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1 List of frequently used symbols and notations
G = Graph
V = Vertices
E = Edges
DAGG = Directed acyclic graph G
N = Number of variables, or columns in data table
Xi = Stochastic variables
{(xi, xj)} = Ordered pair of xi, xj
P (X) = Probability distribution of stochastic variable X
P (X|Y ) = Probability distribution of stochastic variable X given Y
|n| = Sample size
X → Y = X causes Y
A⊥⊥ B = A and B are independent stochastic variables
A 6⊥⊥ B|C = A and B are not independent stochastic variables given variable C
c = Degrees of freedom
O = Observed value
E = Expected value
χ2 = Chi square score
MR = Row marginal
MC = Column marginal
T = table of data
φ = Scoring function
BN = Set of Bayesian networks with N variables

6



2 Absztrakt
A kauzális kapcsolatok elemzése számos tudományterületen lényeges szerepet tölt be,
legtöbbször elengedhetetlen látni a vizsgált változók egymásra gyakorolt befolyásoló hatását,
ok-okozati összefüggéseit. Azonban olyan területeken, ahol csak megfigyelési adatok állnak
rendelkezésre ez jelentős kihívást jelent, ugyanakkor a tárgyterületre jellemző háttértudás
ezen képes enyhíteni.

Gyakorlati alkalmazásokra számos területen találunk példát, úgymint szociológia,
pénzügyi befektetések, élettudományok, azóta, hogy Judea Pearl az oksági kapcsolatok
feltárásának alapjait lefektette. Ezek közül talán legszembetűnőbb az orvostudományban
történő felhasználása ezen módszereknek, ahol is, a randomizált klinikai vizsgálatok ne-
hézségeit leküzdendő jelentek meg. A Mendeli randomizációként nevezett oksági össze-
függések feltárásán alapuló kutatás módszertan betegségek illetve kockázati tényezők közt
térképez fel kauzális kapcsolatokat genetikai variánsok vizsgálatán alapuló modellek segít-
ségével.

Az oksági kapcsolatok feltárására számos algoritmus jött létre az elmúlt pár évtized-
ben, melyek döntően két csoportra bonthatók: kényszer illetve pontszám alapú módsz-
erekre. Kényszer alapú algoritmusoknál a háttértudás bizonyosságaira, illetve a feltételes
függőségek sajátosságaira támaszkodunk egy-egy kauzális struktúra felderítése során, míg
pontszám alapú algoritmusoknál egy pontszám függvényre, amely igyekszik megállapítani,
hogy egyes oksági gráfok milyen jól jellemzik a rendelkezésünkre álló adatot. Mindkét
megközelítés módszerei között vannak folytonos illetve diszkrét változókkal dolgozó algo-
ritmusok. Ez utóbbiak közé tartozik a rejtett kompakt reprezentációk segítségével kauzális
kapcsolatot feltáró algoritmus, melynek érdekessége hogy a számos oksági hálót jellemezni
képes pontszámfüggvény közül a Schwarz-féle bayesi információs kritériumot (BIC) alka-
lmazza.

A dolgozatomban bemutatott kutatás célja a pontszámfüggvények és a velük járó
feltételezések elemzése, illetve a rejtett kompakt reprezentációkon alapuló oksági feltáró
algoritmus teljesítményének vizsgálata különböző pontszám függvények alkalmazása mel-
lett.
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3 Abstract
The analysis of causal relationships plays an important role in many fields of science, in
most cases it is essential to see the influence of the examined variables on each other and
their causal relationships. However, in areas where only observational data is available, this
is a significant challenge, although background knowledge specific to the subject area can
mitigate this.
Practical applications have been found in many areas, such as sociology, financial invest-
ment, life sciences, since Judea Pearl laid the foundations for exploring causation. Per-
haps the most striking of these applications is the use of these methods in medicine, where
they have emerged to overcome the difficulties of randomized clinical trials. The research
methodology based on the discovery of causal relationships, called Mendelian randomiza-
tion, explores causal relationships between diseases and risk factors using models based on
genetic variants.
A number of algorithms have been developed over the past few years to uncover causal
relationships which are mainly divided into two groups: constraint-based and score-based
methods. Constraint-based algorithms rely on the available background knowledge and the
properties of conditional dependencies in exploring a causal structure, while score-based
algorithms rely on a score function to determine how well the investigated causal graphs
represent the available data. Both approaches include algorithms that work with either
continuous or discrete variables. The latter includes a causal relationship discovery algo-
rithm using hidden compact representations, which is interesting due to its use of Schwarz’s
Bayesian Information Criterion (BIC), a scoring function that can describe many causal net-
works.
The aim of my dissertation is to analyze score functions and their associated assumptions,
and to investigate the performance of a causal exploration algorithm based on hidden com-
pact representations using different score functions.
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4 Introduction
In today’s world of intelligent systems research, the main emphasis lies on making predic-
tions, and facilitating classification based on observational data. There is less focus on not
predictive but descriptive modelling, especially on modelling the causal mechanisms based
on observational data. As a remedy, the field of casual modelling, namely the technique of
Bayesian networks can be applied. In many fields precise modelling of causal structures are
indispensable, in the field of medicine.
To gain practical knowledge about causal structures through active intervention in most of
the cases is simply not possible, either because of ethical reasons, or because of financial
ones. The conduction of those trials is not always possible, but gathering huge amounts of
observational data, in which there are no interventions, is manageable. Bayesian network
based methods are one of the few approaches that allow the modelling of the underlying
causal structures, which is generally a hard task, but not impossible. There are different
approaches within this group of methods, and there are several types of algorithms, which
enable at least a partial solution to the problem of discovering causal relationships. The
conditional independence relations between variables are exploitable for this cause, just as
well as there are score based methods to evaluate the fitting of local or global models to
the data. These fields exist as their own, but in some cases, the different techniques could
be used together as better tools for a particular problem.
The modeling of causal directions between discrete, more exactly categorical variables, was
always of great difficulty, as some assumptions does not always hold for ordinary algorithms,
mainly regarding the ordering.
The method of Hidden compact representations (HCR) Cai et al. 2018 tries to provide a
method for specifically testing this case, with increased accuracy compared to the other
algorithms. HCR builds upon both approaches, which enables performance testing on dif-
ferent types of score functions.
In the following sections this algorithm will be tested, through the methods of the original
paper (i.e. in which the algorithm was published). In addition, the difference of the scoring
functions will be investigated on both synthetic and real world datasets. The conclusion of
this study is presented in the last section, which states that the originally provided scoring
function for HCR is not the best performing one, also proving that the method itself has
unmentioned disadvantages in cases where there is no relationship between variables. This
means that without the aid of other algorithms, its ability to infer a whole causal graph is
exceptionally limited.
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5 Theoretical background
Intelligent data analysis, a union of data science and artificial intelligence methods is a
popular research field which can be divided into several sub-fields. This grouping can be
achieved in various ways, for example the different algorithms can be categorized according
to their main approach. Classification and regression methods can be viewed as predictive
methods requiring a labeled data set to perform supervised learning. Clustering and associ-
ation rule mining on the other hand can be considered as descriptive methods, as they rely
on observational data an perform unsupervised learning. These categories and correspond-
ing methods can be seen on Figure 1. The structure learning of Bayesian networks, can be
both predictive and descriptive depending on the problem and the available background
knowledge. In cases where there exists a validated model, this model can be applied on the
observed data and predictions can be made.

Figure 1: Fields of Data Science, Source: H. Patel and D. Patel 2014

In other cases there exists no such a model, and the goal is to learn the dependency re-
lationships between variables, i.e. the structure of the model. In some sense, it is similar to
rule mining, however in this case the relationships are conditional dependency relationships
not associations. To identify relationships effectively, there has to be an understanding of
the underlying model, its assumptions, specific architectural attributes that come from its
stochastic nature, and ways to compare different architectures on the same datasets.
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5.1 Bayesian networks
Since this thesis intends to incrementally improve the study of a certain type of graphical
models, it is necessary to present a thorough description of the models themselves: more
specifically its architecture and its descriptive capabilities.
Bayesian networks as seen on Figure 2 are models consisting of a (1) directed acyclic graph
(DAG), where nodes represent stochastic observed variables, and edges describe the de-
pendence relationship between the nodes; and a (2) conditional probability distribution
that defines the conditional probability of each node given its parents. The networks them-
selves could be described as a structure, understood as semantics in a few different ways
of approach, each with more assumptions. The order corresponding to representational
capabilities from weak towards strong is as follows.

(1) From the field of information theory a network of this type, is an effective encoding
of conditional independence statements. This can be seen through the following, there
is a table that has K dimensions, each variable taken as a boolean, the table of the full
joint distribution would require 2K values. While a Bayesian network in which each node is
influenced by at mostM other variables it would takeK ∗2M , where for each tableM is has
much lowerK. In a context where there is a table of 15 variables, the full joints distribution
would require 215 = 32768 numbers, while a Bayesian network where each node has at most
3 parents it is 15 ∗ 23 = 120 ( Russell and Norvig 2009) .
(2) Apart from that, from the statistical point of view. The Bayesian network can be seen
as a representation of a joint probability distribution over X.

P (X1, ..., XN) =
N∏
i=1

P (xi|Parents(Xi))

Each edge represents a conditional dependence between the nodes, while the graph itself
is a map of the dependences in the learned joint distribution.
(3) The third interpretation with the strongest presumptions is the causal interpretation,
where each edge represents a causal dependence between the variables. (András, Hullám,
and Antal 2019).
Formally, our directed acyclic graph can be read as DAG G = {V,E}, where our vertices
represent the observed variables V = {X1, ..., Xn}, our edges represent the ordered pairs
of our nodes E = {(A,B)} where A,B ε V, and a 6= b.
Each entry of the probability table of each node could be quantified. As marginal probability
for root nodes P (X = xi) ,and as conditional probability for non-root nodes

P (X1 = x1, ..., Xn = xn) =
n∏
i=1

P (xi|Parents(Xi))

But to achieve this ability to quantify conditional probabilities, with such low complexity
operations compared to the operations on a full joint distribution, the structure of the graph
have to be inferred.
The task of learning the structure of such a Bayesian network from a dataset, could be done
through different approaches, local and global score based learning, and the mixtures of
those two.However, to enable such learning, we need to make certain assumptions.
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Figure 2: A hypothetical causal Bayesian network structure, Source: Mani 2006

5.2 Assumptions
Certain algorithms, score functions require further assumptions which will be defined along
the definition of those functions. In this section the base assumptions are listed, with the
corresponding theorems that are required before the modelling phase itself.

Theorem 5.1 ( Ordered Markov Condition )
A necessary and sufficient condition for a probability distribution P to be Markov relative a
DAGG is that, conditional on its parents in G, each variable Xi must be independent of all its
predecessors in some ordering of the variables that agrees with the directed edges of G. (Pearl
2010)

Theorem 5.2 ( Faithfulness Condition )
Suppose we have a joint probability distribution P of the random variables in some set V and
a DAGG = (V, E). Then (G, P ) satisfies the faithfulness condition if and only if all and only
conditional independences in P are identified by d-separation (as seen in definition 5.2.1) in
G. (Neapolitan 2003)

5.2.1 Causal Markov Assumption

Using the theorem 5.1, if we create a causal graph DAG G = {V,E} and assume that the
probability distribution P for each variable Xi in V to satisfies the Markov Condition, that
translates into that we are making the Causal Markov Assumption.
The assumption itself can be understood as each variable Xi in V is independent of all its
non-descendants, given its parents(Xi) in G.

5.2.2 Causal Faithfulness and Stability Assumption

Opposed to the Causal Markov Condition which specifies the independence relationships
among each variable Xi in V , the Casual Faithfulness Condition focuses on the dependence
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relationships to specify them. Generally, we would want each edge in E to mean that there
is a direct dependency.
Essentially we assume that variables V are dependent unless their independence is implied
by the Causal Markov Condition as seen in theorem 5.1.

5.2.3 Statistical Testing Condition

A statistical test performed to determine dependence given a finite dataset will be correct
relative to the dependence in the joint probability distribution, that is defined by the causal
process under study. Since our datasets contain only a finite set of records, the relationships
among the variables cannot be known with absolute certainty. Therefore an assumption
has to be made, that the dependence or independence relationship that has been inferred
is the same, to the relationship that would have been inferred, in a case of infinite records.
(Fehér 2018) Let P (X) be the probability distribution we would have inferred, having the
sample size of our variable at infinity |n| =∞, as our sample size increases, our probability
distribution P (X ′) approaches P (X), meaning :

lim
|n|→∞

P (X ′) = P (X)

5.3 Structure learning
Learning Bayesian networks are not easy, it has been shown that finding a general Bayesian
network, or even just finding an approximate solution is an NP-hard problem Carvalho and
Ados 2019. Nonetheless the achievement of acceptable result, is approachable from two
directions.
Either considering the whole structure of the network while directing edges, or trying to
propagate them, in a local manner, focusing on the nature of a subset of variables. The
latter is called local structure learning, while the other is global learning.

5.3.1 Local Causal Discovery

In Local Causal Discovery the main goal is to infer local sub-models, i.e. inferring pairwise
causal directions on our observed variables only using a subset of all variables.
In its simplest form three variables are enough to infer such a direction. Although it is
necessary to mention that such local algorithms are less complex, and thus have a much
shorter runtime, they do not strive to infer the full causal structure, and thus they might
not reproduce the true causal structure accurately.
The LCD algorithm (Mani and Cooper 2004) is based on the attributes of variable triplets,
inferred through d-separation (presented in definition 5.2.1 below). Basically it utilizes sta-
tistical dependence and independence testing of variables, and allows to infer some casual
structures.
Such algorithms could test for two different types of structures, V-structures (described
in section 5.3.2) and LCD structures (described in section 5.3.3). A considerable issue
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with LCD structures (chains) is that due to observational equivalence they cannot be dis-
tinguished from one another. This results in undirected edges in the model, although V-
structures could be inferred with reasonable certainty. Such undirected edges made from
LCD structures, could be directed by using the edges of V-structures, and applying con-
straints.
Among those constraints, one basic attribute of causal graphs is always present. There can
be no cycles. Other constraints could be present in the from of expert knowledge, e.g. al-
ready known ground truths on the relationships of the variables.

Definition 5.2.1 ( d-separation )
A path p is said to be d-separated (or blocked) by a set of nodes Z if and only if

• p contains a chain i← m← j or a fork i→ m← j such that the middle node m is in Z
or

• p contains an V-structure (or inverted fork) i← m→ j such that the middle node m is
not in Z and such that no descendant of m is in Z.

A set Z is said to d-separate X from Y if and only if Z blocks every path from a node in X to
a node in Y . (Pearl 2010)

5.3.2 V-structure

Given three variables if and only if the following conditions are met, then the underlying
causal structure is considered as a V-structure (X → Y ← Z) seen on Figure 3. Where
Y 6⊥⊥ X means that Y and X are not independent variables. (Mani and Cooper 2004)

X 6⊥⊥ Y

Y 6⊥⊥ Z

X⊥⊥ Z

X 6⊥⊥ Z|Y

Figure 3: V-structure
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5.3.3 LCD structure

Similarly, we could infer LCD structures as well, although in this case, we could only acquire
the information that there exists a relationship, among variableX, Y, Z but on the direction
of the edges, we could gain no further information. The edges might form three different
types of structure as seen on Figure 4. One of the following three structures {(X ← Y ←
Z), (X → Y → Z), (X ← Y → Z)}, could be an underlying structure if and only if the
following conditions are considered true. (Mani and Cooper 2004)

X 6⊥⊥ Y

Y 6⊥⊥ Z

X 6⊥⊥ Z

X⊥⊥ Z|Y

(a) Fork (b) Chain (c) Reverse chain

Figure 4: LCD structures

5.3.4 Dependence Testing

Such dependence testing that is required in the methods described in section 5.3.2 and
5.3.3, can be done through the means of statistical hypothesis testing. Without being ex-
haustive, dependence testing for discrete variables could be done through the means Chi
Square Score (χ2) (McHugh 2013).It is worthy to mention, that Chi Square comes with it’s
own set of assumptions, that are not detailed here.
The score itself could be calculated through the following (Fehér 2018):

χ2
c =

n∑
i=1

m∑
j=1

(Oij − Eij)2

Eij

Where

• c means the degree of freedom, essentially the multiplication of the two variables
cardinality of the set of values, that is being tested, minus one (n− 1) ∗ (m− 1)− 1.

• O means the observed value. The count of cases in each cell of the table.

• n, m the cardinality of the set of values of the two tested variables.
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• χ2 the computed χ2 value.

• E is the expected value, calculation as shown below.

E =
MR ∗MC

|n|
Where

• MR represents the row marginal for that cell,

• MC is the column marginal for that cell,

• |n| is the normalizing constant, in our case the number of rows in our dataset.

Using this formula allows the computation of chi square χ2 value which can be compared
to a critical value defined by the selected significance level and c degree of freedom. Thus
this method can be used to test our hypothesis. For example, it can be used to test whether
W is not independent of X (in section 5.3.2). That probability of observing the sample
statistic as extreme as the test statistic is called the P -value of statistics.

5.4 Score based learning
The other dominant approach in causal structure inference, is the score based one. In this
field, there always exists a score function, that is able to describe the goodness of a given
Bayesian network, based on its ability to describe a given dataset.
There are numerous score functions defined, and there are even more techniques that are
trying to do optimization using the functions themselves. Without being exhaustive the fol-
lowing sections will include a few approaches, and a few score functions. These will include
only information theory based metrics, while Bayesian metrics will be left out, because they
are outperformed in several scenarios (Carvalho and Ados 2019).

5.4.1 Score functions

Information theory based metrics are based on data compression. Scores falling into this
category on average are based on two components, a score part and a penalty part.

φ(G, T ) = Score(G, T ) + Penalty(G, T )

5.4.2 Log-Likelihood

The Log-Likelihood (LL) is often used as a scoring function, which quantifies the prob-
ability of our dataset (T ), given our Bayesian network (G) ,i.e. that the dataset T was
generated using the Bayesian network G. Also to acquire a more manageable score, a nat-
ural logarithm is applied on it’s value. (Carvalho and Ados 2019)

Score(G, T ) = LL(G, T ) = log(P (T |G)) =
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n∑
i=1

qi∑
j=1

ri∑
k=1

Nijklog(
Nijk

Nij

)

where

• Nijk is the number of instances in the data T where the variable Xi takes it’s k-th
value xik and the variables in the set of parents(Xi) take their j-th configuration wij.

• Nij is the number of the instances in the data T where the variables in parents(Xi)
take their j-th configuration,

Nij =

ri∑
k=1

Nijk

• wij (1 <= j <= qi) is a possible configuration of the parents set parents(Xi) of the
random variable Xi, that has at most qi number of possible configurations.

By itself this score function is usually not used, since it lacks any penalty for complex struc-
tures, so it tends to produce not representative complex models.

5.4.3 Akaike information criterion

One of the simplest penalties we could introduce is a metric based on the complexity of our
network.
Such correction would define a penalty based on the number of parameters |N | that would
be required to describe G graph. Which would result in:

φ(G, T ) = LL(G, T )− |N |

Where the number of parameters |N | is to be understood as

|N | =
n∑
i=1

(si − 1)qi

Where si means, the finite number of states in Xi and qi means the number of possible
configurations of the parent set Parents(Xi). (Carvalho and Ados 2019)
Essentially meaning, if a node in graph G, has numerous parent nodes, it would need a
more complex description, that would result in a bigger penalty. (Fehér 2018)

5.4.4 Corrected Akaike information criterion

Researchers have shown that AIC on small sample sizes, does not correctly perform the
penalization for big parameter size. (Velsen 2009)
But with a correction score, this could be eased, resulting in a score that is almost identical
to the AIC score:

φ(G, T ) = LL(G, T )− |N | − 2|N |2 + 2|N |
|n| − |N | − 1
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Where it can be seen that with greater sample sizes, the correction part converges to
zero:

lim
|n|→∞

2|N |2 + 2|N |
|n| − |N | − 1

= 0

5.4.5 Schwarz’s Bic and MDL

Based on the principle that the simplest model most likely be the right one, there is a
score function defined. Where the penalty part is almost similar to the AIC score function’s
penalty part, although it has been multiplied by the log of the sample size, which essentially
means the number of bits needed to encode the parameters. In our special case the two
metrics, Schwarz’s Bayesian information criterion and Minimum Description Length do not
differ. (Nir Friedman 1999)

φ(G, T ) = LL(G, T )− 1

2
∗ log(|n|) ∗ |N |

5.5 Optimization
Using score functions by themselves with exhaustive search to learn the underlying causal
structure is not the optimal way to proceed. Instead, combining score functions with opti-
mization techniques could yield acceptable results. This can be formulated as follows:

Definition 5.2.2 ( Learning a Bayesian network )
Let BN be the set of Bayesian networks with N variables.
Given a Network G, a data T = y1, ..., yN and a scoring function φ, the problem of learning a
Bayesian network is to find a Bayesian network G ∈ BN , that maximizes the value φ(G, T ).
(Carvalho and Ados 2019)

For example, in algorithm 1 a simple greedy Hill climbing algorithm is used as an optimiza-
tion technique with Bayesian network structure learning. (Russell and Norvig 2009)
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Data: G = {V,E}, T
Result: G′ = {V,E ′}
score_increasable = True;
edges = E;
vertices = V ;
while score_increasable do

Score = 0;
for i in all_possible_edge_changes(V,E) do

E ′ = change(E, i)};
if φ(G′ = {V,E ′}, T ) > Score then

Score = φ(G′ = {V,E}, T );
end

end
if Score 6= 0 then

E = E ′;
else

score_increasable = False;
end

end
return G = {V,E};

Algorithm 1: Hill climbing algorithm on Bayesian networks

It is worthy to mention that greedy algorithms are more prone to stuck in a local opti-
mum. In other words, they tend not to find the optimal score in some cases. Fortunately,
there are multiple ways to remedy that. At first we could infer a causal skeleton, i.e. run
a local dependence search, and find all LCD and V-structures, and then optimize the struc-
ture from that starting point (Tsamardinos, Brown, and Aliferis 2006), or we could include
expert knowledge.
Although the replacement of the optimization technique is possible as well, since there ex-
ists multiple methods that could be used, for example gradient based searches or genetic
algorithms (Russell and Norvig 2009).

5.6 Receiver operating characteristic
Measuring the goodness of causal graph learning algorithms can be performed in multiple
ways. A possible option is to use ROC AUC metrics. The goodness can be represented with
a graphical plot that is able to illustrate the abilities of a classifier, in our case the abilities
of our algorithm to classify the direction of an edge. The calculations are rather straight-
forward although the variables need to be defined, such as as below. True positive (TP ) is
the count of the edges that are in the underlying causal graph, and in the inferred graph
as well. While its opposite is the False positive (FP ) edges count, which is the number of
edges that are not in the original structure, but were detected as edges by the algorithm.
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True negative (TN) sums the amount of edges that are equally not present in both of the
graphs, while False negative (FN) sums the ones that are in the original causal graph, but
were not detected by the algorithm. (Heijden, Velikova, and Lucas 2013)

Sum Condition Positive (P ) Condition Negative (N)

Prediction Positive (P ) TP: Edges present in both graphs. FP: Edges wrongly taken.

Prediction Negative (N) FN: Edges wrongly missing. TN: Edges not present in both graphs.

Table 1: Confusion matrix

Based on these four measures different metrics could be derived. (Russell and Norvig
2009)

Positive(P ) = TP + FN

Negative(N) = TN + FP

Accuracy =
TP + TN

P +N

True Positive Rate (TPR) =
TP

P

False Positive Rate (FPR) =
FP

N

Area Under the Curve (AUC) =
∑

i∈FPR TPRi

Table 2: Derivations from the confusion matrix

Where semantically Positive means the edges that are present in the original graph,
and Negative means the opposite, i.e. those edges are not present. Accuracy could be
understood as how well the classifier could classify the edges. On one hand, True Positive
Rate focuses only on how well we could classify the edges that are originally present, while
the opposite False Positive Rate tells us how well we the algorithm noticed the edges that
should not be taken.
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5.7 Distributions
To test a function, that would be able to propagate the causal order between variables, on
synthetic data, the tests itself somehow have to emulate the diversity of real world observed
stochastic variables. In order to approximate that, a few probability distributions were
investigated, namely the ones listed in the subsection. To gain better insight their mass
functions are listed, with a few details. The list was written with the help of the descriptions
presented in R Core Team 2019 and in Ketskeméty 1996.

5.7.1 Uniform distribution

The uniform distribution occurs when our random variable X on an interval ]a; b[ where
−∞ < a < b <∞ has a density function of

P (X) =
1

b− a

Where the mean is
1

2
(a+ b) and the variance is

1

12
(b− a)2.

5.7.2 Poisson distribution

The Poisson distribution has a mass function of

for X = {0, 1, 2, ...} and λ > 0,

P (X = k) =
λke−λ

k!

Where the mean and the variance are equally λ.

5.7.3 Geometric distribution

The Geometric distribution for X = {0, 1, 2, ...} and 0 < p <= 1 where the density is

P (X = k) = p(1− p)k

With a mean of
1− p
p

and variance of
1− p
p2

.

5.7.4 Multinomial distribution

The Multinomial distribution where x is a K component vector, and p1...pk are event prob-
abilities has a mass function of

P (X1 = x1, ..., XK = xk) =
(
∑
xi)!

x1!...xk!
px11 ...p

xk
k

Where the mean is npi, and the variance is npi(1− pi).
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5.7.5 Negative binomial distribution

The Negative Binomial distribution with Γ as the gamma distribution andX = 0, 1, 2, ... and
n > 0 and 1 >= p > 0 has a mass function of

Γ(x+ n)

Γ(n)x!
pn(1− p)n

Where the mean is
pr

1− p
and the variance is

pr

(1− p)2
.

5.7.6 Hypergeometric distribution

The hypergeometric distribution is used for sampling without replacement. The distribution
itself is defined as for X = {0, ..., k} with a density function as

P (X = x) =

(
m
x

)(
n
k−x

)(
m+n
k

)
Where the mean is kp and variance is kp(1− p)m+ n− k

m+ n− 1
.
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6 Methods and Testing
The testing included the comparison of synthetic datasets, and real world datasets, with
methods used in Cai et al. 2018. The goal was to compare the performance of different
score functions shown in section 5.4.1 replacing the HCR algorithm’s originally used score
function described below.
All of the testing, was performed in the statistical language R using the following three
packages HCR, data.table, bnlearn. HCR is the cran package provided by Cai et al. 2018,
while data.table is a package used for enhanced data storage in tables, and bnlearn which
is generic Bayesian network package, with all sorts of features.
In the following sections, the accuracy of various methods is measured using bnlearn, and
inference is facilitated through hcr.

6.1 Hidden Compact Representations
The method of hidden compact representations, builds on both the world of constraint
based methods and the score based ones. The method itself aims to provide a framework
of causal discovery on discrete, especially categorical data.
Inference is performed through a two stage process as shown in Figure 5, using the HCR
model which is M : X → Y ′ → Y where M means our model, X and Y are present vari-
ables assumed to be cause and effect, and Y ′ is a hidden representation. The first step is
mapping the cause X to a lower cardinality hidden representation Y ′, encoding key infor-
mation, while the second step tries to determine the effect. Through encoding the relevant
information to a hidden variable, leaving out irrelevant data, the cause and effect gains a
compact representation.

Figure 5: Food Poisoning: A Hidden Compact Representation Example in Real World.
Source: Cai et al. 2018
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The model by itself has certain assumptions about the data itself, namely, that the cause
X can be reduced to a hidden low-cardinality space Y ′, or as seen in the paper itself as
assumption A1 which states that
"There does not exist values y1 6= y2 such that P (Y = y1|X) = P (Y = y2|X) ∗ a for all
possible X values. (Note that both P (Y = y1|X) and P (Y = y2|X) are functions of X.)"
though even with working with these assumptions could yield acceptable results.

6.1.1 HCR model

First, there has to be an understanding of the model itself, to be able to build upon it.
LetX and be the cause of Y in a discrete cause-effect pairX → Y , Where a modelM : X →
Y ′ → Y could be used to describe the causal mechanism behind the provided data, with Y ′

as a hidden compact representation. T = {(xi, yi)}|n|i=1 as our data, or group of observations.
The log-likelihood of such a model could be described as seen in section 5.4.2, although in
this case, it is more descriptive to use the form that is used in Cai et al. 2018, which is the
following:

φ(M,T ) = log

|n|∏
i=1

∑
y′i

P (X = xi, Y
′ = y′i, Y = yi|M)

As seen in section 5.3.2, according to X⊥⊥ Y |Y ′, the joint probability could be decom-
posed into three equations.

φ(M,T ) = log

|n|∏
i=1

∑
y′i

P (X = xi)P (Y ′ = y′i|X = xi)P (Y = yi|Y ′ = y′i)

The first step in the two stage process starts with variableX mapped to a low-cardinality
hidden variable Y ′, using Y ′ = f(X) where f : Z → Z is a noise-free arbitrary function.
Note that this comes with the assumption that variable X can be reduced to a lower car-
dinality space Y ′. Which would not always be true. Although building upon this assump-
tion,the P (Y ′ = y′i|X = xi) part of the equation denotes how the compact representation
is generated. Since it is a deterministic process, P (Y ′ = yi|X = xi) = 1 if yi = f(xi) and
P (Y ′ = yi|X = xi) = 0 if yi 6= f(xi) where f(x) denotes a true mapping function. Thus
after that, our function could be written up as

φ(M,T ) = log

|n|∏
i=1

∑
y′i

P (X = xi)P (Y = yi|Y ′ = f(xi))

Since this framework, acts the same as it is described in section 5.4.2, and contains
a variable with unknown cardinality. It is wise to introduce a penalty part to control the
complexity of our model. For instance using the formula described in 5.4.5 an additional
penalty part would result in

Penalty(M,T ) =
(|X| − 1) + |Y ′|(|Y | − 1)

2
∗ log(|n|)
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meaning Score would be

Score(M,T ) = log

|n|∏
i=1

∑
y′i

P (X = xi)P (Y = yi|Y ′ = f(xi))

and our scoring function as the sum of the two above.

φ(M,T ) = Score(M,T ) + Penalty(M,T )

The model with the highest score φ(M,T ) is considered the best candidate to recover
the causal model. Where an alternating maximization procedure was used to gain the list
of score pairs of T = ({xi, y′i})

|n|
i=1, and thus to infer Y ′. Although this recovery is not the

focus of this paper.
The direction of the edge between X and Y could be inferred based on the calculation of
the score given on two different models, as M : X → Y ′ → Y and M ′ : Y → X ′ → X,
where

• φ(M,T ) > φ(M ′, T ), infer X → Y .

• φ(M,T ) < φ(M ′, T ), infer Y → X

• φ(M,T ) = φ(M ′, T ), infer non-identifiable.

In the following sections, testing is performed by replacing of the above givenPenalty(M,T )
score with the below listed penalty functions.

Log: Penalty(M,T ) = 0

Aic: Penalty(M,T ) = |N |

Aicc: Penalty(M,T ) = |N | − 2|N |2 + 2|N |
|n| − |N | − 1

BIC: Penalty(M,T ) =
1

2
∗ log(|n|) ∗ |N |

Table 3: Penalty functions

6.2 Simulated data
Similar as seen in Cai et al. 2018, the sensitivity to sample size was tested by the accuracy
measured against the sample size. The Synthetic data was generated in the same manner
as seen in the original paper, using the HCR cran package.
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For each distribution stated in section 5.7 the following was done for different sample sizes
|n|. At first variableX from the given distribution, with a randomly chosen cardinality from
3, ..., 15 was generated with the sample size |n|. Next, each sample from X was mapped to
a value that uniformly samples from the interval {1, 2, ..., |X|}. Finally, a conditional proba-
bility distribution P (Y |Y ′) was generated randomly, and Y was sampled accordingly to Y ′
and P (Y |Y ′). Also |Y | was generated from the interval {|Y ′|, ..., 15}.
Then the different score functions of section 5.4.1 were evaluated as the HCR algorithm’s
scoring function on the generated dataset, both on X → Y and Y → X direction. This
process was repeated 1000 times then the results were averaged as seen in the following
algorithm 2.
It is worth mentioning, that the algorithm is compactly represented to make it easier to
read,but it was ensured that each score function would run on the same dataset at each
iteration.

Data: SampleSize, φ, Distribution
Result: Average
i = 0;
Average = 0;
while i < 1000 do

dataset = GenerateDataset(SampleSize,Distribution);
ScoreXY = φ(dataset$X, dataset$Y);
ScoreYX = φ(dataset$Y, dataset$X);
if ScoreXY > ScoreYX then

Average += 1;
end

end
return Average/1000;

Algorithm 2: Evaluation of Score functions on generated data on a given distribution

The accuracy scores for different variable distributions can be seen on the following fig-
ures. Results indicate that compared to the original score presented in the paper, (namely
BIC), AIC and AICC provide an increased percentage of accuracy in case of every distribu-
tion.
This synthetic testing is a corner case, which essentially means that the algorithm has been
given nodes A and B, with a certain underlying causal structure, and it has to decide it’s
direction. The result is either A→ B, B → A, or non-identifiable.
The paper did not state how the algorithm performs when there is no causal relationship
between the variables. Such examples can be seen on figure 7, which will be useful on
interpreting real world datasets.
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(a) Geometric distribution (b) Multinomial distribution

(c) Negative binomial distribution (d) Poisson distribution

(e) Hypergeometric distribution (f) Uniform distribution

Figure 6: Accuracy of different score functions given different variable distributions.
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6.3 Simulated Noise
The performance testing was also conducted on noise, where the algorithm tries to infer
causal relationship between X and Y , in the manner as shown in 3. In this case X and Y
will be random data separately generated from the given distribution. Results show that the
HCR algorithm, which is able to direct an edge when there surely is a connection between
two variables, performs terribly when the task is the detection of the absence of a causal
relationship.

Data: SampleSize, φ, Distribution
Result: Average
i = 0;
Average = 0;
while i < 1000 do

dataset = GenerateDataset(SampleSize,Distribution);
ScoreXY = φ(dataset$X, dataset$Y);
ScoreYX = φ(dataset$Y, dataset$X);
if ScoreXY == ScoreYX then

Average += 1;
end

end
return Average/1000;

Algorithm 3: Evaluation of Score functions on generated noise on a given distribution

The results shown in 7 might be explained by its inherent property, i.e. it orients edges
towards the higher score. However the probability that scores corresponding to the two
directions would end up on the same value is relatively low. Thus the probability of a non-
defined result is low. For future research it is worthy to note the introduction of a minimum
δ distance between the two scores could mitigate the problem considerably.
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(a) Geometric distribution (b) Multinomial distribution

(c) Negative binomial distribution (d) Poisson distribution

(e) Hypergeometric distribution (f) Uniform distribution

Figure 7: Accuracy of different score functions on noise of different distributions.

6.4 Real-world dataset
The HCR algorithm was tested on real world datasets as well, although with mixed results.
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6.4.1 Abalone

On the abalone dataset, the algorithmwas not able to identify the underlying ground truths.
The directions in the original paper resulted were Sex→ Length, Sex→ Diameter, Sex→
Height. However the tests indicated the opposite direction for all three relationships (
Length → Sex, Diameter → Sex, Height → Sex). Even the ones in the original paper
lead to poor results. The only exception was the simple loglikelihood, which was not able
to detect the direction at all.

6.4.2 Bridges

The Bridges dataset consists of 13 variables and 4 causal relationships. Using the same
metric as for the analysis of the synthetic data sets, accuracies were measured for various
sample sizes (see Figure 8). Interestingly, in contrast with the analysis of the synthetic data
set, the loglikelihood score performed the best. That can be explained examining the other
metrics.

Figure 8: Accuracy on Bridges
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It is the true that the rate of true positives increase, but at the same time the rate of false
negatives stays the same, or increases slightly. The reason behind this could be better seen
from the graph of true positives and false positives (See Figure 9).

(a) True Positive Rate (b) TPR, FPR on Bridges

Figure 9

Here on Figure 10 it can be seen that, the algorithm’s ability to successfully direct the
edges increases with larger sample sizes, but it also increases its rate of finding false positive
edges Note that in each graph in almost every case the aic scoring leads.

(a) True Positives (b) False Positives

Figure 10: TP, FP on Bridges

In contrast, and for better visualization, the inferred graphs can be seen on Figure 11.
Also there is the graph included with the ground truths, that can be seen on figure 12.
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(a) Aic on 10 samples (b) Log on 10 samples

(c) Aic on 108 samples (d) Log on 108 samples

Figure 11: Graph inference

Figure 12: Bayesian network representing the ground truths of the Bridges dataset
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7 Conclusion
This thesis provided an overview of the necessary theoretical background of Bayesian net-
works, its structure learning methods, and it’s measurement tools. With these the testing
and measuring of the properties of the Hidden Compact representations algorithm could
be conducted.
The HCR algorithm itself is a powerful tool, and it outperforms many existing algorithms
in directing the edges of Bayesian networks, although, it has it’s assumptions, and performs
exceptionally poorly on cases where edges actually do not exist.
It was originally proposed with a Schwarz’s Information Criterion as it’s built in scoring
function, although after thorough testing it could be seen that in almost every case the
Akaike information criterion outperforms it.
In summary, the algorithm itself with Akaike information criterion as it’s score function,
performs exceptionally good on categorical data in cases where there surely is a causal
direction. Therefore, by itself its usage could be questioned, but combined with other algo-
rithms, it can very well increase their edge directional abilities, between discrete variables.
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