
Budapest University of Technology and Economics
Faculty of Electrical Engineering and Informatics

Department of Automation and Applied Informatics

Subgraph ismorphism in dynamic graphs

Scientific Students’ Association Report

Author:

László Sári
Kinga Csilla Lauter

Advisor:

Dr. Luca Szegletes

2021

Contents

Kivonat i

Abstract ii

1 Introduction 1
1.1 Background . 2
1.2 Algorithms . 3

1.2.1 VF2 . 3
1.2.2 VF2++ . 4
1.2.3 DAF . 9

1.2.3.1 Build DAG . 9
1.2.3.2 Build CS . 10
1.2.3.3 Backtracking and adaptive matching order 10
1.2.3.4 Failing sets . 11

2 Incremental algorithms 15
2.1 Locality based method . 15
2.2 Search tree based method . 16

2.2.1 Search tree . 16
2.2.2 Node operations . 16

2.2.2.1 Node deletion . 17
2.2.2.2 Node insertion . 17

2.2.3 Edge operations . 17
2.2.3.1 Edge deletion . 18
2.2.3.2 Edge insertion . 19

3 Evaluation 21
3.0.1 Implementation details . 21
3.0.2 Datasets . 21
3.0.3 Measurements . 22

4 Future work 25

5 Conclusion 26

Bibliography 27

Kivonat

A gráf- és a részgráf-izomorfia vizsgálatának számos alkalmazási területe van kezdve a
szociális hálózatok analíizisétől az áramkörök tervezéséig. A gráfok csúcspontokból és
csúcspontokat összekötő élekből állnak. A részgráf-izomorfia azt jelenti, hogy G1 és G2
gráfokat nézve van-e olyan G2’ részgráfja G2-nek, amelyik izomorf G1-gyel, azaz létezik
egy-egyértelmű megfeleltetés (bijekció) G2’ és G1 csúcsai és élei között. Ez a probléma NP-
teljes, vagyis nem ismerünk polinomiális idejű algoritmust a megoldására. A problémára
azonban számos state-of-the-art megoldás létezik, melyek különböző módokon próbálják
minimalizálni az adott eljárás lépésszámát.

A valóságban léteznek olyan gráfok is, melyek időben változhatnak. Folyamatosan új
csúcsok, élek keletkezhetnek és törlődhetnek. A dolgozat célja a részgráf-izomorfia vizsgá-
lata ilyen dinamikusan változó gráfok esetén.

i

Abstract

Graph- and subgraph-isomorphism is used for a wide range of problems such as social
network analysis and circuit board design. A graph consists of vertices and edges that
connect two distinct vertices. Subgraph-isomorphism means that given G1 and G2 graphs,
a G2’ subgraph of G2 exists such that it is isomorphic with G1. In other words, there exists
a bijection between the vertices of G2’ and G1. This is a well-known NP-hard problem.
Several state-of-the-art algorithms exist that optimize their workings in different ways in
order to accelerate their performance.
In reality, however, not all graphs are static in time. Some graphs are chaning constantly;
new vertices and edges are created and deleted on a regular basis. The goal of this work
is the analysis of subgraph-isomorphism in case of dynamic graphs.

ii

Chapter 1

Introduction

Subgraph isomorphism is an NP-hard problem which has many application areas. It is
called substructure search in cheminformatics and it is used to find similar molecular
compounds based on their structural formula. In bioinformatics, complex biological sys-
tems are decomposed into several different networks, such as protein-protein interaction,
metabolic interaction or hormone signaling networks, which are represented as graphs.
Analyzing and understanding these large networks requires finding certain topological
patterns, i.e. subgraph isomorphism.
Graph pattern matching is also a core concept of social network analysis. Such graphs
tend to be extremely large with millions of vertices and billions of edges in the real world.
Although subgraph isomorphism has been extensively studied in the past, there was a
renewed interest in the topic recently, which yielded some notable results. The newer
algorithms significantly out-perform the previous state-of-the-art solutions (Ullman’s al-
gorithm [12] [6], VF2 [7]), sometimes even in order of magnitudes. This made it possible
to query subgraph isomorphisms in such large graphs. However social networks are not
static. In practice, they are frequently updated with typically small changes like adding
or removing edges. Despite the changes being small, they will still have an impact on
the matches. This means that the matches have to be re-computed from scratch on every
update, which is highly infeasible even with the newer and faster subgraph isomorphism
algorithms. To minimize unnecessary re-computations, incremental algorithms can be
used, that compute the changes in matches based on the changes in the search graph.
[9] discusses in depth several types of incremental graph pattern matching algorithms.
However the authors’ topic of interest in [8] and [9] is incremental graph pattern matching
with (bounded) graph simulation. A graph G matches a pattern q via graph simulation if
there exists a binary relation S ⊆ Vq × VG such that

1. for each u ∈ Vq, there exists v ∈ VG such that (u, v) ∈ S;

2. for each (u, v) ∈ S,

(a) L(u) = L(v), and
(b) for each edge (u, u′) ∈ Eq, there exists a non-empty path ρ = v ⇝ v′ in G such

that (u′, v′) ∈ S and the length of ρ is less than the maximum allowed length
defined on the given edge in q.

Graph simulation is less strict about the topology of its results than graph isomorphism.
This can be beneficial if we want to express loose connections in our query patterns, and

1

on top of that, pattern matching with graph simulation can be done in O(n3). However
if we do require strict matches, only subgraph isomorphism can come into play. Although
the authors provided an incremental algorithm for subgraph isomorphism, it was more of
a demonstration that even in an NP-hard case, computing matches incrementally (which
is also NP-hard) can out-perform a fast solution, VF2. The approach introduced there
does not take full advantage on previous computations, and it was also not evaluated in
much detail. Note that this was not the main focus of the paper.
In this work, we investigate how two state-of-the-art algorithms (VF2++, DAF) can be
converted into their incremental version. First, we give an introduction how the two
algorithms work. Then we describe a method to make them incremental. Finally, we
evaluate the results both in terms of complexity and practical measurements.

1.1 Background

Definition 1 (Graph). A graph is a pair G = (V, E), where V is a set of vertices, E is
a set of paired vertices that denotes the undirected edges of the graph. �

Definition 2 (Labelling). L : V → K, is a vertex labelling function which maps vertices
into arbitrary sets whose elements are the labels of the given node. Two vertices, u, v are
equivalent if L(u) = L(v). �

Definition 3 (Isomorphism). G1 and G2 are isomorphic if a bijection exists between
V1 and V2 such that two vertices are neighbours in G1 if and only if their respective pairs
in G2 are neighbours, neighbouring vertex pairs have the same number of edges between
each other, and a vertex and its pair have the same labels. �

Definition 4 (Subgraph). G1 is a subgraph of G2 if V1 ⊆ V2, E1 ⊆ E2 and two vertices
are neighbours in G1 only if they are neighbours in G2. �

Definition 5 (Induced subgraph). If E1 consists of those edges from E2 whose both
vertices are in V1, and E1 contains all these edges, then G1 is an induced subgraph of G2.�

Definition 6 (Subgraph isomorphism). G1 is subgraph isomorphic to G2 if G1 is iso-
morphic to any subgraphs of G2. �

Definition 7 (Induced subgraph isomorphism). G1 is induced subgraph isomorphic
to G2 if G1 is isomorphic to any induced subgraphs of G2. Throughout this paper, we
refer to induced subgraph isomorphism with the term of subgraph isomorphism. In this
paper, we call G1 as query graph q and G2 as data graph G. M(q, G) denotes the set of
mappings found by an arbitrary subgraph isomorphism algorithm. �

Definition 8 (Mapping). An injection m : D → VG is called a (partial) mapping, where
D ⊆ Vq. �

Notation 1. mq and mG denotes the domain and the range of m respectively.

Definition 9 (Coverage). A mapping m covers a node u ∈ Vq ∪ VG if u ∈ mq ∪mG. �

Definition 10 (Whole mapping). A mapping m is a whole mapping if it covers all the
nodes of Vq. �

2

This paper concentrates on the induced subgraph isomorphism problem in dynamic graphs,
i.e. graphs that change with time. After finding the initial matches given a query graph
q and a data graph G, keep the set of matches up to date in response to small updates
∆G on G without recomputing all matches from scratch. ∆G can be one of the following
operations:

• add a new node to G,

• remove an existing node from G along with all its associated edges,

• add an edge between two nodes of G and

• remove an existing edge between two nodes of G.

1.2 Algorithms

This section gives a brief overview on how the two algorithms of interest (DAF and
VF2++) work.

1.2.1 VF2

Since VF2++ is an extension over VF2, first, we describe how VF2 works. It is a recursive
algorithm where each state of the matching process can be associated with a partial
mapping m. VF2 starts with an empty mapping and it gradually extends it until a whole
mapping is reached. For the current mapping m, it calculates a candidate set of (u, v)
pairs to be included in m. It iterates over the (u, v) elements of the candidate set, and
if F(m, (u, v)) is feasible then it recursively tries to extend m′, where F is the feasibility
function and m′ is a partial mapping obtained by adding (u, v) to m.

Definition 11. Let m be a mapping. Cons(m, (u, v)) is a logical consistency function
which is true if and only if m satisfies the requirements of induced subgraph isomorphism
considering qm and Gm, where qm and Gm are the subgraphs of q and G induced by mq

and mG respectively. Cons is used to verify that the consistency of m also holds after
extended with (u, v). �

Definition 12. Let m be a mapping. Cut(m) is a logical cutting function which is false
if there exists a sequence of extensions of m for which the resulting mapping is whole and
it satisfies the requirements of induced subgraph isomorphism. Cut is used to determine if
the current partial mapping is not contained in any whole mapping, thus trying to extend
it would be useless. �

Definition 13. The feasibility function F is defined as follows:
F(m, (u, v)) = Cons(m, (u, v)) ∧ ¬Cut(m). �

The feasibility function ensures that the algorithm considers only (u, v) candidates such
that m extended with (u, v) remains consistent, and it eliminates the need of processing
partial mappings for which it can be proven that they cannot be extended to a whole
mapping.
Let Tq(m) := u ∈ Vq mq : ∃u′ ∈ mq : (u, u′) ∈ Eq, and
TG(m) := v ∈ VG mG : ∃v′ ∈ mG : (v, v′) ∈ EG.

3

Algorithm 1.1: VF2 algorithm
1 Procedure vf2(m)
2 if m covers Vq then
44 Output(m)
5 else
77 Pm ← the candidate set of pairs for extending m
8 foreach (u, v) ∈ Pm do
9 if F(m, (u, v)) then

1111 vf2 (extend(m, (u, v)))
12 end
13 end

The candidate set for extending m is Pm. Pm consists of the pairs of uncovered neighbors
of covered nodes. If there exists no such pair, Pm contains all uncovered nodes. Formally,

Pm =
{

Tq(m)× TG(m), if Tq(m) ̸= ∅ and TG(m) ̸= ∅
(Vq \mq)× (VG \mG), otherwise.

1.2.2 VF2++

VF2++ [11] was published by Alpár Jüttner and Péter Madarasi in 2018. The algorithm
makes performance improvements compared to VF2 by calculating a matching order, in
which the vertices of q are processed in a partial mapping, and by applying a more efficient
cutting function.
The order of the nodes of q to be matched have a huge impact on the number of visited
states. In case of VF2, the lack of strictly defined matching order can result in evaluating
an unnecessarily larger number of states that could have been pruned if the matching order
was different. By choosing a proper matching order, one can eliminate such non-fruitful
computations earlier.

Example 1. The following example was taken from the original VF2++ paper. Let q be
a query graph that cannot be mapped to G, and u ∈ Vq. Let q′ := Vq∪{u′

1, u′
2, · · · , u′

k}, Eq∪
{(u, u′

1), (u′
1, u′

2), · · · , (u′
k−1, u′

k)}, i.e. q′ is the same graph as q which was extended with a
k long path, which is disjoint from q and one of its starting nodes is connected to u ∈ Vq.

If the first k vertices in the matching order were the nodes of the newly added path, VF2
would iterate through all possible k long paths in G, only to realize that no partial mappings
can be extended to q′.

However, if the algorithm started the matching process with vertices from q, it would not
have matched any nodes from the path.

The first step of VF2++ is determining the matching order in which the algorithm will
process the vertices of the query graph q. During the order’s computation, VF2++ takes
into account the structure of q and its labeling. First, it chooses a node with the least
common label and with the largest degree. This node will be the root of a tree, which will
be used to determine the final matching order O.

root = r|r ∈ arg max
deg

(arg min
labelO

(Vq \ O)),

4

where labelO(n) := |v ∈ VG : L(n) = L(v)| − |u ∈ O : L(n) = L(u)|, i.e. it computes the
difference between the number of vertices in G with the label of n and the number of
vertices in O with the label of n. Next, the algorithm computes a tree T by traversing q
in BFS (Breadth first search) order from the previously calculated root, and it processes
each level of T the following way. Let Vq,d denote the set of vertices of T in depth d. The
process selects the vertices with the largest connectivity respect to O denoted by conn,
i.e. those nodes whose number of neighbors that are already in O is the largest. Then
from these nodes, it selects the ones with the largest degree, then those with the rarest
label.

o = u|u ∈ arg min
labelO

(arg max
deg

(arg max
conn

(Vq,d))),

The selected node o is appended to O, and it is removed from Vq,d. This continues until
Vq,d has no more elements. Algorithm 1.2 and 1.3 describe the matching order procedures
on a high level.

Algorithm 1.2: VF2++ order
1 Procedure vf2pp_order()
33 O := ∅
4 while Vq \ O ≠ ∅ do
66 r ∈ arg maxdeg(arg minlabelO (Vq \ O))
88 T ← BFS(r)
9 foreach d = 0, 1, · · · depth(T) do

1111 Vq,d := nodes of the d-th level
1313 process(Vq, d)
14 end
15 end

Algorithm 1.3: VF2++ process the d-th level of T

1 Procedure process(Vq,d)
2 while Vq,d ̸= ∅ do
44 o ∈ arg minlabelO (arg maxdeg(arg maxconn(Vq,d)))
66 Vq,d ← Vq,d \ o
88 O.append(o)
9 end

Example 2. Let q and G be the graphs from figure 1.1.

We want to compute the matching order of q. To select the root node for our BFS tree T ,
we need the least frequent labels. In this example, all labels in G are assigned twice, which
means that our root candidates are still u1, u2, u3, u4. From these vertices, the vertex with
the largest degree is u2, thus it will be the root of T . The resulting tree from traversing q
in BFS order can be seen in figure 1.2.

Processing T begins with the 0-th level. On this level, the node with the largest connectivity,
with the largest degree and with the most infrequent label is u2 because it is the only vertex.
u2 is appended to the order O and since there is no other nodes left, we move on to the
next level. Here, all vertices have the same connectivity because all nodes are adjacent
to u2. The nodes with the largest degree are u1 and u3, both of them have a degree of

5

u1

A

u3

B

u2

C

u4

B

(a) q

v1

C

v2

A

v3

B

v4

A

v5

C

v6

B

(b) G

Figure 1.1: Graphs for VF2++ order example

u2

u1u3 u4

Figure 1.2: BFS tree of q from u2

2. Neither of the vertices share the same label as the only vertex in the order, thus their
label’s frequencies are to be considered. In this case both of them are equally frequent with
a frequency of 2. We have to choose one from them, let u1 be the new node to add to O.
Since there are two more remaining vertices on the level, we stay on the 1st level. This
time, the node with the largest connectivity is u3 because it is adjacent to u1 and u2, while
u4 is only adjacent to u2. u3 is added to O. The only vertex left on the first level is u4,
thus it is finally appended to the order. All u ∈ Vq is added to the order and the procedure
stops. The final order is the following:

O = {u2, u1, u3, u4}

VF2++’s additional changes to the original include a refined way of determining the
candidates of u ∈ Vq and applying cutting rules on them. In this version, u ∈ Vq’s
candidates will be v ∈ VG that are in the neighborhood of mG, are not covered yet and
are consistent with m.

Pm(u) = v ∈ VG|¬coveredm(v) ∧ ∀u′ ∈ Vq : (u, u′) ∈ Eq ∧ u′ ∈ mq ⇐⇒ (v, m(u′)) ∈ EG

VF2++ also introduces a new cutting rule which verifies that for a given candidate pair
(u, v), v in G has at least as many neighbors with the appropriate labels as u in q.
Summarizing the two extensions made over VF2, the final VF2++ algorithm is defined in
algorithm 1.4.

Example 3. Let us continue our example started in example 2. As a reminder, the match-
ing order is O = {u2, u1, u3, u4}. Now we have to find all mappings of q in G. VF2++
starts with an empty mapping. The next vertex to match according to O is u2. Since it is
the first node in the mapping, its candidates will be the set of all nodes vj ∈ VG. u2 has
three neighbors. Two with label B and one with label A. Now we can check the feasibility
of our candidates.

6

Algorithm 1.4: VF2++ algorithm
1 Procedure vf2pp(q, G)
33 O ← vf2pp_order()
55 match(∅, 0)
6 Procedure match(m, depth)
7 if m covers Vq then
99 Output(m)

10 else
1212 u ← O[d]
1414 Pm(u) =

v ∈ VG|¬coveredm(v) ∧ ∀u′ ∈ Vq : (u, u′) ∈ Eq ∧ u′ ∈ mq ⇐⇒ (v, m(u′)) ∈ EG

15 foreach (u, v) ∈ Pm do
16 if F(m, (u, v)) then
1818 match (extend(m, (u, v)), d + 1)
19 end
20 end

• v1 has one neighbor with label A, thus (u2, v1) is infeasible.

• v2 has three neighbors, one with label A, one with label B and one with label C. It
is short on neighbors with label B, thus (u2, v2) is also infeasible.

• v3 has two neighbors with label A and two with label C, which means (u2, v3) is once
again infeasible.

• v4 has also not enough neighbors with label B, which makes (u2, v4) infeasible.

• v5 has one neighbor with label A and two neighbors with label B which means (u2, v5)
is feasible, thus we extend our empty mapping with this pair.

∅, ∅

u2, v3 u2, v4u2, v2u2, v1 u2, v5

Figure 1.3: First level of a VF2++ search tree

The next vertex in the order is u1 which has one neighbor that is in the current mapping:
u2. u1’s candidates are the vertices vj ∈ VG that are adjacent to m(u2) = v5. The
candidates are v3, v4, v5. Now we apply our cutting rules. v3 is not feasable because it has
no neighbors with label B. v4 is feasable because it has all the necessary neighbors with
the right labels. We extend the tree with (u1, v4). Figure 1.4 shows the second level of the
search tree.

The thrid vertex is u3. We select its neighbor in q, which is u1. Now we consider u1’s
pair v4, and we select its uncovered neighbors in G. These are the vertices v2 and v3. We
check if these vertices are adjacent to u2’s pair v5. v2 is not, thus the only candidate is
v5. v5 also passes the cutting test, and we extend the mapping with (u3, v3). Figure 1.5
shows the search tree with three levels.

7

∅, ∅

u2, v3 u2, v4u2, v2u2, v1 u2, v5

u1, v3 u1, v4

Figure 1.4: Second level of a VF2++ search tree

∅, ∅

u2, v3 u2, v4u2, v2u2, v1 u2, v5

u1, v3 u1, v4

u3, v3

Figure 1.5: Third level of a VF2++ search tree

The last vertex is u4. Its only neighbor in q is u2. u2’s pair is v5. We select the its
uncovered neighbors in G which is v6. It also passes the feasability test, thus we extend
the current mapping with (u4, v6), which is a whole mapping.

∅, ∅

u2, v3 u2, v4u2, v2u2, v1 u2, v5

u1, v3 u1, v4

u3, v3

u4, v6

Figure 1.6: Fourth level of a VF2++ search tree

Now we backtrack in the search tree. v3 has no other candidates. We check u1’s last
candidate, v6, which is infeasible. The last candidate to check is (u2, v6) which is also
infeasible. The final search tree can be found in figure 1.7.

The mapping that we found via VF2++ is the following: (u1, v4), (u2, v5), (u3, v3), (u4, v6).

8

∅, ∅

u2, v3 u2, v4u2, v2u2, v1 u2, v5 u2, v6

u1, v3 u1, v4 u1, v6

u3, v3

u4, v6

Figure 1.7: Complete VF2++ search tree

1.2.3 DAF

DAF was originally introduced in [10]. The algorithm converts the input graphs q and G
into its own special data structure which is computed by (D)dynamic programming. It
also uses an (A)adaptive matching order and (F)failing sets, hence the name, DAF.
As a first step, DAF creates its own data structures from q and G, called candidate space
(CS). Then DAF searches mappings in CS with a backtracking algorithm in which the
matching order is adaptive. Furthermore, it uses failing sets in order to prune the parts
of the search space for which it can be proven that they contain no whole mappings.
Algorithm 1.5 shows a high level description of DAF.

Algorithm 1.5: DAF
Input: q, G
Output: all mappings

22 qD ← build_dag(q, G)
44 CS ← build_cs(q, qD, G)
66 M ← ∅
88 backtrack(q, qD, CS, M)

1.2.3.1 Build DAG

DAF creates a DAG (directed acyclic graph) qD from q. qD will be used for computing
CS, and later for computing the matching order adaptively. For each node u ∈ Vq, let the
initial candidate set be:

Cini(u) = v|v ∈ VG ∧ degG(v) ≥ degq(u) ∧ Lq(u) = LG(v)

, i.e. those v ∈ VG vertices with the same label as u in q whose degree is also greater than
or equal to the degree of u. Now that the initial candidates are computed, we define the
root of qd and the first vertex to be matched as

9

r ∈ arg min |Cini(u)|
degq(u) ,

where u ∈ Vq. The less this quotient is the less candidates u will have and since it has a
large degree, it will have more topological constraints then others, thus the algorithm can
prune more branches.
Starting from r, DAF traverses q in BFS order and it directs all edges in qD from upper
levels to lower levels. I.e. given an undirected edge e = (u, v) ∈ Eq, the resulting edge in
qD will have a direction of u → v, if depth(u, BFSq(r)) ≥ depth(v, BFSq(r)), otherwise
the direction will be u ← v. Nodes on the same level of the BFS tree are sorted by how
infrequent their labels are and by their degrees in descending order. The direction of an
edge between nodes on the same level is determined by previously described order. After
qD is computed, it is used to create another DAG q−1

D which is the same as qD but the
direction of its edges are reversed.
The next step is to build the candidate space structure CS.

1.2.3.2 Build CS

Given a query graph q and a data graph G, a CS structure built from q and G contains
candidates C(u) for all u ∈ Vq such that

1. ∀u ∈ Vq : ∃ a candidate set C(u) ⊆ Cini(u), and

2. there is an edge between v ∈ C(u) and v′ ∈ C(u′) if and only if (u, u′) ∈ Eq and
(v, v′) ∈ EG.

Initially all C(u) in CS is set to Cini(u). The initial candidate sets can be further refined
to exclude unnecessary elements with the help of qD and q−1

D . The refinement procedure
alternates between the two DAGs in each of its execution. The current DAG is denoted
by q′, and initially it is set to q−1

D . The procedure refines all C(u) into C ′(u) with dynamic
programming.
v ∈ C ′(u) if and only if v ∈ C(u) and there exists a vc vertex which is a neighbor of v,
and vc ∈ C(uc) for all uc children of u in q′. I.e. v remains in the candidate set if it is
connected to at least one candidate from all children of u in q′. The procedure traverses
q′ in a reversed order, thus nodes will be processed only after all their children has been
processed. According to the authors’ empirical study, CS cannot be further refined after
three steps usually.
During refinement, only the candidate sets are maintained, the edges are not. They are
added to the CS structure only after the refinement procedure has ended. The edges are
stored in adjacency lists Nu

uc
(v) for each v ∈ C(u), and for each (u, uc) ∈ EqD . Nu

uc
(v)

contains a list of vertices vc adjacent to v in G such that vc ∈ C(uc).

1.2.3.3 Backtracking and adaptive matching order

Finally, DAF searches all mappings of q in CS which corresponds searching mappings in
G. A vertex u ∈ VqD is extendable respected to partial mapping m if all predecessors of u
in qD are covered by m. In each state of the algorithm, it determines the set of extendable

10

vertices. For each extendable vertex, it calculates the set of extendable candidates Cm(u)
respected to partial mapping m. Let p1, · · · , pk be the predecessors of an extendable vertex
u in qD. The extendable candidate set of u is defined as the candidates that are adjacent
to the pairs of all neighbors of u in q. Formally,

Cm(u) = ∩k
i=1Npi

u (m(pi))

The matching order is determined based on the extendable candidate sets. The authors
describe two methods.

• Candidate-size order: the next vertex to be matched is an extendable vertex u where
|Cm(u)| is minimal.

• Path-size order: the next selected extendable vertex u is where wm(u) is minimal.
wm(u) is an estimate for the weight of a path mapping. Since we used the candidate
size order in our experiments, we don’t define wm(u) in much more detail here.

The matching order is adaptive because it depends on the current partial mapping m.
After an extendable vertex u has been selected, DAF extends the mapping with (u, vc) for
each candidate vc in Cm(u), and it backtracks after traversing the whole subtree.

1.2.3.4 Failing sets

DAF uses failing sets to find and prune branches that are unnecessary to traverse because
they cannot contain any whole mappings. The search tree is traversed in DFS (depth
first search) order with a backtracking algorithm. It is possible however, that a partial
mapping m extended with (u, v) will not be wholly extendable because of other conflicting
pairs in m which were added higher up in the search tree, thus matching u with other
v′ vertices will not result in any whole mappings either. Failing sets help to find these
branches. A failing set is denoted by Fm where m is a partial mapping corresponding to
a path in the search tree. Failing sets are computed from bottom-up. Let anc(u) and
succ(u) denote the ancestors and successors of u in q, respectively. A leaf can belong to
one of three classes.

• Conflict class: If (u, v) is a leaf, and v is already covered then (u, v) belongs to
the conflict class, and it is denoted by (u, v)!. In case of a conflict class, Fm =
anc(u) ∪ anc(m−1(v)).

• Empty class: If u has no extendable candidates, (u, ∅) belongs to the empty class.
Fm = anc(u).

• Mapping class: If the mapping belonging to the leaf is a whole mapping, then it
belongs to the mapping class. Fm = ∅.

Failing sets for internal, non-leaf vertices are defined by the failing sets of their children.
Let (un, vi) be the children of the current node (u, v), and let mi denote the partial
mappings of the children and let the current mapping of (u, v) be m. Fm is computed the
way described in algorithm 1.6.
If the algorithm is at a node (u, v) in the search tree whose Fm ̸= ∅ and u /∈ Fm, then it
means that it does not matter, which candidate is matched to u, no whole mappings will

11

Algorithm 1.6: Calculate the failing set of an internal node
1 if ∃child node mi such that Fmi = ∅ then
33 Fm = ∅
4 else
5 if ∃child node mi such that un /∈ Fmi then
77 Fm = Fmi

8 else
1010 Fm = ∪k

i=1Fmi

11 end
12 end

be found, thus all siblings of (u, v) are redundant which means that these branches can be
pruned.

Example 4. In the following example, we follow through an execution of DAF. Figure
1.8 shows the graphs we will use during the execution.

u1

A

u3

B

u2

C

u4

B

(a) q

v1

C

v2

A

v3

B

v4

A

v5

C

v6

B

(b) G

Figure 1.8: Graphs for DAF execution example

First, we compute the initial Cini values.

Cini(u1) = {v2, v4} →
|Cini(u1)|
degq(u1) = 2

2 = 1

Cini(u2) = {v5} →
|Cini(u2)|
degq(u2) = 1

3 = 0.3̇

Cini(u3) = {v3} →
|Cini(u3)|
degq(u3) = 1

2 = 0.5

Cini(u4) = {v3, v6} →
|Cini(u4)|
degq(u4) = 2

1 = 2

The smallest number is 0.3̇, thus the root will be u2. Starting from u2 in q, we get the
following qD and q−1

D graphs.

The next step is to create the initial CS structure and then reduce it with the help of qD

and q−1
D . Figure 1.10 shows the initial CS structure.

We use q′ = q−1
D for our first refinement. The first vertex will be u2 because it has

no children, thus C ′(u2) = {v5} The second vertex to be processed is u1 because all its
children (u2) has been processed already. v2 is not connected with any of the candidates

12

u2

u3

u1 u4

(a) qD

u2

u3

u1 u4

(b) q−1
D

Figure 1.9: DAGs created from q

Figure 1.10: Initial CS structure

of u2. Because of this, v2 will no longer be part of u1’s candidates: C ′(u1) = {v4}.
The next vertex is u4, because its children u2 has been processed. Its new candidates are
C ′(u4) = {v3, v6}. The last vertex is u3, for which C ′(u3) = {v3}. Figure 1.11 shows the
CS structure after the first refinement.

Figure 1.11: CS structure after the first refinement

Now q′ = qD, however it is not possible to refine CS any further. Next, we find all
mappings in CS. The first elements of the search tree is u2 and its candidate (u2, v5). The
set of extendable vertices is {u1, u4} because their only parent u2 in qD has been processed.
We compute the appropriate candidates:

Cm(u1) = {v4}

Cm(u4) = {v3, v6}

13

Because of the candidate-size order, we extend the search tree with u1 and its candidate
(u1, v4). At this point, u3 becomes extendable because its parents were procesed. Its can-
didates are Cm(u3) = {v3}, and since it is the only extendable vertex at the moment, we
extend the search tree with (u3, v3). The only vertex left is u4. Cm(u4) = {v3, v6}. The
search tree is extended with (u4, v3)! (v3 is already covered, hence the exclamation mark)
and (u4, v6). The branch containing (u4, v6) corresponds to a whole mapping. The failing
sets of all nodes on this branch will be empty. The failing set of (u4, v3)! is Fm = {u3, u4}.
In this case, failing sets have no effect on the algorithm. Figure 1.12 shows the search tree
with failing sets produced by DAF.

u2, v5

Fm = ∅

u1, v4

Fm = ∅

u3, v3

Fm = ∅

u4, v6

Fm = ∅

u4, v3!

Fm = {u3, u4}

Figure 1.12: Search tree with failing sets created by DAF

We got as a result that q is isomorphic to one of G’s subgraph and the mapping is the
following: (u1, v4), (u2, v5), (u3, v3), (u4, v6).

14

Chapter 2

Incremental algorithms

This chapter describes two incremental algorithms for finding subgraph isomorphisms in
dynamic graphs. First we introduce the approach described by Wenfei Fan in [9]. Then
we present our generic method which can be applied to DAF and VF2++ respectively.

2.1 Locality based method

Let d denote the diameter of the query graph q which corresponds to the length of the
longest shortest path in q. Let ∆e denote the addition or deletion of edge e = (v, v′)
in G. Moreover let V (d, e) be the set of vertices in G that are within a distance d from
v or v′. Finally, let G(d, e) be the subgraph of G induced by V (d, e), and ∆G(d, e) be
the subgraph of ∆G induced by V (d, e), where ∆G = (V, E \ {e}) or ∆G = (V, E ∪ {e})
depending on the operation of ∆e. With these notations, we can define the locality
property of subgraph isomorphism. For any given changes of ∆e in G, the changes ∆M in
the set of mappings M(q, G) is the difference between M(q, G(d, e)) and M(q, ∆G(d, e)),
i.e. the difference between the mappings found in the dth neighborhood of the original
graph and in the neighborhood’s modified version. This is a trivial property because new
mappings can appear or become obsolete only in the immediate vicinity of the affected
edge e. Mappings further away from e than d are not affected by ∆e because neither
vertices of e are reachable from there. Regardless of that a new edge was added or an old
one was removed, mappings can both appear and become obsolete in the updated graph.
The mappings that have to be added to the existing set is M(q, ∆G(d, e)) \M(q, G(d, e)),
while the mappings that have to be removed are M(q, G(d, e)) \M(q, ∆G(d, e)).
The algorithm uses this locality property as follows. Given a query graph q and a data
graph G, compute the initial set of mappings M with a classic subgraph isomorphism
algorithm, e.g. VF2++. Then, for each update ∆e, (1) find the diameter d of q, (2)
extract the subgraph ∆G(d, e) from G, (3) compute M(q, ∆G(e, d)), (4) then update M
as described above.
Instead of re-computing all mappings in G, this method works on a subset of G. Although a
regular subgraph isomorphism is running in the background, reducing the size of the input
data graph can make this variant faster. The effectiveness depends on the query graph
and the data graph. If G(d, e) remains small compared to G, there will be a massive speed
up. However if G(d, e) ∼ G, for example in case of small world networks, the algorithm
performs the same as a regular subgraph isomorphism algorithm.

15

Algorithm 2.1: Locality algorithm
Input: q, G, ∆e, M = V F2 + +(q, G)

1 d← diameter(q);
2 Gd,e ← G(d, e);
3 ∆M ← V F2 + +(q, Gd,e);
4 M = M ∪M(q, ∆G(d, e)) \M(q, G(d, e));
5 M = M \M(q, G(d, e)) \M(q, ∆G(d, e));
6 return M

2.2 Search tree based method

This chapter describes our method of making the previously introduced algorithms incre-
mental. One way or another, both algorithms traverse a search tree eventually. In both
cases the search tree is purely abstract, it has no physical manifestation in the memory.
It is only a concept for depicting the recursive paths an algorithm traverses during its
matching process, allowing us to analyze the search space of a given solution.

2.2.1 Search tree

We propose to store the traversed search tree while running a subgraph isomorphism
algorithm initially, and make use of it in future updates. Tq,G is a search tree of query
graph q and data graph G, where paths from the root to a leaf correspond to (partial)
mappings, and a node contains an (u, v) pair where u ∈ Vq, v ∈ VG denotes a single vertex
mapping. The root r of Tq,G contains an empty mapping. A root-to-leaf path, whose
length l = |Vq| is a complete mapping because it maps all nodes of q. The rest of the
root-to-leaf paths correspond to partial mappings.
In a typical scenario, at the end of an execution of a subgraph isomorphism algorithm,
the search tree contains some complete mappings and orders of magnitude more partial
mappings that could not be extended any further. These partial mappings play a crucial
role in the incremental version. One can think about them as potential partially pre-
calculated mappings. The reason, why a partial mapping could not be extended is because
the algorithm ran out of valid candidates in the area of the mapped nodes’ neighborhood
in G. This is caused by a conflict between the topology of q and the topology of the
mapped nodes and their neighborhood. I.e. there was no more vertices left such that the
mapping obtained by extending the current partial mapping with it would remain a partial
subgraph isomorphism. These conflicts could be resolved when a new edge is added to or
an old one is deleted from G. At this point, having these partial mappings in memory
can speed up the process of removing matches that became obsolete and finding new ones
that were impossible in the past.
In the upcoming sections, we define an incremental algorithm for each type of graph
modifications.

2.2.2 Node operations

First, we describe incremental node operations, i.e. vertex insertion and deletion.

16

2.2.2.1 Node deletion

Deleting a node vd from G can only reduce the original number of mappings. Mappings
that did not contain vd are unaffected, while those that contained vd have to be removed
since they no longer can map to vd. Now we only have to think through that no new
mappings could arise. Indeed, that cannot be the case because the only edges that were
removed are edges belonging to vd which means only partial mappings which contain vd

are affected. However since vd itself is also deleted, these mappings become obsolete, which
means that no new mappings can be found.
Since there are no new mappings to be found, the only work to do in case of a node
deletion is pruning the search tree Tq,G. More specifically, cut off every sub-branch that
starts with a node (u, v) where v = vd. In worst case scenario this would mean traversing
the whole search space. We already saw however, that any given change can only affect
mappings whose vertices are in the dth neighborhood Nd(G, vd) of vd. Thus we can skip
any branches that map a query graph vertex to a node v /∈ Nd(G, vd).

Algorithm 2.2: Delete node incrementally
Input: q, G, Tq,G, vd

22 d← diameter(q)
44 Nd(G, vd)← dth neighborhood of vd in G
5 Procedure delete_node(node, vd)
6 foreach child ∈ node.children do
88 (u, v)← child.mapping
9 if v = vd then

1111 node.remove(child)
12 else if v ∈ Nd(G, vd) then
1414 delete_node(child, vd)
15 end
16 end

2.2.2.2 Node insertion

Inserting a new node has no effects on mappings because at the time of insertion, it cannot
be part of any mappings because it has no connections. Thus inserting a new node needs
no special care.

2.2.3 Edge operations

In case of induced subgraph isomorphism, both inserting and deleting an edge can result
in loosing and gaining mappings. Removing an edge e makes mappings where nodes of e
were part of the mapping no longer valid. At the same time, in case of partial mappings
where e made it impossible to further extend, removing it may cause new mappings to
appear. For example in 2.1, as a result of removing the BD edge from G, M(q1, G′) will
loose all of its mappings, while M(q2, G′) will find only new mappings.
The same goes for edge insertion. If we were to insert the BD edge into G then M(q1, G′)
would find new mappings, while M(q2, G′) should remove the half of them. It is clear that
these can happen simultaneously, as well.

17

A

B C

D

(a) G

1

2 3

4

(b) q1

1

2 3

4

(c) q2

1

2 3

(d) q2

Figure 2.1: Example how mappings can appear and disappear in both cases of edge
deletion and insertion.

2.2.3.1 Edge deletion

When an edge e = (v1, v2) is removed from G, first, we have to prune the search tree to
remove mappings that are no longer valid and we have to somehow find the new mappings.
We have to prune all branches that correspond to a partial mapping which both v1 and v2
are part of, and there is an edge between m−1(v1) and m−1(v2) in q. We find all paths that
correspond to such partial mappings, and prune them down from the first point where v1
and v2 both appeared in the path. 2.3 shows the pruning algorithm when an edge was
deleted.

Algorithm 2.3: Prune search tree on edge deletion
1 Procedure prune(node, v1, v2)
33 (u, v) = node.mapping
4 if v1 not marked as found ∧ v = v1 then
66 mark v1 as found
7 else if v2 not marked as found ∧ v = v2 then
99 mark v2 as found

10 end
11 if v1 is marked ∧ v2 is marked then
12 if (m−1(v1), m−1(v2)) ∈ Eq then
1414 return true
15 end
16 end
1818 node.children = {child ∈ node.children : ¬prune(child, v1, v2)}

Fig 2.2 shows an example partial search tree of G and q3 from Fig. 2.1. The red nodes
represent the pruned sub-branches as a result of removing the BD edge from G.
Finding new mappings is somewhat harder because we have to extend the search tree
instead of just pruning it. Because of the locality property of the incremental subgraph
isomorphism problem, we know for sure that any new mappings that will appear have to
contain either v1 or v2 or both. Thus our job is reduced to look for partial mappings that
contain either of those two vertices. There are two kinds of partial mappings to consider.
Typically, the search tree will contain some partial mappings that contain one of these two
vertices but definitely not all of them. As a first step, we add these partial mappings to the
search tree. We traverse the tree and check if a node has a child that maps the next vertex
u ∈ Vq to vi. If it does not, and vi was not covered already in the mapping, and it causes
no conflicts between the topology of the mapping and q then we create a new child under
the current node with m(u) = vi. Now that we have all the partial mappings containing
v1 or v2 - note that not all of them are expanded yet - we find all those leaves whose path

18

∅, ∅

1, B

2, D

3, A 3, C

2, A

3, C

Figure 2.2: Pruning of a partial search tree of G and q3 from Fig. 2.1.

from the root corresponds to a partial mapping that contains v1 or v2 and we execute our
choice of subgraph isomorphism algorithm from that point. Naturally, these two steps can
be combined into one traversal. If we hit a node where (1) we can create a new child or (2)
a node is a leaf and its path contains v1 or v2, and it is not a complete mapping, we execute
our subgraph isomorphism algorithm. We can speed up the algorithm by only considering
those branches that contain vertices such that ∀v ∈ m : v ∈ Nd(G, v1) ∪ Nd(G, v2), i.e.
branches that contain only mapped vertices such that they are in the dth neighborhood
of e. algorithm 2.4 formally describes the algorithm of finding new mappings after an
edge has been deleted, and algorithm 2.5 shows the incremental algorithm for subgraph
isomorphism in case of edge deletion.

Algorithm 2.4: Find new mappings incrementally
1 Procedure find_mappings(node, forced_candidates)
2 if node.depth = |Vq| ∨ node.mapping.v /∈ Nd(G, (v1, v2)) then
44 return
66 u ← node.extendable_vertex_of_children
7 foreach vc ∈ forced_candidates do
8 if ∄child : child.mapping = (u, vc) then
9 if vc is not covered ∧ vc is good candidate then

1111 child = node.add_child(u, vc)
1313 ISO(child)
14 end
15 if node is leaf ∧ (v1 ∈ m ∨ v2 ∈ m) then
1717 ISO(node)
18 else
19 foreach child ∈ node.children do
2121 find_mappings (child, forced_candidates)
22 end
23 end

2.2.3.2 Edge insertion

Inserting a new edge into G will have a really similar effect on the mappings as and edge
deletion. Mappings can both appear and disappear from the original mapping set. In fact,

19

Algorithm 2.5: Delete edge incrementally
Input: q, G, Tq,G, e

22 d← diameter(q)
44 (v1, v2) = e
66 Nd(G, (v1, v2))← dth neighborhood of v1 and v2 in G
88 prune (root(Tq,G), v1, v2)

1010 find_mappings (root(Tq,G), {v1, v2})

the algorithm described above is almost applicable to this problem out of the box. It is
clear that finding new mappings will be the same in this case, as well. We have to take
care about how we prune the search tree before that. Indeed, removing nodes that pass
the test (m−1(v1), m−1(v2)) ∈ Eq makes no sense because we just added that new edge.
We can make this condition generic however, so that both edge operations can use the
same predicate. Instead of separating the two cases, we will simply check that an edge
between v1 and v2 in G exists if and only if an edge between m−1(v1) and m−1(v2) in q
exists. With these modifications, the final pruning algorithm can be found in algorithm
2.6.

Algorithm 2.6: Prune search tree on edge operation
1 Procedure prune(node, v1, v2)
33 (u, v) = node.mapping
4 if v1 not marked as found ∧ v = v1 then
66 mark v1 as found
7 else if v2 not marked as found ∧ v = v2 then
99 mark v2 as found

10 end
11 if v1 is marked ∧ v2 is marked then
1313 is_edge_in_q ← (m−1(v1), m−1(v2)) ∈ Eq

1515 is_edge_in_G ← (v1, v2) ∈ EG

16 if is_edge_in_q ̸= is_edge_in_G then
1818 return true
19 end
20 end
2222 node.children = {child ∈ node.children : ¬prune(child, v1, v2)}

20

Chapter 3

Evaluation

In this chapter, we evaluate our version of incremental induced subgraph isomorphism
algorithms.

3.0.1 Implementation details

All algorithms were written in Python. Although Python is not necessarily the right tool
for implementing high performance algorithms, the main goal of this work was to verify if
we can make significant improvements compared to running VF2++/DAF from scratch by
computing mappings incrementally. To evaluate the correctness of our work, two already
existing induced subgraph isomorphism implementations were used: networkx’s (Python
graph library) isomorphism module and boost c++ library’s vf2_subgraph_iso module[1].
Both modules implement VF2. We tried to compare the performance against the original
VF2++ implementation [4] however it did not produce the same results as the selected
baseline implementations. We also wanted to compare our results to the original DAF
implementation, however no sources for the project were available at time of writing, only
a set of pre-compiled binaries [2] which we did not run in the end.

3.0.2 Datasets

We used multiple datasets in our experiments. The first dataset was the Graph
Challange[3] dataset which was published by Massachusetts Institute of Technology (MIT)
and Amazon Web Services for the challange. The dataset consists of several large graphs.

• as: network of autonomous systems.

• ca-GrQc: collaboration network of general relativity researchers on arxiv.org.

• ca-HepTh: collaboration network of high energz physics researchers on arxiv.org.

• oregon1: peering infromation of autonomous systems in project Route Views of
University of Oregon.

The other dataset contains multiple generated graphs, namely scale-free networks gener-
ated by the Barabasi-Albert model[5].

21

3.0.3 Measurements

For each of the graphs, the following operations were made. We ran an initial VF2++
and DAF on the given graph G with query graph defined in figure 3.1. Then we randomly
deleted and inserted nodes and edges into G, and we measured how much time does
it take to incrementally compute the new mapping set. After the graph modifications
we ran our baseline measurement on the resulting graph G′, which was networkx’s VF2
implementation and we measured the time it took for the algorithm to finish. We also
verified that the number of ismorphisms found by all algorithms were the same.

0

1 2

3 4

Figure 3.1: Query graph for our experiments

The first step of our incremental algorithm is to run VF2++ and DAF from scratch. DAF
seems to struggle with more complex queries. Note that this might be caused by our
inefficient implementation. We tried to reach out for the authors of DAF to discuss this
issue, however we did not get any answers. As expected, VF2++ is generally faster than
VF2. More importantly, the results verify our proposed algorithm in case of VF2++. It
is significantly faster to update a graph and incrementally search changes in the mappings
than running a subgraph ismorphism algorithm from scratch. This applies to all kinds of
graphs, even where it takes all three variants a significant amount of time to find mappings,
the incremental version still finishes at least one order of magnitudes earlier.
Figure 3.2 shows the results of our measurements on the ca graphs from Graph Challange.
ca-GrQc is special, this was the only graph where VF2 could beat both initial runs of
VF2++ and DAF. It took 20s for VF2 to find all initial 868012 mappings, while it took
36s and 232s for VF2++ and DAF respectively. However even in this case, the incremental
version will outperform the original in the long run, because adding/removing nodes and
edges is so much faster. In this case, incremental VF2++ removed nodes in 0.62s and it
removed/inserted edges in 7.48s on average. These values were 0.166s and 178s for DAF.
The edges to be deleted/inserted were selected randomly.

Algorithm Initial Node deletion Edge deletion
VF2++ 35.7s 0.62s 7.48s

DAF 232s 0.166s 178s
networkx.VF2 20s N/A N/A

Table 3.1: Table showing results of ca-GrQc

The oregon graphs from Graph Challange were the largest and this were the graphs
where the incremental version really shined. To find the initial 3,568,766 mappings in
oregon_010331, it took 1595s, 7106s, and 4896s for VF2++, DAF and VF2 respectively.
In case of node deletion and edge insertion/deletion, incremental VF2++ was able to
update the set of mappings in 37.6s and 179.5s. Incremental DAF was able to delete
nodes in 2.51s but it took almost as much time (4133s) to update the mappings in case of

22

ca-GrQc ca-HepTh

0

200

400

600

800

1,000

0

2

4

6

8

In
iti

al
V

F2
+

+
In

iti
al

D
A

F
ne

tw
or

kx
V

F2
Av

g.
D

A
F

in
se

rt
/d

el
et

e
ed

ge

Av
g.

V
F2

+
+

de
le

te
no

de
Av

g.
V

F2
+

+
in

se
rt

/d
el

et
e

ed
ge

Av
g.

D
A

F
de

le
te

no
de

Figure 3.2: Results of ca graphs from Graph Challange

edge insertions as its initial run. There are missing DAF results for the other two oregon
graphs. This is because it did not finish in 10,000s.

oregon1_010331 oregon1_010407 oregon1_010414

2,000

3,000

4,000

5,000

6,000

7,000

0

50

100

150

200

In
iti

al
V

F2
+

+
In

iti
al

D
A

F
ne

tw
or

kx
V

F2
Av

g.
D

A
F

in
se

rt
/d

el
et

e
ed

ge

Av
g.

V
F2

+
+

de
le

te
no

de
Av

g.
V

F2
+

+
in

se
rt

/d
el

et
e

ed
ge

Av
g.

D
A

F
de

le
te

no
de

Figure 3.3: Results of oregon graphs from Graph Challange

Incremental VF2++ was also the fastest in case of scale-free graphs. We can see that it
took roughly 1/10-th of VF2’s time for VF2++ to finish its initial run, and it took roughly

23

Algorithm Initial Node deletion Edge deletion
VF2++ 1595s 35.94s 179.54s

DAF 7106s 2.51s 4133s
networkx.VF2 4896s N/A N/A

Table 3.2: Table showing results of oregon-010331

500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500

0

100

200

300

400

500

0

0.2

0.4

0.6

In
iti

al
V

F2
+

+
In

iti
al

D
A

F
ne

tw
or

kx
V

F2
Av

g.
D

A
F

in
se

rt
/d

el
et

e
ed

ge

Av
g.

V
F2

+
+

de
le

te
no

de
Av

g.
V

F2
+

+
in

se
rt

/d
el

et
e

ed
ge

Av
g.

D
A

F
de

le
te

no
de

Figure 3.4: Results of scale-free graphs generated by Barabasi-model

1/10-th of the time of VF2++’s initial run for the incremental algorithm to find the new
set of mappings in a modified graph. DAF performed similarly poorly as in previous cases.

Algorithm Initial Node deletion Edge deletion
VF2++ 4.38s 0.0984s 0.7201s

DAF 465.15s 0.177s 367.56s
networkx.VF2 53.33s N/A N/A

Table 3.3: Table showing results of a scale-free graph with 4500 nodes and 13500 edges

24

Chapter 4

Future work

We implemented our algorithms in Python to verify that our approach could work in
reality. As stated earlier, Python in itself is not suited for high performance algorithms.
Future works can include implementing these incremental algorithms in a language which
allows more fine-tuned memory handling, e.g. C++.
Since both VF2++ and DAF work on tree structures, both algorithms can be naturally
implemented paralelly. This also applies for our modified incremental algorithm. Future
research can involve parallelizing these algorithms.
Another area of future work would be using neural networks for detecting isomorphisms in
large graphs. The use cases may not fully align with our current work, because statistical
approaches can not guarantee to find all subgraph ismorphisms. However the performance
gain might out-weight the issue of missing mappings.

25

Chapter 5

Conclusion

In this work, we introduced a novel incremental algorithm for finding induced subgraph
isomorphisms in large dynamic graphs. The algorithm can be used in cases when there
are frequent changes to the data graph. We implemented a version based on VF2++
and DAF. In these use-cases the proposed procedure based of VF2++ out-performs any
induced subgraph isomorphism solution run from scratch.

26

Bibliography

[1] C++ boost vf2. https://www.boost.org/doc/libs/master/libs/graph/doc/vf2_
sub_graph_iso.html.

[2] Daf binaries. https://github.com/SNUCSE-CTA/DAF.

[3] Graph challange datasets. http://graphchallenge.mit.edu/data-sets.

[4] Lemon graph library. https://lemon.cs.elte.hu/trac/lemon/log/lemon/lemon/
vf2pp.h?rev=1433.

[5] Albert-Laszlo Barabasi and Reka Albert. Albert, r.: Emergence of scaling in random
networks. science 286, 509-512. Science (New York, N.Y.), 286:509–12, 11 1999. DOI:
10.1126/science.286.5439.509.

[6] Uros Cibej and Jurij Mihelič. Improvements to ullmann’s algorithm for the subgraph
isomorphism problem. International Journal of Pattern Recognition and Artificial
Intelligence, 29:150705201143007, 07 2015. DOI: 10.1142/S0218001415500251.

[7] Luigi Cordella, Pasquale Foggia, Carlo Sansone, and Mario Vento. A (sub)graph
isomorphism algorithm for matching large graphs. Pattern Analysis and Ma-
chine Intelligence, IEEE Transactions on, 26:1367 – 1372, 11 2004. DOI:
10.1109/TPAMI.2004.75.

[8] Wenfei Fan. Graph pattern matching revised for social network analysis. In Pro-
ceedings of the 15th International Conference on Database Theory, ICDT ’12, page
8–21, New York, NY, USA, 2012. Association for Computing Machinery. ISBN
9781450307918. DOI: 10.1145/2274576.2274578. URL https://doi.org/10.
1145/2274576.2274578.

[9] Wenfei Fan, Jianzhong Li, Jizhou Luo, Zijing Tan, Xin Wang, and Yinghui Wu. Incre-
mental graph pattern matching. In Proceedings of the 2011 ACM SIGMOD Interna-
tional Conference on Management of Data, SIGMOD ’11, page 925–936, New York,
NY, USA, 2011. Association for Computing Machinery. ISBN 9781450306614. DOI:
10.1145/1989323.1989420. URL https://doi.org/10.1145/1989323.1989420.

[10] Myoungji Han, Hyunjoong Kim, Geonmo Gu, Kunsoo Park, and Wook-Shin Han.
Efficient subgraph matching: Harmonizing dynamic programming, adaptive matching
order, and failing set together. Proceedings of the 2019 International Conference on
Management of Data, 2019.

[11] Alpár Jüttner and Péter Madarasi. Vf2++—an improved subgraph iso-
morphism algorithm. Discrete Applied Mathematics, 242, 03 2018. DOI:
10.1016/j.dam.2018.02.018.

[12] Julian R. Ullmann. An algorithm for subgraph isomorphism. Journal of the ACM
(JACM), 23:31 – 42, 1976.

27

https://www.boost.org/doc/libs/master/libs/graph/doc/vf2_sub_graph_iso.html
https://www.boost.org/doc/libs/master/libs/graph/doc/vf2_sub_graph_iso.html
https://github.com/SNUCSE-CTA/DAF
http://graphchallenge.mit.edu/data-sets
https://lemon.cs.elte.hu/trac/lemon/log/lemon/lemon/vf2pp.h?rev=1433
https://lemon.cs.elte.hu/trac/lemon/log/lemon/lemon/vf2pp.h?rev=1433
http://dx.doi.org/10.1126/science.286.5439.509
http://dx.doi.org/10.1142/S0218001415500251
http://dx.doi.org/10.1109/TPAMI.2004.75
http://dx.doi.org/10.1145/2274576.2274578
https://doi.org/10.1145/2274576.2274578
https://doi.org/10.1145/2274576.2274578
http://dx.doi.org/10.1145/1989323.1989420
https://doi.org/10.1145/1989323.1989420
http://dx.doi.org/10.1016/j.dam.2018.02.018

	Kivonat
	Abstract
	Introduction
	Background
	Algorithms
	VF2
	VF2++
	DAF
	Build DAG
	Build CS
	Backtracking and adaptive matching order
	Failing sets

	Incremental algorithms
	Locality based method
	Search tree based method
	Search tree
	Node operations
	Node deletion
	Node insertion

	Edge operations
	Edge deletion
	Edge insertion

	Evaluation
	Implementation details
	Datasets
	Measurements

	Future work
	Conclusion
	Bibliography

