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Összefoglaló

A telekommunikáció manapság mindenki által olcsón elérhető, de vannak olyan felhasználási

területek amikor a lehető legkevesebb bájt átvitelére kell törekedni. Ezek jellemzően főleg

a vezeték nélküli és műholdas rendszereket használó hálózatokat érintik, melyek manapság a

mindennapos kapcsolattartás elengedhetetlen részét képezik.

Az okostelefonok és egyéb mobil internetet használó eszközök elterjedésével jelentősen

megnőtt a digitális adatkapcsolat alapú hálózatokra eső terhelések. Mivel az infrastruktúra

bővítése igen időigényes és túlontúl költséges lehet, ezért a szolgáltatók és gyártók számára

egy olcsóbb és egyszerűbb alternatívát jelent magának az adatforgalomnak az optimalizálása.

Többek között a VoIP beszélgetés során csak a protocol stack headerjeinek együttes mérete

jóval meghaladhatja a tényleges adatmennyiséget. Szerencsére a „fölösleges” header bájtok

tömörítésére már vannak sztenderdizált megoldások, melyek között a legújabb a Robust Header

Compression (RoHC) első és második verziója.

Kérdés viszont, hogy ezek alkalmazása mennyire hatékony különböző körülmények között,

illetve hogy milyen mellékhatásai vannak az összteljesítményre. Továbbá érdekes megvizs-

gálni, hogy az újabb – és még kevésbé elterjedt – verziók mennyire hatékonyabbak az elődeiknél.

A dolgozat ezen header tömörítési technikák tárgyalása mellett bemutatja a mérési környezetet,

és részletesen megvizsgálja a Robust Header Compression mindkét verziójának használata

során kapott eredményeket.

4



Abstract

Telecommunication these days is available rather inexpensively for everyone. There are how-

ever certain areas, where there is a need to transfer as few bytes as possible. These areas include

mostly the wireless and satellite systems, without which we wouldn’t be able to imagine our

present lives.

With the wide market penetration of smartphones and other devices that employ mobile

internet, the systems that provide digital data connection are under higher load than before.

Since upgrading the hardware infrastructure is slow and rather costly, the service providers and

hardware producers need an alternative method to optimise their usage of the available network

bandwidth.

Just during a VoIP call, the cumulative size of the protocol stack’s various headers are over

the actual data! Fortunately, the "useless" header bytes can be compressed with standardised

techniques, of which Robust Header Compression’s (RoHC) first and second versions are the

newest.

Though the question remains, how do these perform in certain conditions and what are

the side effects in these situations. Moreover, it’s interesting to look at how much better the

newer - and so far less popular - versions are than their predecessors. This study introduces

these compression techniques and discusses Robust Header Compression’s both versions, while

giving some answers through measurement results.
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Chapter 1

Introduction

Nowadays Internet based communication is quite prominent in the industry and also in the mar-

ket. With the wide distribution of smartphones, the users are connected to the service providers

constantly, regardless whether they are staying at a fixed point or are in motion. For real-time

IP-based wireless connections this means, that we need to send packets at a constant rate, so

that the users won’t experience any degradation of service quality. However, building a system

that could handle such a load is currently quite expensive. In the mean time this requires from

hardware/software producers, that they find a cheaper solution.

During wireless communication the limited bandwidth and the relatively higher rate of er-

rors need a special handling of the data. While, as an example, for a normal audio only session

the operators can save usually more than half of the data costs by just compressing the fields in

the protocol headers. Header compression usually compresses the protocol stack above the link

layer. This is possible, because most of the fields in an IP traffic contain values that are constant

or rarely change during a session.

As seen later in this text, we can save nearly 90% of the IP/UDP/RTP headers just by

utilising Robust Header Compression. Let’s take as an example a typical RTP packet with a full-

rate GSM payload and IPv4 internet layer protocol. The overall average size of such a packet

is 87 bytes, including the IP/UDP/RTP headers’ 40 bytes. With a typical stream like this, it is

possible to achieve an constant compression ratio of almost 60% (given an error free channel).

This results in a final compressed header size that is 1/10 of the original. Table 1.1 shows the

compression statistics with Robust Header Compression for a sample audio transmission using

RTP.

Robust Header Compression (or shortened: RoHC) accomplishes this by maintaining com-
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IP RoHC Average Uncompressed Compressed Savings Savings

ver. ver. payload header size header size w payload header only

v4 v1 174.01 bytes 40 bytes 5.40 bytes 16% 86%

v2 3.60 bytes 17% 91%

v6 v1 174.01 bytes 60 bytes 4.80 bytes 24% 92%

v2 3.60 bytes 24% 94%

Table 1.1: Compression statistics for an Audio stream showing both versions of RoHC and IP

pression states on both sender and receiver sides (later referred to as compressor and decom-

pressor). From this the receiver can reconstruct the last header easily. For further headers the

sender has to update only the fields that have changed since the previous packet.

Another very important aspect of wireless communication is the round-trip time (the time

it takes to send feedback back to the original sender). Usually, achieving an ideally low rate

costs more for the operators than it’s worth. Therefore, the compression setup has to be robust

enough to handle errors without explicitly notifying the compression side via feedback.

Earlier it was also proved, that compressing a wireless communication session can have

other benefits than just conserving bandwidth. Namely, it can increase the voice/video quality

on an unreliable channel (see [7] and [15]). This is due to the lower likelihood of the compressed

packets suffering bit errors. And there is the added benefit of having smaller packets in general,

plus the extra CRC verification contained in the compressed data as well.

The compression statistics shown in table 1.1 were put together based on the measurements

discussed in this text and can come very handy when considering header compression tech-

niques. Having an understanding of what integrators can gain by utilizing them, while knowing

what the pros and cons are as well, is crucial when incorporating either of these into a sys-

tem. The primary aim of this text is to explain and quantify the differences between the two

compression methods in a way, which haven’t been done before.
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Chapter 2

Goals

Considering all the benefits discussed in the introduction, one could assume, that if the provider-

s/producers just integrate header compression into every possible service/device, we don’t need

to worry about bandwidth for a long time. However that is not so easily accomplished, since

not every packet stream is efficiently compressible, plus we also need to consider transmission

errors and runtime resource costs.

This text tries to provide a detailed explanation of how the most current header compressions

work, while showing what they can accomplish regarding the compression gain in different

simulated scenarios.

After a brief overview about the research of header compressions in the next part, the fourth

chapter introduces Robust Header Compression in detail. This includes short explanations

about the different data compression methods, compressed packet types, states, etc employed

by RoHC.

The fifth chapter goes deep into the measurements and shows how the compressions perform

on different captured-RTP streams and under varying transmission conditions. The novelty of

these measurements lies in the in-depth discussion of the compression efficiency differences

between Robust Header Compression’s version 1 and 2. Since version 2 is relatively new and

therefore not yet integrated into many user devices, these result could help in evaluating the

potential benefits of adapting RoHCv2.

In the sixth and also last chapter a short summary concludes this text. At the end there is an

appendix with some detailed figures that function as an extension to the ones found in chapter

five.

In order to support and prove, that Robust Header Compression meets its expectations and
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version 2 performs even better, I have built a test bed with which I was able to measure RoHC’s

performance and even compare the newer version to its predecessor under the exact same con-

ditions.

As a developer at acticom GmbH, I have worked on both implementations of acticom’s

RoHCv1 and RoHCv2 solutions. Since I had easy access to both API this way, I was in a

unique position where I could build a specialized environment to investigate both of them, and

compile this text with which the interested Reader can gain insight into the inner workings of

the world of Robust Header Compression(s).

Here, I would also like to show my thanks to acticom GmbH for their support for providing

the API-s that were needed to complete the testing setup. Unfortunately, because of copyright

reasons, the implementation of the measurement environment cannot be made publicly avail-

able.
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Chapter 3

Predecessors and related work

Header Compression is a widely researched and applied field. There are a number of standards

which we can consider the direct or indirect predecessors of Robust Header Compression. Most

of all CRTP, ROCCO and ECRTP.

The first IP header compression scheme was the Compressed Transport Control Protocol

(CTCP or VJHC). It was proposed by Van Jacobson [8] and only considers TCP protocol.

CTCP combines TCP and IP headers together for better results and lower complexity. The

compression algorithm itself employs delta coding. Here delta means the differences between

two packets, and this is what will be transmitted on the channel. The advantage of this approach

is the high compression ratio. Unfortunately, it’s very susceptible to bit errors, which results in

the dropping of many of the following packets by the receiver. There is no error detection built

into this method, instead it relies on the lower and higher level protocols’ protection schemes.

An improvement on this was introduced by Perkins [13]. The delta coding for the neigh-

bouring packets is replaced by a reference frame, much like modern video compressions. In

this case, the first packet of a frame is sent sent as is, and the following packets use the delta

coding to refer to the first one. This results in better tolerance to errors compared to CTCP,

albeit produces less compression gain. An improvement on this approach by Calveras ([3]

and [4]) proposes a dynamic frame length scheme as a function of the channel state. Both of

these approaches suffer from desynchronization when the first (uncompressed) packet is lost,

which results in the corruption of all the packets in the same frame. A proposed improvement

is available by Rossi ([16] and [17]).

The next step was to compress RTP transmissions, so the Compressed Real Time Protocol

(CRTP) [6] was developed. RObust Checksum-based COmpression (ROCCO) [19] is a refine-
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ment of CRTP, which improves the header compression performance for highly error-prone

links and long round-trip times. Similarly, Enhanced Compressed RTP (ECRTP) [5] is a refine-

ment of CRTP.

RoHC builds on these predecessors and focuses on robust and efficient header compression

over highly error-prone links with long round-trip times as well. Version 1 of RoHC [2] was

built around the concept of being extensible later on (see IP [9], UDP-Lite [10] and TCP profiles

[12]), while RoHC version 2 [11] follows simplicity over extensibility.

Since its inception in 2001, Robust Header Compression version 1 has been under scrutiny

by – among others – [18], [14] and [1]. These all show, that version 1 can reach an average

compression ratio of ~85% without problems. However, there are seldom any publications that

would show RoHCv1 and RoHCv2 together.

In December of 2013, together with F.H.P Fitzek (Aalborg University) and P. Seeling (Michi-

gan University), we will be publishing an article at IEEE GlobeCom 2013 under the title ”Per-

formance Evaluation and Comparison of RObust Header Compression (ROHC) ROHCv1 and

ROHCv2 for Multimedia Traffic”, which is partially based on some of the measurements also

presented here, in it, however, we are only focusing on the direct performance improvement of

v2 over v1 and with much less detail than in this text.
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Chapter 4

Robust Header Compression

Version 1 of RoHC has been around for a while and became a part of the WiMAX1 and 3GPP-

UMTS2 standards. Because RoHCv2 is only available since 2008, it’s currently being incorpo-

rated into products like LTE testing tools.

The main benefits of using RoHC over other packet compression techniques include the

following:

• Efficient compression of header data with protection for sensitive (dynamically changing)

header fields.

• Quick recovery from inconsistent sender/receiver state combinations caused by transmis-

sion errors.

• Ability to repair certain inconsistent sender/receiver state combinations caused by trans-

mission errors3.

• Open for extension to other Level 4 protocols4.

In the standard protocol setup, RoHC is integrated between the IP-based network layer and

the link layer. Figure 4.1 shows this on the well-known OSI model. RoHC heavily relies on the

1 Worldwide Interoperability for Microwave Access, part of the IEEE 802.16 family of wireless-networks stan-

dards.
2 Universal Mobile Telecommunications System, third generation cellular system based on GSM, part of IMT-

2000 standard set.
3 RoHC is, of course, able to cope with different channel characteristics in terms of transmission delay, jitter

and bit-error rate.
4 Especially in case of version 1.
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Figure 4.1: RoHC’s place in the protocol stack
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link layer to provide a point-to-point transport service that doesn’t have any reordering on the

channel. Also, for a more reliable compression, RoHC provides a feedback functionality, which

can be either interspersed (i.e. having a dedicated channel) or piggybacked onto a – backwards

going – compressed packet.

4.1 Description of the compression mechanism used by RoHC

RoHC’s compression scheme uses states to maintain knowledge of witch one of the compressed

packet types can be sent over a link (compressor) or interpreted by the receiver (decompressor).

These states can be thought of as a finite machine like structure that is present in both versions

(although the actual implementation details are left to the implementer, the RFC recommends

this).

4.1.1 RoHC states

The 3 states of the compressor are as follows (illustrated on figure 4.3):

1. Initialization and Refresh state (IR): The compressor has to establish a new context for

the session. Compression gain is very low.

2. First Order state (FO): The compressor has to synchronise the dynamically changing

fields with the decompressor.

3. Second Order state (SO): The optimal compression happens here, only the most relevant

data needs to be sent.

IR FO SO

Figure 4.2: Compressor states

The decompressor uses a similar structure (figure 4.3):

1. No Context (NC): The decompression context hasn’t been established yet or has to be

repaired by reinitialization.

14



2. Repair Context (RC): The decompression context is corrupted and has to discard smaller

packet types until it is refreshed by dynamic data.

3. Full Context (FC): The decompression context is up to date, and only requires smaller

packet types to be transmitted in order to recreate headers.

NC RC FC

Static and dynamic data

No static and

dynamic data

No dynamic data Any data

Dynamic

context

corruption

Static

context

corruption

Dynamic data

Figure 4.3: Decompressor states

In case of the first states (IR and NC), there is not enough or no data available at all for

compression and decompression. For the compressor this means, that it has to (re)establish

a new context at the decompressor side. Therefore the compressed packet – which will be

sent out next – must contain all information. In case of the decompressor, it cannot forward a

decompressed packet to the upper layers, unless it receives a full refresh from the compressor.

To achieve this, the decompressor is – usually – able to notify its compressor pair by sending

back a negative feedback.

Ideally, after the initial context is established, the compressor and decompressor always stay

in the third states (SO and FC). If a desynchronisation occurs, the machine state must transit to

a lower one (FO and RC). If the state goes to the first one, the whole context must be updated

before compression can recommence. However, this can be quite undesirable, if the corruption

is only present for a dynamically changing field (e.g. timestamp, which changes for every

packet). Therefore, this scheme provides a ”middle” state (FO, RC), which is able to resume

compression with only a partial context refresh.
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4.1.2 Contexts

To achieve better compression ratio, the RoHC compressor organises the incoming packets

into different contexts according to their characteristics. These characteristics are defined by

the static fields (see later) that never or very rarely change during the transmission’s lifetime.

A good example for one of these ”context defining” fields is the IP source and destination

addresses present in the IP header.

By separating the packets according these fields, the compressor has to send – ideally – only

once most of the ”static” fields, and can focus on the more ”dynamic” data found in the headers.

All of these separated contexts are identified by a context id (CId) after initialisation.

This ”dynamic data” – also referred to as dynamic and irregular fields – usually change

from packet to packet, but (normally) in a well defined way. For example, the IPv4 Id number

or the RTP sequence number increments by 1 for every packet that follows. This behaviour can

be exploited by transmitting an initial value and storing it in the decompressor context. Later,

this initial value can be incremented according to the difference (delta) between the stored and

the new value (see the description of the LSB compression later).

These contexts are bound tightly to the compressor (decompressor) states described in the

previous subsection. If a context gets corrupted or is out of sync with the compressor, only that

specific context needs to be repaired or reinitialized. Exactly for this reason do the feedback

packets contain the context identifier as well. Also, since we assume, that the static fields never

or very rarely change, not all of the context data need to be updated during an error (usually the

dynamic and irregular fields are the ones that are prone to errors). This is the reason, why the

repair and first order states are being provided.

4.1.3 Profiles

Besides the separation of the packet streams based on the headers’ characteristics, the used

compression profile is also a very important factor.

As seen in table 4.1, the profiles define how many protocols above the link layer are com-

pressed. It is not a requirement, that – for example – an RTP packet has to be compressed using

one of the RTP profiles. It can be compressed using just the IP or IP/UDP(-Lite), albeit we

save less bytes. On the other hand, this is not true in reverse. A non-RTP packet cannot be

compressed via an RTP profile, therefore the integrator has to use the right profile, or the API

has to employ a packet classification algorithm.

16



Profile identifier Compressed protocols v1 RFC (date) v2 RFC (date)

0x0000 uncompressed 3095 (2001)

0x0001 or 0x0101 IP/UDP/RTP 3095 (2001) 5525 (2008)

0x0002 or 0x0102 IP/UDP 3095 (2001) 5525 (2008)

0x0003 or 0x0103 IP/ESP 3095 (2001) 5525 (2008)

0x0004 or 0x0104 IP 3843 (2004) 5525 (2008)

0x0006 IP/TCP 4996 (2007)

0x0007 or 0x0107 IP/UDP-Lite/RTP 4019 (2005) 5525 (2008)

0x0008 or 0x0108 IP/UDP-Lite 4019 (2005) 5525 (2008)

Table 4.1: RoHC compression profiles

The profile identifiers – as seen in tabe 4.1 – are needed for the context initialization. The

first two digits represent the RoHC version (0x00 for RoHCv1 and 0x01 for RoHCv2) and the

last two the profile. However, since the compressed packets are only transmitting the last byte

of the identifier, it is not possible for a RoHC instance to decide which compression version is

needed for decompression. Therefore, this has to be negotiated by a different protocol when an

environment uses both versions5 at the same time.

While the RFC for version 2 doesn’t specify uncompressed and IP/TCP profiles, the v1’s

RFS-s can be used without modifications, since both of them are self contained.

It is also worth mentioning, that the dates seen beside the v1 RFC numbers show, that

RoHCv1 was designed in an extensible way, whereas v2’s sole RFC contains all profiles6.

4.1.4 Field chains

Normally, a compressed packet contains a Context Identifier (CId), a discriminator (compressed

packet type, see next section), a profile indicator (only during initialization), a CRC value and

one or more of the following chains:

• Static chain: Transmits the static fields of a stream. These are the fields that are usually

constant during a session and therefore are needed to be transmitted only once. Exam-

ples include the IP addresses and various flags and structure dependent information (next

5 For example LTE test equipments are doing this.
6 The idea was to make it much simpler to implement.
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header field). Usually, during a session different values can be present in the same stream

for these fields, but are none the less part of the same flow. In this case, multiple contexts

(states) will be created, that can accommodate all the possible combinations.

• Dynamic chain: The dynamic chain contains fields, that are usually constant, but are

prone to change during a session. Examples include the Hop Limit values, RTP CSRC

list and various flags.

• Irregular chain: This chain contains fields that are changing from packet to packet and/or

are required to be transmitted always or at certain intervals. Examples include the IP Id

field, the RTP Sequence Number, etc. One field, that is always transmitted, is the MSN.

Basically, this field is unique to the compression (doesn’t necessarily equates to an un-

compressed field) and increases (usually by one) for every packet in the stream. It is used

to derive other irregular fields’ values as well (see the section about LSB compression

later on).

• Static-known: This is not a chain per se, but fits into this list. There are some fields

that are required to be set to certain values, otherwise the packet won’t be compressible.

The good thing about the static-know fields is, that they are not needed to be transmitted,

because they are always assumed to be set to a given value. Obviously, this proves to

be a limiting factor for the possible applications of RoHC. For example, packets with

fragmentation aren’t compressible by RoHC (nor should they be. If we have a setup

where fragmentation occurs, header compression loses its value7) and so, fields that has

to do with fragmentation are assumed to be always 0.

4.2 RoHCv1 modes

A unique feature in RoHCv1 (compared to version 2), is the presence of certain operational

modes. These modes govern, how the compressor handles context corruption using feedback

and pre-emptive context refreshes. In case of version 1, these modes can be thought of as

states in the compressor and decompressor instances. In the beginning, they start with the

basic unidirectional mode and later they can transit to a bidirectional (compressed channel and

7 The compression gain from compressing headers would be too small compared to the whole size of the

payload.
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feedback channel) as required (see figure 4.4).

In contrast to v1, the new version of RoHC doesn’t explicitly specify these modes, but sim-

ilar behaviours can be achieved with the right configuration of the entities, although transitions

during run-time are not supported according to the RFC.

These modes are briefly described in the following part.

Unidirectional mode

Optimistic mode Reliable mode
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Figure 4.4: RoHCv1 modes

4.2.1 Unidirectional Mode

In unidirectional mode there are no feedback packets sent back to the compressor. By supporting

this mode, RoHC can be run on links without ”return” channels.

However, without feedback there’s no way for the compressor to be sure, whether a com-

pressed packet was successfully decompressed on the receiver side. To account for this, the

compressor can use the optimistic approach, which periodically repeats context initialization

and sends a changed reference value multiple times.

4.2.2 Bidirectional Optimistic Mode

The bidirectional optimistic mode uses feedback packets that are sent from the decompressor

to the compressor in order to accelerate state transitions at the compressor and to avoid the

periodic fallbacks to the first and second states.

Due to the mostly weak CRC protection, this mode is still relatively prone to context damage

and therefore utilizes the optimistic approach as well.
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4.2.3 Bidirectional Reliable Mode

This mode uses a more powerful CRC protection and a very tight coupling between the two

endpoints by relying heavily on feedback received from the decompressor.

4.3 Compressed packet types

A short description of the defined compressed packet types follows. It’s important to note, that

between version 1 and 2, only the IR and feedback packet types resemble each other and the

rest were completely redesigned.
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Figure 4.5: Packet types during compression

As an example, figure 4.5 notes some of the packet types employed and their respective

sizes during compression of a test stream.

4.3.1 Basic packet structure

All compressed packets contain the a context identifier. The context identifier can either be

0, 1 or 2 bytes long. In Small-CId mode, a 08 or 1 byte long CId field is at the start of a

packet, which is followed by – in most compressed packets – the first octet of the compressed

8 If the CId in question is 0, than it doesn’t need to be transmitted in the compressed packet when using Small-

CIds.
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packet type. With Large-CIds, after the aforementioned first octet is the 1 or 2 bytes long CId

information9.

Add-CID octet (small)

First oct. of base hdr.

0/1/2 oct. of CID (large)

Rest of the base header

Irregular chain

Figure 4.6: Format of the general compressed packet

Following the CId information of the first octet come the compressed packet-type dependent

fields. After them, the last bytes of the packet contain the various compressed chains (if any).

In case of an IR packet, this means the static and dynamic chains, for an IR-Dyn or co_repair,

it’s only the dynamic chain, and for the rest of the packet types, it’s the irregular chain.

Figure 4.6 shows this layout on a general compressed header packet.

4.3.2 Version 1 packets

Version 1’s packets don’t contain any chains except for the two IR-s. Aside from these two, the

compressed packets are defined by mode–type–property combinations. The mode identifies the

mode in which the compression is currently working (see the section before), the type basically

states how much information is contained in a packet and the optional property extends the

basic packet with some additional data (for example CRC, timestamp or IP Id.).

As seen on table 4.2, only those packets are referenceable, which contain CRC prtection.

This referencing means, that the packet data can be used to safely update the decompressor

context, otherwise, the received data can only be used for the current packet’s decompression.

In version 1, there are only static and dynamic chains defined. These are used to transmit

9 With small-CIds, the compression only has an id pool of 16 different numbers, whereas using large-CIds, we

have up to 16384 possible choices.
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the – initial – values of constant (e.g. not changing fields like IP addresses, next header, etc.)

and non-constant (timestamp, IP Id, etc.) SN functions.

The non-IR packet types don’t contain any chains, instead they append the extension related

data, encapsulation data and also the UDP checksum value at the end. This is denoted in table

4.3 by the generalised extensions keyword.

Mode Type Property Size10 CRC Referenceable Chains or extensions

IR 42 8-bits11 Yes Static (and dynamic)

IR DYN 26 8-bits Yes Dynamic

R 0 5 None No Extensions

R 0 CRC 6 7-bits Yes Extensions

UO 0 5 3-bits Yes Extensions

R 1 9 None No Extensions

R 1 ID 9 None No Extensions

R 1 TS 9 None No Extensions

UO 1 9 3-bits Yes Extensions

UO 1 ID 9 3-bits Yes Extensions

UO 1 TS 9 3-bits Yes Extensions

UOR 2 10 7-bits Yes Extensions

UOR 2 ID 10 7-bits Yes Extensions

UOR 2 TS 10 7-bits Yes Extensions

Table 4.2: RoHCv1 compressed packet types

4.3.3 Version 2 packets

The packets types of version 2 can be separated into two groups. The first group contains

packets, that are only sent during initialization (ir) and during context repair (ir and co_repair).

For ideal compression, these packets are sent very rarely. The second group contains smaller

packets that are most commonly used to update the decompressor contexts. Their sizes range

from a 2 bytes (pt_0_crc3) to a maximum of about 12 bytes (co_common).

10 Average observed size in different streams.
11 The CRC is calculated over the compressed header in case of the IR packet, for the others it is done over the

uncompressed instead.
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Table 4.3 shows all the possible packet types for version 2.

Name Profile Size12 CRC Chains Fields13

ir All14 34 8-bits15 Static & dyn.

co_repair All w\o UCP16 25 7 & 3-bits17 Dynamic

co_common All w\o UCP 11 7 & 3-bits17 Irregular IP & RTP

pt_0_crc3 All18 3 3-bits Irregular

pt_0_crc7 All w\o UCP 4 7-bits Irregular

pt_1_seq_id All w\o UCP 5 3-bits Irregular IP Id

pt_1_rnd RTP 5 3-bits Irregular RTP TS

pt_1_seq_ts RTP 5 3-bits Irregular RTP TS

pt_2_seq_id All w\o UCP 5 7-bits Irregular IP Id

pt_2_rnd RTP 6 7-bits Irregular RTP TS & m19

pt_2_seq_both RTP 6 7-bits Irregular IP Id

& RTP TS & m

pt_2_seq_ts RTP 6 7-bits Irregular RTP TS & m

Table 4.3: RoHCv2 compressed packet types

12 Average observed size during the compression of different streams.
13 The MSN field is present in every packet and is ommitted from this column for the sake of brevity.
14 The uncompressed profile uses IR packets in name only (for initialization), therefore the contents of the size

and chains cell of this row do not apply for UCP.
15 The CRC is calculated over the compressed header in case of the IR packet, for the other it is done over the

uncompressed instead.
16 UCP denotes the Uncompressed Profile (0x0000).
17 This CRC is calculated over the control fields (i.e. MSN).
18 Again, for uncompressed profile there is no ”classical” pt_0_crc3 packet (also called pt_normal in this case)

like for the rest of the profiles.
19 RTP marker bit.
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4.4 Utilized compression techniques

In this section follows a short description of the compression techniques used by RoHC.

4.4.1 Self-describing variable length

The SDVL algorithm reduces the number of bits needed to transmit a whole field value by

omitting the leading zeros. In RoHC there are 5 variants of SDVL compression: 7-bit, 14-bit,

21-bit, 28-bit and 32-bit20.

This technique is usually employed for fields that rarely need to be updated and potentially

contain leading zeros. For example: time stride for timerbased compression (see later) or the

RTP sequence number (used in combination with LSB compression).

4.4.2 Window-based Least Significant Bit

The (W-)LSB compression relies on that the a given field’s value usually increases by a small

constant value. In this case, the compressor can use the fact, that only the last digits or bits

change during an iteration and it suffices to transmit these.

This has the potential advantage that – in consideration of the dynamic field behaviour – the

number of bits needed to transmit the changes are minimized.

Depending on how many bits we use for the LSB, we can define a window around the

minimal and maximal values that can be represented this way (hence the name).

In reality, we cannot transmit negative changes with LSB, because RoHC defines it in a

way, that the decompressor needs to account for the arithmetical carry. In which case, it isn’t

possible to distinguish between a compressed LSB value that forces carrying and a decreasing

value.

The Window-based LSB compression algorithm partially contributes to the robustness of

RoHC. W-LSB compression is therefore used throughout RoHC, for example, the compression

of the IP Id, MSN, timestamp, etc are handled by it.

20 To distinguish them form each other appropriate discriminators are used with the following sizes (in order):

1-bit, 2-bit, 3-bit, 4-bit and 1-byte.
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4.4.3 List compression

Some data in the headers that belong to a stream, contain a variable number of items that are –

from time to time – reused. The RTP CSRC list is exactly like this.

Using list compression, the compressor and the decompressor maintains a small ”database”

of identifiers and values. If the compressor is sure, that the decompressor is aware of a certain

value, it needs only to transmit its id (instead of the whole uncompressed value).

In case of the RTP CSRC, the compressor sends a list of 4- or 8-bits long list id-s, and the

decompressor replaces these with the respective uncompressed values from its internal list.

4.4.4 Timer based compression

Under specific conditions the RTP timestamp can be compressed using the local machine clock.

Using this approach, the two compression endpoints synchronise the initial timestamp value

and from thereon, the decompressor updates the timestamp stored in its context by the measured

elapsed time between two packets.

However, this requires the transmission link to have low delay and and that both sides have

similar clock resolutions. To account for the packet transmission time, the LSB of the com-

pressed timestamp has to be sent in the compressed packets as well.

This feature is optional in a RoHC implementation. If it is not support by a decompressor

instance, the associated compressor needs to be notified through feedback.

4.4.5 Inferred values

This is not a traditional compression scheme in itself, however it is an integral part of RoHC

and is needed to achieve best performance.

It is used when no data is needed to be transmitted for a compressed field. In case of

a dynamic field, we can deduce the new value by incrementing the last known one with the

difference between two preceding MSN values21 and incrementing with that.

In RoHCv2, this is used for example in the pt_0_crc3 or pt_0_crc7 packets.

21 Master Sequence Number: this field identifies the compressed packets, therefore it is always present. For

each compressed packet, its value is increased by 1.
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4.5 Decompressor feedback

Feedback is indispensable for RoHC when operating in a bidirectional mode. Feedback packets

can be either transmitted through a dedicated channel (interspersed) or put before a compressed

packet (piggybacked). In the latter case, it is even possible to transmit multiple feedbacks, when

needed.

With feedback, the decompressor is able to signal one of the following conditions:

• Acknowledgement (ACK): The decompressor is up-to-date and is able to decompress

every packet. It is in the FC state.

• Negative-Acknowledgement (NACK): The decompressor lost synchronisation with the

compressor and can only decompress certain packets22. It is in the RC state.

• Static Negative-Acknowledgement (Static-NACK): The decompressor doesn’t have any

data available to be able to decompress any packet other than the IR. It is in the NC state.

There are two different feedback packet types: FEEDBACK-1 and FEEDBACK-2. The

FEEDBACK-1 is always interpreted as an ACK, while FEEDBACK-2 can contain one of the

three. With FEEDBACK-2 the decompressor is able to send feedback options, that can sig-

nal, for example, the local clocks resolution (for timerbased compression) or insufficient local

resources (i.e. memory).

Each feedback has to contain a valid Acknowledgement number (MSN), which identifies

the last received and correctly decompressed packet. If this is unavailable, a FEEDBACK-2

option can be used to signal the missing value.

22 Packets that contain full information about the dynamic fields.
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4.6 Comparison of version 1 and 2

To conclude the description part of this text, a short feature comparison is presented here that

outlines the differences between the two versions.

Version 1 Version 2

Designed to be extensible Designed to be simple

RTP, IP and UDP-Lite are in their separate RFC-s All in one RFC. No new UCP and TCP profiles.

Runtime modes (U-O-R) No explicit runtime modes

Compressed packets are used based on Compressed packets are used based on

the active compression mode their fields and CRC protection strength

Segmentation supported Segmentation is not supported

Supports 2 levels of encapsulation Supports infinite levels of encapsulation

Uses lists for extensions, tunnelling, etc. Uses static, dynamic and irregular chains

Employed by 3GPP-UMTS, WiMAX, ... So far, mostly employed by LTE test tools
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Chapter 5

Compression Measurements

After the previous chapter’s description of RoHC’s inner workings, the Reader is probably

interested in how this compression actually performs in action. With the results presented in

the following chapter, it will be possible – for example – to decide the feasibility of adapting

Robust Header Compression into a potential project.

The Reader can also ascertain the actual robustness of RoHC with the insight that can be

gained after looking at the simulated lossy link’s results.

The novelty of the presented material here is, that it shows the difference between the two

RoHC versions for the exact same traffic. Since version 2 wasn’t designed to achieve better

compression, these results would potentially be a deciding factor when choosing between the

two versions.

5.1 Description of the Testbed

The following results were achieved on an AMD Athlon II X3 system running Ubuntu 12.04.

All executions were limited to only one logical thread using the taskset command to limit par-

allel executions. This was done, so the captured CPU Timestamp (TSC) would have coherent

values over multiple execution of the same measurement scenario.

The tests were implemented in a combination of Bash, C, Python and GNUplot. C providing

the API access and the execution of the measurement scenarios, Python transforming the results

of the latter to graphs with GNUplot and generating certain error patterns used with the C API,

and a Bash script connecting all together and executing the different measurement setups.

The uncompressed packet streams were either generated by the C application online or
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were captured using packetdump/wireshark and stored in, and later read from pcap files. The

measured values were generated in a human readable CSV format, which can be interpreted by

GNUplot or MS Excel for generation of the graphs.

The API provided by acticom GmbH was linked during compile time without debug sym-

bols and maximum compiler optimization using Link Time Code Generation of GCC. The com-

pression simulations were run in user space and the compression informations were extracted

using the RoHC API’s statistical interface.

All compression gains were calculated using the following formula:

Hs(i) =
Hu(i)−Hc(i)

Hu(i)

where i is the index of the packet, Hu the uncompressed header size and Hc is the com-

pressed packet’s size.

In addition to the bandwidth savings, the compression performance is also evaluated by

means of the compression/decompression methods’ complexity. This complexity is measured

through CPU timestamping using this simple formula:

T (i) = Tf (i)− Ts(i)

So, the complexity (time) required to compress (decompress) the ith packet is the delta

between the start and the finish time of the compression (decompression).

5.2 Results with captured streams

The following section presents measurement results for different application streams using ac-

ticom GmbH’s RoHC v1 and v2 implementations.

5.2.1 VLC Stream

This stream was generated using VLC and was transmitted on a local Ethernet based wired-

network. The stream contained one RTP flow which transmitted and transcoded an audio file –

provided by acticom GmbH – in a way, that it had similar characteristics to Full-Rate GSM.

Figure 5.1a shows that in this scenario both RoHC v1 and v2 fluctuate between ~75% and

~90%. While v2 indeed achieves better results in compression gain, it produces, at certain
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Figure 5.1: Measurements of a VLC stream
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times, lower compression gain where v1 reaches its peak performance. This is due to the semi-

static handling of the RTP marker bit. This bit usually signifies the start of a talkspurt, and for

the rest of the time is set to 0. Both versions of RoHC assume, that the marker is 0, unless

explicitly specified by the compressed packet that it is 1 instead. Unfortunately, RoHCv2 is less

flexible when compressing this bit, since the pt_0 type packets (the smallest compressed packet

types) cannot transmit this field. Consequently RoHCv2 cannot achieve optimal compression

for a stream that has the marker bit set to always 1 (see figure 1 in the appendix).

Figure 5.1b shows the CPU timestamp difference for the compression/decompression of

both versions. The interesting thing here is the asymmetry regarding the compression complex-

ity of RoHCv2 and the decompression complexity of v1. It takes significantly longer for v2 to

compress than to decompress, while v1 is slower at decompression than compression. Also,

the decompression of v2 and the compression of v1 is quite negligible compared to the other

computations.

5.2.2 Ekiga Stream

The following test is more close to an actual application of RoHC, than the one done with VLC.

This stream was generated by the Ekiga opensource softphone application using an echo call,

and capturing the resulting RTP streams. This call contained two audio streams and one video

stream as seen on table 5.1.

In this case (figure 5.2b) both version perform very similarly, however v2 has a clear ad-

vantage of about 3-4%. The greater dips in the performance are due – again – to the marker

bit of the third CId, which is set throughout the call (see figure 2 in the appendix). Also, the

initialization’s usual ramp up period is longer, because we have – in this case – three different

contexts that need to be initialized.

The large spikes on figure 5.2b – again – occur when the set marker needs to be transmitted.

The higher spikes of v2 are attributed to the currently unoptimized API of v2.
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Fields First (CId 0) Second (CId 1) Third (CId 2/3)

First occurence #1 #2 #4

Src 0x5640a223:2828 0xc0a82114:13e6 0xc0a82114:13ea

Dst 0xc0a82114:13e6 0x5640a223:2828 0x5640a223:4aac

Ip Id 0 0 0

SN start 0xcb90 0xf5b7 0xd82c

SN delta 1 1 1

TS start 0x1540 0x10e0 0xb45a

TS delta 160 160 constantly fluctuating

Marker always unset always unset always set

RTP payload 0x08 0x08 0x9f

ITU-T G.711 PCMA ITU-T G.711 PCMA ITU-T H.261

Table 5.1: Overview of the main protocol header field characteristics for the different CId-s for

the Ekiga scenario.

5.2.3 Asterisk Call

The last error free scenario is generated by an Asterisk based VoIP call which features a full-rate

GSM talk. The calls were made using two N71 phones over local WiFi and a central Asterisk

server. This scenario models a real life application of RoHC closely.

On figure 5.3b v2 clearly performs better, while v1 at the start needs more packets to adopt

and reach top compression efficiency. The difference between the two compressions is exactly

2 bytes. In case of v1, this means a r_0 and for v2 a pt_0_crc3 type packet. The ”saw” shape on

this diagram is caused by the presentation of all contexts on the same curve. When separated

by CIds, the curves show smooth and constant shape (see figure 3 in the appendix)1.

The complexity diagram 5.3b still shows, that the compression of v2 is the most resource

”hungry” operation.

1 The CId 0 packets are smaller by 1 byte, because the 1 byte long context identifier doesn’t need to be trans-

mitted for this context.
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Figure 5.3: Measurements of a VoIP call
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5.3 Results using errors

This section shows the results obtained by introducing errors to an RTP stream. The simulations

of errors were done using both correlated and uncorrelated methods. The errors investigated

here are the complete skipping of compressed packets during transmission (packet losses). This

was simulated by skipping some of a previously captured stream’s packets after compression.

The approach utilized here was the following: Before running the compressions, a packet

loss profile was generated by one of the error models. This profile was generated for a multitude

of different loss probabilities ranging from 0.01 to 0.7. These profiles were then combined with

the previously used Ekiga stream. During the measurements interspersed feedback was enabled.

5.3.1 Uncorrelated errors

In the first error scenario, the error profiles were generated uncorrelated (e.g. the probability of

packet loss is independent of the previous packet), therefore the errors don’t propagate.
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Figure 5.4: Uncorrelated error scenario

As seen on figure 5.4, the efficiency of compression keeps dropping steadily as the loss

probability increases. RoHCv2 clearly dominates in compression gain with ~4-5% better results

and smaller confidence intervals. Also, v2 has a smoother curve. For both versions, a sudden

drop occurs after 0.6 loss probability is reached. Fortunately, this part of the diagram is not
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really relevant, since links with so high loss rates would be particularly useless for everyday

needs.

5.3.2 Correlated errors

In this setup a simplified Markov-chain is used to simulate correlated errors. This model has

only two states, a ”good” and a ”bad” one. If the chain is in the good state, all packets are

transmitted and no errors occur. However, as long as the model is in the bad state, the packets

are being skipped after compression.

All-in-all, there are 4 transitions in the model (as seen on figure 5.5): the transition from

good state to good state, from good to bad, from bad to bad and from bad to good. All of these

have a transition probabilities assigned to them.

In the measurement setup, only two parameters are used: these are the transitions between

the two states. The other two transitions are calculated as the remainder2.

By varying these parameters, the real-life channel’s burstiness can be simulated.

Good Bad

pg,b

pg,g pb,b

pb,g

Figure 5.5: Gilber-Elliot model

The result shows a similar curve to the uncorrelated case. The reason is, that RoHC is not

affected by how many packets are lost during transmission. The fields that need to be updated

– for this stream – remain the same. Basically, the number of packets lost in a row, doesn’t

correlate with decreasing compression gain.

2 pG, G := 1.0− pG, B and pB , B := 1.0− pB , G.
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Figure 5.6: Correlated error scenario

5.4 Analysis of impact fields

It is also interesting to look at the streams before compression, since not all packet flows are

perfect for compression with RoHC and therefore they could decrease the compression gain.

The following header fields are all dynamic or irregular in nature an therefore impact the

compression quality the most:

• IP Id (2 bytes): This field applies only to version 4 of the Internet Protocol. It is pri-

marily used to identify fragments of a datagram. Since fragmentation is not allowed to

be compressed by RoHC, this field should be optimally left 0, but that is usually not the

case.

• UDP Checksum (2 bytes): This field is an error-checking number and is not optional

when used with IPv6. It is always sent uncompressed in every packet (when not 0).

• RTP Marker bit (1 bit): The usage of the marker bit is defined by the application layer.

In a VoIP scenario, this is usually used to signal the start of a talkspur. Consequently, it

is rather rarely set to 1. RoHC assumes, that it is set 0, unless otherwise specified by the

packet.

• RTP Sequence Number (2 bytes): The sequence number is incremented by 1 for each
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RTP packet and is used for packet loss detection.

• RTP Timestamp (4 bytes): The timestamp is usually used for audio-video transmissions

and defines the interval between two frames. For compression it is best when this interval

remains constant between packets.

Figure 5.7 shows how an IPv4/UDP/RTP packet’s fields are classified in regard of ”dynam-

icality”.

In this part, the impact fields are evaluated in a setup (except the UDP checksum) in which

– by certain probabilities – a fluctuation is simulated in the difference between the same field’s

value over following packet’s. This effectively results in a degradation of compression qual-

ity, since because of this, the compressor is usually forced to switch from a sequential field

behaviour to another transmission method.

In the measurement scenario a the fluctuation probability is applied by constantly increasing

its value from ~0.0 to ~1.0. This fluctuation itself is nothing more than a switching between

the two values used for the fields’ delta. However, this is quite sufficient for the evaluations’

purpose.

We can also interpret the measurements presented here, as an extension of the correlated/un-

correlated error scenario presented in the previous section, but with the packet losses occurring

before compression.

5.4.1 IP Id delta

In this measurement RoHC’s tolerance to the fluctuation of the IPv4 identification field is tested.

As seen on figure 5.8, the average compression ratio of the two different versions are very

close to each other. RoHCv1’s vary between 89% and 90%, while RoHCv2 is around 91%

throughout.
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Figure 5.7: An IPv4/UDP/RTP packet’s fields and compressableness
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Figure 5.8: Fluctuation of the IP Id

It can be concluded, that the IPv4 identification field doesn’t impact in any significant way

the overall compression ratio, though v2 has a smaller confidence interval and a lot smoother

curve.

5.4.2 RTP Marker Bit

On figure 5.9 we can see how the compression behaves when the marker bit fluctuates (from 1

to 0 and vice versa).

Since there’s no significant difference between the two versions’ efficiency to compress

the marker bit, it can be concluded, that the marker alone cannot degrade the compression

efficiency.

However it must noted, that v2 can only transmit the marker change using the pt_1_rnd or,

pt_1_seq_ts, etc. packets, which have a bigger size by 1 byte than the optimal pt_0_crc3 packet.

Hence the confidence interval difference on figure 5.9.
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Figure 5.9: Fluctuation of the RTP Marker bit

5.4.3 RTP Sequence Number

In this part the RTP sequence number is evaluated.

On figure 5.10 we can see, that there is a 3% difference in gain between the two versions.

The interesting thing is, that v2 has a lower compression ratio for small fluctuation probabilities.

This is due to larger packets being used by version 2 when transmitting a sequence number

change.

The reason for this is, that in RoHCv2, the internal MSN3 has the same value as the RTP

sequence number number4. However, the LSB compression relies on this MSN and the LSB

fields need to be updated as well.

Plus, it can be seen on the figure 5.10, that the situation reverses after 0.34 and RoHCv2

reaches better results than v1. This can be interpreted as v2 being more tolerant toward frequent

changes in sequence number delta than v1.

3 Master Sequence Number, it identifies the compressed packet, much like the RTP SN the uncompressed RTP

packet.
4 This is done in order to have 1 less field in the compressed packet.
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Figure 5.10: Fluctuation of the RTP Sequence number

5.4.4 RTP Timestamp

Lastly, the RTP timestamp is evaluated in the non-timer-based compression mode.

On figure 5.11a shows, that both versions have mostly the same curve, while RoHCv2 pro-

duces the usual compression ratio. In this case, the fluctuation is – similarly to the previous

measurements – is switching between a delta of 1 and 2.

However on figure 5.11b, the delta is increased by the fluctuation probability5. This curve

confirms one of my earlier observations, that (acticom’s) RoHCv2 implementation is less toler-

ant to varying timestamp behaviours.

Varying timestamps are usually not good for compression to begin with, but in such case,

RoHCv1 can perform better by 5-10%!

5 Here x shows the probability of the RTP timestamp delta increasing by one. On the left side the delta increases

rarely, on right side it increases for almost every packet by 1.
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Figure 5.11: Fluctuation of the RTP Timestamp
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Chapter 6

Conclusion and future work

After reading through this text, the Reader should have some basic knowledge about Robust

Header Compression, how it works and what compression gains it can provide. With the results

presented in the previous chapter, the Reader can also decide which version would suit his or

her needs in a – hypothetical – environment.

If an extensible and well adapted compression is needed, RoHCv1 would clearly satisfy

these needs, while v2 provides an all-in-one package that is simpler to implement, than version

1, but with at least the same performance.

Based on the results shown in chapter 3, we can also state that RoHC clearly benefits us

with ~90% compression gain. In almost all test scenarios RoHCv2 showed 4-7% better results

than v1. We have also seen, that this comes with some resource costs, especially for v1’s

decompression and v2’s compression.

Looking at the impact field analysis, RoHC’s robustness also gives us lots of benefits when

the incoming streams are not optimal for compression.

It is important to state again, that all of the measurements were done in users space, which

includes the compression (decompression) processes as well. Since normally RoHC is inte-

grated into the kernel’s protocol stack, it would be beneficial for future experiments to have a

custom kernel module available. Aside from this, it would be interesting to measure the opti-

mistic approach and the feedback performance as well.
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Appendices
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Figure 1: VLC stream complexity for each context with marker-bit
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Figure 2: Ekiga stream complexity with with marker-bit for each context
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Figure 3: Asterisk call header savings for each context
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