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1 Abstract

Reciprocity is a fundamental concept in electrical network theory. Most real-life devices

are inherently reciprocal, therefore understanding and describing the behavior of reciprocal

n-ports has been the topic of many studies and papers. Antireciprocal n-ports, though less

well known, are also an important and closely related class of n-ports.

In this study, after describing these two concepts in detail, we discuss n-ports that

are both reciprocal and anti-reciprocal at the same time. We present a simple synthesis of

all of the n-ports that have these properties using a minimum number of ideal transformers.

Finally, we present an interconnection of two ideal transformers into a new 2-port

that leads to an interesting singularity. We show how the choice of the turning ratios of

these ideal transformers can lead to very different results.

2 Matrix description of a multiport

In electrical network theory devices are often modelled as n-ports. An n-port – or multiport

if the number n has no significance – is an abstract network element with n pairs of terminals

(see Figure 1) and k linearly independent equations describing the voltages and currents

of these ports. These equations can be written in the form Au + Bi = 0 with u and i

being vectors of height n, representing the voltages and currents of each port, respectively,

and A and B being k × n real matrices. It is important to note, however, that while these

matrices uniquely determine the n-port by describing the relationships between u and i, the

converse is not true, one n-port has several different matrix descriptions. More precisely, two

networks are equivalent is they are described by matrices (A1|B1) and (A2|B2) respectively,

and there exist matrices S and T such that

(A1|B1) = T(A2|B2)
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(A2|B2) = S(A1|B1).

The rank of an n-port can be defined as follows: r = r(A|B). This matrix is often

denoted by M. If the equation n = r holds true we call the n-port ordinary. In this work

the multiports in discussion are considered ordinary unless specified otherwise.

Figure 1: A 4-port

3 Various representations of multiports

We saw in Section 2 that multiports are often described by the equation Au + Bi = 0.

However, in some special cases, other descriptions can be used to make certain properties

of the multiport more apparent. For this, one may consider a slightly different approach

to multiport networks. Sometimes it can be beneficial to think of a network as a single

multiport and its embedding.

An embedding of a network is legal if the rank of the resulting system of equations

equals 2n. A legal embedding is admissible if it leads to a uniquely solvable network. [1]

If an n-port has a legal embedding using current sources only, it means that the

equations of this n-port can be written in the form u = Ri. This is called the resistance
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description. Similarly, if there is a legal embedding using only voltage sources then the

conductance description can be defined as i = Gu. As a generalization of these, if there is

an admissible embedding using voltage and current sources only, the n-port has a hybrid

description:

u1

i2

 =

R C

D G

 i1

u2



4 Reciprocal and antireciprocal multiports

An ordinary multiport given by the description Au+Bi = 0 is reciprocal, if uT
1 i2 = uT

2 i1 for

any pairs of vectors (u1, i1) and (u2, i2) satisfying Au+Bi = 0. For various generalizations

of this concept in case of non-ordinary multiports, see [2].

Actually, several slightly different definitions of reciprocity exist in the literature

of electrical network theory. For a justification why the one used here is the most general

and for critical comparison of other appearing definitions, see [3].

A reciprocal multiport always has a hybrid description, and its hybrid matrix looks

like this:

H =

 R C

−CT G


where R and G are symmetrical and the parameters within them have dimensions of re-

sistance and conductance, respectively, while the parameters in the matrix C are without

dimension [4]. The set of reciprocal multiports is closed with respect to interconnection [5].

Similarly to reciprocity, the term antireciprocity can be defined. An ordinary
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multiport given by the description Au+Bi = 0 is antireciprocal, if uT
1 i2 +uT

2 i1 = 0 for any

pairs of vectors (u1, i1) and (u2, i2) satisfying Au + Bi = 0.

5 The inverse and dual of multiports

The term duality often arises in the discussions on electrical networks, and in the past

there were multiple interpretations on what the dual of a network is. What most electrical

engineers call the dual of a network very different from the dual in the mathematical sense.

The network described by (A1|B1) is the inverse of the network described by

(A2|B2) if (A1|B1) ∼= (B2|A2) (here the ∼= sign means the two networks are equivalent as

described in Section 2). This essentially means that to obtain the inverse of a network one

would have to change the roles of the voltages and currents in its representation. Electrical

engineers often refer to this new network as the dual of the original, however, from a

mathematical point of view it makes more sense to define the dual of a network as follows.

The network described by (A1|B1) is the dual of the network described by (A2|B2)

if uT
1 u2+iT1 i2 = 0 for any pairs of (u1, i1) and (u2, i2) satisfying (A1|B1) = 0 and (A2|B2) =

0 respectively.

Also, the network described by (A1|B1) is the negative of the network described

by (A2|B2) if (A1|B1) ∼= (A2| −B2).

Reciprocity and antireciprocity are closely related to the above terms. The dual of

an n-port N is the negative of the inverse of N if and only if N is reciprocal, and the dual

equals the inverse if and only if the n-port is antireciprocal. This theorem and the above

difference between the dual and the inverse of an n-port was discovered in [6] and it gives

us a very important connection between concepts that might be unrelated at first glance.
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6 Describing interconnections with matroids

Multiports can be interconnected along a graph, to form another multiport. An example of

this is presented on Figure 2.

Matroids are a very convenient way to describe this interconnection of multiports,

since both the describing matrices of individual multiports, and the graph of their inter-

connection define a matroid. Consider some multiports interconnected along the graph G,

to form a multiport M. Let G be the direct sum of the cycle matroid on the set of edges

corresponding to currents of G, and the cocycle matroid on the set of edges corresponding

to voltages of G. Let A be the direct sum of the matroids of the interconnected multiports.

Now if we contract the edges corresponding to the voltages and currents of the original

multiports – thereby eliminating the internal variables – in G ∨ A, we obtain the matroid

M of M if the weaker genericity assumption [7] holds, which means that among the nonzero

entries of the matrices of the multiports, the only possible algebraic relations are the ones

reflected by the structure of the matroid modelling the multiport.

Figure 2: Two 2-ports interconnected to form a 3-port, and the graph of the

interconnection

If we consider an embedding of this multiport, and define the matroid A′ as the

direct sum of A and all the matroids of the 1-ports of the embedding, then we can obtain

a necessary (also sufficient, if the genericity assumption holds) condition on the unique
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solvability of this network: G ∨ A′ has to be the free matroid. Notice that this is only a

reformulation of the fact that we need 2n linearly independent equations to solve a system

of linear equations with 2n unknowns. However, this reformulation is really useful, since

now we can use the matroid partition algorithm [8] to determine – in polynomial time – if

a particular embedding is admissible.

Also if the resulting multiport is ordinary, i.e. r(M) = n, then it has a hybrid

description if, and only if G ∨ A ∨ Bn is the free matroid, where Bn = (E,F ) is a matroid

on the set of the currents and voltages of the resulting multiport, where a set X ⊆ E is

independent if, and only if | X ∩ {uk, ik} |≤ 1 for every k [9]. This is apparent from the

fact that the system is uniquely solvable if and only if G ∨ A′ is the free matroid, as it

just means that when we obtained A′ from A, we only added the matroids of current and

voltage sources.

7 n-ports that are reciprocal and antireciprocal at the same

time

In the previous section we saw that reciprocal and antireciprocal networks are two very

important and closely related classes of n-ports. Therefore it might be interesting to consider

networks that are reciprocal and antireciprocal at the same time. From the definition of

reciprocity and antireciprocity it is apparent that since these n-ports have to satisfy the

conditions presented in Section 4, uT
1 i2 and uT

2 i1 must be zero for any pairs of vectors

(u1, i1) and (u2, i2) satisfying the equations describing the n-port. This means that the

voltages of the ports must be independent from the currents of the ports, and vice versa.

Thus, the hybrid matrix of such an n-ports looks like this:
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H =

 0 C

−CT 0


Notice, that the voltages and the currents are independent from each other in

all of these networks. In other words their matroid can be obtained with the formula

M =Mu ⊕Mi, where Mu is the matroid describing the relation between the voltages of

the network andMi is the matroid describing the relations between the currents. Therefore

when analyzing such a network the matroids of its voltages and currents can be studied

independently from each other.

The only 2-port that is reciprocal and antireciprocal at the same time is the ideal

transformer. As shown in [3] all antireciprocal networks can be realized with transformers

and gyrators. However, the ones that are reciprocal as well can be realized in a more simple

way using ideal transformers only. If C is a p× q matrix, then this synthesis can be made

with the same amount of transformers as the number of nonzero entries in C which is at

most p× q. If for example the voltage of port m depends on the voltage of other ports, we

just need to connect a transformer with an appropriate ratio to every one of these ports

and connect their other sides in series to port m. An example of this is shown on Figure 3.

On the left side are the ports that have current sources attached to them in an admissible

embedding, while the ports on the top have voltage sources attached. In total there are p×q

transformers and the ith transformer in the jth column of the figure corresponds to cij of

C. This construction is minimal since one transformer can introduce only one independent

variable.

Since the classes of both reciprocal and antireciprocal n-ports are closed with

respect to interconnection, interconnecting n-ports that have both of these properties would

also lead to a reciprocal and antireciprocal multiport in the general case [6]. However, it

might still be interesting to observe what happens, if two transformers are interconnected

along the interconnection graph K4 to form a new 2-port.
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Figure 3: Synthesis construction

Ports are connected in series if their current is the same and the sum of their

voltages equals the voltage across their interconnection. They are connected in parallel if

their voltage is the same, and the current through their interconnection is equal to the sum

of the currents of the ports. As the synthesis uses only series and parallel connections the

interconnection graph K4 is worth investigating since it is neither parallel nor serial - in

fact it is the smallest of such connection graphs.

In the general case this interconnection leads to an ordinary ideal transformer. If

we consider the ratios of the two transformers interconnected as variables k and j and solve

the system of equations we obtain the following formula for this new transformers ratio:

k+j
kj+1 . We can plot this surface as shown on Figure 4. We can observe from the plot or the

formula that aside from the general case when the 2-port is an ideal transformer if k+j = 0

or kj + 1 the ratio becomes zero and infinity, respectively. This means that in these cases

the 2-port behaves like a short circuit open circuit pair.

A more interesting phenomenon arises if the above stated equations both hold true

at the same time. There are two possible cases:
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Figure 4: The ratio of the resulting transformer

1. k = 1 and j = −1

2. k = −1 and j = 1

The 2-port is described by its twelve parameters, six voltages and six currents.

Since the relations between the voltages and the currents are symmetrical (i.e. Mu andMi

are the same) and the graph K4 is the dual of itself therefore its cycle and cocycle matroid

is the same, we only have to consider one of them to fully understand the behavior of the

resulting 2-port. In general, the equations describing the voltages can be written in the
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following form:



0 0 −k 1 0 0

0 0 0 0 −j 1

1 −1 −1 1 0 0

1 1 0 0 1 1

0 0 1 1 1 −1





u1

u2

u3

u4

u5

u6


= 0

The reduced row echelon form of the above matrix in the first case is:



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 −1

0 0 0 1 0 −1

0 0 0 0 1 1



This means, that the inner structure of this network determines that the voltages

of both ports are zero. Since, as mentioned above, the relations between the voltages and

currents are symmetrical the currents of these ports must be zero too. Therefore in this

first case the 2-port becomes a pair of nullators.

In the second case, following the same steps, we obtain the reduced row echelon

form:
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1 0 0 1 0 1

0 1 0 −1 0 1

0 0 1 1 0 0

0 0 0 0 1 −1

0 0 0 0 0 0



Observe that in this case the rank of these equations is four and u1 and u2 are

independent from each other. Therefore these two quantities are dependent only on the

embedding of this 2-port. As the same holds for the currents as well in this case the

network becomes a pair of norators.

Notice, that the rank of the resulting 2-port is two in the general case, four in the

first case, while in the second case it is zero. This might be surprising considering the fact

that the rank of the system of describing equations is ten in the general and also in the

first case and eight in the second. So despite the fact that the difference in the ranks of the

describing equations between the cases is two, this still leads to a difference of four between

the ranks of the resulting 2-ports.

To illustrate why this happens it might be worth considering this 2-port together

with it’s admissible embedding. In the first case since the describing equations uniquely

determine the voltages and currents of both ports, the only admissible embedding is a pair of

norators. This results in a network which is only terminally-solvable since the port voltages

and currents are determined but the internal four voltages and currents are described by

three-three equations only. In the second case, however, if we consider the only admissible

embedding, which is a pair of nullators, we obtain a fully-solvable network, with all its

voltages and currents being zero. This observation shows that the difference in ranks is due

to changes in the internal structure of the 2-port.

This internal structure change can be illustrated in a perhaps better way using
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matroids. Figure 5 shows the the matroids G ∨ A of the general, first and second case,

respectively. Since the matroid of the second case is not graphic, we show its affine repre-

sentation. After contracting 3, 4, 5 and 6, we obtain two parallel edges in the general case,

the matroid Mu of an ideal transformer. In the first case we can see that the rank of the

contracted edges is only 3 and that after contraction we obtain Mu of a nullator pair. In

the second case after contraction the matroid becomes two loops which is the matroid Mu

of a norator pair.

Figure 5: Matroids G ∨ A of the general, first and second case

Both of the above cases are remarkable because they are examples that nullators

and norators can be realized using reciprocal devices only. All previous realizations of these

1-ports with regular network elements used circulators to achieve this goal [10] [11]. Note,

that we did not use devices that only exist in theory in either of these above cases, as an

ideal transformer with the ratio −1 is just an ideal transformer that has a ratio of 1 but

one of its ports is flipped as shown on Figure 6.

Figure 6: A transformer with −1 ratio

Moreover in the second case the resulting 2-port, which is a norator pair, is neither

reciprocal nor antireciprocal. This result is interesting as it was shown in [6] that these
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classes are closed with respect to interconnection. In that article, however, the authors

indirectly assumed that the parameters of the multiports to be interconnected are general

variables, in such a way that they cannot cancel out each other. In the aforementioned

cases we dropped this so called genericity assumption [12] by choosing the ratios of the

transformers to be 1 and −1. This example shows how some of the most fundamental

truths in electrical network theory can become false if a singularity occurs in the network.
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