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Kivonat

A többmagos processzorok biztonságkritikus rendszerekben történő térhódításának kö-
szönhetően egyre gyakrabban használnak többszálú programokat ilyen rendszerekben is,
hiszen így lehet legjobban kiaknázni a párhuzamos számítás előnyeit. A szoftververifiká-
ció komplexitása új szintre emelkedik a párhuzamosság megjelenésével a szálak nagyszá-
mú lehetséges átlapolódása miatt. A komplexitásnövekedés eredménye, hogy a megfelelő
tesztlefedettség elérése még nagyobb kihívást jelent, a naiv verifikációs technikák pedig
gyakorlatilag használhatatlanná válnak. A részleges rendezés redukció (POR) hatékony
modellellenőrzési megközelítés a párhuzamosság kezelésére. Az ellenpéldaalapú absztrak-
ciófinomítás (CEGAR) pedig eredményes absztrakción alapuló technika állapot térben
történő elérhetőségvizsgálatra.

A részleges rendezés alapú redukció aktívan kutatott területe az utóbbi évtizedeknek.
Számos algoritmust publikáltak azzal a céllal, hogy minél nagyobb redukció által minél
jobb teljesítményt érjenek el. Jelen dolgozatomban bemutatok néhányat a terület leg-
meghatározóbb algoritmusai közül. Ugyanakkor ezek a módszerek többnyire egy egyszerű
állapottér bejárásra építenek csupán, ami korlátozza a további optimalizálási lehetősége-
ket.

Munkámban új megközelítését mutatom be a dinamikus POR technikák absztrakció-
alapú verifikációba történő integrálásának. Az új módszer egy program utasításai között
épített függőségi reláció számítása során az aktuálisan alkalmazott absztrakciót leíró in-
formációt is felhasználja. Ha két utasítás közti összefüggőség forrása el van absztrahálva,
nyugodtan tekinthetjük ezt a két utasítást függetlennek. A modellbeli összefüggőség mérté-
kének csökkenésével a POR nagyobb redukciót képes elérni. A CEGAR technikákat több-
féle módon is optimalizálhatjuk, például lusta kiértékeléssel. Dolgozatomban kitérek arra
is, hogyan lehet a bemutatott absztrakciót figyelembe vevő POR algoritmust az állapottér
lusta kiértékelésű számításával kombinálni. Végül kiértékelem a prezentált algoritmusok
teljesítményét.
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Abstract

As multi-core processors gain popularity in safety-critical systems, multi-threaded pro-
grams are increasingly used in these systems to exploit their full potential. Concurrency
introduces a new level of complexity into software verification due to the great number of
possible thread interleavings. Achieving satisfying test coverage is even more challenging,
and naive verification techniques become practically infeasible as a result of this com-
plexity. Partial order reduction (POR) is an effective approach to handle concurrency in
model checking. Counterexample-Guided Abstraction Refinement (CEGAR) is an efficient
abstraction-based technique for checking reachability in a state space.
Partial order reduction has been an active field of study in recent decades. Several al-
gorithms have been published with the aim of achieving better performance by greater
reduction. Some state-of-the-art partial order reduction algorithms are presented in this
report. Mostly though, these algorithms only assume a simple state space exploration
which limit the possibilities for further optimization.
In this work, I present novel ways to integrate a dynamic partial order reduction algorithm
into an abstraction-based verification process. Information is exploited about the applied
abstraction when building a dependency relation on operations of a program. If the source
of dependency between certain operations is abstracted away, they need not be considered
dependent. By decreasing the dependency in the model, the reducing effect of partial order
reduction is increased. Counterexample-Guided Abstraction Refinement (CEGAR) has
several optimizations including lazy computation. I show how the proposed abstraction-
aware partial order reduction algorithm can be combined with the lazy computation of
the state space. Finally, I evaluate the performance of the proposed algorithms.
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Chapter 1

Introduction

Rapid development in technology led to huge advancements in microprocessor systems.
Today, multi-core processors are available for various targets from personal computers
through smartphones to safety-critical systems. In a critical system, the increased com-
puting capacity of a multi-core processor may add extra resources to the critical func-
tionalities. This reason has lead to the increasing popularity of multi-core processors and
multi-threaded programs in even critical systems.
Nonetheless, functionally correct behavior is still crucial in safety-critical systems. Al-
though concurrency brings an additional complexity to the development, the need for safe
operation and safety requirements remain a central element of critical systems.
Unfortunately, concurrent software design faces several difficulties. The development of
concurrent software requires more prudence from developers as it is easier to overlook
unintended behavior in a multi-threaded program. A concurrent program inevitably has
a great number of possible thread interleavings. It can be challenging for a developer to
consider all possible interactions of the threads.
Testing can efficiently find programming errors. However, even in a single-threaded ap-
plication, testing is insufficient to prove correctness due to the large number of possible
inputs. In a multi-threaded program, the number of possible executions can be exponential
in the number of operations and threads. Thorough testing becomes practically infeasible
when dealing with concurrency.
Formal verification can prove safety guarantees for a system. Verification is a challenging
task in itself, as the number of possible behaviours can be huge. The verification task is
often to determine whether an error location can be reached in the program. Basically, this
question can be answered by searching the state space of the program for an error state.
Unfortunately, the number of states grows exponentially with the number of variables.
This phenomenon is called the state space explosion problem [17].
An efficient approach to handle this vast complexity is abstraction [22]. By focusing on
some parts of the problem while ignoring other details, we get a smaller representation of
the problem. We may have a chance to solve the original problem by analyzing the abstract
representation. If we fail to solve the problem using this representation, we can refine our
abstraction by considering more details. CEGAR (Counterexample-Guided Abstraction
Refinement) is an efficient abstraction-based model checking algorithm [16]. It follows this
concept of iterative refinement. Abstraction can most efficiently be applied to data: the
values of some variables can be represented by fewer equivalence classes [23].
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Concurrency introduces a new level of complexity to software verification due to the great
number of thread interleavings. By default, the whole state space has to be explored be-
cause a violation of the safety requirement may occur anywhere. Unfortunately, the size of
the state space explodes exponentially due to the number of possible thread interleavings.
Verification of concurrent programs has to deal with this complexity.
Partial order reduction (POR) is a widely known technique for handling concurrency in
model checking [29]. The core concept of POR is to identify equivalent executions (traces).
Then, it is enough to check a single representative from each equivalence class. Identifying
equivalent interleavings is based on the interaction of threads. Dependency is defined
between the interacting program operations.
While partial order reduction is an effective technique for handling concurrency, abstrac-
tion is an efficient approach to handling data in model checking. This work aims to
develop a highly performant verification algorithm by combining these two model check-
ing paradigms. I integrate POR into a CEGAR-based model checking algorithm, and I
show how these algorithms can be applied together.
I also present a novel algorithm that exploits the advantages of using POR in an
abstraction-based context. The proposed method is called abstraction-aware partial order
reduction, where the precision of the abstraction is used to boost the reduction power of
POR. I defined a novel dependency relation in the abstract representation of the state
space. The size of the new dependency relation is smaller than the size of the original
relation. This allows POR to achieve more reduction and thus better performance. I show
an approach to combine the new algorithm with the lazy extensions of CEGAR [23] to
further increase the performance of the verification.
I have implemented and contributed the proposed methods to the open-source model
checking framework Theta [30]. I compared the presented approaches to existing so-
lutions on the widely-used SV-COMP benchmark programs (SV-COMP is a prestigious
competition for software verification [8]). The introduced approach leads to performance
gains on the benchmark problems compared to the traditional POR and CEGAR ap-
proaches.
This report is structured as follows. Chapter 2 introduces the essential concepts and
definitions necessary for understanding this work. The basics of model checking are ex-
plained, along with a quick overview of CEGAR and POR. In chapter 3, the related work
is presented. Chapter 4 explains how POR can be combined with CEGAR. First, the
used POR algorithm is described in detail, along with its integration into CEGAR. Then,
abstraction-aware partial order reduction is explained. The soundness of the algorithms
presented in the chapter is proven. Some implementation details are also provided at the
end of this chapter. Chapter 5 evaluates the work. It starts with a case study, then the
findings of benchmark tests are summarized. Finally, chapter 6 draws conclusions and
proposes possible future works.
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Chapter 2

Background

This report assumes that the reader is familiar with the basic concepts of concurrent soft-
ware design and formal software verification. Nevertheless, to avoid the misunderstanding
of used concepts and notions, definitions are introduced in this chapter.

2.1 Formal Representation of Software Programs

Though high-level languages (such as C) are convenient for developers, their verification
would require a formal model of the language semantics, which can be quite complicated
[7]. Thus, for verifying a program written in a high-level language, its source code is
transformed into a low-level formalism that is easier to verify.
One such formalism is the Control Flow Automaton (CFA) [10].

2.1.1 Control Flow Automata

A CFA represents a single-threaded program with the following semantics.

Definition 1 (Control Flow Automaton). A CFA is a tuple CFA = (V, L, l0, E),
where:

• V is a set of variables (each v ∈ V has a domain Dv: the possible values of v),

• L is a set of control locations (it can be considered as the possible values of the
program counter),

• l0 is the initial location,

• E ⊆ L × OPS × L is the set of transitions. A transition is a directed edge in the
CFA with a source control location, a target control location, and one operation. An
operation (op ∈ OPS) can be:

– a deterministic assignment of a variable (v = expr), where the value of the
expression expr becomes the new value of the variable v ∈ V ,

– a non-deterministic assignment of a variable (havoc v), where the new value of
the variable v ∈ V can be anything from its domain Dv,

– a guard condition ([cond]). A transition with a guard can only be executed if
the guard expression is evaluated to true. �
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void main() {
int n;
scanf("%d", &n);
int f = 1;
while(n > 0) {

f *= n;
n--;

}
}

(a) C source code

havoc  nl0

[n > 0]

[n ≤ 0]

l1

f  =  f * nl2

l4

n  =  n - 1

l3
f  = 1l1

(b) CFA of the program

Figure 2.1: Small example to illustrate a CFA

Let us illustrate control flow automata with the following simple example.

Example 1. The program in Figure 2.1a calculates the factorial of the given number: the
value of variable f is n! at the end of the execution of this program.

Figure 2.1b depicts the CFA of this program. The edges of the CFA correspond to the
operations of the program (including condition checks). l0 is the initial location. Note
that a value from user input is assigned to n, which translates to the non-deterministic
assignment havoc n.

2.1.2 Formal Representation of Concurrent Programs

Since the threads of a multi-threaded program are like "single-threaded programs", which
can be represented with a CFA, it is reasonable to use an extended form of the CFA to
model concurrent programs: we can have a set of processes, where each process has its
own CFA [6].

Definition 2 (eXtended Control Flow Automaton (XCFA)). An XCFA is a tuple
XCFA = (Vg, P ), where:

• Vg is a set of global variables,

• P is a set of processes. A process is a tuple p = (Vl, CFA), where:

– Vl is a set of local variables,
– CFA is a CFA (whose variables are V ⊆ Vg ∪ Vl) extended with the following

operations: start thread and join thread, atomic begin and atomic end.

The processes of an XCFA step (take a transition) asynchronously. �

A start thread operation creates a new process pnew (and marks pnew ∈ P as an active
process) and starts the concurrent execution of the new process at its initial CFA loca-
tion. A join thread operation is disabled until the specified process p terminates: after
p has terminated, the join thread operation can be fired. Atomic begin, and atomic end
operations mark atomic blocks: while the execution of a process is inside an atomic block,
all other processes are disabled.
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2.1.3 State Space of a Program

Before introducing the state space of a (multi-threaded) program, a general definition is
given for transition systems.

2.1.3.1 Transition Systems

Transition systems have been defined variously over the years of model checking [5, 20].
In this report, the following definition is used:

Definition 3. A transition system is a tuple (S, A, T, I), where:

• S is a set of states,

• A is a set of actions,

• T ⊆ S ×A× S is a set of transitions, and

• I is a set of initial states. �

An action α is said to be enabled in a state s if there is a transition t = (s, α, s′) ∈ T for
some s′ ∈ S. The following notations are used:

• s
α−→ s′ denotes the transition (s, α, s′),

• post(s, α) = {s′ ∈ S : ∃(s, α, s′) ∈ T}, and

• enabled(s) is used to denote the set of enabled actions in s.

A transition system is deterministic if |I| ≤ 1 and |post(s, α)| ≤ 1 for any state s ∈ S and
action α ∈ A. In this work, only deterministic transition systems are considered.

2.1.3.2 State Space of a Control Flow Automaton

The state space of a program is a transition system that consists of all the possible and
reachable states and transitions between them, as defined below.
A state of a CFA represents a control location and the values of the variables at a certain
point during the operation of the program: s = (l, d1, d2, ..., dn), where:

• l ∈ L is the location that the state represents,

• d1, d2, ..., dn are the values of the variables (vi = di, vi ∈ V , di ∈ Di, 1 ≤ i ≤ n = |V |).

A state of an XCFA = (Vg, P ) represents the control locations of all processes and the
values of all variables (global and local variables) at a certain point during the operation
of the program: s = (l1, l2, ..., lp, d1, d2, ..., dn), where:

• lj ∈ Lpj is the current location of process pj , for 1 ≤ j ≤ p = |P |
(pj = (Vlpj

, CFApj ), CFApj = (Vg ∪ Vlpj
, Lpj , lpj0, Epj )),

• vi = di, the current value of variable vi, for 1 ≤ i ≤ n = |V |
(vi ∈ V , di ∈ Dvi , V = Vg ∪ (⋃p∈P Vlp)).

7



An action of a transition is an operation that the program executes. An action is enabled
in a state if that operation can be performed in that state of the program. A transition with
action α leads to the new state of the program after executing the operation represented
by α. The process of an action refers to the process of the action’s corresponding program
operation. Multiple transitions can have the same action (e.g., x++ from a state where
x = 0 or from another state where x = 1).
An initial state of a program is a state where all processes are in the initial location of
their main procedure. The values of the variables in an initial state can vary based on
the language the program is written in. Uninitialized variables either contain memory
garbage (as local variables in C [24]), resulting in several initial states per process, or they
are initialized automatically to a default value (as in Java [25]), resulting in one initial
state per process.
Since model checking includes searching the state space, the efficiency of a verification
algorithm largely depends on the size of the state space, that is, on the number of control
locations and variables in the program and the size of their domains. To represent even a
single 32-bit integer variable, 232 states would be necessary. With more variables, it would
grow exponentially: this is called the state space explosion problem [17]. Thus, efficient
algorithms are essential to overcome this problem.

2.2 Formal Verification

Formal software verification aims to prove certain properties of a program mathematically
[15]. Among others, verified properties can be reachability criteria (whether a certain error
state is reachable with any execution of the program), memory-safety (no memory leak or
other memory handling issue), or the problem of termination (whether all executions of
the program will terminate). In the scope of this work, reachability criteria are considered
exclusively.

2.2.1 Model Checking

Model checking is a formal verification technique where properties are verified by analyzing
the state space of the program [22]. In general, the input of a model checking algorithm
is a model (here, an XCFA) and a formal requirement. The output of such algorithms is
a verdict: the model is either safe (it is mathematically proven to be safe) or unsafe (a
counterexample is provided where the requirement is violated).

MODEL
CHECKING 

ALGORITHM

MODEL 
(source code / CFA)

FORMAL
REQUIREMENT

SAFE 
+ mathematical proof

UNSAFE 
+ counterexample

Figure 2.2: Model checking in general.

As for the formal requirement, in reachability analysis, certain points of the program
under verification are marked as unsafe. If any possible program execution reaches one
such point, the reachability criterion is said to be violated. In the introduced formalism,
the (X)CFA, these marked points (locations) are called error locations. So the formal
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requirement is that no error location is reachable from the initial location(s) of the (X)CFA.
A state is an error state in the state space of the program if its location is an error location.
In the case of a multi-threaded program, a state is an error state if any of the program’s
processes is in an error location in that state.
The mathematical problem of model checking is undecidable. Consider any program
with an error location at its exit point. To prove that this error location is unreachable
is equivalent to answering whether this program always terminates. The termination
problem is undecidable [31]. Verification techniques have to face this problem and provide
usable algorithms that can verify as much software as possible.

2.2.2 Counterexample-Guided Abstraction Refinement (CEGAR)

CEGAR is an abstraction-based model checking algorithm [16]. It uses abstraction to
handle the problem of state space explosion. CEGAR starts from a coarse abstraction of
the problem and iteratively refines the abstraction until the problem can be solved. The
more coarse the abstraction is, the more details are ignored. This way, there is a chance to
answer the original problem by solving a much simpler abstract problem. If the abstract
problem is too generic to provide an answer, the abstraction must be refined.
The core of the algorithm is the CEGAR-loop which consists of two main parts: the
abstractor and the refiner (see Figure 2.3).

Expand

Abstract counterexample

Abstractor Prune

Refined precision

RefinerARG

Safe Unsafe 
+ counterexample

Initial precision

Figure 2.3: The CEGAR-loop.

The abstractor builds the abstract state space (in fact, an abstract reachability graph,
ARG [11]) where abstract states consist of multiple concrete states. A concrete state is
an error state if its control location is marked as an error location. An abstract state
is considered an abstract error state if it contains at least one concrete error state. The
abstractor tries to prove that no abstract error state is reachable in the abstract state
space. If no abstract error state is reachable, the algorithm terminates with a safe verdict
since no concrete error state can be reached when its over-approximation is unreachable.
If an abstract error state is reachable, the abstractor provides an abstract counterexample
to the refiner.
The refiner checks whether the given counterexample is feasible (a concrete error state is
reachable, indeed) or spurious (a concrete error state is not reachable and the abstract
counterexample was the result of the abstraction). In the first case, the algorithm termi-
nates with an unsafe verdict and the found counterexample. While in the latter case, the
abstraction is refined, and the unreachable abstract states are removed (pruned) from the
abstract state space.

9



In practice, when CEGAR is applied for software verification, information about data
flow (e.g., values of variables) turned out to be most beneficial to abstract away [12]. Two
typical forms of abstraction are explicit-value abstraction and predicate abstraction.
With explicit-value abstraction, the concrete values of certain variables are tracked while
other variables are abstracted away. In the refinement step, new variables are added to
the set of tracked variables. When evaluating an expression (e.g., a guard condition or the
value for an assignment), untracked variables get an unknown value, meaning it can be
anything from the domain of the variable. If the concrete value of the expression cannot
be calculated due to unknown values, the value of the whole expression will be unknown.
Predicate abstraction keeps track of logical predicates about variables (e.g., x = 1 and
y > 0). In the refinement step, a new set of tracked predicates is calculated. When
evaluating an expression, the result will be unknown if the tracked predicates do not
imply the expression.
The abstraction can be represented formally with an abstraction function [5]. The ab-
straction function is a function f : S → Ŝ (where S is the set of concrete states and Ŝ is
the set of abstract states)1. Multiple concrete states can be mapped to the same abstract
state. The abstract state space over-approximates the concrete state space. An abstract
state s′

0 is initial if f(s0) = s′
0 for the initial state s0 of the concrete state space. If a

transition (s1, α, s2) is in the concrete state space, there is a transition (f(s1), α, f(s2)) in
the abstract state space. An abstract state e′ is an error state if there is a state e ∈ S
such that f(e) = e′ and e is an error state of the concrete state space.

a1

a3

a2

a4

(a) Abstract state space Ŝ with an abstract counterexample

a1 a2

a3 a4

s2

s1 s3

s4

s5

s6 s7

s8

(b) Feasible counterexample in S1

a1 a2

a3 a4

s2

s1 s3

s4

s5

s6 s7

s8

(c) Spurious counterexample in S2

Figure 2.4: CEGAR counterexamples

1In some cases in practice, a concrete state can be represented by multiple abstract states [12]: the
abstraction function then maps to a set of abstract states.
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Example 2. Consider a model checking process where the abstractor provides the abstract
counterexample highlighted in Figure 2.4a. This counterexample leads from the abstract
initial state a1 to the abstract error state a4 in the abstract state space AS. The abstract
state space is an over-approximation of the concrete state space. So the refiner has to
decide whether the abstract counterexample is feasible or spurious.

First, let us assume that the concrete state space abstracted by AS is S1 from Figure 2.4b.
In this case, the counterexample is feasible since we can find a transition sequence for
the abstract counterexample in the concrete state space starting from the initial state s1
leading to the error state s8.

However, S2 from Figure 2.4c can also be the concrete state space whose abstraction is
AS. The counterexample turns out to be spurious now, as there is no path from s1 to s8
in S2.

Let f1 be the abstraction function f1 : S1 → Ŝ. f1(s1) = a1, and s1 is the initial state
of S1, so a1 is initial in Ŝ. If si is within the bounding box of aj in Figure 2.4b, then
f1(si) = aj. s8 is an error state, so f1(s8) = a4 is an abstract error state. Transition
(s1 → s5) is in S1, so the transition (a1 → a3) = (f1(s1) → f1(s5)) is in Ŝ. Similarly,
transition (s4 → s3) is in S1, so the transition (a2 → a2) = (f1(s4)→ f1(s3)) is in Ŝ.

2.3 Partial Order Reduction (POR)

Generally, the execution order of operations from different threads is unspecified in a multi-
threaded program. Thus, when such a program is verified, it is obviously insufficient to
check only a single randomly chosen thread interleaving (consider the possible interleavings
of the threads in Figure 2.5a: the printed result can be anything from {00, 01, 10, 11}).
A definitely correct approach is to check every possible execution. While it yields an
accurate result, it suffers from the problem of combinatorial explosion. The intuitive idea
to reduce the number of interleavings to check is that there are independent operations
whose order of execution is irrelevant: their swapping (if they are neighbors) does not
change the outcome. This way, executions can be grouped into equivalence classes [27, 20].
Any element of a class can be transformed into any other execution in the same class by
only swapping independent neighbors. Then, it is enough to check only one execution
from each equivalence class. This idea can be generalized to transition systems.

2.3.1 Dependency Relation

In the case of transition systems, the dependency relation used to be formulated on a
general level [5]:

Definition 4. Let TS = (S, A, T, I) be a deterministic transition system. For s ∈ S,
α, β ∈ enabled(s) (α ̸= β), actions α and β are independent in s if:

• β ∈ enabled(post(s, α)) and α ∈ enabled(post(s, β)), and

• post(post(s, α), β) = post(post(s, β), α). �

The first condition means that independent actions can neither disable nor enable each
other. The second property states that independent actions are commutative. Some-
times, dependency of transitions is used in this report: by the dependency of transitions,
dependency of their actions is meant.
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It is rather impractical to check this definition of independence. Checking these conditions
would require calculating the successor states of s after α and β and after β and α. This
is exactly what partial order reduction tries to avoid. Fortunately, actions are program
operations when our transition system models a program. Sufficient conditions can be
given for two actions to be independent using the semantics of program operations [20].
Intuitively, when speaking about a multi-threaded program, two operations are indepen-
dent if neither their control part nor their data part is in conflict. The following conditions
formalize this intuition. Two actions α and β are independent if:

• α and β are not the actions of the same process, and

• the set of objects that are accessed by α is disjoint from the set of objects accessed
by β.

Note: in our case, shared accessed objects (that operations from different processes,
threads can access) are global variables, but in general, it could mean any object (e.g.,
a file). Also, note that special attention is needed at operations that create or destroy a
process.
Independence could be defined more sophisticatedly, e.g., by distinguishing read and write
operations on shared objects (two read operations on the same object could be considered
independent) [28]. This way, the overall dependency between operations would decrease.
At the same time, this work focuses on the basic concepts of partial order reduction and
not on such enhancements.
It is easy to check that these conditions are sufficient indeed for two actions to be inde-
pendent. An action α can only enable or disable another action β if either they are in the
same process or α modifies the value of a global variable that β uses in its guard condi-
tion. In both cases, the actions are dependent based on the introduced conditions. As for
commutativity, the swapping of two actions can only lead to different states if their sets of
accessed objects are not disjoint: the actions are dependent according to the introduced
conditions, again.

2.3.2 Partial Orders

Definition 5 (Partial Order, Total Order, Linearization). On a set S a relation
R ⊆ S × S is a partial order if R is reflexive, antisymmetric, and transitive.
A partial order R is a total order if for all s1, s2 ∈ S either (s1, s2) ∈ R or (s2, s1) ∈ R.
A linearization of a partial order R on S is a total order R′ ⊆ S × S such that R ⊆ R′. �

A partial order R can be visualized by a directed graph whose vertices are the elements
of the set S, and there is an edge from s1 ∈ S to s2 ∈ S if and only if (s1, s2) ∈ R.
A concrete execution (also called thread interleaving) of a program can be considered as
a total order R on the set of operations where, for all op1, op2 ∈ OPS, (op1, op2) ∈ R iff
op1 is executed before op2. In the case of multi-threaded programs, a partial order can
be associated to an execution using the concept of dependency where the partial order
relation consists of the dependent ordered pairs of operations (operations are in execution
order in the ordered pair). The concrete execution R is the linearization of this partial
order. [20]
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Thread T1 Thread T2
a: x = 0;
b: a = 1;
c: print(x);

d: x = 1;
e: b = 1;
f: print(x);

(a) Basic two-threaded program

b

e

c a

d f

(b) Visual representation of the partial or-
der for execution E = (a, d, b, e, c, f).

Figure 2.5: Multi-threaded program with a partial order for an execution

Example 3. Let’s take threads T1 and T2 from Figure 2.5a and the execution E =
(a, d, b, e, c, f). E is a total order on the set of the six operations.

Operations a, d, c, f are dependent with each other since they all use the global variable
x. Operations of the same thread are dependent by definition. The partial order with the
dependent operation pairs can be seen in Figure 2.5b. Execution E is the linearization of
this partial order.

E′ = (a, b, d, c, e, f) is also the linearization of the same partial order.

2.3.3 Partial Order Reduction Techniques

Executions - or generally transition sequences in a transition system - that are the lin-
earizations of the same partial order yield the same result since dependency is completely
"included" in the partial order. That is, partial order is the formalization of the equiva-
lence class intuitively used in the introduction of this section. Such an equivalence class
is called a Mazurkiewicz trace [27]. Any two transition sequences in a Mazurkiewicz trace
can be obtained from each other by successively swapping adjacent independent actions.
Therefore, it is sufficient to check a single transition sequence (linearization) from each
Mazurkiewicz trace (partial order) in a verification process. This is the basic concept of
partial order reduction. [20]
Partial order reduction methods construct a reduced transition system and explore only
this smaller reduced state space instead of the original one. For the correctness of such
an algorithm, it has to be guaranteed that at least one transition sequence from each
equivalence class is completely included in the reduced transition system. In practice,
the reduced state space is "constructed" by calculating a sufficient subset of outgoing
transitions for exploration from a state. When exploring the state space, we only proceed
through transitions in the calculated subset. This way, only part of the state space is
explored: the reduced state space.
There are two main approaches to partial order reduction: static and dynamic POR [5].
In the static version, the model (e.g., the CFA of the program) is analyzed and the reduced
state space (or its high-level description) is generated prior to the verification process. The
dynamic approach constructs the reduced state space during the model checking. The
latter’s advantage is that it is not necessary to generate the entire state space, only the
relevant part (that is actually needed in the verification). The abstraction-aware partial
order reduction algorithm integrated into CEGAR presented in this report is inherently a
dynamic approach since it uses on-the-fly information.
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Chapter 3

Related Work

Partial order reduction has been a field of active research since the 1990s to this day
[32, 20, 29, 5, 19, 1]. Algorithms evolved from basic solutions to proven optimal methods
with several further optimizations. In this work, I use an early POR algorithm as a
base since the focus is not on implementing a state-of-the-art algorithm but rather on
developing a novel approach to the combination of partial order reduction (POR) and
counterexample-guided abstraction refinement (CEGAR).

3.1 Traditional Partial Order Reduction (POR) Algorithms

Early partial order reduction methods build on the notion of stubborn [32], ample [5],
persistent, and sleep sets [20]. These sets are associated with states: such states are
subsets of the enabled actions in that state. The reduced state space is generated in a way
that, from a state, only enabled actions in its stubborn/ample/persistent set are explored.
It is proven that if a deadlock is reachable in the original state space, a deadlock can
also be reached in the reduced state space. Therefore, it is sufficient to explore only the
reduced state space.
Sleep sets are particularly useful in stateless model checking [21] where the visited states
are not remembered. A sleep set is also associated to a state. An action α is put in the
sleep set of a state s when we know that α would lead from s to an already explored state.
Actions in the sleep sets are not explored. Sleep sets are orthogonal to persistent sets:
they are used together to achieve more reduction.

3.2 State-of-the-Art POR Algorithms

Traditional POR algorithms approximated the conflicts between actions statically. Later,
a dynamic partial order reduction (DPOR) algorithm was introduced, where the indepen-
dence of actions is decided dynamically during the exploration [19]. DPOR first takes
a (complete) execution, then marks backtrack points along this trace where dependency
is detected. Actions that might lead to other non-equivalent traces are associated to a
backtrack point. These actions have to be explored from the marked state. The algorithm
continues to explore the state space until there is any unprocessed backtrack point.
Source DPOR from [1] is a dynamic partial order reduction algorithm that uses source
sets instead of persistent sets. Each persistent set is a source set, but source sets are
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strictly smaller in some cases. This way, fewer executions are explored with source sets
while reaching an equivalent result to the original problem. The presented source DPOR
algorithm uses sleep sets, too.
Optimal DPOR [1] extends the Source DPOR algorithm with a construct called wakeup
tree, which replaces the backtrack set of actions introduced in DPOR [19]. In simple
DPOR, only single actions are added to backtrack sets. Here, action sequences are as-
sociated with backtrack points: these are wakeup trees. Exploration is only performed
along the associated action sequences from backtrack points. Optimal DPOR is proven
to be optimal: the minimal number of interleavings are explored in every case (that is
no equivalent executions are explored). Since it has been published, Optimal DPOR has
been extended with several enhancements [4, 26].

3.3 Conditional Independence

Initially, the independence relation of actions has been approximated statically by ana-
lyzing the transitions in the model [5, 20]. As a result, two actions that are dependent in
some contexts will be handled as dependent in all possible contexts. However, several POR
algorithms retrieve information from the search context: actions are considered dependent
only in certain states under certain conditions [3, 4, 34].
In [34], a guarded independence relation is introduced where a condition is associated with
each pair of actions meaning that the two actions are independent in any state where
the condition holds. As an example, take two actions α and β where α reads the value
of variable x while β assigns a value to x in the form of x := v. α and β are guarded
independent with respect to x = v, meaning that α and β are independent in any state
where x = v holds (obviously, β does not change x if its value is already v). It could be
said that the abstraction-based POR proposed in this work uses a guarded independence
relation where the condition for two actions using the same variable x is "variable x is
abstracted away in the current abstraction". At the same time, it is computationally
simpler to check during the dependency calculation whether a variable is abstracted away.
So in the algorithm presented in this work, the condition for guarded independence is only
implicitly used.
In [4], an extension of optimal DPOR is presented: optimal DPOR with observers. The
independence of actions is conditional to future actions called observers. For actions α and
β, which both write the shared variable x, γ is an observer if it is a possible future action
that reads the value of x. If there is no observer for α and β (i.e., x is unused later), α and
β can be considered independent. Also, consider the situation where we have n processes
p1, p2, ..., pn, each with the single action x := i (for pi) and a safety requirement on x
after joining all processes. The order of processes before the last one is irrelevant since the
last process will overwrite the value of x anyway. So instead of n! possible interleavings,
it is sufficient to check n (where the last process is different in each trace). Optimal
DPOR with observers achieves further reduction in these scenarios. Again, abstraction-
based POR could be an extension of observers where any read operation on a variable x
that is abstracted away is not an observer of x. Similarly, it would mean a considerable
and redundant computational overhead to realize abstraction-based POR using observers
compared to the method presented in the next chapter.
Context-sensitive DPOR [3] is another extension of optimal DPOR [1], which uses condi-
tional independence, though implicitly. Instead of associating conditions to action pairs,
it checks state equivalence during the state space exploration. Sleep sets are modified so
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that not only can single actions be added to a sleep set, but also sequences of actions to
avoid exploring that sequence. Context-sensitive POR would be capable of recognizing
executions that are equivalent only in the current abstraction because this algorithm is
defined on a more general level. At the same time, it would only realize that two such
executions are equivalent in the "last moment", just before the two traces reach the same
state. The proposed abstraction-based POR algorithm knows it when the two traces di-
verge. Thus, context-sensitive POR has to explore more states to discover the equivalence
of executions.

3.4 POR Combined with CEGAR

Some partial order reduction algorithms, such as sleep set techniques, are primarily useful
in stateless model checking. (Sleep sets aim to avoid exploring the same state several
times: this can be easily achieved in stateful model checking by consulting the list of vis-
ited states.) CEGAR is inherently a stateful model checking paradigm, so these methods
provide less reduction. On the other hand, other POR algorithms are similarly advanta-
geous in stateful as in stateless model checking, such as a persistent set technique where
complete branches of the state space can be ignored.
CPAchecker is an open-source configurable program verification framework that sup-
ports several analysis techniques, including CEGAR and partial order reduction [9]. How-
ever, the POR algorithm applied in CPAchecker is relatively simple: only thread-local
operations are considered independent (where an operation is global if it accesses a global
memory location and thread-local otherwise). That is, the application of partial order
reduction is orthogonal to CEGAR in CPAchecker.
In [33], an abstraction-based verification (though the Impact algorithm, not CEGAR) is
combined with a dynamic partial order reduction algorithm. Although they use conditional
dependency, it is similar to the guarded independence relation described in [34], and they
do not exploit information about the applied abstraction to reduce dependency.
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Chapter 4

Partial Order Reduction for
Abstraction-Based Verification

This chapter describes how partial order reduction can be integrated into a CEGAR-
based model checking algorithm. As the reduction of the state space is done during the
verification process, it is a dynamic POR approach here, though the base of the used
algorithm is more similar to static approaches [20] than the dynamic methods [1, 19] in
the literature.
The novelty of the proposed algorithm lies in using extra information about the actual
abstraction used in CEGAR when applying partial order reduction. This information is
only available on-the-fly: that is why the presented algorithm is dynamic. Furthermore,
this abstraction-aware extension of POR is orthogonal to the underlying algorithm: any
dynamic POR method could be used.

4.1 Combining POR with CEGAR

In CEGAR, instead of the concrete state space of a program, an abstract state space is
explored. So, partial order reduction is applied in the abstract state space.

4.1.1 Persistent Sets

In Section 2.3.3, it has been introduced that partial order reduction techniques work by
calculating sufficient subsets of outgoing transitions to explore for each state. For this
work, I adapt persistent sets from [20].

4.1.1.1 Notion of Persistent Sets

A persistent set is a subset of enabled actions in a state of a transition system which is
sufficient to check in a software verification process. This section introduces the exact
definitions concerning persistent sets.
Intuitively, a subset P of the enabled actions in a state s is called persistent if any action
outside P and any action reachable from s in the state space via actions not in P is
independent of the elements of P .
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Definition 6 (Persistent Set). A subset P of enabled actions in state s is called per-
sistent in s if for all transition sequences

s = s1
α1−→ s2

α2−→ ...
αn−1−−−→ sn

αn−−→ sn+1

starting from s and not including actions from P (αi /∈ P , for 1 ≤ i ≤ n), αn is independent
of all actions in P . �

Let reachable(s, α) denote the actions reachable from s via α. Action β ∈ reachable(s, α)
if there exists a transition sequence s

α−→ ...
β−→ s′ in the state space (starting from s with

α as the first, and β as the last action). By definition, α ∈ reachable(s, α).

α1

α2 α3

s

Figure 4.1: Intuitive visualization of a persistent set

Example 4. Consider the state space visible in Figure 4.1.

reachable(s, α1) = {α1, α2, α3}.

The set of lightly colored (yellow) actions is a persistent set in s if every bold dark (blue)
action is independent of both yellow actions since the blue actions are the ones that are
reachable from s via actions not in the yellow set. (By yellow/blue actions, the actions of
yellow/blue transitions are meant.)

4.1.1.2 Persistent Set Selective Search in CEGAR

In CEGAR, the abstract state space is built by the abstractor in an expand operation.
Let S denote the states of the abstract state space and SE ⊆ S the set of expanded states.
A not yet expanded state s ∈ S \ SE is chosen based on a search strategy (e.g., BFS or
DFS) and the selected state s is expanded. That is, the enabled actions in s are collected,
and their targets (if not already in S) are added to the abstract state space as new states,
and a new transition is added for each enabled action from s to the new state.1

The above way, the abstract state space is fully discovered. That is what POR is about to
prevent. The POR algorithm applied here filters the enabled actions and only expands the
abstract state space with the filtered subset of enabled actions and their successor states.
This filtered subset is calculated in a way to be a persistent set in the current state.2 The
abstraction used in CEGAR preserves the CFA locations and actions in the abstract state
space, only the values of variables can be abstracted away. Thus, persistent sets can be
directly calculated using the actions of the program (the CFA).

1The construction of the abstract state space (the Abstract Reachability Graph or ARG exactly) is
slightly more complex in CEGAR. States can cover each other, and it is unnecessary to expand covered
states. Nevertheless, covering does not influence POR since POR works in the expand operation. See [18]
for more details about covering.

2It turns out that the filtered subset of enabled actions is not necessarily persistent in the abstract-state.
The proof of the soundness of the presented algorithm in Section 4.1.2 will explain this in more detail.
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Algorithm 1: Calculating a Persistent Set from State s

Input: s, EA, IA ⊆ EA
/* EA: enabled actions, IA: initially added actions */

Output: PS /* Persistent set containing IA */
1 PS ← IA
2 newAdded← True
3 while newAdded do
4 newAdded← False
5 toAdd← {α : α ∈ EA \ PS ∧ ∃α∗ ∈ reachable(s, α), ∃α′ ∈ PS

such that α∗ and α′ are dependent}
6 if toAdd ̸= ∅ then
7 PS ← PS ∪ toAdd
8 newAdded← True

9 end
10 end

Theorem 4.3 in [20] proves that such a persistent set selective search reaches all deadlocks
(states without outgoing transitions) that are reachable in the original (non-reduced) state
space. With a minor supplement (see details in Section 4.1.3), error states can be consid-
ered deadlocks. This way, the cited theorem states that if an error state can be reached
in the original state space, it is also reachable in the reduced state space discovered with
a persistent set selective search. Thus, reachability analysis performed in the reduced and
the original abstract state space yields equivalent results.

4.1.1.3 Calculating Persistent Sets

Persistent sets can be calculated in several ways. The goal is to find a persistent set whose
size is as small as possible. The algorithm presented here is not optimal, though relatively
simple and efficient. The algorithm applied here is as follows.
The enabled actions (EA) in the current state are provided as input to Algorithm 1 with
actions (IA) that are initially put in the persistent set(-to-be) PS. As long as any new
action is added to PS, the following is repeated: each enabled action that is still not in
PS but dependent with any action in PS is added to PS.
A persistent set is calculated with Algorithm 1 starting from the enabled actions per
process.3 That is the set of actions of a single process is extended to be persistent with
actions from other processes based on Algorithm 1. This is repeated for each process. One
persistent set with minimal size is chosen from the calculated persistent sets and returned
as the final result.
The algorithm uses reachable(s, α) which may seem illogical since the goal of the whole
state space exploration is to know what is reachable from the initial state. How can we
use this information, then? In fact, an over-approximation of the set reachable(s, α) is
used which can be computed easily. If we take the CFA of the process of α, it is certain
that only actions reachable in the CFA from the target location of the action can be
reached in the state space. Not necessarily all of them is reachable in the state space, but
that does not spoil the over-approximation. We can use this method to over-approximate
reachable(s, α) without a huge overhead.

3Persistent set calculation could start from a single action, but actions of the same process would be
added to the set anyway: that extra calculation can be spared.

19



4.1.2 Soundness

In this section, the soundness of using partial order reduction in CEGAR in the presented
way is proven. To prove the correctness of the combination of CEGAR and POR, we have
to check that if an error state is reachable in the concrete state space of the program,
an abstract error-state is reachable in the POR-reduced abstract state space. That is,
we have to prove that the composition of the POR and the CEGAR transformation is
error-preserving.
We do not have to handle the case where no error state can be reached in the concrete
state space. In this case, the abstract state space can contain an abstract error-state, and
the abstractor of CEGAR may find a spurious counterexample in the abstract state space.
However, the refiner checks the counterexamples and refines the abstraction if necessary.
That is, CEGAR cannot produce a false positive (return an unsafe verdict when the
program is safe). The algorithm may not terminate, but we have seen in Section 2.2.1
that the model checking problem is undecidable as a mathematical problem.

Theorem 1. Let the abstract state space SA be the result of an abstraction applied in
CEGAR on the concrete state space S. Let the reduced abstract state space SAR be
obtained from the original abstract state space SA by exploring only actions returned by
Algorithm 1 from each abstract state. If an error state is reachable from the initial state of
the concrete state space S, an abstract error state can be reached in the reduced abstract
state space SAR. �

Proof. Technically, the concrete state space is mapped to the abstract state space, then
to the reduced state space with POR (1). For the sake of the proof, let us consider the
composition of the two transformations in a reversed order (2). That is:

POR ◦ abstraction : S
abstraction−−−−−−−→ SA

P OR−−−→ SAR (1)
abstraction ◦ POR : S

P OR−−−→ SR
abstraction−−−−−−−→ SRA (2)

The proof proceeds by checking that S
P OR−−−→ SR and SR

abstraction−−−−−−−→ SRA are error-
preserving transformations; it is also shown that SRA ⊆ SAR. This proves that if an
error state is reachable in S, then an abstract error state is reachable in SAR (which is the
statement of the theorem).

Let f be the abstraction function of the abstraction S
abstraction−−−−−−−→ SA. Let PSf(s) denote

the set of actions to explore returned by Algorithm 1 for the abstract state f(s).

Let us perform the S
P OR−−−→ SR (theoretical) state space reduction so that the explored

actions from a concrete state s is PSs = PSf(s)∩enabled(s). To see that PSs is persistent
in s, note that enabled(s) ⊆ enabled(f(s)) since by definition of the abstract state space, if
a transition (s, α, s′) is in the concrete state space, the transition (f(s), α, f(s′)) is present
in the abstract state space.
The dependency relation used by Algorithm 1 (to calculate actions to explore in SA) is
a valid dependency relation in S. The correctness of Algorithm 1 is easy to see: the
algorithm iteratively adds all actions that must be put in the persistent set based on
Definition 6 until the criterion of the definition holds for all enabled actions not in PS.4
Now, let us assume that PSs is not persistent in s while PSf(s) has been calculated with
Algorithm 1. That means, at least one action α ∈ enabled(s)\PSs must be added to PSs

4In fact an over-approximation of the necessary actions are added to P S as explained in the last
paragraph of Section 4.1.1.3. Naturally, this does not corrupt the correctness of the algorithm.
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to make it persistent in s. But α ∈ enabled(f(s)) and PSs ⊆ PSf(s), so the algorithm
would have had to add α to PSf(s) in this case. This is contradiction because α has not
been added to PSf(s) by the algorithm. Thus, the set PSs for any state s ∈ S is persistent
indeed in s.
So the explored actions in SR form persistent sets in each state of SR: we can obtain SR

from S with a persistent set selective search. The correctness of a persistent set selective
search is proven in [20], so S

P OR−−−→ SR is an error-preserving transformation.

Let us perform the transformation SR
abstraction−−−−−−−→ SRA with the same abstraction function

f . Abstraction is error-preserving: if there is an error state e ∈ SR, then its abstract state
f(e) ∈ SRA is an abstract error state by definition.
Now, let us see that SRA ⊆ SAR, that is any state or transition present in SRA is present
in SAR (in other words, if a state s is reachable in SRA from its initial state, s is reachable
in SAR from its initial state). Let s0 be the initial state of S. Then s0 ∈ SR, f(s0) ∈ SRA,
f(s0) ∈ SA and f(s0) ∈ SAR. If a state s′ is reachable in SRA, there is a state s ∈ SR so
that f(s) = s′ and s is reachable in SR. Since PSs ⊆ PSf(s) for any state s ∈ SR, if a
state s is reachable in SR, f(s) is reachable in SAR. We got that if a state s′ is reachable
in SRA, s′ is also reachable in SAR, so SRA ⊆ SAR holds indeed.
Let E(SP ) denote the set of error states reachable in a state space SP from its initial
state. The statement of the theorem is the following: ∃e ∈ E(S) =⇒ ∃e′ ∈ E(SAR).

S
P OR−−−→ SR being an error-preserving transformation means ∃e ∈ E(S) =⇒ ∃e′ ∈ E(SR).

The abstraction function maps e′ to the abstract state f(e′) ∈ SRA which is an error state
in SRA (by definition of abstract error states): f(e′) ∈ E(SRA). Based on SRA ⊆ SAR,
f(e′) ∈ E(SAR) which proves the theorem. □

Note that the proof does not assume that the used dependency relation of actions is valid
in the abstract state space SA. For certain concrete types of abstraction (e.g., explicit-
value abstraction), it could be easily proven that the dependency relation is valid in the
abstract state space. Then, we would not need the reversed order of transformations
(abstraction ◦ POR) because we could simply say that SAR is obtained from SA with a
persistent selective search which is proven to be error-preserving. However, without any
assumption on the abstraction function, the dependency relation is not necessarily valid
in SA, and SAR is not necessarily the result of a persistent set selective search of SA.
Nonetheless, the proof shows that the above combination of CEGAR and POR is correct
independent of the type of used abstraction.

4.1.3 Handling Error States

In Section 4.1.1.2, it is stated that practically, error states can be considered deadlocks:
their outgoing transitions can be removed because it is irrelevant whether it is possible to
go further from an error state. Though it is irrelevant, indeed, a side effect of this arbitrary
removal of transitions is that actions previously independent may become dependent. An
action leading to an error state disables all other actions that were previously enabled in
the error state. The practical criteria for independent actions introduced at the end of
Section 2.3.1 are no more sufficient.
To solve this problem, for all transition t = (s, α, s′) through which an error state is
reachable, α should be put in all persistent sets of s. But this information is unavailable:
it is the goal of the whole model checking process to know if any error state is reachable
from a state (the initial state).
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Fortunately, this paradox situation can be resolved with a simple trick: transitions starting
from error states are left in the state space except for backward transitions. A backward
transition is a transition which is classified as backward edge after performing a depth-first
search from the initial state.
This way, the error states and the not-backward transitions between them form a directed
acyclic subgraph of the state space. Thus, an error state is either a sink (a deadlock) or a
sink is reachable from it. So the problem that whether an error state is reachable in the
state space is equivalent with whether a deadlock-error-state is reachable.
The above solution is a theoretical one. A good practical approach (though an over-
approximation) is that for each backward transition t = (s, α, s′), α must be put in all
persistent sets of s. Now, the theorem cited in Section 4.1.1.2 can be safely used to prove
the correctness of the persistent set selective search.
Backward transitions could be calculated during the exploration of the state space, on-
the-fly. However, it would require a depth-first search order (a similar approach can be
found in [20]). To leave the possibility for other search strategies (e.g., BFS), backward
transitions can be calculated differently. A sufficient method to decide whether a transi-
tion t = (s, α, s′) is a backward transition is the following: if the program operation of
α is represented by a backward edge in the CFA model of the program, t is considered a
backward transition. (Note that states are partly characterized by CFA locations: without
a backward CFA edge, we could never "get back" to a previously visited state.) Further-
more, backward edges of the CFA can be calculated once at the beginning of the whole
model checking process.

α α

X X

γ

β

β

γ

SP1

(a) No transition is removed
from error states

α α

X X

γ

β

SP2

(b) All transitions are re-
moved from error states

α α

X X

γ

β

β

SP3

(c) Only backward transi-
tions are removed

Figure 4.2: Transitions between error states

Example 5. Take the state spaces from Figure 4.2 as an example. Let the initial state be
the top-left state in each case. Red states are error states.

Figure 4.2a shows the original state space SP 1 and Figure 4.2b the reduced state space
SP 2 where transitions are removed in order to make error states deadlocks. Actions α
and β are independent in SP 1 but dependent in SP 2 because α disables β in the latter
case.

In Figure 4.2c, only backward transitions are removed from error states. This way, α and
β remain independent: {α} and {β} are valid persistent sets in the top-left state. On
the other hand, α and γ are dependent since α disables γ: the only persistent set in the
top-right state is {α, γ}.
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4.2 Abstraction-Aware Partial Order Reduction

The previous sections of this chapter introduced the combination of a traditional partial
order reduction algorithm with a CEGAR-based model checking algorithm. However,
this integration is rather loose so far: the point has been identified in CEGAR (i.e., the
expansion of the abstract state space) where POR can be applied, but the two algorithms
have "no further contact".
In this section, a novel approach of integrating POR with CEGAR is presented where
POR uses extra information from the current state of the CEGAR algorithm. I refer to
this approach as abstraction-aware partial order reduction (AAPOR).

4.2.1 Basic Concept and Motivation

In Section 2.2.2, two common forms of abstraction has been introduced: explicit-value
abstraction and predicate abstraction. The information describing an abstraction is called
precision. In case of explicit-value abstraction, the precision is the set of tracked variables.
The precision of predicate abstraction is the set of tracked predicates.
Let us use the term abstract variable for an element of the precision. In explicit-value
abstraction, a tracked variable is an abstract variable, while in predicate abstraction, a
predicate is an abstract variable. The notation χ ∈ Π is used to denote that abstract
variable χ is present in precision Π (χ is one of the tracked variables in explicit-value
abstraction or χ is a tracked predicate in predicate abstraction). Let orig(χ) denote
the set of concrete (original) variables that appear in χ (in explicit-value abstraction,
orig(x) = {x} if x is a tracked variable; for a predicate y > z, orig(y > z) = {y, z}).
This information, the precision can be used to boost partial order reduction. If a vari-
able x is not present in the current precision, it is unnecessary to consider two actions
dependent just because they both use x (if there is no other global variable that they
both access) since the value of x is ignored in the current abstraction. With explicit-value
abstraction, it is enough to take the tracked variables into consideration when calculating
dependency between actions. Similarly, when using predicate abstraction, two actions are
only dependent if there is a predicate that has variables from both actions.

Example 6. Let us have two processes. Let the model checking reach a state s where the
only enabled actions are α{x = 2 · z} and β{y = x− 1} from different processes.

a. If we calculate a persistent set in this state in the traditional way, we need to include
both α and β in our set because they both use the object x, so they are dependent
regardless of the applied abstraction.

b. Let us assume, that we use explicit-value abstraction and the set of tracked variables
is currently Π = {y, z}. Since ∄ χ ∈ Π such that x ∈ orig(χ) (x is not in the
precision) and x is the only object that both α and β accesses, we can consider α
and β independent in the current abstraction.

c. Now, let us use predicate abstraction and let the set of tracked predicates be Π =
{y > 2, x+z = 0}. As x ∈ orig(x+z = 0) (there is a predicate about x in Π), α and
β is considered dependent in this abstraction even with the proposed method. They
are also dependent if Π = {y > z} since y, z ∈ orig(y > z), that is the predicate
y > z uses variables from both α and β. However, the two actions are independent
with precision Π = {y > 0, z = 2}.
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The motivation for developing this abstraction-aware POR algorithm is to make fewer
actions dependent. By decreasing the dependency in the model, the reducing effect of
partial order reduction hopefully increases resulting in better performance.
The introduced concepts are illustrated in a small case study on a complete multi-threaded
program with figures about the abstract state spaces in Section 5.1.

4.2.2 Description of the Algorithm

First, a simple version of the algorithm is described, then an extension is explained that
makes the proposed algorithm compatible with lazy state space computation [23]. Finally,
the correctness of the presented methods is proven in this section.

4.2.2.1 Simple Version

When using a basic version of CEGAR, the abstraction-aware POR algorithm is quite
simple. However, some lazy computation can improve CEGAR, which requires further
steps to preserve the correctness of AAPOR. This will be explained in detail later in this
section. Let us start with the simple version.
The criterion for applying the simple version of AAPOR is to start building the abstract
state space from scratch in every iteration of CEGAR. In this case, only the calculation of
dependency is different compared to the algorithm presented in Section 4.1. Algorithm 2 is
the modified algorithm with differences highlighted. The algorithm receives the precision Π
of the current abstraction as an input. Dependency is calculated in Line 5 with precision Π,
which can be formalized as a modification of the sufficient conditions for the independence
of actions introduced in Section 2.3.1:

Lemma 1. It is sufficient to determine whether two actions α and β are independent
in a state s with precision Π by the following conditions. Actions α, β ∈ enabled(s) are
independent in s with respect to Π if:

• α and β are not the actions of the same process, and

• there is no abstract variable in the precision in which an object accessed by α and
an object accessed by β both appear. �

Algorithm 2: Calculating a Persistent Set in an Abstraction
Input: s, EA, IA ⊆ EA, Π /* Π: precision of the abstraction */
Output: PS /* Persistent set in this abstraction */

1 PS ← IA
2 newAdded← True
3 while newAdded do
4 newAdded← False
5 toAdd← {α : α ∈ EA \ PS ∧ ∃α∗ ∈ reachable(s, α), ∃α′ ∈ PS

such that α∗ and α′ are dependent with Π}
6 if toAdd ̸= ∅ then
7 PS ← PS ∪ toAdd
8 newAdded← True

9 end
10 end
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To clarify the grammatically complex wording of the lemma, the following mathematical
notation and formula can be used to describe the second condition. Let Xα and Xβ be
the set of objects accessed by actions α and β. The condition says that ∄ χ ∈ Π such that
orig(χ) ∩Xα ̸= ∅ ∧ orig(χ) ∩Xβ ̸= ∅. Lemma 1 will be proven later in Section 4.2.3.1.
Note that the output of Algorithm 2 is only guaranteed to be a valid persistent set in the
current abstraction. In a basic version of POR where the abstraction is not taken into
consideration, if the same actions are enabled in a state, any calculated persistent set is
also a persistent set in any other abstraction.

Example 7. Let us take case b of Example 6. {α} is a persistent set in s in the abstraction
with precision {y, z} since α and β are independent in this abstraction.

Let us assume that in the next refinement step, x is added to the set of tracked variables:
the precision becomes {x, y, z}. {α} is not persistent anymore in s with this new precision
since α and β are dependent now.

In the simple version of AAPOR where the abstract state space is reexplored from the
initial state, this limitation of the validity of a persistent set does not matter. However,
the consequences must be handled in the setting of the next section.

4.2.2.2 Compatibility with Lazy Pruning

The simple version of AAPOR required to build the abstract state space from the ground
up. However, CEGAR can be optimized to use parts of the abstract state space built in
the previous iteration. The refiner prunes the abstract state space so that the spurious
counterexample found in the previous iteration can never be found again. At the same
time, it keeps the other part of the abstract state space that cannot be blamed for finding
the spurious counterexample. This is called lazy pruning.
If AAPOR is naively used together with lazy pruning, the result may be incorrect. Con-
sider a situation where the abstract state space is reduced with AAPOR with a precision
Π. Let s be a state with a calculated persistent set PS which is a valid persistent set with
Π. The abstractor finds a counterexample which turns out to be spurious. The refiner
lazily prunes the abstract state space. Let s not be in the pruned part: it is kept in the
abstract state space for the next iteration. Let the precision change so that PS is not a
valid persistent set anymore. When the abstractor expands the state space in the next
iteration, it does not deal with the preserved part of the state space and explores only from
the state(s) where the state space has been pruned. Unfortunately, this is not a persistent
set selective search now, since the explored actions from s, PS is not a persistent set in the
new abstraction. That means, the correctness of the algorithm is no longer guaranteed.
In order to preserve that the exploration of the state space is a persistent set selective
search, exploration has to start again from states where the previously calculated persistent
set is not persistent anymore. For this, the persistent set calculation must be extended:
a set of variables is returned along with a persistent set with the semantics that the
returned set of actions is only persistent until none of the returned variables appears in
the precision. This way, when a new variable is entered into the precision, the abstractor
will know which states to recompute. Fortunately, previous exploration from such a state
s can be preserved, only some new set of actions must be explored in addition which
complete the no-more-persistent set to a persistent set (technically this means that the
set of actions already explored from s are given to Algorithm 2 as the initial actions input
parameter).
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Algorithm 3: Calculating a Persistent Set in an Abstraction with Lazy Pruning
Input: s, EA, IA ⊆ EA, Π
Output: PS, X /* PS is persistent until X ∩Π′ = ∅ */

1 PS ← IA
2 newAdded← True
3 ignored← {} /* Empty hash map */
4 while newAdded do
5 newAdded← False
6 toAdd← {α : α ∈ EA \ PS ∧ ∃α∗ ∈ reachable(s, α), ∃α′ ∈ PS

such that α∗ and α′ are dependent with Π}
7 foreach α in EA \ (PS ∪ toAdd) do
8 ignored[α]← ignored[α] ∪ {x : ∃α∗ ∈ reachable(s, α),∃α′ ∈ PS

such that α∗ and α′ are dependent with Π ∪ {x}}
9 end

10 if toAdd ̸= ∅ then
11 PS ← PS ∪ toAdd
12 newAdded← True

13 end
14 end
15 X ←

⋃
α∈ignored, α/∈P S ignored[α]

More formally, Algorithm 3 (the modified version of Algorithm 2) is used to calculate
persistent sets. It returns the tuple {PS, X} for a state s and a precision Π, where PS is
persistent in s until ∀ χ ∈ Π′, X ∩orig(χ) = ∅ for the precision Π′ of any later abstraction.
X is called the validity set of PS. In lines 7-9, for each action α that is not yet in PS
(and will not be added in that iteration), variables are collected whose presence in the
precision would mean that α has to be added to PS. At the end of the procedure, X is
calculated as the union of variables associated with actions not in the persistent set. Let
PSs,i and Xs,i denote the sets PS and X calculated for state s in iteration i of CEGAR.
In the refinement step of CEGAR, part of the abstract state space from iteration i − 1
is preserved according to a lazy pruning technique. Let the preserved states be S′ and
the refined precision of iteration i be Πi. The handling of preserved states is shown in
Algorithm 4 with the following explanation: from all state s ∈ S′ where ∃ χ ∈ Πi such
that Xs,i−1 ∩ orig(χ) ̸= ∅, exploration restarts. Algorithm 3 gets PSs,i−1 as the "initial
actions" input for such a state. For a state s′ ∈ S′ where ∀ χ ∈ Πi, Xs,i−1 ∩ orig(χ) = ∅,
exploration does not restart from s′.

Algorithm 4: Process Preserved States after Lazy Pruning
Input: Spreserved, Π

1 foreach s in Spreserved do
2 if ∃ χ ∈ Πi such that Xs,i−1 ∩ orig(χ) ̸= ∅ then
3 (PSs,i, Xs,i)← call Algorithm 3(s, enabled(s), PSs,i−1, Π)
4 explore each α ∈ PSs,i \ PSs,i−1 from s

5 else
6 (PSs,i, Xs,i)← (PSs,i−1, Xs,i−1)
7 end
8 end
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4.2.3 Correctness of the Presented Methods

In this section, it is proven that the presented algorithms preserve the correctness of model
checking, that is the new algorithms yield an equivalent result with the original problem.
First, the soundness of the simple version, and then the correctness of the lazy pruning
compatible version is proven.

4.2.3.1 Correctness of the Simple Version

The correctness of the simple AAPOR algorithm can be formalized with the following
theorem:

Theorem 2. Let the exploration of the abstract state space start from the abstract initial
state in every iteration of CEGAR. Let s be a state in the abstract state space reached
during the exploration and let the set of explored actions from s be calculated with Algo-
rithm 2. The state space exploration is a persistent set selective search in every iteration
of CEGAR. �

The correctness of a persistent set selective search is already proven as explained in Sec-
tion 4.1. So if Theorem 2 holds, the simple version of AAPOR is sound. To prove
Theorem 2, we prove Lemma 1, then we conclude the theorem with a few more steps.
First, let us recall Lemma 1:

Lemma 1. It is sufficient to determine whether two actions α and β are independent
in a state s with precision Π by the following conditions. Actions α, β ∈ enabled(s) are
independent in s with respect to Π if:

• α and β are not the actions of the same process, and

• there is no abstract variable in the precision in which an object accessed by α and
an object accessed by β both appear. �

In the proof of the lemma, it is shown that the new conditions given in this lemma for
the independence of two actions are sufficient indeed in the abstract state space built with
the same precision. Since we are dealing with an over-approximation of the dependency
relation, where we can safely say that two actions are dependent (even if they are inde-
pendent in reality), we only have to check the cases where two actions are independent
based on the new conditions.

Proof (Proof of Lemma 1). Let α, β ∈ enabled(s), pα and pβ be the process of α and β,
and Π be the current precision. Let Xα and Xβ be the set of objects accessed by α and β
respectively.
If pα = pβ, they are dependent owing to the first condition. Again, if ∃ χ ∈ Π, such that
Xα ∩ orig(χ) ̸= ∅ and Xβ ∩ orig(χ) ̸= ∅, α and β are dependent based on the second
condition of the lemma.
So let us check the definition of independent actions (Definition 4) in the remaining case
where pα ̸= pβ and ∄ χ ∈ Π, such that Xα ∩ orig(χ) ̸= ∅ and Xβ ∩ orig(χ) ̸= ∅. Here,
the conditions of the lemma tell us that α and β are independent. The two criteria in the
definition of independence:
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• β ∈ enabled(post(s, α)) and α ∈ enabled(post(s, β))
Indirectly, let us assume that β /∈ enabled(post(s, α)), that is, β is disabled by
α (the case is symmetric for α and β). Since process pβ is at the same location
in s and post(s, α) (as pα ̸= pβ), β can only be disabled if its guard condition
evaluates to false in post(s, α). As the guard condition of β is true in s (because
β ∈ enabled(s)), the evaluation of the guard expression of β is different in s and
post(s, α). Consequently, some abstract information (an abstract variable) about
variables used by β is changed by α.
The previous statement says that α changes the value of an abstract variable χ (so
Xα∩orig(χ) ̸= ∅), and the guard condition of β depends on χ (so Xβ∩orig(χ) ̸= ∅).
This contradicts our supposition that ∄χ ∈ Π such that Xα ∩ orig(χ) ̸= ∅ and
Xβ ∩ orig(χ) ̸= ∅.

• post(post(s, α), β) = post(post(s, β), α)
Let s = (lpα , lpβ

, ..., dα,1, ..., dα,n, dβ,1, ..., dβ,m, ...) where lpα and lpβ
are the location

of pα and pβ in s; dα,i and dβ,j are the values of the abstract variables related
to α and β respectively (these abstract variables are disjoint indeed based on our
supposition)5.
Executing α changes lpα and may change the values dα,1, ..., dα,n but leaves the
locations lpi (for all other processes pi ̸= pα) and the values of other abstract variables
(other than dα,j) as they are. The same is true for β, analogically. So:
post(s, α) = (l′pα

, lpβ
, ..., d′

α,1, ..., d′
α,n, dβ,1, ..., dβ,m, ...)

post(s, β) = (lpα , l′pβ
, ..., dα,1, ..., dα,n, d′

β,1, ..., d′
β,m, ...)

Since β only uses the abstract variable values dβ,1, ..., dβ,m (and obviously only the
location of pβ matters for β), as far as β is concerned, s and post(s, α) is equivalent.
So taking β from s or post(s, α) will lead to the same location l′pβ

and will set the
same new values d′

β,1, ..., d′
β,m for the related abstract variables. Again, the same is

true for α, analogically. Thus:
post(post(s, α), β) = post(post(s, β), α) = (l′pα

, l′pβ
, ..., d′

α,1, ..., d′
α,n, d′

β,1, ..., d′
β,m, ...)

Both criteria in the original definition of independence is met so α and β are indeed
independent in the supposed case. □

With Lemma 1, the proof of Theorem 2 is immediate:

Proof (Proof of Theorem 2). The abstract state space is built all over again from the ini-
tial state in every iteration of CEGAR. Let us take one iteration. The actions to explore
are calculated with Algorithm 2 from every state. The way Algorithm 2 calculates de-
pendency between actions is a sufficient over-approximation of the dependency relation of
actions based on Lemma 1. As a consequence, the correctness of Algorithm 2 is equivalent
with Algorithm 1 whose correctness is explained in Section 4.1.1.3. Thus, the set of re-
turned actions are persistent in that particular state and remain persistent throughout this
iteration since the abstraction does not change during an iteration. That is, a persistent
set selective search is performed in every iteration. □

5The first "..." stands for the locations of other processes and the last "..." signifies the values of other
abstract variables that are neither related to α nor β.
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4.2.3.2 Correctness of the Integration with Lazy Pruning

The following theorem proves the correctness of the extended AAPOR algorithm which
can be used when the abstract state space is pruned lazily:

Theorem 3. Let s be a state in the abstract state space and Π be the current precision.
If s has not been explored before, let the set of explored actions from s and an associated
set of variables be calculated with Algorithm 3. If s has been explored previously, let s
be processed again with Algorithm 4. The state space exploration performed this way is
a persistent set selective search in every iteration of CEGAR. �

Proof. First, observe that Algorithm 3 and Algorithm 2 calculates persistent sets exactly
the same way (the modifications in Algorithm 3 does not affect the returned set PS).
Thus, the returned set PS by Algorithm 3 is persistent in the iteration when it has been
calculated as we have seen it for Algorithm 2 in the proof of Theorem 2.
Now, let us take an iteration i of CEGAR with a set of preserved states Spreserved from
the previous iteration i − 1 (for i = 0, Spreserved = ∅) and let Π be the precision of the
applied abstraction in iteration i. We show that the set of explored actions is persistent
in every state at the end of iteration i. We have the following two cases for a state s:

1. s ∈ Spreserved: s is reprocessed with Algorithm 4.
If ∃χ ∈ Π such that Xs,i−1 ∩ orig(χ) ̸= ∅, the set of actions to explore PSs,i is
recalculated with Algorithm 3 and the actions in PSs,i that has not been explored
previously are explored from s. So the set of explored actions from s at the end of
this iteration is PSs,i which is persistent in this abstraction based on our observation
at the beginning of this proof.
If ∄χ ∈ Π such that Xs,i−1 ∩ orig(χ) ̸= ∅, PSs,i−1 is still persistent in s in this
abstraction based on Lemma 1.

2. s /∈ Spreserved: the set of actions to explore PSs,i is calculated with Algorithm 3 and
all actions in PSs,i are explored from s. So the set of explored actions from s at
the end of the iteration is PSs,i which is persistent in this abstraction based on our
observation at the beginning of this proof.

We have seen that the set of explored actions are persistent for each state in the abstract
state space at the end of any iteration. So a persistent set selective search is performed in
every iteration of CEGAR. □

4.3 Implementation

I implemented the presented abstraction-aware partial order reduction algorithm into the
open-source CEGAR-centric model checking framework Theta[30]. The verification tool
is developed by the Fault Tolerant Systems Research Group (FTSRG) of our university.6

The practical output of my work for this scientific students’ association conference is a
contribution to this open-source project in the form of a GitHub pull request7. With my
contribution, Theta is capable of verifying considerably more concurrent programs (see
details in Section 5.2). Just as in previous years, Theta will participate in SV-COMP [8]

6https://ftsrg.mit.bme.hu
7The pull request is available at: https://github.com/ftsrg/theta/pull/177
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later this year. SV-COMP is a software verification competition where verification tools
have to verify programs as fast as they can. Hopefully, with the contributed algorithms,
Theta will be able to solve much more tasks in the concurrency safety category of the
competition, thus ranking much better than in previous years.

4.3.1 Theta

Theta is a configurable model checking framework which supports several formalisms
including C programs as an input model [30, 23, 7]. The core of its model checking
algorithm is CEGAR. Theta is designed to perform reachability analysis in the provided
model. The framework has been created with configurability in mind: different abstraction
domains or refinement strategies are implemented to compare their performance. Theta
can be easily extended to support the verification of new formalisms by implementing a
new front-end that can interpret the desired models.

4.3.2 Implementation of Abstraction-Aware POR

Partial order reduction has a role when building the abstract state space, so POR has
been implemented in the abstractor component of Theta. More specifically, when the
abstract state space is expanded, the enabled actions are collected. There is an interface
LTS (standing for labelled transition system) which has a method that can return the
enabled actions for a state and a precision. The original implementation of this interface
simply returns all enabled actions. I added two new implementations: one that works
according to the traditional POR algorithm (this version does not use the precision) and
another that realize abstraction-aware POR.
The lazy computation compatibility mainly required additions in the refiner component.
At the end of the refinement step, all states are marked whose persistent sets are not
persistent in the new abstraction. The abstractor is extended so that already explored
actions are not processed again in such states.
The implementation of the new algorithms preserve the configurability of Theta: I used
dependency injection to add the new algorithms in a manner that can be easily configured,
changed or extended.

4.3.3 An Optimization - Large-Block Encoding

Exploring a transition in the state space means that an SMT problem has to be solved
[23]. It is a costly operation, so we try to minimize necessary exploration during the
verification. That is what partial order reduction does. On the other hand, other methods
can also reduce the number of transitions in the state space.
Large-block encoding (LBE) achieves this by grouping several actions on the same transi-
tion [13]. This way, more complex but less SMT problems have to be solved. Benchmark
results in [13] and in Section 5.2 show that this trade-off is well worth it. Actions can be
grouped on the same transition based on various methods. I apply a simple version of LBE,
where action groups are formed in a way that any consecutive thread-local operations and
operations of atomic blocks are appended after a global operation. (By global operations,
I mean operations that use global variables; the rest are thread-local operations.) The se-
mantics of these action groups (lists) are that the actions in it are performed sequentially.
Let us illustrate how the implemented version of LBE works on a small example.
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void func() {
ATOMIC_BEGIN();
x = 1;
y = 2;
ATOMIC_END();
int a = 0;
if(x > y) {

a -= x;
a--;

} else {
a += y;
a++;

}
x = a;

}

(a) Source code

Atomic Begin

x = 1

y = 2

 Atomic End

[ x > y ]  [ x ≤ y ]

a = a - x a = a + y

a = a - 1 a = a + 1

x = a

a = 0

(b) Single-block encoding

Atomic Begin, 
x = 1, 
y = 2, 
Atomic End, 
a = 0

[ x > y ] [ x ≤ y ]

a = a - x,
a = a - 1

a = a + y 
a = a + 1

x = a

(c) Large-block encoding

Figure 4.3: Small example to illustrate the presented algorithms

Example 8. Let us have the C function from Figure 4.3a (the function does not perform
any meaningful task). ATOMIC_BEGIN() and ATOMIC_END() mark the beginning and the
end of an atomic block, respectively. x and y are global variables, while a is local.

Figure 4.3b is the CFA of the program without LBE (that is, it uses SBE, single-block
encoding). Figure 4.3c shows the CFA where LBE is applied. The operations on the first
edge were grouped together because the first four operations form an atomic block and a =
0 is a thread-local operation. Then, in the two branches, the first operation is global since
they use x or y, and the second is thread-local, so they can be represented by a single edge.
The condition check and the last operation are global operations without any thread-local
operations after them, thus, they remain alone.

This version of LBE works well with partial order reduction. By having at most one global
operation per edge, new dependency does not arise. If we group an operation using x and
an operation using y on a single transition, it would be dependent with any action that
uses any of x and y. So the applied LBE does not counteract partial order reduction.
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Chapter 5

Evaluation

The implemented algorithms have been evaluated on C programs since Theta supports
the parsing of C programs [7] and a large set of benchmark data is available in the form
of C programs1 [8].

5.1 Case Study

In this section the concepts and algorithms presented in the previous chapter are illustrated
on a small multi-threaded program.
Let our example be the C program from Figure 5.1a (some operations are labeled for
later reference). There are two threads: the main thread m and thread t is created by m.
We would like to verify this program: our formal requirement is that no error location is
reachable in any execution of our program (reach_error() indicates the error location).
We can quickly tell that the program is unsafe: if y = 1 on m is executed between y = 2
and the condition check on t, the program reaches the error location. So we anticipate
that the result of the model checking will be unsafe (with a counterexample telling us how
the error location can be reached). The abstraction-aware version of POR will be used
with lazy pruning.
For the model checking, the program is converted to an XCFA (see Figure 5.1b), that is,
both threads have its own CFA. (For the sake of simplicity, variable initialization at the
beginning and return operations have been removed from the figure.) The error location
is highlighted in the CFA of thread t.
Let us use explicit-value abstraction in CEGAR and let the precision be {x} in the first
iteration, so only the value of variable x is tracked. Figure 5.2a depicts the abstract state
space of the first iteration. Rectangles are states and arrows are transitions. The locations
of the active processes are shown in a state along with the value of the tracked variables
(which is only x in this iteration). The labels of transitions indicate the performed action
with the thread of that action. To be concise, si,j refers to the state where the locations
of the threads are Lm,i, Lt,j (s1,0 refers to the state with Lm,1, Lt,0 and s3 refers to the
state with Lm,3).

1gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/tree/main/c
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int x = 0, y = 0;
void *f(void *arg) {

α: x = 2;
β: y = 2;
if(x > y) reach_error();
return 0;

}
int main() {

pthread_t t;
pthread_create(&t, 0, f, 0);
γ: y = 1;
pthread_join(t, 0);
return 0;

}

(a) Source code

start thread t

Lm,0

y = 1 (γ)

Lm,1

join thread t

Lm,2

Lm,3

     x = 2 (α)

Lt,0

     y = 2 (β)

Lt,1

[ x ≤ y ] [ x > y ]

Lt,2

Lt,3 Lt,e

Thread m: Thread t:

(b) XCFA of the program

Figure 5.1: Small example to illustrate the presented algorithms

From s0, the only enabled action is the one that starts thread t. This action forms a
(trivial) persistent set in itself; it is explored from s0.
In s1,0, the enabled actions are {α, γ}. With precision {x}, valid persistent sets are
{α}, {γ}, and {α, γ}. Note that {γ} is not a persistent set if we do not consider the
abstraction because β ∈ reachable(s1,0, α), and β and γ both uses the variable y, so α
would have to be added to the persistent set. On the other hand, when we calculate
dependency with the consideration of the precision, β and γ are independent since they
do not commonly use any tracked variable. Algorithm 1 returns in s1,0 the persistent sets
{α} and {α, γ}, while Algorithm 3 returns the persistent sets {α} and {γ} for the initial
actions {α} and {γ} respectively. Then, one of the smallest persistent sets is chosen:
{α} can be the choice both with the traditional POR and the abstraction-aware POR
algorithm. The validity set returned by Algorithm 3 for this persistent set is X = ∅,
which means this persistent set is valid in any abstraction. As the persistent set {α} has
been chosen, only α is explored from s1,0.
Unexplored transitions are marked with a cut symbol and lead to a question mark to denote
that those parts of the abstract state space have not been explored. These transitions are
colored with green if only abstraction-aware POR ignores it and with purple if traditional
POR ignores it, too. Also, a label indicates the algorithms that ignore the given transition.
In s1,1, β and γ are enabled. Traditional POR explores both of them because they both
use variable y, so they are dependent. However, abstraction-aware POR explores only
one of them, let it be γ. The validity set is {y} for this persistent set: if y is added to
the precision, {γ} will no longer be persistent in s1,1. Now, the main thread has to wait
until thread t terminates to perform the join operation. In s2,2, the guard condition of
the actions starting from Lt,2 evaluate to unknown because y is not tracked, so both of
them is enabled. One branch terminates normally, but the other reaches the error location
Lt,e. The transitions of the abstract counterexample leading to the error state found in
iteration 1 is highlighted with yellow on Figure 5.2a. This counterexample is given to the
refiner to decide whether it is spurious or feasible.
The counterexample turns out to be spurious: if we execute the operations in this order, x
will not be greater than y, so the error location is not reachable in fact. The refiner refines
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(a) Abstract state space in iteration 1
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(b) Abstract state space in iteration 2

Figure 5.2: Abstract state spaces in the model checking

the abstraction by adding y to the set of tracked variables: the new precision is Π = {x, y}.
In addition, the refiner prunes the abstract state space lazily. Let the preserved states be
{s0, s1,0, s1,1} (highlighted with blue on Figure 5.2b).
In iteration 2, the exploration restarts from s1,1 where the abstract state space has been
pruned in the refinement step. Besides, the preserved states are processed with Algo-
rithm 4. In s0, there is no unexplored enabled action, so no more actions have to be
explored from there. In s1,0, the chosen persistent set was {α} in the last iteration with
an empty validity set X = ∅. Since X ∩ orig(χ) = ∅ for any abstract variable χ ∈ Π, {α}
is still persistent in this iteration: we do not have to explore new actions from s1,0.
The previously used persistent set of s1,1 has been {γ} with a validity set X = {y}.
Since we use explicit-value abstraction, orig(y) = {y} for the abstract (and also concrete)
variable y. X ∩ orig(y) = {y} which is not an empty set. So {γ} is not persistent
anymore in s1,1, a new persistent set has to be calculated. Anyway, this is the point
where the abstract state space has been pruned in the refinement step, so the exploration
would have to start again from this state. Unfortunately, β and γ are dependent in this
abstraction, so the only persistent set in s1,1 is {β, γ}. It is not surprising, though: all
variables are tracked in this iteration, so we do not expect that actions operating on the
same variable are judged independent even by AAPOR.
From here, the exploration of the state space continues according to Figure 5.2b. Again,
an abstract counterexample is found. The refiner checks whether this counterexample is
spurious or feasible. Now, we have a feasible counterexample: if we execute the operations
based on the yellow path leading to s2,e in Figure 5.2b, we reach the error location, indeed.
At this point, the verification is complete: the algorithm returned an unsafe verdict and
the counterexample found in the last iteration.
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5.2 Evaluating on Benchmark C Programs

The implemented partial order reduction algorithms and optimizations have been evalu-
ated on a set of 763 C benchmark programs provided by SoSy-Lab.2 Programs from the
pthread-* folders were used. The same benchmarks are used in SV-COMP [8].

5.2.1 Test Configurations

The benchmark tests were carried out with different configurations of Theta. The POR
algorithm itself has been tested in three version: POR disabled (NO_POR), only traditional
POR has been applied (BASIC) or abstraction-aware POR has been applied (AAPOR). The
LBE optimization was either turned on (LBE) or turned off (NO_LBE). The pruning strategy
has been FULL or LAZY. The abstraction domain was explicit-value abstraction (EXPL)
or Cartesian predicate abstraction (PRED). Several combinations of these configurations
were tested.

5.2.2 Results

This section shows the results of the benchmark tests. Each test had a time limit of 900
seconds: Theta had this amount of time to perform the model checking and come to a
verdict.

5.2.2.1 Number of Solved Tasks

Firstly, as for correctness, the provided results (where Theta could respond before time-
out) were practically all correct3. The great number of correct results and the absence of
incorrect ones confirm that the implemented algorithms work correctly.
As for the performance, Figure 5.3 shows the number of solved tasks (out of 763) by
configuration.

217

194LBE

NO_POR BASIC AAPOR

EXPL

FULL
NO_LBE 79 216

241 249

LAZY
NO_LBE 223 216

198

PRED

FULL
NO_LBE 15 36

LAZY
17 76 85

60 129 130

79

LBE

NO_LBE

LBE

LBE 54 53 52

248 251

45

Figure 5.3: Evolution of the algorithms
2gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/tree/main/c
3In fact, a few results have been incorrect, but they are all the results of a bug in Theta [2] independent

of the newly implemented algorithms. So in the scope of this work, we can ignore them without loss of
credibility.
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Figure 5.4 highlights my contributions. The 1st (blue) columns in both groups show the
results without my contributions. In this case, LBE is turned off. In the rest of the cases,
LBE is turned on. The results represented by the 2nd (orange) columns were achieved
without POR, the 3rd (green) with traditional POR, and the 4th (red) with abstraction-
aware POR. With my contributed algorithms, Theta is capable of solving 3-8 times more
problems.

Figure 5.4: Evolution of the algorithms

5.2.2.2 CPU Time

Exploring the number of solved tasks does not tell us everything about performance as
the benchmark programs are not perfectly homogeneous. To get a better understanding
of the performance of the presented algorithms, let us have a look on the time taken to
solve tasks. In this section, I concentrate on the POR algorithms and omit the LBE
optimization.
The quantile plots of Figure 5.5 show the CPU time taken to solve the problems. The
horizontal axis represents the tasks, while the vertical axis shows the CPU time in seconds
that Theta needed to solve the corresponding problem. The problems are sorted based
on time to solve: that is why the curves are monotonically increasing. Figure 5.5a and
Figure 5.5b plot the CPU time measured in the EXPL and PRED domains respectively.
In these plots, the flatter the curve, the better, because a flatter curve means more tasks
solved in less time. These plots confirm that POR considerably improves the performance.
Furthermore, though not excessively, abstraction-aware POR outperforms the traditional
version of POR.
At first sight, there does not seem to be a considerable difference between traditional and
abstraction-aware POR in Figure 5.5a. However, that small gap between the curve of
traditional POR (marked with circles, orange) and the curve of AAPOR (marked with
triangles, green) means significant difference in the average problem-solving time. In this
case, traditional POR solved tasks in 110 seconds on average, while abstraction-aware
POR managed it with an average of 87.3 seconds. That is, traditional POR needed 26%
more time on average than AAPOR.
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Figure 5.5: CPU time taken to solve tasks

Exploring an action in the state space is a costly operation because it requires to solve
an SMT problem (with the help of the Z3 SMT solver [23]). In the benchmark tests,
the number of explored actions has also been counted for each problem. Plotting these
data reveals similar characteristics to the CPU time plots. The similarities are illustrated
in Figure 5.6. The plots in the first row are the same as in Figure 5.5. The number of
explored actions is plotted in the second row. The charts in the same column refer to
the same configuration to make the similarities between the CPU time and the number of
explored actions easy to see.
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Figure 5.6: CPU time and number of explored actions

5.2.3 Benchmark Conclusions

Benchmark results show that partial order reduction makes the abstraction-based verifi-
cation of concurrent software much more efficient. The proposed abstraction-aware POR
further improves the performance. Looking at both the number of solved tasks and the
CPU time taken for problems to solve, we can conclude that abstraction-aware POR
achieves better improvement with predicate abstraction.
Large-block encoding turned out to be a very efficient optimization technique that con-
siderably improved the performance of the verification.
With these results on the SV-COMP benchmark data set, Theta can now be considered
a competitive tool in the concurrency safety category of SV-COMP (according to results
at SV-COMP 2022 [8]).
Naturally, there are some threats to the validity of the benchmarking, though hopefully,
they did not change the results substantially. The tests were performed in a distributed
environment of several virtual machines in the BME NIIF cloud4. Even though, the VMs
had equal resources (16GB of RAM, 8 CPU cores, Ubuntu 20.04 LTS operating system),
it cannot be assured that all tasks ran in exactly the same circumstances. Some other
operating system tasks in the VMs or some fluctuations in the host environment where the
VMs were run could add certain noise to the benchmark results. On the other hand, the
tests were carried out with BenchExec, a benchmark execution environment that fulfills
the requirements for reliable benchmarking [14]. Furthermore, the tests were performed
multiple times which yielded similar results. These factors strengthen the validity of the
benchmarks.

4https://niif.cloud.bme.hu
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5.3 Summary

Software verification is a difficult task where various techniques were introduced to handle
data and reduce the complexity yielded by concurrent, multi-threaded software solutions.
The following list summarizes my contributions in the scope of this work.

• I introduced a combined abstraction-based software verification approach that re-
duces the complexity of thread interactions to be explored in concurrent software.

• I proposed a novel partial order reduction algorithm working on the abstract state
space representation: I devised a new definition of dependency, that exploits infor-
mation encoded in the current precision of the abstraction.

• I have shown that the proposed algorithm can be used together with a lazy extension
of CEGAR.

• I proved the correctness of the proposed methods.

• I implemented the presented algorithms along with a large-block encoding optimiza-
tion in the Theta model checking framework.

• I performed benchmark tests and analyzed the results.

The proposed algorithm improves the performance of concurrent software verification.
With my work, I contributed to the open-source verification tool, Theta. My contribution
enables Theta to verify a wider range of concurrent programs from safety-critical systems.
As a short-term result, hopefully, Theta will be able to solve much more problems and
achieve better ranking in SV-COMP 2023 than in the previous year.

5.4 Future Work

Though the presented algorithms considerably enhance the verification of concurrent pro-
grams, it is still a proof-of-concept implementation, so far. The solution could be improved
in many ways. Such possibilities for future work are the following.

• A state-of-the-art POR algorithm (e.g., Source DPOR or Optimal DPOR [1]) could
be used as the base of POR instead of the persistent set approach.

• The dependency relation could be further optimized by distinguishing read and write
depencencies, where two read operations are independent.

• A new architecture has been developed in Theta in recent months. I implemented
the proposed algorithms in the old version, and it will be a future work to implement
the algorithms in the new architecture.

Software verification, especially the verification of concurrent software remains a hard
problem. I hope to find new solutions and optimize the algorithms presented in this work
to make concurrent software verification feasible for safety-critical systems of larger scale.
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