is
called Counterexample-Guided Abstraction Refinement (CEGAR). The approach analyzes
the model through a series of increasingly finer abstractions, thus avoiding the examination
of irrelevant details. When using predicate abstraction, one of the arising problems which
should be solved during the state space search is the AllSAT problem, where the task is to
find all the evaluations that satisfy a given logical expression. There are available AllSAT
solvers to tackle this problem. The aim of this research is to create a more flexible solution
that can be customized according to the needs of the application area, so that it can be
successfully applied in different model checking methods.
In my work I propose a solution using SAT and SMT solvers, which are generally more
advanced and available than AllSAT solvers. I store the solutions in a decision diagram
structure, which not only offers compact storage, but also controls the enumeration of
solutions. We expect this approach to be competitive compared to the current practices
used in model checking, and the extended functionality compared to traditional AllSAT
solvers may lead to wider applicability. A major improvement is that our method works
not only with SAT but also with SMT solvers, which means that variables are allowed
to have non-binary discrete domains. In my report I discuss the challenges coming from
this extension of the variable domain, and propose solutions adjusted to the needs of
different application areas. I implement the new method in a configurable model check-
ing framework, integrate it with existing algorithms, and examine its performance with
measurements.

ii

List of Abbreviations

Abbreviation Description
ARG Abstract Reachability Graph
BDD Binary Decision Diagram
CFA Control Flow Automata
CEGAR Counterexample-Guided Abstraction Refinement
DFS Depth-First Search
MDD Multi-valued Decision Diagram
SAT Boolean Satisfiability Problem
SMT Satisfiability Modulo Theories
XSTS Extended Symbolic Transition System

1

Chapter 1

Introduction

When designing safety-critical systems, there is an increasing demand for ensuring func-
tional correctness. The main cause is that system failures may have far-reaching conse-
quences like large economic losses or even threatening human lives. But how can we prove
the absence of errors?
The simplest way to find faults is testing, where a failing test also shows the incorrect
behaviour. However, the lack of errors cannot be shown this way. A system functions
properly if and only if all of the potential behaviours are problem-free. Unfortunately an
exhaustive examination is not easy. With the growing complexity of the tested system,
the number of possible behaviours that should be checked increases exponentially. The
phenomenon is known as the state space explosion problem. Due to the exponential nature,
checking all possible behaviours one by one cannot be efficient.
Formal verification deals with proving correctness in a mathematically precise way. Model
checking is a technique within formal verification, which answers the question of correct-
ness by checking the possible states’ state space exhaustively. In the case of symbolic
transition systems, the model’s states and transitions are described with mathematical
(logic) formulae. Thus, the question of reachability can be transformed into the Boolean
satisfiability problem (SAT), i.e. the problem of determining if a satisfying interpretation
for the given Boolean formula exists. A more general form of the problem is also present
in model checking – the AllSAT problem deals with determining all satisfying assignments
for a given logical formula. The main focus of our research is this problem, for which
we propose a novel approach that combines different, well-proven solutions used in model
checking, designed to deal with many specific challenges of this application domain (unlike
general AllSAT solvers).
There are quite advanced heuristic algorithms available for the solution of the SAT prob-
lem. There are available SAT solvers too, which decide the satisfiability of the given
formula efficiently, and return a proper variable assignment if there is any. A naive but
widely used approach for the AllSAT problem is to use multiple calls to SAT solvers. The
satisfying interpretations can be obtained one by one by negating and concatenating the
calculated result to the end of the expression and asking the SAT solver for a satisfying
assignment again. However, in practice, this approach is often not scalable because the
expression can grow too large to handle when there are too many solutions.
The proposed approach solves this problem by using a decision diagram structure. Decision
diagram is a popular data structure in the area of model checking, allowing a compact
storage of (state) vectors. We introduce substitution diagram, which improves the original
construction by annotating the diagram nodes with the additional information of the

2

logical expression. Therefore the identity of nodes are not determined by their child
nodes, but by the assigned expression, which is known even before calculating its children.
This approach provides a way to compute a decision diagram representation of the solution
space directly.
Besides the storage size advantages, the approach can be tailored to a wide area of ap-
plications in model checking. We have identified four use cases, three of which have been
implemented in the Theta Model Checking Framework [14], which is a generic, modular
and configurable framework developed at the Critical Systems Research Group of the Bu-
dapest University of Technology and Economics. The correctness and efficiency of the
realized solution are investigated with measurements.
This report is structured as follows. Chapter 2 provides basic knowledge about model
checking, decision diagrams and the AllSAT problem. It also presents the targeted appli-
cation areas and related approaches. Chapter 3 details the proposed idea, and chapter 4
presents the implementation details. Chapter 5 gives information about the measurements
and benchmark results. Finally, Chapter 6 concludes the work.

3

Chapter 2

Preliminaries

This chapter summarizes the basic knowledge and theoretical background needed for un-
derstanding the research idea and the meaning of the results. Firstly, some details of the
concept of model checking are given. We present symbolic transition systems and the
connection between model correctness examination and mathematical logic. Afterwards,
we present the SAT and AllSAT problems. Finally, we show application areas of these
problems in model checking.

2.1 Model checking

Model checking [3] is a formal verification method used for testing properties of finite
state systems. The technique analyzes all possible behaviours of a model automatically,
investigating, whether it meets a given specification or not. Formally, the problem of model
checking is deciding if for a given modelM and a formal requirement ϕ, the following holds:
M |= ϕ, i.e. the model is indeed a model of the requirement. There are various formalisms
for formal models and requirements. This work assumes that models are given as Kripke
structures (Def. 1), specified by symbolic transition systems.

2.1.1 Modeling formalisms

Formal models can be categorized into low-level or high-level formalisms. Low-level models
describe the system with mathematical precision. They are usually built on mathematical
constructs like sets, relations and functions. They are usually represented with labelled
edges and nodes. A common example of low-level formalisms is a Kripke-structure. Low-
level models are mostly easy to handle algorithmically, but they are not easy to handle
for humans. High-level formalisms are easier to comprehend, as they are much closer
to the modelled system. Common examples of higher-level formalisms are Petri-nets or
statecharts. As this work focuses on algorithms on low-level formalisms, only Kripke
structures and symbolic transition systems are explained here.

2.1.2 Kripke structure

Kripke structure[6] is an example of low-level modelling formalism. Its structure is a
directed graph. The nodes represent states of the modelled systems, and edges symbolize

4

x = 1x = 0 x = 1x = 0 (x = 0) ∧ (x’ = 1)

Figure 2.1: Encoding state transitions in symbolic transition systems

the state transitions. The states may be labelled. Labels denote properties, which hold
for the current state. Thus, paths stand for the possible behaviours of the system.

Definition 1 (Kripke structure). Given a set of atomic propositions P a Kripke struc-
ture is a 4-tuple M = (S, I,N, L), where:

• S is the set of states;
• I ⊆ S is the set of initial states;
• N ⊆ S × S is the transition relation consisting of state pairs;
• L : S → 2P is the labeling function mapping a set of atomic propositions to each

state. �

2.1.3 Symbolic transition system

Symbolic transition systems describe Kripke structures implicitly by preserving state vari-
ables of a high-level model and using logical expressions to specify initial states and tran-
sitions. An example can be seen in Fig. 2.1.

Definition 2 (Symbolic transition system). Given a set of atomic variables V a sym-
bolic transition system is a pair STS = (φI , φN), where:

• φI is a Boolean mathematical expression over variables in V which evaluates to true
iff the valuation describes an initial state of the system;

• φN is a Boolean mathematical expression over variables in V and successor variables
in V ′ which evaluates to true iff the valuations of variables in V and V ′ describe
source and target states of a transition, respectively. �

Computing if a specific valuation has a corresponding state in the Kripke structure defined
by a symbolic transition system is called the reachability problem, which, in this case, can
be mapped to the satisfiability of Boolean mathematical expressions.

2.2 Satisfiability problems

Satisfiability problems deal with the decision of whether there exists a valuation for which
a given Boolean mathematical expression evaluates to true.
Depending on the variables used in the expression, we can speak about the SAT problem
(for Boolean variables) or the SMT problem (for various other domains) [7]. It is inter-
esting to note that a SAT problem always has a finite number of solutions (i.e. satisfying
valuations), whereas SMT problems may have infinitely many solutions.

5

2.2.1 Calculating every solution

The problem of finding all solutions of a SAT problem is called the AllSAT problem. The
same problem for SMT formulae is not well-defined because of the potentially infinite
solutions, but we can formalize the problem for cases with finite solutions or in terms of
bound k (i.e. we need at most k solutions) [9].

2.2.2 Solvers

The research of effective heuristic algorithms for the solution of SAT and SMT problems
has a long history, therefore there are lots of available solver tools with high maturity. Most
SAT/SMT solvers are capable of returning a satisfying valuation as proof of satisfiability.
Most of the solvers are also equipped with functions to push and pop constraints as a way
to solve multiple problems incrementally. This work will build on these functionalities to
compute every solution using SAT/SMT solvers.
The number of available AllSAT solvers is much lower, while AllSMT solvers are almost
non-existing [9]. This is the main motivation for building on SAT/SMT solvers instead.

2.3 Decision diagrams

The other crucial question by solving the AllSAT problem besides the algorithm speed is
the limited storage space. Listing all the solutions one by one is often not possible when
there is a large number of solutions. For this problem, the decision diagram structure
offers a better alternative.

2.3.1 Binary decision tree

A binary decision tree is specified by a Boolean logic formula and a predefined variable
sequence, the value substitution order. An example of the variable order a, b, c and the
expression (a ∨ ¬b) ∧ (b ∨ c) explains the concept in Fig. 2.2. It is a binary directed tree
with labelled nodes and edges. Internal nodes are labelled with the corresponding variable
(that is evaluated in that node). The edge labels show the substituted value. Terminal
nodes (leaves) show the evaluation result after substituting the values along the paths
leading to the node, i.e. true or false. The individual solutions are the individual paths
from the root node to the terminal nodes containing a true value.

2.3.2 Binary decision diagram

There may be identical subtrees in a binary decision tree where we could save space if
we merge them into one. This results in a binary decision diagram, carrying the same
information in a more compact structure.
The resulting binary decision diagram after the node merges in the previous example can
be seen in Fig. 2.3. When decision diagrams are discussed, false terminal nodes – and
routes ending in false terminal nodes – are usually omitted. The reason is that only the
true-evaluating substitutions are of importance.

6

a

t t t f f f t ft t t f f f t f

ft

c c ccc c cc

b bb b

Figure 2.2: Binary decision tree for (a∨¬b)∧ (b∨ c) expression with a, b, c substitution
order

a

t f

ft

b b

c cc

Figure 2.3: Binary decision diagram for (a∨¬b)∧(b∨c) expression with a, b, c substitution
order

2.3.3 Multi-value decision diagram

The extension of the previous definitions happens analogously for discrete domains like
integers. Edges, nodes and labels have the same meaning as by the binary versions. The
only difference is that nodes may have several, possibly infinite outgoing edges. This is the
consequence of that the substituted value can be any value from the appropriate discrete
domain. An instance of MDD is shown in Fig. 2.4. The variable order is a, b and the
expression is

(a < 3 ∧ a ≥ 0 ∧ (b = 1 ∨ b = 2)).

2.4 Logic-based model checking techniques

In this section, we present the occurrences of the satisfiability problems during the model
checking procedure.

7

a

t

1

b

20

1 2

Figure 2.4: Multi-value decision diagram for (a < 3∧ a ≥ 0∧ (b = 1∨ b = 2)) expression
with a, b substitution order

2.4.1 Path-based techniques

A class of model checking techniques approaches the problem by describing paths of finite
length in the state space. The correctness of the system is established based on the
existence of these paths.

2.4.1.1 Bounded model checking

Bounded model checking [1] is a symbolic model checking technique using SAT procedures.
Its basic idea is to search for counterexamples of length k by creating a propositional
formula that is satisfiable if and only if there exists a counterexample. The name bounded
stands for the limit k, which ensures that a counterexample with a possibly small size will
be found, but does not guarantee completeness (i.e. it will not find paths longer than k).
The process of finding a counterexample is quite fast due to the nature of SAT solvers.

2.4.1.2 k-induction

A bounded method that is capable of proving correctness is k-induction [11], which aims
to prove the safety of a system in terms of a given invariant. The basic idea is to find a
bound k, for which all states not further than k steps from the initial states are safe and
the following inductive condition is also true: When every path of length k contains only
safe states, then any path of length k + 1 will also contain only safe states. This proves
inductively that every reachable state is safe.

2.4.2 Abstraction-based approaches

Non-bounded techniques have to explore the complete state space to reason about states
and behaviours. The state space can often be too large to handle, or even infinite. To
counter this problem, a class of model checking techniques use abstraction. This can
be done easily on symbolic transition systems, in which case the state space exploration
problem contains multiple instances of AllSAT/AllSMT problems: whenever we compute
the successors of a given state.

8

2.4.2.1 CEGAR

Counterexample-Guided Abstraction Refinement [5] is a generally known technique for
automated verification of both hardware and software systems. The basic functionality is
based on the CEGAR loop (see Fig. 2.5), which is iteratively constructing and refining
abstractions until a proper precision is reached. Initially, a coarse abstraction of the system
is computed (the abstract reachability graph, ARG), which will be refined later. When an
erroneous behaviour can be found in the abstract state space, it is checked whether the
abstract counterexample is reproducible in the original system. When it is, the feasible
counterexample proves that the original system is unsafe. Otherwise, the counterexample
is spurious, and the abstraction must be refined. This procedure is repeated until either
one concrete counterexample is found or the abstract state space is safe. CEGAR is a
general method, which may be specified by choosing different abstraction domains and
refinement methods. My work is applied to both predicate and explicit-value abstraction,
which concepts are detailed in the following sections.

Abstraction RefinementARG
Expand Prune

Safe Unsafe

Initial precision
Abstract counterexample

Refined precision

Figure 2.5: CEGAR loop

Definition 3 (Abstraction). Given a concrete state space (i.e. Kripke structure) an
abstraction is a function mapping concrete states to abstract states based on a precision π
which defines the abstract domain D, the way to transform a concrete state to an abstract
state, and an abstract transfer function T that contains a pair of abstract states if and
only if there is a (concrete) transition between any two concrete states mapped to the
corresponding abstract states. �

2.4.2.2 Predicate abstraction

In Boolean predicate abstraction, a Boolean combination of first-order logic formulas rep-
resents abstract states [5]. The precision π stores the currently tracked predicates of the
algorithm. The transfer function T (s, op, π) results in a predicate combination that is
entailed by the source state and the operation. The idea behind this method is to assign
a new propositional variable to each predicate and find all assignments for the proposi-
tional variables that evaluate to true. For each assignment, the conjunction of predicates
is created, where predicates are present in the suitable (positive or negated) form.

2.4.2.3 Explicit-value abstraction

In explicit-value abstraction, an abstract state is an abstract variable assignment that
maps each variable to an element from its domain extended with a true or false value

9

[5]. A precision π is the set of currently tracked variables, which set is extended in each
iteration. The transfer function determines the successor states such that the variables
not included in the precision (i.e. the variables not being tracked) are omitted.

2.5 Related approaches in AllSAT solvers

As mentioned before, there exist available solvers for both SAT and AllSAT problem. In
general, the range of SAT-solvers is way wider, though there are a few AllSAT solvers too.
In the following, an AllSAT solver is detailed, which is based on some ideas that may also
be useful in our future work. The details can be read in [13].
The article examines the functionalities of AllSAT solvers, including BDD-based methods.
However, it is important to mention that the article investigates the internal operation of
the solvers, while this work finds solutions from the outside, using existing solvers.
Section 2.3.2 presented the concept of binary decision diagrams, which was the result
of merging the equivalent nodes of the binary decision tree (i.e. the identical subtrees).
Building a binary decision diagram has a lot of intermediate steps so the decision diagram-
based solution in the article completes the structure with some additional information.
Based on this information it is possible to build the final decision diagram directly. which
says during the construction phase of the diagram whether the actual node is already
present in the structure, without traversing the underlying subtree, To understand the
proposed solution, we must first get familiar with the concepts of cutsets.

Definition 4 (Cutset). For a given CNF (conjunctive normal form) formula, the i-th
cutset is the set of clauses, which contains variables with both non-greater and greater
indices than i. �

Example 1. Fig. 2.6 gives an example for the both definitions. In the figure the filled
circles mean poned, the empty ones mean negated variables, horizontal lines are for the
clauses. With this symbolism the clauses in the example are:

C5: x5 ∧ ¬x6
C4: x4 ∧ ¬x5 ∧ x6
C3: ¬x1 ∧ ¬x3 ∧ x4
C2: x2 ∧ x3 ∧ x5
C1: x1 ∧ ¬x3

As an example of i = 3, the 3rd cutset is the {C2, C3} set of clauses, while the 3rd
separator is the {x1, x2, x3} set of variables.

The key idea described in the article is the observation that investigating two nodes on
level i + 1, they are equivalent if and only if clauses in cutset i have the same fulfilment
along the paths leading to the nodes. It follows that it is enough to store the true or
false values of these clauses to decide the equivalence, without traversing the underlying
subtrees.

10

Figure 2.6: Cutset example from [13]

11

Chapter 3

Flexible Computation of Multiple
Solutions of SMT Formulas

As we have seen, the AllSAT/AllSMT problem comes up again and again in the area of
model checking. Currently, most model checking tools employ a naive solution building
on SAT/SMT solvers to compute the successor states during state space exploration. This
approach may suffer from scalability issues when the number of successor states is large
or infinite. The main motivation behind our work is to handle this issue by proposing
a novel decision diagram-based data structure: the substitution diagram. The proposed
approach attempts to combine the advantages of decision diagram-based techniques with
abstraction-based techniques as they generally perform well in other areas of model check-
ing. We expect our solution to be competitive with the naive approach, but much more
flexible, which we will illustrate by outlining different use cases where our solution is more
appropriate.
The chapter is structured as follows. Firstly, Section 3.1 presents a simple and widespread
solution for the AllSAT/AllSMT problem. Thereafter Section 3.2 presents the definition
of substitution diagrams. Finally, Section 3.3 details the possible applications of the
described solution.

3.1 The loop solution

The naive solution builds on existing SMT solvers by calling them in a loop. The loop
algorithm is shown in Fig. 3.1. The algorithm iterates over the solutions as follows. In
the first step, an evaluation is queried from the solver. After the negation of this solution
is conjoined to the input expression. The result is the new input expression that will be
read by the solver in the next operation. Thus the solver is told to return an assignment
that is not among the already found ones. This iteration is repeated until the unsatisfiable
result is returned, i.e. until all possible assignments are found.
This algorithm provides a theoretically correct solution for the AllSAT/AllSMT problem,
although it often cannot be used in practice. In the case of large state spaces, the one by
one listing of solutions is not feasible. As there are numerous assignments, the negations
of these cannot be concatenated to the end of the original expression due to memory
restraints. This solution has been used as a baseline to evaluate the efficiency of our
proposed approach.

12

solution

expression = expression ∧ (¬solution)

Solver
expression

STOP
if no more
solutions

Figure 3.1: Loop solution for the AllSAT/AllSMT problem

3.2 Substitution diagram

This section introduces the solution diagram, a decision diagram completed with addi-
tional information. The substitution diagram gives a more flexible solution to the All-
SAT/AllSMT problem. The decision diagram-based data structure has the advantage of
a more compact representation. It also offers a configurable strategy to sample infinite
solution spaces and custom traversal strategies.

Definition 5 (Substitution diagram). A substitution diagram over K variables with
domains embeddable into the set of natural numbers is a tuple (N,LN , R,E, V,LE) such
that:

• V is the set of nodes, containing the terminal true and false nodes (1 and 0, respec-
tively);

• LN : N → Exprs is the node, labeling function mapping an expression to each node,
with LN (1) = true and LN (0) = false;

• r ∈ N is the root node;
• E ⊆ (N \ {1,0}) × N is the child relation consisting of node pairs (edges of the

diagram);
• V is an ordered set of variables, where |V | = K. Nodes in (N \ {1,0}) are assigned

to variables in V (denoted by var(n) for n ∈ N \ {1,0}) and we require that edges
lead to nodes lower in the order determined by V ;

• LE : E → N is the edge labeling function which assigns a value from the correspond-
ing variable domain to the edges. �

Similarly to multi-value decision diagrams, a substitution diagram can be represented
by a directed acyclic graph (see Fig. 3.2). Nodes are labelled and identified by the
corresponding expression added to each node. The nodes are grouped into levels, and a
variable is assigned to each level, which is the next to be substituted. The levels below
each other are in the order of the predefined variable order. Each edge corresponds to
a variable substitution. As the variable substitutions happen in a fixed order, the edges
go between neighbouring levels. Each edge is labelled with the substituted value for the
current variable. The edge starts from the expression for which the substitution happens
while it ends in the node with the resulting expression. The resulting expression is obtained
by substituting the value and optionally reducing and/or canonizing the expression.
However, in contrast with MDDs, a substitution diagram is not required to merge every
identical subdiagram. The relaxed reduction rule for substitution diagrams will build on
the expressions used to label the nodes: there can be no two nodes belonging to the same
variable with the same label.

13

t f t

fft

f

t(a ∨ ¬b) ∧ (b ∨ c)

t

(b ∨ c) (¬b) ∧ (b ∨ c)

true c

a

b

c

true

Figure 3.2: Substitution diagram for expression (a ∨ ¬b) ∧ (b ∨ c) and variable order
(a, b, c)

Definition 6 (Well-formed substitution diagram). A substitution diagram is well-
formed if:

• @n1, n2 | n1 ∈ N ∧ n2 ∈ N ∧ LN (n1) = LN (n2);
• ∀n1, n2 | n1 ∈ N ∧ n2 ∈ N ∧

(
(n1, n2) ∈ E =⇒ [〈LN (n1)〉 ∧ 〈var(n1)〉 =

〈LE(n1, n2)〉 ⇔ 〈LN (n2)〉]
)
, i.e. for every two node connected by an edge, the label

of the source node as a logical expression in conjunction with the expression binding
the variable corresponding to the node to the value assigned to the edge is equivalent
to the label of the target node as a logical expression. �

The relaxed reduction rule can be regarded as a kind of syntactic equivalence, whereas
the reduction rules of MDDs operate with semantic equivalence. Our observation is that
syntactic equivalence implies semantic equivalence, so substitution diagrams do not lose
information – the only thing we may lose is the compactness of the representation. How-
ever, this will be offset by the cheaper comparison of expressions and the ability to directly
construct substitution diagrams from mathematical expressions without building interme-
diate diagrams.

Theorem 1. The set of all satisfying substitutions is equivalent to the set of valuations
along the paths leading from the root node to the terminal true node. �

The theorem follows from the second part of Def. 6 by transitively applying the equivalence
along each path.

3.2.1 Constructing the diagram

This section describes the construction method of the diagram. The starting point is a
given expression and a predefined variable order, the aim is to construct the corresponding
substitution diagram. The construction happens with the help of an SMT solver. The
solver gets an expression as an input and returns a satisfying solution as an output when
possible. The initial diagram consists of only one node that stores the expression. To
expand this node, the solver gets the expression as an input and returns an output. If

14

t

t

t(a ∨ ¬b) ∧ (b ∨ c)

t

(b ∨ c)

true

a

b

c

true

t f

t

t(a ∨ ¬b) ∧ (b ∨ c)

t

(b ∨ c)

true

true

t f t

ft

t(a ∨ ¬b) ∧ (b ∨ c)

t

(b ∨ c)

true c

true

t f t

fft

f

t(a ∨ ¬b) ∧ (b ∨ c)

t

(b ∨ c) (¬b) ∧ (b ∨ c)

true c

a

b

c

true

Figure 3.3: Substitution diagram construction

the result is unsatisfiable, then the current node is replaced with the terminal false node.
Otherwise, the result is saved by iterating over the variables, substituting the offered
values and creating new expression nodes along the path, reusing already existing nodes
whenever possible. New nodes are created by performing the substitution and simplify-
ing/canonizing the resulting expression. If the immediate child of the current node is a
new node, then we expand it recursively. Next, the value offered for the current variable
is used to append a new constraint to the solver, excluding solutions which would yield
the same value for this variable. We repeat this until the solver returns unsatisfiable, in
which case we mark the node as final and finish the expansion. The substitution diagram
when the root node is expanded. Notice that whenever a node already exists, it has to be
final, and we will set it as a child and will not expand it again.

Example 2. As an example, the construction of the previous diagram is presented in Fig.
3.3.

In the beginning the expression
(a ∨ ¬b) ∧ (b ∨ c)

and the variable order (a, b, c) are available. The root node is created with this expression,
and then a Z3 solver is asked for a satisfying substitution. The (true, true, true) values are
proposed so we add it to the diagram. As the construction method is a DFS-based method,
DFS steps follow. Backtracking starts from the resulting true node, and each node is
searched for further new solutions. To do this, by each step, extra predicates are added to
or popped from the solver expression. In this concrete example, the first backtracking step
leads to the true expression on level c. The solver is asked here, whether the expression

(a ∨ ¬b) ∧ (b ∨ c) ∧ (a = true) ∧ (b = true) ∧ (c 6= true)

is satisfiable i.e. whether a new edge can be drawn from the current node. The solver
returns the (true, true, false) solution so the edge with label false is added to the diagram.
The next solver expression is

(a ∨ ¬b) ∧ (b ∨ c) ∧ (a = true) ∧ (b = true) ∧ (c 6= true) ∧ (c 6= false)

for which the solver returns unsatisfiable, so no more edges can be added to the current
node. After this result, the backtracking step follows, the predicates with c are removed
from the solver expression, and the search is continued from the next node.

15

3.2.2 Default next nodes

In some cases, the resulting expression is independent of the substituted variable value.
Therefore we introduced a new special edge label. The label default means that the result-
ing expression node is the endpoint of the edge regardless of the substituted variable, i.e.
any value of the variable domain is suitable (even if the domain is infinite). This improve-
ment helps saving storage capacity as the one by one listing of substituted values can be
avoided. The simplest case for the application of default edges is when the expression does
not contain the level variable. Our solution also uses default edges for this case. There
may be other cases when default labels could be used. They are not so easy to recognize
though. Optimizing the usage of default edges poses theoretical challenges, but could lead
to significant improvements in the future.

3.2.3 Comparison to the loop solution

Also confirmed by profiling results, the most costly operations of computing every solution
are the solver calls. As other operations take a negligible time amount compared to solver
handling methods, the comparison will happen based on this.
In the loop-based method, each solution of the expression requires a solver call (plus one
extra in the end, which results in unsatisfiable). The amount of solver calls is, therefore,
SOL + 1, where SOL is the number of solutions.
Substitution diagram also saves each solution after a solver call. It has a greater overhead
however, as each node most get an unsatisfiable result before backtracking. So this method
demands SOL + |N | solver calls, where |N | is the number of diagram nodes. As the
decision diagram offers a compact structure, this overhead is not expected to be critical.
Furthermore, solver expressions generated by this approach should be smaller.
The main disadvantage of the loop-based solution comes from memory demand. The
storage needed by the looped algorithm is proportional to the number of solutions, i.e.
the previous solutions cannot be cached or reused. The other disadvantage is that by later
solver calls the solver expressions may get unmanageably large. The explanation is that
it lists all previous solutions one by one to exclude them.
The advantage of the substitution diagram is the compact structure that reuses previous
solutions. Thereby previous solutions (or previous expression nodes) may be reused. The
solver expression also gets smaller as the common parts of the previous solutions are
merged owing to the decision diagram virtue.
It must be mentioned that in this case, the diagram sizes are strongly varying and are not
proportional to the solution space size. We also have to note that compactness will not
be relevant in explicit-state model checking, because for each solution the model checking
algorithm will create a new state.

Example 3. Fig. 3.4 shows an example. The expression (a∨¬b)∧(b∨c) with the variable
order (a, b, c) has 4 solutions and the diagram has 6 nodes. On the other hand the (a∨¬b)
expression has 8 solutions for the same variable order, the diagram has however only 4
nodes.

16

t f t

fft

f

t(a ∨ ¬b) ∧ (b ∨ c)

t

(b ∨ c) (¬b) ∧ (b ∨ c)

true c

a

b

c

true

true

true

(b ∨ ¬b)

(b ∨ ¬b)

t f

t f

t f

Figure 3.4: An example showing that solution space size is not proportional to the dia-
gram size

3.3 Use cases

As mentioned before, the substitution diagram offers an alternative for existing All-
SAT/AllSMT solvers and the loop-based solution. The main advantage compared to
an AllSAT/AllSMT solver is that the data structure is available for manipulation, which
provides flexibility in traversal strategies. In the following subsections, we investigate the
possibilities of this flexibility through three use cases that we have also implemented (see
Chapter 4).
There also is a fourth promising direction to continue the research, relating to the external
control of solution space traversal. Binding certain variables on the fly would allow explor-
ing any subset of the solution space. This feature can be useful in decision diagram-based
symbolic model checking algorithms such as saturation [2].

3.3.1 Retrieving all solutions

The first case is the solving of the original AllSAT/AllSMT problem. In this case, the
calculation of all satisfying variable assignments is desired. For this, Section 3.1 gives
an alternative solution method. As discussed before, substitution diagram may offer a
better solution, as the one-by-one listing of solutions requires too much memory. The
diagram provides a more compact structure, from which the individual solutions can be
read through a DFS traversal. However, this problem can only be solved on either Boolean
variable domains or integer domains with finite solutions.

3.3.2 Retrieving a specific number of solutions

This use case emerges when dealing with the general AllSMT problem. Extending the
variable domains from Boolean to discrete domains like integers or enumerations raises
new problems. After the expansion, infinite domains are also allowed, which makes it
impossible to list all solutions. With the solution diagram structure, the domain expansion
means simply changing the possible label value set. Retrieving only a given number of
solutions can be done without calculating all solutions, as the diagram construction may

17

be stopped any time. It can also be modified later, i.e. first storing only a few solutions,
and then later complementing it with additional solution paths.
Retrieving only k solutions may be useful methods with numerous or infinite solutions.
As the number of possible assignments may be infinite, a limit of k may be set so that
after finding k solutions, we assume it to have an infinite number. This use case is still
covered by the loop-based solution too, which may provide better performance when k is
low but will fail when k is too large.

3.3.3 Only k values of each variable are relevant

This case is related to the previous one. When searching for a specific number of solutions
for a given formula, a variable with infinite possible values may lead to detecting very
similar results. By allowing only k different values for each variable, the almost identical
solutions can be omitted. Thus by assuring the wider diversity of solutions leads to a more
even sampling of the solution space. By limited investigations, this feature provides greater
coverage, which may lead to a larger chance to uncover faults during model checking.

18

Chapter 4

Implementation

The theoretical approach detailed in Chapter 3 has been implemented and integrated
to the Theta model checking framework. This chapter gives information about software
design decisions and architecture details. Section 4.1 investigates the tool as a whole.
Section 4.2 follows with the class structure and the used design patterns. Finally section
4.3 describes the realized application areas.

4.1 Design and architecture of the software library

4.1.1 Theta framework

Theta [14] is an open-source model checking framework developed at the Critical Systems
Research Group of Budapest University of Technology and Economics. Being an extensi-
ble and configurable framework, Theta offers a wide range of model checking algorithms
for numerous model types like programs and statecharts. There are multiple options for
formalisms like control flow automatons (CFA) or (extended) symbolic transition systems
(XSTS) as well as for model checking approaches like predicate or explicit-value abstrac-
tion. During the model checking procedure, various SMT solvers may be used, including
the SMT solver Z3 by Microsoft [4]. Among the many Theta components, we used the
following.

• Core: This module offers several tools for handling expressions, statements, literals
and valuations.

• Solver: A component that makes the solver functions available.
• Analysis: The project containing analysis algorithms and their components.
• Cfa-cli: A project which offers a tool for running CEGAR-based analyses on CFAs.
• Xsts-cli: This project offers a tool for running CEGAR-based analyses on XSTSs.

4.1.2 The AllSolutionSolver solver module

The substitution diagram approach described in the previous chapter is realized as a new
component of the Theta framework. The two major blocks realized in the project are
the classes for describing substitution diagrams and the proposed AllSolutionSolver
interface, which allows the usage of both loop or substitution algorithms without their
deeper understanding. The general structure of the module can be seen in Fig. 4.1.

19

SolutionCursorSolutionCursor

-nodeCursors: HashMap
 <VS,NodeCursor>
-solutionMap: Hashmap<Vs,
 Literal>

-findFirstPath(VS)
-findNextPath(VS)

ExpressionNodeExpressionNode

-expression: Expr
#isFinal: boolean

#substitute(Literal):
 ExpressionNode VariableSubstitutionVariableSubstitution

-decl: Decl
-maxsize: int

+checkIn(Expr):
 ExpressionNode

Map<Literal,
ExpressionNode>
Map<Literal,
ExpressionNode>

SolverSolver

+check(): bool
+put(Expr)
+push()
+pop()

MapCursorMapCursor

UniqueTableUniqueTable

-map: HashMap<Expr,
 ExpressionNode>

#get(Expr): ExpressionNode
#addExpressionNode(Expr,
 ExpressionNode)

<<Interface>>

Cursor

<<Interface>>

Cursor

+movenext(): boolean

nextnext<<create>><<create>>

nextExpressionnextExpression
nodenode

variableSubstitutionvariableSubstitution

mapCursormapCursor mapmap

solversolver

NodeCursorNodeCursor

#getLiteral(): Literal
#getNode(): ExpressionNode

uniqueTableuniqueTable

valuesvalues

Figure 4.1: The basic architecture of the AllSolutionSolver module

4.2 Implementation details

4.2.1 All solution solvers

The AllSolutionSolver interface (see Fig. 4.2) facilitates the usage of the substitution
diagram structure as a black box. It extends an Iterator<Valuation> interface which
allows the iteration through the satisfying substitutions for a given expression.
There are two classes implementing the interface: LoopAllSolutionSolver and
MddAllSolutionSolver. The former class realizes an AllSAT/AllSMT solver running
the naive loop algorithm. Each time when the iterator’s next() function is called, a
new satisfying substitution is returned, and its negation is added to the current solver
instance. On the other hand, the latter class realizes the substitution diagram-based All-
SAT/AllSMT solver functionality. The main advantage is that the next() function call
finds a new solution and adds the corresponding nodes and edges to the structure. The
usage of cursors on different levels facilitates a continuous DFS on the diagram. It is ad-
vantageous as in each iteration only the new nodes and edges are added to the structure,
so the complete construction of the diagram is not necessary to list some solutions.

4.2.2 Factories

The factory design pattern is responsible for the comfortable usage of AllSolutionSolver
instances. The AllSolutionSolverFactory interface is responsible for creating
an AllSAT/AllSMT solver instance. Two factory classes implement the interface:
LoopAllSolutionSolverFactory and MddAllSolutionSolverFactory (as in Fig. 4.3).
Both classes are singleton classes, i.e. they have only one instance, which may be got with
a getInstance() function call. The two factory types are responsible for creating and
returning a new AllSAT/AllSMT solver of the corresponding type.
The Factory pattern is a popular software design pattern as it facilitates simple exten-
sibility. It also contributes to the principle of least knowledge software design guideline,
as the usage of the abstraction (loop or decision diagram-based solution) is decided at a

20

LoopAllSolutionSolverLoopAllSolutionSolver MddAllSolutionSolverMddAllSolutionSolver

<<Interface>>

Iterator<Valuation>
<<Interface>>

Iterator<Valuation>

+hasNext(): boolean
+next(): Valuation

<<Interface>>

AllSolutionSolver
<<Interface>>

AllSolutionSolver

-expression: Expr

Figure 4.2: The AllSolutionSolver interface

MddAllSolutionSolverMddAllSolutionSolver

<<Interface>>

AllSolutionSolverFactory
<<Interface>>

AllSolutionSolverFactory

+createSolver(): AllSolutionSolver

<<Singleton>>

LoopAllSolutionSolverFactory

<<Singleton>>

LoopAllSolutionSolverFactory

+getInstance()

LoopAllSolutionSolverLoopAllSolutionSolver

<<Singleton>>

MddAllSolutionSolverFactory

<<Singleton>>

MddAllSolutionSolverFactory

+getInstance()

<<create>><<create>> <<create>><<create>>

Figure 4.3: The AllSolutionSolverFactory interface

high level, where the lower level modules do not depend on the decision. The original
code contained the loop-based solution inlined, which has been refactored to enable the
minimal modification of existing model checking code (such modifications would risk the
correctness of already established implementations).

4.2.3 Variable substitutions

The VariableSubstitution class corresponds to the variables being present in the given
variable order, i.e. each variable has a corresponding class instance. The major attribute
of an instance is an UniqueTable object which is a map assigning an expression to the
diagram nodes. The role of this table is to store all expressions being present at the current
level. Before the construction of a new node, its expression is looked up in the table. It
ensures uniqueness by returning the existing node when it is already present, thus avoiding
unwanted duplicates. Otherwise, a new node is created and added to the table.

21

b

(b ∨ c) (¬b) ∧ (b ∨ c)Key

Value
(¬b) ∧ (b ∨ c)(¬b) ∧ (b ∨ c)(b ∨ c)(b ∨ c)

UniqueTableVariableSubstitution

Figure 4.4: Variable substitution for variable b and its unique table from example of Fig.
3.2

(b ∨ c)

true c

t f nextExpression : Map

ExpressionNode

isFinal : boolean🗸

Figure 4.5: Expression node for expression (b ∨ c) from example of Fig. 3.2

As the variable order is predefined, it is stored as a linked list of VariableSubstitution
instances. This way every variable substitution stores a reference to the next one, which
identifies the level below. See a visualization of the described classes in Fig. 4.4.

4.2.4 Expression nodes

The class ExpressionNode is for nodes of the substitution diagram. Each node stores
an expression and a variable substitution which identifies its level. The nextExpression
map stores the edges, mapping the substituted literal to the resulting expression node.
New edges can be added to the diagram by adding new entries to the maps of the suitable
expression nodes. The node to be added is the result of the literal substitution function.
It is essential to note that new nodes can only be created through this function – this way
the library can guarantee that reduction rules are respected. Besides there is a Boolean
isFinal flag for each node for which a true value means that the investigation of the node
is over, i.e. the underlying subtree is completed. See an example in Fig. 4.5.

4.2.5 Cursors

After describing the implementation of the structure of the substitution diagram, we now
describe the details of finding the satisfying substitutions. To achieve an interruptable
depth-first search, we use multiple layers of the cursor design pattern. The three kinds of
cursors are detailed in the following.

22

4.2.5.1 MapCursor

MapCursor is the lowest-level cursor. As mentioned before, each node has a map
nextExpression mapping the substituted literals to the resulting nodes, i.e. the out-
going edge labels to their endpoints. The MapCursor is the built-in cursor for this map.

4.2.5.2 NodeCursor

NodeCursor is one level above the map cursor. An instance belongs to an expression node,
and the iteration happens through the possible substitutions for the node’s variable. The
search begins through the already computed nextExpression map entries (if any). After
this, if the node is not marked as final, the solver asked for a new solution. New solutions
are cached into the nextExpression map. When the node cursor ends its iteration, the
node is marked as final, i.e. no more literals can be substituted for the current variable,
the underlying subtree is complete.

4.2.5.3 SolutionCursor

SolutionCursor is the highest-level cursor. It also owns the same solver instance as node
cursors, as well as a map of node cursors for each variable substitutions and an expression
node. The main purpose is to find solutions without making redundant steps for graph
traversals. This is done by saving the current node cursor states in the map so that
after returning a satisfying solution the search for the next one may be retrieved from
where it left off. This method also facilitates a continuous diagram construction, i.e. the
acquirement of only some solutions without building up the whole diagram. The usage
of the solution cursor from the outside is completely convenient as a new solution can be
obtained with a simple moveNext() function call.

4.2.6 Solver

The most costly fragments of the algorithm are the SMT solver calls. Therefore the aim
is to keep the number of these calls possibly low. The generic Theta solver interface
was used in the implementation, which offers push and pop functions besides the basic
expression adding and satisfiability checking features. This feature is useful during the
DFS of the solution space, as this way a backtracking step means a solver pop instead
of a reinitialization (this is why the solution cursor also needs a reference to the solver).
Thereby valuable runtime may be saved, which is a constant bottleneck in model checking.

4.3 Integration into Theta

The solution described in the previous section was applied in the Theta model checking
process. The framework realizes the CEGAR algorithm in a highly configurable way, sup-
porting for example predicate and explicit-value abstraction, various refinement strategies
and multiple input formalisms.

23

4.3.1 Predicate abstraction

In predicate abstraction, the abstraction is determined by a set of tracked predicates.
The transition function is responsible for finding the successor states. As the states and
transitions are described with formulae, the successor state creator function meets an
AllSAT problem instance – this is where the original loop solution can be switched for the
decision diagram-based method. Determining the possible next states happens as follows.
Firstly a Boolean value, called activation literal is assigned to each predicate. Then the
transfer function formula is built by extending the original formula with these literals.
Even though this formula contains the original variables too, only the values of Boolean
activation literals need to be computed. This is allowed by the implementation, because
expression may contain variables that are not present in the variable order.

4.3.2 Explicit-value abstraction

The other main application area is explicit-value abstraction. This variant tracks variables
instead of predicates. During an iteration, a set of variables is investigated, the other
variables are omitted. Refinement means extending the tracked variable set. It also applies
here that states and transitions are described with formulae. Finding the next states means
solving an AllSMT instance to the transfer function. In contrast to predicate abstraction,
there may be both finite and infinite domain variables (i.e. Booleans and integers) in this
case, and untracked variables are free to assume any value. The consequence is that when
the solution set is too large (or infinite), the solutions cannot be listed. Thus except when
it is not sure that all domains are finite, a limit k is determined so that only k solutions
are interesting. When the limit is reached, the solution set is stated to be infinite, and the
search for solutions is stopped. This way the AllSMT (or k-SMT) problem can be solved
with the help of the substitution diagram.
Even though the library supports it, the “k values per variable” mode was not integrated
due to conflicts with existing configurations (to be solved later).

4.3.3 Supported configurations

The command-line parameters of Theta have been extended with the settings -allsat
LOOP / MDD and -domain PRED / EXPL to control the activation of the substitution
diagram-based approach. We built our solution in both cfa-cli and xsts-cli modules, i.e.
the new solution is supported in checking both CFA and XSTS models.

24

Chapter 5

Evaluation

The implemented solution has been evaluated in multiple configurations. The parameters
varied during the benchmarking include the following:

• Solution: naive (loop) or solution diagram (MDD-based); type
• Model type: CFA or XSTS;
• Domain: predicate or explicit-value abstraction;
• MaxNum(k): the preset limit of solutions (by EXPL)-

5.1 Benchmark models

Control flow automata The measurements were done on a selection of 40 different
CFA models. Most of the models come from the 2019 Competition on Software Verification
(SV-Comp [12]) reachability tasks. The CFA models were generated from C codes with
the Eclipse-based C/C++ Development Tools front end for Theta [10].

Extended symbolic transition systems The XSTS measurements were run on 53
models. The model set is a diverse set of Gamma Statechart Composition Framework
models [8]. The following real-life model types are included:

• COID: The modelled system is composed of the antivalence filter and signalling
components of the railway safety equipment.

• PIL: These systems are also composed of two railway safety equipment components:
switch and signalling. They are larger and more complex than the previous ones
and aim to help to model and to verify track reservation protocols inside a safety
equipment algorithm.

• INPE: These models describe a communication protocol in a nanosatellite.

5.2 Benchmark results

We ran several experiments on various model types and configurations. The results are
detailed in the following. Each configuration has been executed twice, once with the orig-
inal loop algorithm and once with the substitution diagram solution. The measurements
were run on a virtual computer with the following resources:

25

• 8GB RAM
• 4 CPU cores
• Ubuntu 18.04 OS
• Java 11

5.2.1 CFA results

There were 8-8 configurations for LOOP and MDD methods that traditionally work well
with CFA models, including explicit-value and predicate abstraction types. No configura-
tions yielded an incorrect result.
The number of models verified within the time limit of 90 seconds can be seen in a heat
map representation in Fig. 5.1 for each configuration and model type. The interpretation
of configuration codes is the following:

• the starting letter E/PB is for explicit-value or predicate abstraction method;
• the following number is the maxEnum value which is the maximal number of desired

solutions. 0 means infinite (i.e. all solutions are desired);
• the last L or M letter means a LOOP or MDD algorithm;
• the rest of the letters denote configurations that are orthogonal to the use of substi-

tution diagrams (e.g. refinement strategy).

With this interpretation, two consecutive lines compare the results of each configuration
with MDD and LOOP methods. The predicate abstraction method was tested for 2
configurations (first two rows) and showed that the overhead of using substitution diagrams
could not be compensated by the low number of solutions that are inherent in predicate
abstraction (as discussed in 3.2.3).
The explicit-value abstraction results carry more information. It can be seen that the
MDD solution is as good as the loop-based solution – there was no configuration where
the LOOP solution verified more models. They performed the same in most cases, but
there was one case where the MDD could verify a model which the original solution could
not.
The distribution of success, time limit, memory limit and exception can be seen in Fig.
5.2. The LOOP and MDD method perform alike on the model set in terms of almost
all aspects – the only difference is the extra verified model of the substitution diagram
method.
Fig. 5.3 shows the best 10 configurations based on the measurement results. Although the
success counter of the solution diagram algorithm keeps up with the original one, the table
shows that the new method ran slower on the models. Nevertheless, it is not a significant
overhead, so the new approach may offer an alternative to the old one even when the
increased flexibility is not exploited.

5.2.2 XSTS results

The XSTS measurements were run with 7-7 configurations for both LOOP and MDD
approaches which traditionally work well with XSTS models, including explicit-value and

26

predicate abstraction types. Experiments on XSTS models also yielded solely correct
results.
The results are shown in a heat map in Fig. 5.4 for the individual configurations and model
types. The configuration code interpretation is analogous to the codes used with CFA
measurements. Again, two consecutive rows compare the same configuration differing only
in the enumeration approaches. Results with predicate abstraction show the same patters
as with CFA models. With explicit-value abstraction, the number of verified models is
again similar for the two approaches, although the loop-based method performed slightly
better this time. The reason for this is subject to future investigation, but it might be
related to a different trade-off in executions time vs. memory.
Fig. 5.5 compares the results according to the termination causes of success, time limit
or memory limit. These results seem to support our assumption that the substitution
diagram implementation sacrifices execution time for a smaller memory footprint. The
best configurations in this setup can be seen in Fig. 5.6.

5.2.3 Overall evaluation

As we have examined only two of the four identified use cases, both of which are supported
by the loop-based solution, our expectations were not so high – an ideal outcome was
measuring a low overhead. Fortunately, this expectation has been fulfilled by the results,
and we can say that increased flexibility does not come at a high price. This confirms
that the direction we took with this approach is worthy of a more thorough investigation
and further developments, and may provide real gains when used in setups that were not
realizable/efficient before.

27

Figure 5.1: CFA benchmark results

28

Figure 5.2: CFA benchmark results

Figure 5.3: CFA benchmark best configurations

29

Figure 5.4: XSTS benchmark results

30

Figure 5.5: XSTS benchmark results

Figure 5.6: XSTS benchmark best configurations

31

Chapter 6

Conclusion and Future Work

6.1 Conclusion

This work described the novel data structure of substitution diagram. The main moti-
vation behind the solution is to propose a new, more flexible approach for solving the
AllSAT/AllSMT problem in model checking. The decision diagram-based method offers
a compact structure in contrast with the one-by-one listing of solutions, enhanced with
a strategy to call SMT solvers tailored to the structure of the diagram. The other main
advantage is the wide range of potential use cases coming from the increased flexibility.
We designed, formalized and implemented the proposed solution in the Theta model check-
ing framework as another configuration point. We have evaluated its correctness and per-
formance in various experiments involving control flow automata and extended symbolic
transition systems. As expected, the approach has a comparably high overhead when
used with predicate abstraction, where the number of solutions is generally low, and is
comparable to the naive loop-based solution when used with explicit-value abstraction.
We note that only two use cases have been evaluated, where the original solution is also
applicable, but the low overhead promises a competitive solution when it comes to more
complex use cases such as decision diagram-based model checking.

6.2 Future work

We divide future directions into two groups. On the short term, the existing implementa-
tion can be improved possibly significantly. During the experiments, the idea of reusing
existing substitution diagrams for multiple AllSAT/AllSMT instances occurred. In cer-
tain cases, when similar problems have to be solved multiple times, this could lead to an
improvement in execution time at the cost of some additional memory usage.
On the longer term, further theoretical evaluation and a more thorough analysis of exper-
iment results could help in better identification of configurations where the solution works
best. Implementing the remaining two use cases will also provide interesting results, but
the integration with decision diagram-based symbolic model checking is a similarly large
task in itself.
Related to solvers, it would be interesting to try the ideas presented in [13] (using cutsets to
identify nodes). Also, getting access to the internal data structures of solvers could further
enhance the strategy of computing solutions by reusing computed (partial) results.

32

Acknowledgements

This work was partially supported by the ÚNKP-20-1 New National Excellence Program
of the Ministry of Innovation and Technology. We would like to thank Ákos Hajdu for the
valuable help and suggestions related to Theta.

33

Bibliography

[1] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yunshan Zhu. Symbolic
model checking without bdds. In Rance Cleaveland, editor, Tools and Algorithms for
Construction and Analysis of Systems, 5th International Conference, TACAS ’99,
Held as Part of the European Joint Conferences on the Theory and Practice of Soft-
ware, ETAPS’99, Amsterdam, The Netherlands, March 22-28, 1999, Proceedings, vol-
ume 1579 of Lecture Notes in Computer Science, pages 193–207. Springer, 1999. DOI:
10.1007/3-540-49059-0_14. URL https://doi.org/10.1007/3-540-49059-0_
14.

[2] Gianfranco Ciardo, Robert M. Marmorstein, and Radu Siminiceanu. The saturation
algorithm for symbolic state-space exploration. Int. J. Softw. Tools Technol. Transf.,
8(1):4–25, 2006. DOI: 10.1007/s10009-005-0188-7. URL https://doi.org/10.
1007/s10009-005-0188-7.

[3] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model checking. MIT
Press, 2001. ISBN 978-0-262-03270-4. URL http://books.google.de/books?id=
Nmc4wEaLXFEC.

[4] Leonardo de Moura and Nikolaj Bjørner. Z3: an efficient smt solver. volume 4963,
pages 337–340, 04 2008. DOI: 10.1007/978-3-540-78800-3_24.

[5] Ákos Hajdu and Zoltán Micskei. Efficient strategies for cegar-based model check-
ing. Journal of Automated Reasoning, Online first, 2019. ISSN 0168-7433. DOI:
10.1007/s10817-019-09535-x. URL https://link.springer.com/article/10.
1007/s10817-019-09535-x.

[6] Saul A. Kripke. Semantical considerations on modal logic. Acta Philosophica Fennica,
16(1963):83–94, 1963.

[7] Daniel Kroening and Ofer Strichman. Decision Procedures - An Algorithmic Point
of View, Second Edition. Texts in Theoretical Computer Science. An EATCS Series.
Springer, 2016. ISBN 978-3-662-50496-3. DOI: 10.1007/978-3-662-50497-0. URL
https://doi.org/10.1007/978-3-662-50497-0.

[8] Vince Molnár, Bence Graics, András Vörös, István Majzik, and Dániel Varró. The
Gamma statechart composition framework: design, verification and code generation
for component-based reactive systems. In Proceedings of the 40th International Con-
ference on Software Engineering: Companion Proceeedings, pages 113–116. ACM,
2018. DOI: 10.1145/3183440.3183489.

[9] Q. Phan and P. Malacaria. All-solution satisfiability modulo theories: Applications,
algorithms and benchmarks. In 2015 10th International Conference on Availability,
Reliability and Security, pages 100–109, 2015. DOI: 10.1109/ARES.2015.14.

34

http://dx.doi.org/10.1007/3-540-49059-0_14
https://doi.org/10.1007/3-540-49059-0_14
https://doi.org/10.1007/3-540-49059-0_14
http://dx.doi.org/10.1007/s10009-005-0188-7
https://doi.org/10.1007/s10009-005-0188-7
https://doi.org/10.1007/s10009-005-0188-7
http://books.google.de/books?id=Nmc4wEaLXFEC
http://books.google.de/books?id=Nmc4wEaLXFEC
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/s10817-019-09535-x
https://link.springer.com/article/10.1007/s10817-019-09535-x
https://link.springer.com/article/10.1007/s10817-019-09535-x
http://dx.doi.org/10.1007/978-3-662-50497-0
https://doi.org/10.1007/978-3-662-50497-0
http://dx.doi.org/10.1145/3183440.3183489
http://dx.doi.org/10.1109/ARES.2015.14

[10] Gyula Sallai and Tamás Tóth. Boosting Software Verification with Compiler Opti-
mizations. In Proceedings of the 24th PhD Mini-Symposium, pages 66–69, Budapest,
Hungary, January 2017. Budapest University of Technology and Economics, Depart-
ment of Measurement and Information Systems. DOI: 10.5281/zenodo.291903. URL
https://doi.org/10.5281/zenodo.291903.

[11] Mary Sheeran, Satnam Singh, and Gunnar Stålmarck. Checking safety properties
using induction and a sat-solver. In Warren A. Hunt Jr. and Steven D. Johnson,
editors, Formal Methods in Computer-Aided Design, Third International Confer-
ence, FMCAD 2000, Austin, Texas, USA, November 1-3, 2000, Proceedings, volume
1954 of Lecture Notes in Computer Science, pages 108–125. Springer, 2000. DOI:
10.1007/3-540-40922-X_8. URL https://doi.org/10.1007/3-540-40922-X_8.

[12] SV-COMP. Competition on software verification, 2019. URL https://sv-comp.
sosy-lab.org/2019/.

[13] Takahisa Toda and Takehide Soh. Implementing efficient all solutions SAT solvers.
ACM Journal of Experimental Algorithmics, 21(1):1.12:1–1.12:44, 2016. DOI:
10.1145/2975585. URL https://doi.org/10.1145/2975585.

[14] Tamás Tóth, Ákos Hajdu, András Vörös, Zoltán Micskei, and István Majzik. Theta:
a framework for abstraction refinement-based model checking. In Daryl Stewart and
Georg Weissenbacher, editors, Proceedings of the 17th Conference on Formal Methods
in Computer-Aided Design, pages 176–179, 2017. ISBN 978-0-9835678-7-5. DOI:
10.23919/FMCAD.2017.8102257.

35

http://dx.doi.org/10.5281/zenodo.291903
https://doi.org/10.5281/zenodo.291903
http://dx.doi.org/10.1007/3-540-40922-X_8
https://doi.org/10.1007/3-540-40922-X_8
https://sv-comp.sosy-lab.org/2019/
https://sv-comp.sosy-lab.org/2019/
http://dx.doi.org/10.1145/2975585
https://doi.org/10.1145/2975585
http://dx.doi.org/10.23919/FMCAD.2017.8102257

	Kivonat
	Abstract
	Introduction
	Preliminaries
	Model checking
	Modeling formalisms
	Kripke structure
	Symbolic transition system

	Satisfiability problems
	Calculating every solution
	Solvers

	Decision diagrams
	Binary decision tree
	Binary decision diagram
	Multi-value decision diagram

	Logic-based model checking techniques
	Path-based techniques
	Bounded model checking
	k-induction

	Abstraction-based approaches
	CEGAR
	Predicate abstraction
	Explicit-value abstraction

	Related approaches in AllSAT solvers

	Flexible Computation of Multiple Solutions of SMT Formulas
	The loop solution
	Substitution diagram
	Constructing the diagram
	Default next nodes
	Comparison to the loop solution

	Use cases
	Retrieving all solutions
	Retrieving a specific number of solutions
	Only k values of each variable are relevant

	Implementation
	Design and architecture of the software library
	Theta framework
	The AllSolutionSolver solver module

	Implementation details
	All solution solvers
	Factories
	Variable substitutions
	Expression nodes
	Cursors
	MapCursor
	NodeCursor
	SolutionCursor

	Solver

	Integration into Theta
	Predicate abstraction
	Explicit-value abstraction
	Supported configurations

	Evaluation
	Benchmark models
	Benchmark results
	CFA results
	XSTS results
	Overall evaluation

	Conclusion and Future Work
	Conclusion
	Future work

	Acknowledgements
	Bibliography

