
Budapest University of Technology and Economics
Faculty of Electrical Engineering and Informatics

Department of Measurement and Information Systems

Improving Formal Verification with Portfolio-based
Runtime Techniques

Scientific Students’ Association Report

Author:

Zsófia Ádám

Advisor:

Zoltán Micskei, PhD

2021

Contents

Kivonat i

Abstract ii

1 Introduction 1

2 Background 3
2.1 Formal Verification . 3

2.2 Model Checking Software Code . 4

2.2.1 A Simple Example . 4

2.2.2 Control Flow Automaton . 5

2.2.3 Reachability Problems . 5

2.3 CEGAR-based Model Checking Algorithms 7

2.3.1 Abstraction . 7

2.3.2 Refinement . 8

2.3.3 The CEGAR Loop . 9

2.4 Verifying Software in Practice . 10

2.4.1 Utilizing configurability with Portfolios and Algorithm Selection . . 10

2.4.2 Configuring CEGAR . 10

2.4.3 Executing Theta on the Simple Example 11

3 Improving the Efficiency of Verification Tools Using Dynamic Portfolios 13
3.1 Assumptions and Goal of the Work . 13

3.2 The Process of Verification . 14

3.3 Designing Sequential Portfolios . 15

3.3.1 Good Practices for Sequential Portfolio Design 16

3.3.2 Examples for Sequential Portfolios 17

3.4 Designing Dynamic Portfolios . 17

3.4.1 Dynamic Possibilities in a Portfolio 18

3.4.2 Configuration Selection based on the Input 19

3.4.3 Monitoring and Intervention . 20

3.4.4 Assembling a Dynamic Portfolio – A Detailed Example 21

3.4.5 Choosing Configurations for Dynamic Configuration Selection 23

3.4.6 The Problem of Overfitting . 24

3.5 Summary . 24

4 Designing a Dynamic Portfolio for Abstraction Refinement-Based Anal-
ysis 26
4.1 The verification Process of Theta for C Programs 26

4.2 The Empirical Method of Designing the Portfolio 27

4.2.1 Manually Assembling a Portfolio . 27

4.2.2 Empirical Methods Used . 28

4.2.3 High-level Design Decisions . 28

4.3 An Improved CEGAR Algorithm Using Runtime Information 29

4.3.1 Typical Issues during Verification . 29

4.3.2 Monitoring ARGs and Counterexamples 30

4.3.3 Practical Considerations . 32

4.4 Configuration Selection Possibilities . 34

4.4.1 Choosing Abstract Domains . 34

4.4.2 Choosing Refinements . 36

4.4.3 Choosing Arithmetics . 37

4.4.4 Other Options . 38

4.5 Assembling the Complex Dynamic Portfolio 38

4.5.1 Portfolio Introduction . 38

4.5.2 Technical Details . 39

4.5.3 Summarizing the Completed Portfolio 39

5 Evaluation 41
5.1 Experiment Design . 41

5.1.1 Research Questions . 41

5.1.2 Verification Tasks . 42

5.1.3 Subject and Baseline Configurations 42

5.1.4 Variables . 43

5.1.5 Execution Environment . 44

5.2 Results . 44

5.2.1 RQ1: Solved Tasks . 44

5.2.2 RQ2: Execution Time . 45

5.2.2.1 Average and Total Execution Times 45

5.2.2.2 Average Execution Times by Category 46

5.3 Discussion . 48

5.3.1 Conclusion on the Performance of the Complex Portfolio 48

5.3.2 Threats to Validity . 48

6 Related work 50
6.1 Algorithm Selection in Software Verification 50

6.2 Verification Tools Using Portfolios and Algorithm Selection 51

6.3 Related Work on Theta . 52

7 Conclusion 53
7.1 Summary of Results . 53

7.2 Future Work . 53

Bibliography 55

Kivonat

A formális verifikációs módszerek lényege a matematikailag precíz reprezentációk és algo-
ritmusok használata programok és modellek tulajdonságainak ellenőrzésére. Térnyerésük,
különösen a biztonságkritikus rendszerekben, folyamatosan erősödik. Ugyanakkor a for-
mális módszerek magas számításigénye miatt sok, különböző területre szabott algoritmus
létezik.

Az esetek többségében megfelelő algoritmus és konfiguráció választása egy adott prob-
lémára komoly szakmai tudást igényel (például annak kiválasztása, hogy milyen absztrak-
ciós módszert állítsunk be). Még egy szakértőnek is gyakran több konfiguráció kipróbá-
lására van szüksége ahhoz, hogy találjon egy, az adott problémán jól teljesítő beállítást.
Ugyanakkor a verifikációra rendelkezésre álló idő és erőforrások az esetek többségében
korlátozottak.

Munkám célja olyan technikák ajánlása, amelyek a rendelkezésre álló idő hatékonyabb
kihasználását segítik. Felteszem, hogy adott egy konfigurálható, szekvenciálisan futtatható
eszköz, egy bemeneti probléma és egy időkorlát. Olyan módszereket javaslok, amelyek di-
namikusan választanak és változtatnak az éppen futtatott konfiguráción ezzel egy összetett
portfóliót képezve. A módszer újdonságértéke, hogy nem csak a bemenetből kinyerhető, de
futás közben gyűjtött információkat is használ, hogy beavatkozzon az algoritmusba vagy
éppen új konfigurációra váltson.

A javasolt technikákat megvalósítottam a Theta keretrendszerben, C programok veri-
fikálására fókuszálva. Az eszközt kiegészítettem egy, az algoritmus megakadását felismerni
képes futásidejű funkcióval, illetve egy ehhez jól illeszkedő portfólióval, amely változatos
konfigurációk közül választ, ezzel is növelve a siker esélyét.

A kiértékeléshez az International Competition on Software Verification (SV-COMP)
verifikációs problémáinak egy részhalmaza került ellenőrzésre. Az SV-COMP egy széleskö-
rűen elismert, de-facto standard C nyelvű programgyűjtemény, kifejezetten szoftver ellen-
őrző eszközök számára. A javasolt javításokat néhány, általában jól teljesítő konfiguráció
mérési eredményeivel vetettem össze, melyeket egyesével, illetve naiv szekvenciális port-
fólióban is futtattam. A mérési eredmények megmutatták, hogy az eszköz a hozzáadott
technikákkal több feladatot képes megoldani, ráadásul lényegesen kevesebb idő alatt, mint
a többi esetben.

Összefoglalva, munkám során olyan megközelítéseket dolgoztam ki, amelyek a haté-
kony verifikációt segítik a konfiguráció és algoritmus szakértői tudást igénylő kiválasztá-
sának automatizálásával. Eredményeim bármely verifikációs keretrendszer fejlesztőjének
segítséget nyújthatnak. A kiértékeléshez egy konkrét eszközön el is végeztem a módszerek
megvalósítását, megmutatva, hogy milyen módon lehetséges ezek segítségével a teljesít-
mény javítása.

i

Abstract

Formal verification is an approach of using mathematically precise representations and
algorithms to check properties of a given program or model. Formal verification is gaining
increasing importance, especially in safety-critical domains. However, formal methods are
computationally complex, which has resulted in various efficient algorithms tailored for
different application domains.

In most cases, choosing the right algorithm and configuration for a given problem requires
expert knowledge (e.g. which abstraction method to use during the verification). Even an
expert might need to execute several configurations before finding one that performs well
on the given verification task. But time and resources are limited in most cases.

My goal in this work is to propose techniques that help utilize the available time more
efficiently. Assuming a configurable verifier tool, an input task, a time constraint and
sequential execution, the proposed methods select and dynamically change verification
configurations forming a complex portfolio. The novelty of the method is that it does not
only rely on information from the input task, but also tracks runtime progress information
from the verifier and intervenes in the current execution by switching configurations.

To show how these techniques can be tailored to a tool in practice, I realized them in the
tool Theta, focusing on C program verification. Improvements include adding a runtime
enhancement to the abstraction-refinement loop of the algorithm, which is capable of
detecting when the algorithm is stuck. A portfolio offering a diverse set of configurations
with algorithm selection is also added, such that it complements the runtime approach to
increase the chance of success.

For evaluation, a subset of the benchmarking tasks of the International Competition on
Software Verification (SV-COMP) is used. SV-COMP is widely regarded as a de-facto
standard benchmark set of C program verification tasks. The recommended improvements
were compared to several generally well-performing configurations, executed one at a time
and in a naive sequential portfolio as well. The tool with the improvements proposed
in this report proved capable of solving more tasks significantly faster than those in the
baseline configurations.

To summarize, I designed approaches for efficient verification by automating some of the
configuration and algorithm selection tasks requiring expert knowledge. The approaches
are general and applicable in any verification framework. To evaluate them, I realized
these techniques in a specific verifier framework, showing how it can improve the tool’s
performance.

ii

Chapter 1

Introduction

Formal verification approaches the task of verifying software code and models using math-
ematically precise representations and algorithms. One of the most widely used formal
verification techniques is model checking [34][4], which traverses through every possible
execution with every possible input to verify if a given property holds. These techniques
are becoming more and more important as the complexity of software increases in safety-
critical domains, where there is a risk of not just financial loss but also injury of people
in the case of an accident.

The exhaustive nature of model checking makes it able to prove not just the presence,
but also the absence of property violations (i.e. errors of a certain type). However it
also causes the disadvantage of being computationally expensive. Therefore several model
checking algorithms have been proposed, such as symbolic methods [20], bounded model
checking [15] or abstraction-based techniques [23][24]. Creating new or improving existing
algorithms is still a widely researched and actively expanding topic.

Motivation There are many model checking tools under active development that are
capable of verifying different models or software code written in different programming
languages (e.g. tools participating in the annual Model Checking Contest [40] or the In-
ternational Competition on Software Verification [9]). Most of these verifiers have several
configuration options or even several algorithms implemented to be able to check a wide
variety of input tasks [10]. For these tools it is crucial to be able to give their users at
least some advice on what configuration to use, as some of their users might not have
a deep understanding of the theoretical background of the algorithms and its connec-
tions to the application domain. Many of the tools already use some kind of portfolio
(i.e. a strategically assembled set of configurations) or similar technique to tackle this
challenge [42][27][46].

It is not uncommon that an algorithm is too slow, runs into a non-terminating execution
or returns with an inconclusive result. The need for the already existing portfolios arises
from the fact that the efficiency of the existing model checking algorithms depends greatly
on the domain and different properties of the given input. Most of the already existing
solutions stem from a single, algorithm-specific idea, growing further organically. But
systematic planning is usually not a priority, which might result in suboptimal solutions.

Goal My goal in this work is to analyze and propose techniques that can help utilize
the available time more efficiently with any model checker. For this I assume that there
is a given time limit, the verification tool is configurable and the execution of these con-

1

figurations has to be sequential. I will concentrate on proposing techniques that help in
the creation of a complex and dynamic portfolio. To the best of our knowledge, currently
there are no systematic collections or guidelines on portfolio techniques for model checkers,
which I strive to change with this work.

Contributions In Chapter 3 I outline the general process of verification with a model
checker. I go through this process step by step and extract information that can be used
to create dynamic portfolios with algorithm selection [45][39]. I propose techniques using
not just algorithm selection based on the input tasks [30], but also an approach of using
runtime information about the running analysis to help or stop the current configuration
and how to use these to design a portfolio of dynamically changing configurations.

In Chapter 4 I realize the general approaches of Chapter 3 in the tool Theta [49], a
highly configurable model checking framework built around abstraction refinement-based
analysis. Focusing on C program verification, I show how the general ideas can be applied
in Theta. I assemble a dynamic portfolio, which contains my work 1) on algorithm selection
to choose not just an initial strategy, but to make decisions about what configuration to
use next throughout the analysis, 2) a runtime algorithmic improvement detecting when
the explicit abstraction-refinement based analysis of Theta is stuck and guiding it out of
that state or if that fails, stopping the configuration and choosing another one instead.

Evaluation To evaluate my work I ran benchmarks on a set of C programs from the
International Competition on Software Verification (SV-COMP) [9], which is a standard
set of C and Java benchmarks for software verifiers endorsed both in academy and in
industry. The tool Theta has already taken part in last year’s competition as the backend
of the toolchain Gazer-Theta [1]. This time it is evaluated using its own C frontend and the
dynamic portfolio, which is implemented directly as part of the tool rather than a separate
script. The dynamic portfolio is compared to two generally well-performing configurations
executed by themselves and to a simple sequential portfolio of three diverse configurations.
The dynamic portfolio outperforms all of these in most cases both in average CPU time
and number of tasks solved.

Conclusion To summarize, in this work I propose a method to systematically design
and assemble dynamic portfolios for model checking tools to make verification more ef-
ficient. Based on this method I realized a dynamic portfolio in the model checking tool
Theta, including algorithm selection and runtime improvements for abstraction-refinement
based [23] configurations. I also evaluated this portfolio on C verification benchmarks to
show how it can improve a tool’s general performance. Any verification tool can benefit
from these methods as they make the usage of the tool easier for a user without deep
theoretical knowledge of formal verification.

2

Chapter 2

Background

In this chapter I would like to provide an introduction to formal verification and then focus
on software model checking. Furthermore I define and describe a formal representation for
programs (Section 2.2.2), error properties (Section 2.2.3) and an algorithm (Section 2.3)
used during formal verification that will be necessary to understand the subsequent chap-
ters. I also introduce how a tool’s high configurability can affect its usability, with or
without using portfolios and algorithm selection in Section 2.4.

2.1 Formal Verification

The swiftly expanding area of software and model analysis consists of broad varieties
in static and dynamic techniques, which are capable of finding several types of issues.
What makes formal verification techniques unique is their aim to not just find errors, but
to provide mathematically precise proofs about the correctness of the input program or
model.

Model checking is a formal verification method that proves the presence or the absence
of errors in the input model through exhaustive traversal of every possible execution. For
example, a model checker might accept an extended finite state machine as input, such as
the simple example in Figure 2.1. The model checker tool will also need an error property
to check, for example whether there are such input values that c is reachable (reachability
property) or are there such input values that at some point the value of y becomes less
than zero (overflow property).

The tool will then apply a formal verification algorithm. It might traverse the graph with
a simple DFS [7], but that will not be enough to conclude anything as the possible values
of the variables throughout all the possible steps taken in the model will also have to be
taken into account. This introduces the problem of state space explosion, meaning that
even if x and y are simple 32-bit integers, with each such integer we get a multiplier of 232

on the number of possibilities.

Tackling state space explosion is an issue which has been extensively researched and there
are a wide variety of techniques available, such as symbolic methods [20], bounded model
checking [15] or abstraction [23][24].

After executing the algorithm, the tool outputs if the property holds or not and it might
even give a counterexample or a proof to support the result.

3

Figure 2.1: A simple extended state machine of three states and two input variables

Definition 1 (Verification Task). A verification task, i.e. an input task for a model
checker consists of two parts:

• an input model (or program code) to be verified by the model checking algorithm,

• an error property to be checked by the model checking algorithm on the input model

The result given for the verification task can be inconclusive (with other words, unknown)
or if the algorithm is successful then either safe, if the error property holds or unsafe if it
does not hold.

If the result given by the algorithm is wrong due to some kind of error than the result can
be called either false positive (if the result was unsafe, but it should have been safe) or
false negative (if the result was safe, but it should have been unsafe). �

2.2 Model Checking Software Code

Software model checkers work in a similar way as the example above in Section 2.1, but
instead of getting a model as input, they accept software code written in programming
languages they support. As this work is focused mostly on the verification of C programs, a
simple C program is given below, which will be our running example during this section as
we introduce a formal representation, typical error properties and a verification algorithm
used by software verification tools and used in this work as well.

2.2.1 A Simple Example

The code shown in Listing 2.1 has a function declaration without definition (__VERI-
FIER_nondet_int()), which we assume can return any valid integer. This simulates some
kind of user input or a message from another process and so on – the point is, that we only
get the concrete value during execution. The function reach_error() also has a special
meaning: reaching the call of this function is an error and it is unsafe, so it should never
happen in a safe program. This could also be subsituted with an assertion, which would
not have to be an annotation added for formal verification, but a statement that is often
used by the programmers themselves.

Other than this, the program is simple and showing that it is safe is easy enough: we could
only reach the body of the inner if statement if x would be greater than 0 and exactly 0
at the same time, which is impossible.

4

extern int __VERIFIER_nondet_int(void);
void reach_error() {}

int main() {
int x = __VERIFIER_nondet_int();
if (0 < x && x < 5) {

if (x == 0) {
reach_error();

}
}
return 0;

}

Listing 2.1: An example input of a verifier tool

2.2.2 Control Flow Automaton

Reasoning with mathematical precision requires a formal representation, even if the input
originally was not in that format. In the latter case, the input has to be transformed to
this representation and at the end the result has to be projected back to the original input
(e.g. in which lines do the steps of the given counterexample happen). For the verification
of C programs the Control Flow Automaton (CFA) [13] is a practical formal representation
to use.

Definition 2 (Control Flow Automata). A CFA is a 4-tuple (L,E, l0, lq) where

• L = l0, l1, l2, ... is a set of locations, modeling the program counter,

• l0 is the initial program location, the entry-point of the program,

• E ⊆ L×Ops×L is a set of edges, which represent the executed operations between
two locations. The above operations (Ops) can either be assignments (e.g. x := y+2)
or assumptions (e.g. [x = 0]). �

In a CFA, such as the one in Figure 2.2, program executions correspond to paths in the
CFA. It is important to note the difference between a location in the CFA and in a state
of the program. The locations do not store information about the current values of the
variables, but these are by all means part of the states of a program.

2.2.3 Reachability Problems

We also need to precisely define the errors we are looking for. Getting back to the example
of verifying C programs, there are several possible properties, such as the reachability of
an error location (as in the case of Listing 2.1), the ability to terminate or the possibility
for variables to overflow. The format of these properties can be textual, but often they
are formulated with some kind of temporal logic, such as linear temporal logic (LTL).1

In this work we will focus on reachability problems. Error states and error locations come
quite naturally both in models and software, e.g. assertions, which check if a boolean
property is true in a certain point of the execution or error handling functions, which
are called if the system reaches a certain error state or a certain point in a program,
which shouldn’t be reached. A verification tool can prove if given function calls or failing
assertions are possible in any execution of the program or not.

1Examples of typical properties in a textual and LTL format under the Properties section: https://sv-
comp.sosy-lab.org/2022/rules.php

5

x := call___VERIFIER_nondet_int

[0 < x && x < 5]

[not(0 < x && x < 5)]

[x = 0] [not(x = 0)]

init7

loc12

loc20

main_finalmain_error

Figure 2.2: This Control Flow Automaton represents the C Program given in Listing 2.1.
The initial location represents the starting line of main and on the first edge
the return value of the first function call is assigned to x. The assumptions
on the outgoing edges of loc12 and loc20 represent the branches of the if
statements and in the end we can either reach a final location or an error
location. This model is a simplified version of what the tool Theta uses for
verification. The flow of control is the same, but the ones used in the tool
have some more nodes and edges to handle important properties of the C
language, such as value boundaries of integers.

6

2.3 CEGAR-based Model Checking Algorithms

Counterexample Guided Abstraction Refinement (CEGAR) [23] is a widely-known algo-
rithm of using repeated abstraction and refinement steps of the state space for model
checking. Using abstraction the model checker does not have to traverse all the possible
execution paths for each input, rather many of these can be merged into a much smaller
number of abstract states.

2.3.1 Abstraction

Abstraction is CEGAR’s remedy against state space explosion. In this work we will use
two possible ways of creating abstract domains over the variable values.

Explicit-value abstraction [11] utilizes the fact that there might be variables that are
irrelevant to the safety of the model and the model checker can ignore these. It
introduces a special unknown value that is assigned to untracked variables or tracked,
but unassigned variables. This way it prevents the enumeration of all possible values.

Predicate abstraction [33] Proving something is often possible knowing only that a
variable’s value is smaller or greater than a constant and the concrete value of the
variable itself is superfluous. Using this, Predicate abstraction stores predicates like
x < y or x >= 5 and tracks whether these hold or not.

The abstract state space created with either of the above domains is represented using an
abstract reachability graph (ARG) [12].

Definition 3 (Abstract reachability graph). An abstract reachability graph is a tu-
ple ARG = (N,E,C) where

• N ⊆ SL is the set of nodes, each corresponding to an abstract state in some domain
with locations DL.

• E ⊆ N × Ops × N is the set of directed edges between locations, labeled with
operations. An edge (l1, s1, op, l2, s2) ∈ E is present if (l2, s2) is a successor of
(l1, s1) with op.

• C ⊆ N × N is the set of covered-by edges. A covered-by edge (l1, s1, l2, s2) ∈ C is
present if (l1, s1) vL (l2, s2). �

In Figure 2.3 there are two ARGs based on the CFA of Figure 2.2 with different precisions:
the one on the left tracks the predicate x > 0 and this predicate is already enough to
eliminate the possibility of reaching the error location, thus it already proves the safety
of the model. The one on the right tracks the predicate x < 5, which is not enough for a
proof in itself and thus the error location is present in one of the abstract states.

An abstract state can represent many or even an infinite number of concrete states – but
the more concrete states represented the more is lost in terms of precision. By definition
abstraction means that we lose information and thus tracking values only of these abstract
domains is an over-approximation, meaning that we can get false positive outcomes, as
depicted in Figure 2.4.

Figure 2.4 shows how the abstract counterexample might hide an infeasible path in the
input task. If we need to find a path from the light to the dark concrete states then from

7

Figure 2.3: Two possible ARGs built from the CFA on Figure 2.2. The rectangles repre-
sent the abstract states. The left tracks the predicate x > 0, while the right
ARG tracks the predicate x < 5.

Figure 2.4: The circle nodes represent concrete states, whereas the rectangles are ab-
stract states so, that they represent the concrete states that are in their
area.

the abstract perspective of the rectangle it might seem possible through the thick arrow,
even though in reality there is no path between the two. To handle these false positives,
refinement is introduced.

2.3.2 Refinement

Abstraction will output an (abstract) counterexample, which might not be feasible in the
concrete model. In the next step, the refinement algorithm checks the abstract path’s feasi-
bility. If it is infeasible, the precision of the abstraction is refined by inferring new variables
or facts to be tracked, and the ARG is pruned to exclude the spurious counterexample.

Definition 4 (Counterexample). An abstract counterexample is a path in
the ARG from the initial state to a state containing the error location.
σ = ((l1, s1), op1, . . . , opn−1, (ln, sn)) := path to unsafe node (with lE) from ARG

Checking the feasibility and refining the precision are both carried out with the help of an
SMT solver.

8

Figure 2.5: The CEGAR loop: when a possibly false abstract counterexample is
found,the refinement algorithm checks, if it hides a feasible counterexam-
ple or not. If it does, the program is unsafe and the verification terminates.
On the other hand, if we cannot find any abstract counterexamples anymore
then the program must be safe.

Propositional logic In propositional logic [18], a formula is composed of Boolean vari-
ables and connectives (such as ¬,∨,∧). An interpretation I assigns each variable a truth
value (true or false). Given a formula ϕ and an interpretation I we say that I |= ϕ (I
“models” ϕ) if ϕ evaluates to true under I. A formula ϕ is satisfiable if an interpretation
I exists with I |= ϕ.

First-order logic First-order logic (FOL) [18] generalizes and extends propositional
logic with predicates, functions, and quantifiers. A formula ϕ is satisfiable if an interpre-
tation I exists with I |= ϕ [18].

Definition 5 (Satisfiability modulo theories). The satisfiability modulo theories
(SMT) problem [7, 17] is to decide if a formula ϕ is satisfiable in a theory T (ΣT , AT). �

Church [22] and Turing [51] proved that satisfiability is undecidable for FOL in the general
case. However, in practical applications, the problem is often decidable because there are
different background theories, which give particular meaning to predicates and functions,
and restrict the signature and the usage of quantifiers. SMT solvers are created using
many possible techniques and optimizations to solve these problems.

2.3.3 The CEGAR Loop

CEGAR algorithms utilize abstraction and refinement in a so-called CEGAR loop (Fig-
ure 2.5). The loop alternates between the abstraction and refinement algorithms, con-
stantly pruning and rebuilding the ARG while refining the precision more and more until
either refinement finds a feasible counterexample or abstraction builds an ARG, where the
error location is unreachable.

9

2.4 Verifying Software in Practice

2.4.1 Utilizing configurability with Portfolios and Algorithm Selection

Verifying complex software with a software verification tool often requires special knowl-
edge about the techniques applied by the tool. The effectiveness of a given verification
algorithm varies greatly depending on a broad variety of the input program’s properties
(e.g. presence of loops, cyclomatic complexity, number of variables), which are not neces-
sarily known, if not explicitly analyzed. But even if they are, the user also has to know,
how to configure the tool based on this information.

But configurational possibilities vary greatly from tool to tool, although there are some
general options that are often available, such as timeouts, boundaries of usable hardware
resources e.g. memory consumption, number of CPU cores. A typical example of a not so
general option ensuing from the technique used is the choice between abstract domains,
such as the explicit and predicate domains introduced in 2.3.1.

A portfolio is simply a given set of model checking algorithms or configurations, preferably
with a way to execute these either sequentially or in parallel. A diverse, but static portfolio
of a few configurations can greatly increase the general usability of the tool [1].

On the other hand, it is also possible to automate choosing a preferable algorithm or con-
figuration based on the input model or program – this method is called algorithm selec-
tion [45][39]. Each of these methods help in utilizing the tool’s features better, preferably
in an automated way.

2.4.2 Configuring CEGAR

The open source verification tool Theta [49] is a configurable model checking framework
built around CEGAR [23]. It is capable of checking several formal representations and has
a growing number of configurational possibilities. It is capable of transforming C programs
to a format called eXtended Control Flow Automaton (XCFA) and to CFA as well, thus
it is capable of C software verification.

In the next sections a summary of several configuration options of Theta are given, which
will play an important part in this work.2

Arithmetics By default Theta uses integer arithmetics to handle the variables in the
input program, i.e. using mathematical (unbounded) integers. But if the input task con-
tains floating point values or bitwise operators then it is necessary to change this to a
bit-precise arithmetic, which can handle these as well, although it is much less efficient
and cannot apply refinement techniques using interpolation.

Abstract Domains An important configuration option, abstract domains, were already
briefly introduced in Section 2.3.1. In practice, Theta has eight domain options currently
(but only four can be used on CFAs), although they are all based on the two domains
introduced earlier.

Three of these are predicate abstractions and they mostly differ in the format of pred-
icates they use. One uses Cartesian predicate abstraction and conjunctions of logical

2Documentation of these options: https://github.com/ftsrg/theta/blob/master/doc/
CEGAR-algorithms.md

10

https://github.com/ftsrg/theta/blob/master/doc/CEGAR-algorithms.md
https://github.com/ftsrg/theta/blob/master/doc/CEGAR-algorithms.md

predicates. The other two uses Boolean predicate abstraction. The remaining one is an
implementation of the explicit abstraction introduced earlier.

Refinement Possibilities In theory, a refinement strategy can be as simple as adding
a new variable to the precision in each iteration, but usually refinement algorithms aim to
help the convergence of the analysis to a result be as fast as possible.

In practice most refinement strategies use SMT solvers, mostly with interpolants [43] (e.g.
the refinement options BW_BIN_ITP, SEQ_ITP) to try and find variables or predicates
that are worth to add to the precision based on the given infeasible counterexample.

Initial Precision Generally a CEGAR analysis can start with an empty precision, ex-
tending the precision iteratively later. But in Theta it is also possible to traverse through
the input formalism and collect all the variables or predicates that it contains, adding
them to the initial precision. These configuration options are called ALLVARS and AL-
LASSUMES.

2.4.3 Executing Theta on the Simple Example

A trivial example to why utilizing the configuration options of a tool is important can be
given just by executing the tool Theta on the running example C program of Section 2.2.1.
It is easy to see, that the program is safe. But if we choose a configuration using explicit
domain, we can easily run into a never-ending execution of the tool.

In the first line of main the variable x is marked as unknown and in the case of an
unknown value both conditions in the if statements are satisfiable and so we remain in a
continuous state of not enough information to prove anything. This problem can be solved
by changing the configuration in the following ways:

• we can just change the domain to another one, e.g. to Cartesian predicate abstraction,

• or we can use a special algorithmic improvement of Theta, the configurability of
the explicit domain and use this option to let Theta enumerate a limited number of
values for x

In these latter cases Theta solves our problem in seconds without much need for hardware
resources (see Table 2.1). Of course this example is by no means a precise benchmark,
but a simply explainable example of why the diverse configurations of Theta are important
to use.

Time to solve Domain Max. num. of enumerated states
- explicit 1

around 1s cartesian predicate -
around 1s explicit 10

Table 2.1: Theta is incapable of solving the example in the explicit domain, without
enumeration. Changing any of these options solves the issue.

11

Motivation After introducing even just a few of the existing formal methods, it is clear
that there is no absolute winner when talking about formal verification techniques. Due
to this, many existing tools implement diverse configuration options and algorithms and
many of them also use some kind of individual technique to utilize these (e.g. a portfolio).
In this work, I would like to propose possible techniques for this on a more general level, so
to give a guide on utilizing a tools’ already existing components with the help of complex
and dynamic portfolios.

12

Chapter 3

Improving the Efficiency of
Verification Tools Using Dynamic
Portfolios

This chapter proposes a systematic design technique of algorithm selection and portfolio
assembly for formal verification tools. This technique is described in a general, tool-
independent manner, thus it can be applied to any model checker.

After the assumptions and goal of this work is formulated (Section 3.1), a high-level veri-
fication process is introduced, i.e. what general steps are executed when a model checking
tool is used (Section 3.2). Then I describe a simple portfolio pattern (Section 3.3). Next
I systematically collect the possible sources of information throughout this process to be
used for algorithm selection (Section 3.4) and lastly I propose a technique for the assembly
of dynamic portfolios (Section 3.4.4).

3.1 Assumptions and Goal of the Work

There is no single best algorithm or configuration in formal verification [9] . This implies
that verifiers will either have several algorithms or at least several configurations or con-
figurable properties at hand [35]. The next step of progress for a tool is the automation
of algorithm selection or at least the automatic usage of multiple configurations, i.e. a
portfolio.

Assumptions In this work we consider the following constraints of the tools:

• the tool has configurable properties (e.g. is capable of several algorithms or variations
of an algorithm)

• the tool can only be executed sequentially (no concurrent executions)

• a (CPU) time limit is given

• we try to optimize primarily to succeed in solving as many tasks as possible (each
task within the given time constraint) and secondarily to do this in the shortest
possible cputime

13

These constraints can be easily modified to meet other requirements or the lack of some
(e.g. it might be realistic to consider a given number of parallel executions and that we
are optimizing for walltime and not CPU time – in that case a sequential portfolio should
be made into a paralell one), but these constraints offer a convenient place to start.

Based on related work on this topic the typical solution for portfolios starts out from a
single idea based on the tool itself and then they evolve further organically, which might
not result in the most efficient solution.

Goal The goal of this work is to give a general process of dynamic portfolio design,
which enables the systematic planning of portfolios so that all the available features of the
given tool are utilized in an efficient manner.

Research Method First I started by reviewing the related work on algorithm selection
and portfolio topics. Next I analyzed the state of the art tools and their portfolio solutions.
Moreover the main source of this chapter is the general experience collected while working
with the frontend and portfolio features of the tool Theta [49], both directly in this work
and in the work published on SV-COMP 2021 [1]. The tool specific parts of this work are
added in Chapter 4. To synthesise the knowledge gained, I systematically collected the
choices of static and dynamic portfolio design.

3.2 The Process of Verification

The execution of a formal verifier typically consists of the steps depicted in Figure 3.1.

Figure 3.1: The typical process of formal software verification, including a frontend
(model transformation) and a backend (formal verification).

The Input Task and the Frontend The process starts with some kind of input task
– such as a model or program code. This is typically a product of an engineer’s hard
work and is fairly high-level or at least not formal. Thus in most cases it has to be
transformed into a mathematically precise representation, which is done in the model

14

transformation step. A typical formal representation for software code, the Control Flow
Automaton (CFA), was introduced in Section 2.2.2, but there are many other possibilities,
for example intermediate languages [6, 32] or other kinds of automata [21].

The Backend and the Result The transformation to the formal representation con-
cludes the frontend and the tool can now execute the verification itself in the backend. The
number of the possible algorithms and their variations are ever growing. Well-known exam-
ples include CEGAR [23] (introduced in Section 2.3), bounded model checking (BMC) [16]
or symbolic model checking [19]. In practice these algorithms typically have at least a few
configurable steps, such as the abstract domains of CEGAR and a verification tool might
be capable of executing not just one, but many of these algorithms.

If the analysis is successful then we get a safe or an unsafe result from the verifier. But
model checking algorithms are computationally complex and a non-terminating execution
is always possible, so generally a timeout is set to stop the tool after a while. If this or
any other error occurs then the result is unknown or with other words, inconclusive. But
verifiers might also be capable of giving other forms of output as well, such as a proof of
safety, typically in the form of an automaton with invariants or a counterexample showing
that the input is unsafe. This might be human-readable, executable or might be created
to be validated by other tools1 [8].

In the next sections we approach this process with the intention of injecting further steps,
which make the tool perform better using the tool’s already existing features.

3.3 Designing Sequential Portfolios

The simplest way of using multiple configurations is a sequential portfolio [1]. A few chosen
configurations are placed one after the other so that they fit into the given time window.
They are executed one after the other until one is successful or until we run out of time
or configurations. Although this sounds simple, there are already some strategic decisions
to be made:

• When should the next configuration of the queue start?

• Should there be an inner timeout for each configuration or should we just wait for
the configuration’s success or failure and potentially let it consume the whole time
window?

• What happens, if a configuration fails earlier, how will the inner timeouts change
then?

In Figure 3.2 the possibilities of a sequential portfolio are decomposed. The two main
points to plan out are the following:

Configurations A small set of diverse configurations and the execution order of these
has to be chosen.

Time limits Although a global time limit is already given, initial local time limits can
be set inside the portfolio. It is also important to decide on what happens, if a
configuration fails before it reaches its time limit.

1For example the standard format of violation and correctness witnesses used by the validators on
SV-COMP: https://github.com/sosy-lab/sv-witnesses

15

https://github.com/sosy-lab/sv-witnesses

Figure 3.2: Possibilities in sequential portfolio design. Rectangles depict the topics of
design choices, while the rounded rectangles are the possible solutions.

3.3.1 Good Practices for Sequential Portfolio Design

Advice on Configurations A sequential portfolio requires generally well-performing
operations and even the number of those should be limited. Special configurations tailored
to corner cases should not be added – too many small steps can easily slice the available
time up and it will make the result ineffective.

Advice on Local Time Limits Although local time limits have to be thought through
on a case-by-case basis, but a few useful points can be given generally:

• Verification tools are prone to timeouts and these timeouts can happen due to a bad
configuration – if this is a possibility then local timeouts are crucial.

• The length of the local timeouts might be equal, but it isn’t necessarily the best
solution. For example a configuration, which is mostly fast when successful, but
prone to timeouts, when unsuccessful is probably not worth to let run too long. In
that case weighted timeouts have to be added, giving only a smaller portion of the
time to the configuration mentioned above.

• In case of an early failure of a configuration, it might be worth to recalculate the
timeouts based on the remaining time, so the other configurations do not gain un-
wanted advantage (see Section 3.3.2).

16

3.3.2 Examples for Sequential Portfolios

Let’s say that we chose and ordered three different configurations to be put into a sequence.
We also chose the local time limits to be equal, as there are no outstandingly slow or fast
configurations; we simply chose these to cover as many diverse tasks as possible.

There is only the case of early failure left undecided based on Figure 3.2. What should we
do if the first Configuration fails early? In Figure 3.3 we see some possibilities for timing:
in P1 and P2 either Configuration 2 or 3 gets advantage and that is probably unwanted,
as we said, that the configurations in this case are about equally efficient. In P3, the
remaining time is halved, so both configurations get an equal amount of extra time. This
solution already points into a more dynamic direction (as it has to divide the remaining
time during analysis).

Figure 3.3: We have three configurations with equal local time limits. If Configuration
1 fails early, how should the remaining time be utilized? The last three rows
represent possible solutions.

The above points will also be used in later chapters: different local timeouts are added
to the complex portfolio in Chapter 4, whereas the baseline sequential portfolio of the
evaluation uses the above mentioned recalculation of remaining time in Chapter 5.

3.4 Designing Dynamic Portfolios

The portfolio described above will work without any further additions and it is a good
example of the usage of different time limits and configurations. However there is much
more information that can be used in a portfolio, i.e. not just earlier experiences to create
static configuration queues, but also information extracted before and during verification
to be used in dynamic steps.

If we go through the steps in Figure 3.4, we can find information to use in every step.

• The formal representation and the original format of the task can both be parsed
for different semantic and structural information.

• During execution different aspects and artifacts might be monitored that can give
some kind of idea about the state of the analysis.

• In an ideal situation wrong results are nonexistent, but it isn’t always the case – thus
it might also be worth to check the output results and validate it if that is possible.

17

Figure 3.4: Throughout the analysis there are various forms of information that might
be used in a portfolio

3.4.1 Dynamic Possibilities in a Portfolio

With the addition of the extracted information (Figure 3.4) a whole new set of possibilities
appears in terms of portfolio features, as shown in Figure 3.5.

Figure 3.5: Possibilities of a dynamic portfolio. Rectangles depict the topics of design
choices, while the rounded rectangles are the possible solutions. Time limits
and Static configuration selection were already detailed on Figure 3.2.

Up until now the next configuration was statically selected from a predefined queue, but
now it can be dynamically decided during the analysis based on information that was
not available before execution. We will call this dynamic configuration selection. These
dynamic decisions can be made based on the input task – the well-known name of this
technique is algorithm selection [45]. This branch of Figure 3.5 will be detailed in Sec-
tion 3.4.2.

18

On the other branch we find the terms monitoring and intervention – this refers to algo-
rithm monitoring techniques that might intervene in the running configuration and which
can also supply additional runtime information on a failed configuration to be used to
decide on what configuration to execute next based on earlier results. These branches are
described in more detail in Section 3.4.3.

Tailoring these techniques to a tool and putting them together into a complex portfolio
might significantly improve its performance. Whereas the sequential portfolio has already
built on the developer’s theoretical knowledge and experience, here it will be utilized even
more exhaustingly. This is presented on an example in Section 3.4.4.

Another Solution: Machine Learning instead of Manual Assembly Although in
this work the main focus was manual assembly of portfolio features based on engineering
knowledge, machine learning techniques can help or substitute several steps of this process.
For example, searching for properties to base algorithm selection on can be done with
feature selection techniques [50][25]). The step of manual assembly can also be realized
with machine learning techniques instead. Usually for this some kind of feature vectors
are created and the machine learning problem and algorithm is then formulated based on
those, usually as a supervised learning problem. A common solution is to use the support
vector machine (SVM) algorithm [30][50].

3.4.2 Configuration Selection based on the Input

Algorithm selection is a complex task and to add algorithm selection as a feature, con-
necting knowledge about the possible configuration’s strengths and weaknesses with the
properties or property combinations of the input tasks is necessary. The first step to realize
that is finding the characteristic properties, like whether the input program contains loops
or not.

The possible solutions are always heuristics in the sense that all possible tasks and property
combinations cannot be known, so to some extent the portfolio will always be tailored for
types of tasks that were available when creating it.

What we propose is to always carefully consider every piece of information that might be
worth extracting from the input program or model. There is already plenty of work avail-
able on the possible properties. For example, empirical properties on variable types [29][3],
control flow and loops [30] of C programs – this grouping of properties can be generally
helpful in many situations, as it highlights such general constructs that can become prob-
lematic obstacles for any verification tool. There is also available work on identifying
exactly what structural program properties might be important when choosing C verifi-
cation tools with machine learning techniques [50].

Examining the Formal Representation The formal representation might also be
worth to check for properties. Although at first glance it might seem like that analyzing
two representations of the same model or program is superfluous, it is not. Using the for-
mal representation it might be easier to deduce connections between certain configurations
and the properties, as the model checking algorithms are executed directly on this rep-
resentation. In either case, the model transformation step offers the perfect opportunity
to extract these properties, as it involves parsing the input task and building the formal
representation.

19

For example, when verifying software, the CFA is on a much lower level and its structure
can be easily examined (e.g. path lengths or cyclomatic complexity). On the other hand,
a program typically has semantic meaning added, such as the usage of different variable
types or the usage of either a for or a while loop.

Figure 3.6: The same CFA loop can easily be a valid model of a for or a while loop as
well

In Figure 3.6 there is an example of this semantic information: it is much more likely in the
while loop that i is not a simple counter, but a more general flag that might be changed
in any ways in the body of the loop thus creating a loop with an uncertain number of
iterations instead of the fixed number of 10 iterations. Of course, to make sure about this,
further analysis on i should be carried out, but differentiating between for and while loops
can already be used as a simple heuristic in itself.

3.4.3 Monitoring and Intervention

In bounded model checking the analysis has to be given a maximal bound [16]. When the
length of the paths observed by the algorithm reaches this bound, the analysis stops with
an inconclusive result. Although this is normally seen as a necessary part of the basic
BMC algorithm, it is also an example of a dynamic decision based on runtime information
about the state of the algorithm.

If we are to design methods similar to the example above, we might want to consider the
following:

• what is being built and stored during the algorithm – such as the paths explored
in BMC or an Abstract Syntax Tree or Graph or (abstract) counterexamples or any
other collection or function connected to the state space or the input,

• what steps does the algorithm consist of; if there are iterations, what steps do those
have and

• are there any particular states of the algorithm that should be evaded (e.g. a state
the analysis gets stuck in) or is particularly desirable (besides the trivial case of
being successful).

20

Based on this information it might be possible and desirable to intervene in certain cases
during execution. In the case of BMC this intervention meant stopping the analysis, but if
there is a possibility to somehow help the algorithm, e.g. to help it out from an undesirable
state, so it does not get stuck or to help it converge faster.

If the algorithm cannot be helped and it is stopped, one might also want to decide, what
algorithm or configuration should be executed next – this can be decided based on, among
other things, the circumstances of the intervention, e.g. if it was stopped due to a state
space explosion or anything similar then are there any configurations that might prevent
this from happening?

When implementing such ideas, one has to monitor the execution – this most likely means
injecting checks inbetween certain steps in the algorithm and it might also create the need
to store additional data, e.g. from earlier iterations. It is important to take into account
the added overhead in time and in storage as well.

3.4.4 Assembling a Dynamic Portfolio – A Detailed Example

Algorithm selection chooses an algorithm directly before verification [39]. A portfolio, on
the other hand, does not need to be more than a group of configurations that might be
worth to use. If these techniques are mixed and decision points are added throughout the
whole portfolio, the result is a dynamic portfolio able to include and exclude configurations
during verification.

The earlier introduced techniques and properties fit into such a dynamic portfolio well.
This is also showed in Figure 3.7. The upper diagram is a simple sequential portfolio
similar to the example in Section 3.3 – consisting of three configurations, one after the
other. However the one below employs dynamic techniques such as 1) choosing between
C3 and C4 based on the input task, 2) monitoring the output of C1 and choosing between
C2 or the C3/C4 branch, 3) the special failure can be the result of a runtime monitoring
method stopping the algorithm.

The advantages and possible reasoning behind this portfolio are the following. There is a
maximum of 2 configurations executed sequentially, giving a chance to larger tasks that
require more time.

• If the special failure usually happens quickly, C2 might receive all the remaining
time to itself – this is advantageous if it is a usually slowly converging configuration
that can eliminate the special failure (an example of this will be given in Section
4.4.1);

• or, if the special failure happens after a long time, C2 might be a usually fast “second
chance", hopefully solving those tasks in a short time.

The other failure branch covers all the other possible non-successful outputs: local timeout,
an unknown technical issue or any other possible failures. In these cases, C2 might not be
the best option (as C2 was specialized for eliminating the special failure, but might not
be a really good performing configuration in general), so C3 and C4 remain. C3 might
perform well only when a few general task properties match (or C4 might not support
some other properties), so here algorithm selection is utilized to decide on what to use
next.

There is the obvious disadvantage of not trying all configurations from C1 to C4 and as
almost all decisions are based on heuristics, there can always be corner cases that might

21

Figure 3.7: Process diagrams showing the earlier introduced simple sequential portfolio
employing three configurations (C1,C2,C3) (top) and an example of a more
complex assembly using algorithm selection and runtime information with
four configurations (C1-C4) (bottom).

22

have worked with another configuration better. But if the heuristics were well prepared,
then such a portfolio might perform much better on diverse tasks both in time (e.g. trying
less configurations before finding the right one) and in the number of solved tasks (e.g.
more configurations can be utilized).

3.4.5 Choosing Configurations for Dynamic Configuration Selection

Working with a tool usually results in knowing the well-working configurations and al-
gorithms that are “usually worth a try". Building on this knowledge is a possible way
of assembling a portfolio and the broader this knowledge, the more general this portfolio
might become.

A few points to consider when choosing configurations:

• Try to use a diverse set of configurations; if there are more well-performing config-
urations that work well on similar tasks, it might be better to employ only one of
these.

• Bring the usually fast-failing configurations to the beginning – they won’t waste
much time in cases where they do not work.

• Use many branches; utilize the possible runtime and algorithm selection methods to
avoid long sequential executions that slices the available time up into small intervals.

• Set local timeouts, where sensible:

– if a configuration is prone to timeouts
– if it is not the last configuration and the rest of the configurations have an actual

role (i.e. not just placed at the end as “last resorts" to utilize the remaining
time if the current configuration fails)

Inclusion and Exclusion It might also be worth to think about choosing configurations
in terms of inclusion and exclusion, i.e. there might be some options that will throw an
error for certain tasks, because they lack support for a certain language or model element
and excluding the superfluous execution of that configuration would be beneficial. While
other configurations should be included for certain tasks as they usually perform well in a
given category or the presence of a given property.

Extra steps Also keep in mind the unique possibilities of the tool when planning the
portfolio, e.g. if the tool is capable of giving a counterexample that is easy to validate (like
an executable counterexample) then it might be beneficial to add a step of counterexample
validation [1][8], which, if ends in a failure, lets the portfolio continue instead of giving a
false success.

Separate Configuration Options Until this point I talked about configurations as
complete parametrizations of the tool. If the tool has separate, mostly independent config-
uration options instead, the number of possible complete configurations can easily explode.

If the connections between the options are loose, i.e. it seems feasible to add a runtime
decision only on a single or a few (but not all) configuration options then it might be worth
to utilize this and make a series of decisions on single options until reaching a complete

23

configuration to execute. But it is more likely that the options are bound more tightly
(e.g. if option A is set to true, the configuration will practically only work well if option
B is also set to true) and it is not worth it to take the practically unusable configurations
into account (e.g. when option A is true, but option B is false).

Connecting Configurations to Properties Pairing certain property values (usually
more than one) to a configuration that might perform well on them involves experimenting
and benchmarking with several configurations on several task sets.

Both 1) having a hypothesis based on the algorithm and then verifying it with benchmarks
or 2) finding a pattern based on the experiments and finding a logical explanation for it
based on the algorithm and the tasks are valid solutions.

3.4.6 The Problem of Overfitting

One of the most discussed and highly-criticized issue of assembling portfolios is the lack
of transferability and the problem of overfitting [47]. It is inevitable that the portfolio
will have a scope – if no other than the application domain the assembler of the portfolio
knows/experimented on. There will always be new input tasks that were not considered
during portfolio assembly, but could be solved with a special configuration that was unused
until that point – this is the issue of limited transferability. One approach to solve it might
be the continuous expansion of the portfolio, adding more and more time and effort into
it.

However overfitting can already happen during the initial assembly of the portfolio. When
there is a really specialized group of inputs, it might be overfitting to create a rule based
only on that group.

There is usually no clear line between well-working algorithm selection and overfitting.
But when trying to prevent it, it is important

• to generalize how the tasks of this category are recognized (i.e. will there be any
such programs besides this really special domain that might not come up ever again
and if there is anything similar outside that domain, will we be able to recognize it
or should these rules be loosened up a bit),

• and to find a logical explanation behind the decisions added to the portfolio (e.g.
why is this working well in this case, how can it be explained based on the algo-
rithm/configuration used). This might not always be possible, in that case try to
experiment with the possibilities as exhaustively as possible.

3.5 Summary

To summarize, this chapter detailed a systematical collection of static and dynamic portfo-
lio techniques for verification. Its structure is based on two diagrams detailing the possible
portfolio features, which in themselves can serve as a checklist of ideas for any developer
looking to design a portfolio for a tool.

Beside the already well-known algorithm selection problem and methods, the dynamic
techniques also detailed novel possibilities on monitoring the analysis, intervening when
needed in several ways and using the collected runtime knowledge when deciding on further
configurations.

24

Furthermore a detailed example of portfolio creation, followed by advice on configuration
collecting methods and warnings on overfitting were given in the end.

In the next chapter the methods of this chapter are put into practice by creating a dynamic
portfolio for C software verification in the tool Theta.

25

Chapter 4

Designing a Dynamic Portfolio for
Abstraction Refinement-Based
Analysis

To evaluate the applicability and benefits of the methods of Chapter 3, a dynamic portfolio
following the proposed guidelines has to be realized on a concrete tool.

Theta1 is a highly configurable model checking framework using abstraction refinement-
based (CEGAR) analysis (more on the tool in Section 2.4.2. But Theta was made mainly
to benchmark, research and improve CEGAR (while supporting several formalisms and
solvers).

One of the main advantages of Theta is that it is not exclusively a software verification
tool, but is capable of handling other formalisms as well, such as formalisms for timed
automata and state machines. For this reason, the created dynamic portfolio will be
transferable to these formalisms in the future and can be compared to the results of this
work. Furthermore Theta is open-source and it is easy to add new features due to its
modular structure. It is also interesting to see how the tool being highly configurable,
but using only a single "base" algorithm results in an unusually granular solution in the
resulting portfolio.

In this chapter the Theta-specific verification process will be introduced (Section 4.1) and
the empirical methods I used in this work are described (Section 4.2). Then I will intro-
duce a modified CEGAR loop that improves the capabilities of the explicit analysis using
runtime information (Section 4.3). I will then analyze the algorithm selection possibilities
in the tool (Section 4.4) and last a dynamic portfolio is assembled by joining these methods
together into a single dynamic portfolio for verifying C programs (Section 4.5).

4.1 The verification Process of Theta for C Programs

The Theta specific version of the general verification process introduced in Section Sec-
tion 3.2 is shown in Figure 4.1. The model transformation uses an ANTLR grammar [44]
to parse the input C program. During that process the tool builds a CFA to later use
CEGAR on it.

1https://github.com/ftsrg/theta

26

Figure 4.1: This figure is the Theta specific version of Figure 3.1, using the XCFA fron-
tend, which is able to take C programs as input tasks.

The analysis then executes the CEGAR loop, containing the abstraction and refinement
algorithms. When that stops, a result is given, which might be safe or unsafe (property
holds or does not hold) in the successful case, or the tool might return some kind of error
(e.g. a stack overflow or an SMT-solver exception), but it also possible that it finishes
with a timeout after a while, if a time limit was given.

4.2 The Empirical Method of Designing the Portfolio

4.2.1 Manually Assembling a Portfolio

The portfolio was designed and assembled manually by carefully considering the advan-
tages and disadvantages of Theta’s configuration options.

The reason of not using machine learning is the limited number of diverse tasks that I
could work and later benchmark on. Although the number of all available tasks in the
benchmarking set is fairly large (there are more than 5000 tasks using the reachability
property), the diversity of the tasks might not be really high – many of the tasks are
artifically made or simplified and there are many variants, that are really similar.

Furthermore even though the need to use the configuration options of Theta more ef-
ficiently is high, the frontend of the tool is currently limited in support of C language
elements (e.g. it cannot work with function pointers and has only limited support for
structs and pointer arithmetics). In the end, there is simply not enough diverse tasks
to use a neural network or anything similar on and get reliable results. However most
of my work could be integrated with such techniques and as the limiting features of the
verification tool are rapidly advancing, it might be feasible to add as future work.

27

4.2.2 Empirical Methods Used

The engineering knowledge to create this portfolio and every technique added to it was
gained through a mix of theoretical knowledge, earlier experiences, small draft benchmarks
and manual observation of the running analysis.

The earlier experiences include last year’s work on preparing Theta to compete on the
International Competition on Software Verification (SV-COMP) [9][1], albeit not with
the frontend used in this work – it competed with the frontend Gazer2 under the name
Gazer-Theta. The change of frontend seems like a technical detail, but as Gazer is an
LLVM-based3 frontend, using single static assignment variables (SSA) and many black-
box optimizations, it would be much harder to deduce connections between the input tasks
and Theta’s configurations and the list of supported and unsupported tasks changed a lot
as well.

To prepare Theta and Gazer to the competition I executed systematic benchmarks on large
sets of tasks of SV-COMP in several categories, which resulted in experience in several
domains:

• Tool integration and usage of the benchmarking framework Benchexec [14]

• Structure of the task categories of SV-COMP and knowledge about the size and
properties of the categories

• The relevant configuration options of Theta that usually matter the most4

Although Theta has changed a lot since last year (mainly in a technical and implementation
sense), most of the above mentioned experiences are still valid and offer a base to start
from.

The other source of experimental knowledge in this work was an iterative set of small
measurements on different aspects of the tool on the SV-COMP tasks to discover properties
of the tool and its configurations that can then be explained through the models and the
CEGAR algorithm, but would not be trivial to find out without benchmarks (e.g. that
explicit analysis is prone to get stuck, see Section 4.3).

To explain and reason about the above mentioned properties, beside applying theoretical
knowledge I mostly focused on empirical methods observing the tools operation while
executing the analysis using debugger and profiling tools.

4.2.3 High-level Design Decisions

The tool Theta already had a sequential portfolio[1], therefore my goal was to design and
implement a more complex, dynamic portfolio.

Figure 4.2 illustrates the features selected and implemented in this new portfolio. I concen-
trated on the following aspects, that could potentially improve the performance of Theta
based on the previous experiences.

• Monitoring and intervention
2Gazer tool https://github.com/ftsrg/gazer
3LLVM project: https://llvm.org/
4Documentation of the tool on the options: https://github.com/ftsrg/theta/blob/master/doc/

CEGAR-algorithms.md

28

https://github.com/ftsrg/gazer
https://llvm.org/
https://github.com/ftsrg/theta/blob/master/doc/CEGAR-algorithms.md
https://github.com/ftsrg/theta/blob/master/doc/CEGAR-algorithms.md

Figure 4.2: The diagram of dynamic portfolio feature (Figure 3.5), but the features that
were added in this chapter’s dynamic portfolio are colored grey.

• Configuration selection based on the input program

The following sections will introduce the details for these improvements.

4.3 An Improved CEGAR Algorithm Using Runtime Infor-
mation

4.3.1 Typical Issues during Verification

As we can see in Figure 4.1, in the case of successful verification Theta outputs a result,
namely if the input program was safe or unsafe. But verification can also be unsuccessful.
Either we run out of time and patience and the result is a timeout, or we run out of some
other resource (e.g. memory or the stack) and the result is unknown. Technical issues,
such as some kind of unsupported C construct, SMT solver issues or bugs will also result
in unknown. There can be many different unknown results, which can mostly be solved
through implementing new features and fixes in the verification tool.

But what will be of greater interest for us in the unsuccessful cases are the timeouts. Al-
though at first it may seem like, that such an output simply implies performance problems,
there are more than one typical pattern here worth observing.

Timeouts due to performance problems As we have seen, the CEGAR loop consists
mainly of two algorithms: abstraction and refinement. In problematic cases either can be
quite slow. Abstraction takes a long time if the ARG being built is really large and
the expanded nodes constantly result in many new nodes to be expanded – practically
resulting in a timeout in many cases, depending on the available resources.

29

Refinement, on the other hand, is based on SMT solvers, which can also require a huge
amount of time to solve the problem given to them. In many cases we have observed
timeouts after spending a long time in a given iteration in either of these algorithms. In
special cases verification can’t even build the first iteration of the ARG in time.

These are special cases of performance problems and tackling them is the same as improving
the performance of certain module in Theta through adding new and optimizing existing
features.

There exists of course the more general case, where the size and complexity of the input
task is simply so high that neither the abstraction nor the refinement algorithm can tackle
it in any sensible time – that should also get better with the tool’s general progress, but
it is probably the hardest issue to address from the above.

Timeouts due to algorithmic issues Most abstract domains are not complete – in
many cases they can only be refined up to a certain point and even in their most refined
state they do not become identical with the concrete state space. The straightforward
example is the explicit domain – while x = 0 can be formulated and tracked, "x can be
anything but 0" cannot. Furthermore, even Cartesian predicate abstraction is incomplete,
as it cannot express XOR connections, although in practice this comes up much less
regularly.

Due to this incompleteness, an unexpected type of timeouts come up fairly regularly,
namely that the algorithm gets into an infinite loop of the same few iterations. It builds
the same ARGs over and over again without being able to improve precision and it finds
and checks the same abstract counterexample over and over again. This rarely happens in
the predicate abstraction domain, but comes up often in the explicit domain.

Figure 4.3 shows a simple example of this with a single ARG being built over and over
again. Although the variable x is present in the precision, it might happen, that the value
of x is unknown. On the other hand, the path leading to locErr through locX and locY
is infeasible, if there was an earlier predicate, which makes x > 0 false (e.g. x <= 0), but
the explicit domain cannot express and store this predicate, thus x remains unknown at
this point. But if the ARG is pruned back to the same spot and the precision also remains
the same, the algorithm will build the ARG over and over again in the direction of the
infeasible counterexample, thus getting stuck. Although here it is only a single ARG that
the analysis iterates infinitely on, but in many cases it is a sequence of ARGs that forms
a loop of infinite iterations.

The explicit domain, although limited in expressiveness, is generally much faster than any
predicate abstraction of the tool. But that is hard to utilize efficiently if it regularly gets
stuck on other tasks. Contrary to the earlier examples of timeouts, where there is an
actual performance problem, here it is caused by the lack of such information that the
explicit domain could use. The big difference between these is that it can be monitored
if the algorithm makes no refinement progress (it is "stuck") at a certain point of time or
not. In the following subsection a run-time algorithmic improvement fulfilling this task is
introduced.

4.3.2 Monitoring ARGs and Counterexamples

The goal of my work in this section is to detect when there is no refinement progress due
to incomplete domains and mitigate or stop the resulting infinite loop in the algorithm.

30

Figure 4.3: Part of a CFA and a process diagram showing how the explicit analysis can
get stuck in an infinite loop.

The algorithmic improvements are formalized and added to the already implemented ab-
straction and refinement algorithms in Algorithm 4.1 and 4.2 (the newly added parts are
highlighted).

Detecting infinite loops To detect when the algorithm is "stuck", we have to detect if
the ARG and precision changes throughout the iterations of CEGAR and for this we will
need to store the ARGs and precisions of earlier iterations. Based on Figure 4.3 it might
seem like that comparing only the last two ARGs and precisions might be enough, but it
is possible that a set of ARGs form the infinite loop instead of just one, thus comparing
only the last ARGs is not sufficient.

Thus a set collecting abstract reachability graph and precision pairs is created and con-
tinuously expanded with new ARGs – the ARG that is passed from the abstractor to
the refiner is added to this set in each iteration. Before it is added, the set of ARGs is
checked for containment of the new ARG and if it is already present then we know, that
the analysis is stuck.

The reason why precisions are also added instead of only collecting the ARGs is that the
change of precision means progress in the algorithm and it might seem rare in the explicit
domain, but none the less it is possible to build the same ARG with different precisions.
This occurs more frequently in predicate-based domains.

Mitigation of infinite loops When the algorithm makes no refinement progress, it is
a straightforward decision to stop it, but there is another possible opportunity as well.

Most CEGAR tools employ a lazy strategy, i.e. they build the ARG only until the first
counterexample is found and then the abstraction stops and refinement starts on that
counterexample immediately. When there is no refinement progress in the algorithm then
this same first counterexample is found again and again in each iteration – but if the
abstractor would build the ARG further instead, it might find other counterexamples,
with which the refinement could progress further.

This possible issue with the lazy strategy is demonstrated in Figure 4.4 on a partially
expanded ARG of an explicit analysis. The grey loc6 was not discovered, as the abstractor
expanded loc3 and its successors instead and then proceeded to refine the counterexample
on that path instead of building the ARG further. But the counterexample is not feasible

31

Figure 4.4: A partial ARG as an example of the lazy strategy. The explicit analysis
tracks x only.

and there are no new variables in this path to be added to the precision, as x is tracked
already. Thus there is no refinement progress and the ARG will be pruned and then built
back again to this same structure. If the grey counterexample through loc6 could also be
discovered and refined instead, then y would be added to the precision and the algorithm
could progress further.

To mitigate such cases as in Figure 4.4, the counterexamples have to be collected into a
set after refinement. This set then can be used to check if a newly-found counterexam-
ple was refined earlier or not. The collected counterexamples are all infeasible abstract
counterexamples, as the algorithm would have stopped already if there was a feasible
counterexample found.

When a counterexample reappears while the abstractor is expanding the ARG, the ab-
straction is not stopped, instead the ARG is built further until a new counterexample is
found. The refiner will need to choose this new counterexample for refinement instead
of the first one. If there is no new counterexample to be found, it is concluded that the
analysis is stuck and cannot be saved and thus it is stopped with an inconclusive result.

4.3.3 Practical Considerations

Storage Overhead Storing a large quantity of abstract reachability graphs would re-
quire a tremendous amount of memory, so to avoid this, both the ARG, precision pairs
and the counterexamples are stored and compared only as hash codes.

Using hash codes carries a slight chance of hash collisions. In case of a hash collision, two
counterexamples or two ARG precision pairs might be stored with the same hash codes,
causing the checks for equality to give a false positive result of the checked constructs
being equal, even though they are not the same.

If the colliding hash codes are of ARG precision pairs, then the algorithm might build
the ARG further, if the counterexample was stored earlier already, which could rarely
be the case. That would mean a missed opportunity for refinement with that ARG and

32

Algorithm 4.1: Abstraction algorithm.
input : ARG = (N,E,C): partially constructed abstract reachability graph

lE : error location
DL = (SL,⊥L,vL, exprL): abstract domain with locations
πL: current precision
TL: transfer function with locations
ArgSet :< arg, π >: the pair <arg,π> is an abstract reachability graph

and a precision, that occurred together earlier at least once
CexSet: A set of counterexamples that was already found and refined

earlier.
output: (safe or unsafe, ARG, ArgSet, CexSet)

1 waitlist := unmarked nodes from N
2 while waitlist 6= ∅ do
3 l, s := remove from waitlist
4 // Check if (l, s) is unsafe and the counterexample is new with respect to the

current ARG and precision
5 σ = ((l1, s1), op1, . . . , opn−1, (ln, sn)) := path to unsafe node (with lE) from

ARG
6 if l = lE and not (ARG ∈ ArgSet and σ ∈ CexSet) then
7 ArgSet := ArgSet ∪ARG
8 return (unsafe, ARG, ArgSet, CexSet)
9 // Check if (l, s) can be covered

10 else if ∃(l′, s′) ∈ N : (l, s) vL (l′, s′) then
11 C := C ∪ {(l, s, l′, s′)} // Add covered-by edge
12 // Otherwise (l, s) gets expanded
13 else
14 foreach (l′, s′) ∈ TL((l, s), πL) \ ⊥L do
15 waitlist := waitlist ∪ {(l′, s′)}
16 N := N ∪ {(l′, s′)} // Add new node
17 E := E ∪ {(l, s, op, l′, s′)} // Add successor edge
18 if ∃(lE , s) ∈ N then
19 // There are no new counterexamples to be found in the ARG, so the analysis

has to stop with an inconclusive result
20 return (inconclusive, ARG, ArgSet, CexSet)
21 else
22 return (safe, ARG, ArgSet, CexSet)

counterexample and could theoretically cause an inconclusive result, but it cannot cause
a false one.

On the other hand, if counterexamples’ hash codes collide, then the algorithm might miss
the refinement of a counterexample – this cannot lead to a false result, but it might lead
to an inconclusive result. For that to happen, the evaded counterexample should have
been crucial to get a result and a similar, but more refined counterexample could not be
created either. It is easy to see, that the chance for this is probably negligible.

Altering to Refinement with Multiple Counterexamples The introduced tech-
nique depends on the fact that the abstractor normally stops as soon as it finds the first
abstract counterexample. Theta already has the refinement possibility MULTI_SEQ,

33

Algorithm 4.2: Refinement algorithm.
input : ARG = (N,E,C): unsafe abstract reachability graph

lE : error location
πL: current precision
CexSet: A set of counterexamples that was already found and refined

earlier.
output: (unsafe or spurious, π′L, ARG)

1 σ = ((l1, s1), op1, . . . , opn−1, (ln, sn)) := path to unsafe node (with lE) from ARG
2 // Feasibility check
3 if s〈1〉1 ∧ op〈1〉1 ∧ . . . ∧ op〈n−1〉

n−1 ∧ s
〈n〉
n is satisfiable then return (unsafe, πL, ARG)

4 else
5 // Record the new counterexample to CexSet
6 CexSet := CexSet ∪ σ
7 (I1, . . . , In) := get interpolant for σ
8 // Precision adjustment
9 (π1, . . . , πn) := map interpolant (I1, . . . , In) to precisions

10 π′L := πL

11 if πL is local then π′L(li) := π′L(li) ∪ πi for each li in σ
12 else π′L(l) := π′L(l) ∪

⋃
1≤i≤n πi for each l ∈ L

13 // Pruning
14 i := lowest index for which Ii /∈ {true, false}
15 Ni := all nodes in the subtree rooted at (li, si)
16 N := N \Ni // Prune nodes
17 E := {(n1, op, n2) ∈ E | n1 6∈ Ni ∧ n2 6∈ Ni} // Prune successor edges
18 C := {(n1, n2) ∈ C | n1 6∈ Ni ∧ n2 6∈ Ni} // Prune covered-by edges
19 return (spurious, π′L, ARG)

which exhaustively builds the ARG until it cannot be expanded further and all counterex-
amples are found (and then uses all the counterexamples for refinement).

In that case, there is no sense in trying to find more counterexamples if there aren’t any
new ones so the algorithm is stopped instantly when an ARG-precision pair comes up a
second time. So when using the MULTI_SEQ refinement, a variant of the modification is
used, which does not store the counterexamples and cannot mitigate the infinite loops in
any ways, but is still capable of stopping the analysis, when needed.

4.4 Configuration Selection Possibilities

In this section I discuss the capabilities of the different abstract domains, refinements and
arithmetics implemented in Theta and how the performance of these can be connected to
certain input task properties.

4.4.1 Choosing Abstract Domains

Precision - Efficiency Trade-off Generally the most influential configuration option
of a CEGAR analysis is the abstract domain. The abstract domain determines what
information can be extracted on the possible variable values.

34

Figure 4.5: The trade-off between efficiency and precision in terms of abstract domains.

Typically choosing a domain is a trade-off between efficiency and precision as shown in
Figure 4.5. The explicit domain can only express a finite number of equalities over variables
with constants, limiting expressiveness; but due to this, the logical formulas given to the
SMT solver are simple and thus this domain is generally faster than the others. Cartesian
predicate domain keeps track of conjunction of logical predicates, while Boolean does this
with arbitrary Boolean combinations instead of conjuncts, which makes calculations more
expensive [5].

The earlier introduced modified CEGAR with runtime monitoring (Section 4.3) pairs well
with the precision-efficiency trade-off of explicit and predicate domains. If a program
does not contain enough information for the explicit analysis’ success, it will eventually
get stuck. At that point, it can be stopped and a predicate analysis can be started instead.

The Strengths of Predicate Analysis Explicit abstraction cannot express value inter-
vals (only concrete values), while predicate analysis can. In practice, the typical construct
that regularly turns out to be connected to value intervals are loops. Let us assume that
there is a loop with a counter variable. Explicit abstraction will typically unfold in the
form of many abstract states while following the value of the counter. Predicate abstrac-
tion on the other hand might be able to find a predicate that covers multiple similar
iterations of the loop and can use that to cut down on the number of abstract states (e.g.
a loop with the condition x > 1000 can result in at least a 1000 states only because of
x, even though with predicate abstraction x > 1000 could be enough). In such cases this
can easily make the predicate domain a winner over explicit analysis. However, a fairly
low cyclomatic complexity is also required, as otherwise the task is probably too large to
be handled by the expressive, but slow predicate abstraction.

Thus, the heuristic proposed is: predicate analysis should be executed, if

• there is at least one while loop in the program and

• the task has a cyclomatic complexity below 30, a value based on earlier observations
of results and tasks

Furthermore, the time limit of the predicate analysis will be set to be fairly short, as if the
predicates do not work well in a small amount of time then the task might be difficult to

35

solve with predicates, but the reason for this might lie in other program attributes instead
of cyclomatic complexity.

Future Improvement While talking about abstraction, it also has to be mentioned that
there are several more granular solutions for choosing the abstract domain per variables
based on variable roles or other runtime properties [3]. These might offer a better solution
than what we currently have in the tool and it is under active research to develop and
implement such techniques in Theta, but for now product abstraction only works with
another formalism5. As future work we would like to benchmark and add these to this
portfolio as well when it will be available.

4.4.2 Choosing Refinements

If the abstraction algorithm’s most influential configuration option is the abstract domain,
then the most influential option for the refinement algorithm must be the refinement
strategy. What we have seen here generally is that sequence interpolants work well in the
explicit domain and binary backwards interpolation works well with predicate abstraction
while the others fall behind these in most cases.

Precisions with Faster Convergence In special cases, the refinement UN-
SAT_CORE works well, which instead of using an interpolant uses an unsat core [41]
of the logical formulas to add new variables to the precision (it works only in the ex-
plicit domain). This special case includes programs, where a larger group of variables
(preferably with known values) are important for success, but the task is also large. The
explanation for that is that an unsat core can expand the precision in each iteration with
several variables instead of just one or just a few, while interpolants will not do that as
they localize to the point of the counterexample, where there is a contradiction making
the path infeasible.

A configuration with a more brute-force solution, but similar strengths to the UN-
SAT_CORE refinement is using the ALLVARS initial precision (instead of the default
EMPTY initial precision). This adds every variable to the precision initially, practically
maximizing it. From then on, the analysis becomes similar to bounded model checking in
the sense, that the precision remains the same and iterations are simply searches for new
abstract counterexamples, which are then checked by the refiner.

The weakness of both is the possibility of building really large ARGs due to the large
number of variables included in the precision. In other words, the abstraction might be
too fine, causing performance issues.

Tasks with Many Variables to Track The above mentioned configuration quali-
ties were first observed on SV-COMP programs encoding event-condition-action (ECA)
systems [38], where there is only a single input and a single output variable, but many
variables with known values that are used extensively in branch conditions. These tasks
have many common features:

• there is a single input (with a non-deterministic value) and a single output variable
5See product abstraction domains here: https://github.com/ftsrg/theta/blob/master/doc/CEGAR-

algorithms.md

36

• the point of the program is to calculate the output variable

• the structure of the program is similar to some kind of encoded state machine:

– there is a single outer while(true), which we break out of, when the output is
calculated

– they have many variables with an initially assigned value and these are used in
branch conditions

– there are many branches inside the calculation with conjunctions of equality
checks between variables and constants

• these systems can easily grow quite large by adding more and more steps to calcu-
lating the output, resulting a task so large, that after a certain point Theta won’t
be able to solve it in a reasonable time

Generalization of the Observations Based on the above two paragraphs I created a
more general algorithm selection heuristic, as it might be possible that there are non-ECA
tasks, where these configurations could also improve efficiency. The key to generalization
lies in the variables of the tasks.

There is a good chance, that using an ALLVARS initial precision or the UNSAT_CORE
refinement with its fast growing precision is a good choice, if

• there is a "handful" of known and only a few unknown variables

• and the known variables’ values are worth to follow, because they play an active role
in the feasibility of abstract counterexamples

In the tasks that we are currently observing, most variables with known constant values
are probably used to direct the program flow (e.g. in practice a hardcoded filename would
be a variable with a constant value which will not be used in any conditions, but such
technical values are atypical in the tasks that Theta currently supports).

Based on that, two simple metrics, namely the number of variables and the number of
variables with non-deterministic value (e.g. input variables) are enough to decide if these
configurations are worth to try. These task properties can be easily extracted from the
Control Flow Automaton, as it directly stores the variables and they receive their non-
deterministic values on CFA edges labeled with the havoc operation.

It is clear that this heuristic might need to be developed further in the future as the number
of tasks that the tool can solve rises, especially in the case of more realistic programs. But
it gives a good foundation to start off of.

4.4.3 Choosing Arithmetics

Some SMT solvers can handle different arithmetics and Z3 [28], the solver used by Theta,
is one of these. Theta also has a type system, which can express either integer or bitvector
arithmetics in the Control Flow Automaton. Generally integer arithmetics are much faster,
as they do not have to handle each bit separately, while bitvector arithmetics are able to
handle bitwise operations and floating point values on a bit-precise level.

From the algorithmic selection viewpoint it is clear, that we should prefer integer arith-
metics and use bitvector arithmetics only, when it is needed (e.g. when floats are present

37

in the input task). The earlier sections on configuration were about finding and choosing
the preferable configuration, that might perform better – but the rest weren’t completely
incapable either. Opposite to that, here the integer arithmetic will have to be excluded
based on the given task.

Most refinement options in Theta cannot handle bitvector arithmetics. The ones
that can are still in an experimental phase. From these experimental refinements,
NWT_IT_WP [31] was observed to have the least performance issues. However it is
still generally slow, so it will be paired with the explicit domain to try and counteract the
issues with its speed.

The "best-effort" strategy to be used here is the following:

• First we start with the explicit domain, without a time limit

• If that gets stuck, we switch the domain to predicate analysis as a last resort

Even with that, using bitvector arithmetics will most likely result in many timeouts. How-
ever that is a performance problem that will only be solved with the further development
of these features.

4.4.4 Other Options

Theta currently has around ten possible input flags with many different values. These
configuration options were all considered to be used in this work, but in the end they
proved to be difficult to use in an algorithm selection setting.

However any configuration option of the tool might be hiding such strengths in special cases
as the ones that were introduced above. But without input tasks where these strengths
appear, it is not possible to find, utilize and evaluate these. So as the tool and its frontend
supports more and more diverse tasks, these techniques should be continually expanded
with new additions.

It is also worth to mention that such options without the required domain expertise could
also be investigated through machine learning techniques to help discover missing connec-
tions between input properties and the options in the future.

4.5 Assembling the Complex Dynamic Portfolio

In Section 4.3 and 4.4 several techniques were realized based on the methods introduced in
Chapter 3. The next step is to put these together into a portfolio in a way that it utilizes
the tool as efficiently as possible.

4.5.1 Portfolio Introduction

The assembled dynamic portfolio is visualised in Figure 4.6. Each rectangle stands for
a single configuration and if any one of these succeeds, the portfolio also stops with a
success. Otherwise it starts the next configuration and it does this until it runs out of
configurations or the global 900 seconds time limit.

38

The Bitvector Arithmetic Path First, the arithmetic to be used is chosen – a sim-
ple check was implemented for such language elements that cannot be used with integer
arithmetics (i.e. floating point types and bitwise operations). If some of these are present
then bitvector arithmetics are required and the NWT_IT_WP refinement is used, first
with the explicit domain and if that fails then with the Cartesian predicate domain, just
as described in Section 4.4.3.

The Integer Arithmetic Path On the other branch, we apply the short runs if the
input is fairly simple, but has loops, as introduced in Section 4.4.1. If this was skipped or
unsuccessful, an explicit domain configuration is next.

Just as presented in Section 4.4.2, the number of variables and the number of variables with
non-deterministic values are used to decide on the initial precision here (i.e. whether we
should use the ALLVARS option). Although ALLVARS seems to be the quicker option for
now, it would also be possible to use an empty initial precision with the UNSAT_CORE
refinement instead – but this can easily change in the future, when more tasks are available
to experiment on.

The explicit analysis is set to have a fairly long time, so it has a chance on more complex
tasks as well and it is prone to get stuck and thus get stopped in the difficult cases anyways.
In any type of unsuccessful case a generally well performing Cartesian predicate analysis
is started in the remaining time. In the rare case of this ending early in some kind of
technical error, we try a Boolean predicate analysis as a backup.

4.5.2 Technical Details

The inner timeouts are not absolute seconds in reality, rather fractions of the remaining
time after parsing (e.g. if parsing the task requires 30 seconds, the timeout for the explicit
analysis will be started with a timeout of 500 · 850/900 seconds).

It is an important feature of this portfolio that it is directly implemented in the verification
tool itself so that model transformation happens only once and after that every analysis
works on the same Control Flow Automaton.

4.5.3 Summarizing the Completed Portfolio

Combining all the designed techniques above, the assembled dynamic portfolio utilizes
both algorithm selection and runtime monitoring and intervention techniques, which com-
plement each other. It gives a "one-click" option for verification instead of having to
manually configure the tool. It uses information extracted both from the original input
program (while loops, floating point types and bitwise operations) and from the formal
representation of that program (cyclomatic complexity, number of all variables/variables
with non-deterministic values). It is optimized for a reasonable time (15 minutes) with
added local timeouts. Although earlier results are currently unused, a counterexample
check will be definitiely added in the future.

39

Figure 4.6: Process model of the assembled portfolio

40

Chapter 5

Evaluation

This chapter reports the evaluation of the complex portfolio designed in Chapter 4 through
executing it on a large number of C programs. It starts with the experiment design of
the benchmark, detailing the input tasks, hardware, benchmarking framework, baseline
configurations and research questions in Section 5.1. The research questions are answered
in Section 5.2 based on the results of the experiments and then further discussion is given
on the experiment in Section 5.3.

5.1 Experiment Design

In the following section the design choices of the evaluation benchmark are introduced.
These include the formulated research questions (Section 5.1.1, the verification input
tasks used (Section 5.1.2); the subjects, the structure of the baseline configurations (Sec-
tion 5.1.3), technical information about the execution environment (Section 5.1.5) and the
variables of the experiment (Section 5.1.4).

The configuration files required to reproduce the experiment and the data of the results
used in this evaluation are available under the DOI 10.5281/zenodo.56057081.

5.1.1 Research Questions

The following questions will help to evaluate how much the complex portfolio can help
the performance of Theta on C programs. The two main goals of creating a portfolio was
to enable the tool to solve more input tasks and to do this in less time, if possible. The
questions reflect these goals.

RQ1 How does the complex portfolio perform in number of solved tasks compared to the
baseline configurations?

RQ2 How does the complex portfolio perform in terms of CPU time compared to the
baseline configurations?

1https://doi.org/10.5281/zenodo.5605708

41

https://doi.org/10.5281/zenodo.5605708

ControlFlow Programs for which the correctness depends mostly on integers and con-
trol flow structure

Bitvectors Programs, in which treatment of bit-operations are necessary
ECA Programs containing event-condition-action systems
XCSP Programs generated from constraint network XMLs
Sequentialized Sequentialized concurrent SystemC programs
Loops Tasks focused on loops

Figure 5.1: The evaluation will utilize tasks from the above sub-categories of Reach-
Safety

5.1.2 Verification Tasks

The de-facto standard way when benchmarking C or Java verification tools is to use
the benchmarking tasks of the International Competition on Software Verification (SV-
COMP)2. This evaluation uses a set of 1250 of tasks chosen from the ReachSafety category
of SV-COMP, as this category expects analysis of the reachability properties supported
by Theta.

Overall the ReachSafety category contains almost 5000 tasks. Filtering these tasks was
necessary to reduce them to a feasible amount to benchmark on and it was also useful
because most tasks left out are impossible to solve by the current version of the tool (e.g.
due to the frontend not supporting certain elements of C yet or due to the large size of a
program making the model transformation impossible within a reasonable time limit) and
it is a waste of time to execute several configurations on them.

Tasks were selected from the sub-categories ControlFlow, BitVectors, ECA (event-
condition-action systems), Sequentialized, Loops and XCSP. In Loops and Sequentialized a
frontend-only run was also executed to filter out the tasks that fail in the frontend already.

5.1.3 Subject and Baseline Configurations

The main subject of this evaluation is the complex portfolio of Chapter 4, implemented
in the verification tool Theta. The portfolio’s performance is compared to three other
configurations, two of which are just single CEGAR configurations (Figure 5.1.3) that
perform well generally and the third is a sequential portfolio – a realization of the simple
portfolio introduced in Section 3.3.

Single Baseline Configurations The configuration expl is known as a generally fast
configuration, when it works, but otherwise it is prone to timeouts – not just because
of high complexity tasks, but also because it can get stuck in the same iterations of the
CEGAR loop (see Section 4.3). Opposed to this, pred is much more expressive due to using
predicates, but also generally slower because of the overhead this expressiveness adds and
thus it is more sensitive to the complexity or size of the input tasks (see Section 4.4.1).

Baseline Sequential Portfolio Both of these will be executed on all the tasks by them-
selves, but they are also the first two configurations of the third baseline, the sequential-
portfolio. The third configuration in this portfolio is newton-expl (also included in Fig-

2https://sv-comp.sosy-lab.org/2022/

42

Single Configuration CEGAR options used
expl –domain EXPL –initprec EMPTY –search ERR –encoding

LBE –refinement SEQ_ITP –maxenum 1 –precgranularity
GLOBAL –prunestrategy LAZY

pred –domain PRED_CART –initprec EMPTY –search ERR
–encoding LBE –refinement BW_BIN_ITP –predsplit
WHOLE –precgranularity GLOBAL –prunestrategy LAZY

newton-expl –domain EXPL –initprec EMPTY –search ERR –
encoding LBE –refinement NWT_IT_WP –maxenum
1 –precgranularity GLOBAL –prunestrategy LAZY

Figure 5.2: Theta configurations used in the baseline benchmarks. The first two (expl,
pred) will be executed both as a single configuration and is also added to the
sequential portfolio; newton will not be executed by itself, but will be used
as the third, bitvector specialized configuration of the sequential portfolio.

ure 5.1.3), which uses the refinement NWT_IT_WP3, an experimental feature capable
of handling bitvector arithmetic, where needed. Each of these are assigned a 300 second
CPU time limit and if they fail earlier, the remaining time is equally divided between the
remaining configurations, just as in the portfolio introduced in Section 3.3.

5.1.4 Variables

Category Name Type Possible values
Input task task String YAML file name

task category Enum ControlFlow, ECA, Loops, etc.
Tool configuration Enum complex-portfolio, sequential-

portfolio, expl, pred
Metrics status Enum true, false, different error codes,

TIMEOUT, OUT OF MEM-
ORY, unknown)

cputime Floating point number CPU time used during execution
(in seconds)

memory Floating point number Peak memory usage (in bytes)

Figure 5.3: The variables of the experiment

The variables of the experiment are shown in Table 5.3.

Input task Each of the input tasks is a C program in a single .c or a preprocessed .i
file. Beside each of these files there is a YAML file, used by benchexec and named after
the C program, but with a .yml extension – these contain the correct result (whether the
reachability property holds or not) and the name of the .c or .i file. The name of this
file (mostly with the addition of the parent directory) identifies the input program. The
programs are also grouped into disjunctive categories, detailed in Section 5.1.2.

3Documentation on all the options used in the configurations:
https://github.com/ftsrg/theta/blob/master/doc/CEGAR-algorithms.md

43

Tool The category Tool consists of the configuration variable. In Section 5.1.3 the
baseline and subject configurations were introduced already. Two of these are simply
executions of single configurations (expl, pred) and the other two are portfolios, containing
multiple configurations (sequential-portfolio, complex-portfolio).

Metrics The metrics we are most interested in are the number of successful verifica-
tions, encoded in status among other possible outcomes and the CPU time required by
the analysis. Although it will not be a main focus, memory usage is also measured by
Benchexec.

5.1.5 Execution Environment

The measurements were carried out on virtual machines, each with two dedicated cores
(four logical) of an AMD Ryzen 9 3900X 12-Core processor and 10GB of memory. The
machines are running Ubuntu 20.04.3 LTS and the Java version used is openjdk 11.0.11.
The global CPU time limit was set to 15 minutes in the benchmarking framework, similarly
to SV-COMP.

To execute the necessary benchmarks, the version 3.8 of the Benchexec benchmarking
framework [14] was used, which, among others, is the framework used on SV-COMP and
several other competitions. The results were collected to csv files by the framework, which
was used to evaluate the benchmarks.

The benchmarks were executed with a version of Theta on the branch xcfa-algorithm-
selection4. The tasks used were downloaded from the now archived version of the sv-
benchmarks repository5

5.2 Results

In this section the above formulated questions are answered based on the results of running
the benchmarks. The summarized data is visualized on heatmaps and column charts to
compare the performance of the different configurations.

5.2.1 RQ1: Solved Tasks

How does the complex portfolio perform in number of solved tasks compared
to the baseline configurations? The heatmap in Figure 5.4 shows the number of
successfully solved tasks by category for each configuration. The complex portfolio solved
51% of the tasks, that is respectively 23% and 10% more than the worst performing
configurations and 6% more than the sequential portfolio.

XCSP In the category XCSP it seems like the tool has hit some kind of limit (the 42
solved tasks are mostly the same) – XCSP is built out of a few basic constraint networks
with more and more complex variants added and the complexity of the unsolved tasks

4link to exact version used: https://github.com/ftsrg/theta/tree/
2fdf5e06d785bdacb0e278dd3d72a71bd606be46

5link to exact version used: https://github.com/sosy-lab/sv-benchmarks/tree/
99d37c5b4072891803b9e5c154127c912477f705

44

https://github.com/ftsrg/theta/tree/2fdf5e06d785bdacb0e278dd3d72a71bd606be46
https://github.com/ftsrg/theta/tree/2fdf5e06d785bdacb0e278dd3d72a71bd606be46
https://github.com/sosy-lab/sv-benchmarks/tree/99d37c5b4072891803b9e5c154127c912477f705
https://github.com/sosy-lab/sv-benchmarks/tree/99d37c5b4072891803b9e5c154127c912477f705

Figure 5.4: A heatmap showing the number of successfully solved tasks by category for
each configuration

grows with such speed that after a certain step, the tool simply hits its performance
limits.

ECA, Loops In ECA and Loops the complex portfolio outperforms the others signifi-
cantly, producing around 8-9% increase in the number of solved tasks even to the second
best sequential portfolio. That means that the algorithm selection techniques in the com-
plex portfolio introduced in Section 4.4 are working well (as they are probably used on
many of these tasks).

BitVectors Although the category names is BitVectors, there are some tasks that can
be handled with integer arithmetics, as shown by the number of tasks solved in expl and
pred. But there is an obvious increase when the bitvector specialized configuration is
introduced in the portfolios.

ControlFlow, Sequentialized Both of these categories show a mild increasing trend
in the number of successes as we add more and more portfolio and algorithm-selection
techniques.

5.2.2 RQ2: Execution Time

How does the complex portfolio perform in terms of CPU time needed com-
pared to the baseline configurations?

5.2.2.1 Average and Total Execution Times

In Figure 5.5 the top column charts show the average execution times per task and the
total execution times. The bottom diagrams are similar, except that they are filtered to
use the times only from tasks that were successfully solved by the given configuration.
Each given time is measured in CPU time and the time limit and thus the maximum
value of a single execution on a given task was 900 seconds.

The charts on the left show average CPU times by configurations. The sequential portfolio
has the largest average CPU time values, both in the case of including only successful tasks
and when including all tasks as well. This is not surprising as although the sequential
portfolio is capable of solving many tasks (more than a single configuration), but it might

45

Figure 5.5: Average and total execution times by configuration. The bottom diagrams
take only those tasks into account that were successfully solved by the given
configuration.

only be capable after the first and maybe even the second configuration of the sequence
times out.

The average of the complex portfolio is about the same as the average of the single con-
figurations and is about in the middle inbetween the two if we take all tasks into account.
But not significantly better in either case (opposed to the number of successfully solved
tasks in Section 5.2.1).

The total execution times are similar to this. It is worth noting that verifying 1250 tasks
took about 5 days CPU time in the case of the complex portfolio and about 7.2 days CPU
time for the sequential portfolio.

5.2.2.2 Average Execution Times by Category

To further refine the picture about the results, the average CPU times are also shown by
category in Figure 5.6.

46

Figure 5.6: Average CPU times by category, taking all tasks into account (above) and
counting only successful results (below)

XCSP, BitVectors The complex portfolio performs similarly on XCSP tasks in the
successful cases, but gains a significant overhead when the unsuccessful cases are also
taken into account. This is because XCSP has tasks that require a configuration capable
of handling bitvector arithmetic. In these cases expl and pred simply throws an error
after a while, whereas the portfolios have configurations capable of handling the bitvector
arithmetic. Although it is an experimental feature and in its current state ends in a
TIMEOUT on the XCSP tasks. Of course it would be better to solve these tasks, but not
throwing an error in these cases is an improvement as well. The increased time between
BitVectors on the bottom and top diagram is also due to the bitvector specific configuration
not performing well.

ECA, ControlFlow, Loops In the categories ECA and ControlFlow the complex port-
folio performs really well, and it also outperforms the sequential portfolio in Loops. In the

47

case of ControlFlow it even outperforms the expl configuration and that is probably due
to the runtime improvement added in Section 4.3.

Sequentialized In Sequentialized it performs similarly to the other configurations, but
checking only the successful cases reveals more information – this is probably due to the
high number of tasks in this category that time out with every configuration used here.
The bottom diagram reveals that in this case the average success time of the sequential
portfolio is around the same as that of the complex portfolio. The explanation is simple:
the average time of the expl configuration is really low here and it is the first configuration
of the sequential portfolio.

5.3 Discussion

5.3.1 Conclusion on the Performance of the Complex Portfolio

To summarize, the complex portfolio was capable of solving significantly more tasks than
the single configurations and was much faster than the static sequential portfolio. The
latter was made possible due to the dynamic decisions on what configuration to use (Sec-
tion 4.4) and the time spared on stopping stuck configurations with the runtime im-
provement (Section 4.3). In other words, it combines the strengths of the different single
configurations in a way so that it also reduces the CPU time needed compared to just
sequential execution of multiple configurations.

5.3.2 Threats to Validity

In this section the possible biases and threats to validity are discussed. The main points
added are on construct, internal and external validity [52].

Internal Validity The accuracy of measurements and internal validity are ensured by
using Benchexec [14], a state-of-the-art framework developed to execute precisely such
benchmarks. Benchexec is able to reliably measure and limit resource usage and uses
special containers to isolate the processes measured from others.

Construct Validity Construct validity can be ensured using metrics that can express
and measure the examined property, in this case the efficiency and effectiveness of the
created dynamic portfolio. The number of successfully solved tasks is a metric used to
choose the winners of SV-COMP. That shows that it is a widely accepted metric to measure
effectiveness of verification tools. Measuring the time required to verify the tasks is also
an important factor in the practical applicability (i.e. it is in most cases not feasible to
wait for days to verify a task) and efficiency of the tool.

External Validity External validity, is concerned with how well the results can be
generalized. Using the tasks of SV-COMP, which are specially curated to such experiments
and are constantly used and evaluated by many different tools and experts of the field gives
a good basis for external validity. None the less, threats mainly concern this validity type
– the current limits on the capabilites of the frontend (mainly the unsupported C language
elements, such as function pointers) exclude many verification tasks, reducing diversity in

48

the set of inputs. Increasing this diversity through adding more and more tasks and task
groups could greatly improve the evaluation on the transferability of the portfolio, i.e. its
capability to achieve good results on tasks different from the ones we experimented on.

As the difficulty of an input task depends on many factors and is hard to measure, a diverse
set of programs to verify is crucial. Despite these problems, the goal of this benchmark
is to assess the possibilities of performance enhancement with portfolio-based techniques
in the current version of the tool Theta and thus the tool’s current limitations are an
inevitable constraint. Even with this constraint the set of tasks used is fairly large (over a
1000 tasks) and contains diverse categories of the supported language elements. However
more diverse and larger benchmarks should be executed in the future to improve external
validity of the results.

49

Chapter 6

Related work

In this chapter I will introduce publications related to this work. The chapter consists of
three sections:

• The papers in Section 6.1 are about algorithm selection techniques and tend to
concentrate more on what the relevant properties of the input programs are. These
usually apply algorithm selection to several tools instead of one.

• Section 6.2 focuses on the portfolios and algorithm selection strategies of different
verification tools.

• The last section (Section 6.3) details preliminary works of others and myself on
Theta and their connection to this report.

6.1 Algorithm Selection in Software Verification

Variable roles In Domain Types: Abstract-Domain Selection Based on Variable Us-
age [3] the authors introduce the concept of domain types for program variables and
develop a pre-analysis step to decide the domain types of all variables in the input pro-
gram. This is then used to decide the abstract domain between the explicit and BDD
domains on a granular, per variable level.

In the paper On the concept of variable roles and its use in software analysis [29] a similar
concept of variable roles is realized, but creating more roles by adding more practical
types. Whilst the first work used its theoretical contributions to add and evaluate a new
enhancement to the tool CPAChecker, this one did not yet connect the program properties
found to any tool, rather they used machine learning to predict what category the tasks
of SV-COMP belong to based on the variables.

Both of these papers are excellent examples on approaching software verification from an
algorithm selection standpoint. The general techniques in Chapter 3 pair well with the
contributions of these work. In the realization in Chapter 4 I only considered some basic
attributes on the variables of a program (mostly if it is an input variable or not), but it
is my intention to add more variable properties in the future, similar to these, when they
start to make sense in the context of Theta (i.e. as the frontend and the analysis begins
to handle more variable types).

50

Machine Learning in Algorithm Selection for Software Verification In MUX:
algorithm selection for software model checkers [50] the authors use machine learning on
available results from different software verifiers to be able to predict, which tool could be
successful for a given input program based on structural properties. They collect a list of
131 properties and identify a smaller set of characteristic properties with feature selection.

The work Empirical software metrics for benchmarking of verification tools [30] adds and
studies empirical metrics grouped into three categories: variables, loops and control flow.
For each of these groups the authors give deep theoretical foundations in this and earlier
work. Based on these properties they also develop a machine learning portfolio solver from
the verification tools of SV-COMP, which learns which tool performs best on the training
set. Then this portfolio is applied on later years’ tasks to demonstrate its predictive power,
theoretically winning the Overall category.

I shortly discussed in Section 4.2 that although machine learning is not the main focus
of this report, the introduced approaches can and hopefully will be used with machine
learning techniques in the future. It would be interesting to see how they perform on the
more constrained case of using only a single tool instead of creating a portfolio of several
tools.

6.2 Verification Tools Using Portfolios and Algorithm Se-
lection

Sequential portfolios with initial algorithm selection PeSCo [46][48] is a tool
based on CPAChecker [10], which uses machine learning techniques to rank several con-
figurations of CPAChecker and execute these sequentially in the right order.

VeriAbs [2][27] is a strategy selection-based reachability verifier for C programs. The tool
contains four possible pre-defined analysis strategies, which consist of a sequential set of
configurations. The preprocessor of the tool chooses a strategy based mainly on the type
of loops in the input program and they also check if the given program is sliceable. They
have found that although classic techniques, such as Bounded Model Checking are capable
of solving most of their tasks, the rest of the input programs require a broad range of other
techniques to be solved.

CPAChecker [42][10][26] is one of the best known software verification tools built on the
foundation of configurable program analysis. The framework has many different algorithms
implemented, such as k-induction, CEGAR, explicit-value analysis, bounded model check-
ing and so on. They took part in SV-COMP with many different portfolios throughout
the years, mostly building around sequential execution of several pre-assembled configu-
rations, but also using algorithm selection on the error property and the input task (e.g.
they check if the input program contains recursion, concurrency, loops or complex data)1.

Each of these tools apply interesting and unique perspectives on how a tool can benefit
from portfolios. PeSCo is the only one using machine learning. Although each are based on
sequential portfolios, VeriAbs and CPAChecker both wrap the sequential sets into a group
or a hierarchy, making it more complex. Opposite to the dynamic portfolio introduced
in this work, all of these tools decide on the configurations to use before applying any of
them.

1This was introduced on SV-COMP’20 and reused on SV-COMP’21: https://gitlab.com/sosy-lab/sv-
comp/archives-2021/-/blob/master/presentations/cpa-seq_tacas2021_slides.pdf

51

Runtime techniques Ultimate Automizer [36][37] is a software verifier using an
automata-based CEGAR-scheme. They use runtime algorithm selection techniques inside
the refinement algorithm, more precisely they are dynamically changing between several
methods and SMT solvers for creating the best possible interpolants based on the ones
created in the earlier iterations. This is a thoroughly refined runtime technique, but it
still fits well into the category of runtime techniques introduced in Section 3.4.3.

6.3 Related Work on Theta

Although this report contains the first dynamic portfolio added to Theta, one of the tool’s
main attributes is configurability and thus there are earlier works which mainly serve as
a basis or foundation to my work.

In Efficient Strategies for CEGAR-Based Model Checking [35] many configurational op-
tions and algorithmic improvements of Theta were introduced and evaluated with system-
atic experiments, not just in software, but in model verification as well.

On SV-COMP 2020 the combined tool Gazer-Theta [1] used a fairly simple static sequen-
tial portfolio of a BMC and two CEGAR configurations – this was a preliminary work to
the more complex additions described in this report.

52

Chapter 7

Conclusion

7.1 Summary of Results

The report made the following theoretical and engineering contributions.

Method Chapter 3 proposed methods for improving the efficiency of configurable model
checkers, including techniques on

• sequential portfolio design,
• dynamic configuration selection using the input and earlier results,
• runtime monitoring and intervention in the execution of the verification algo-

rithm,
• assembling a dynamic portfolio.

Realization In Chapter 4 a portfolio is realized in the verification framework Theta. The
CEGAR-based dynamic portfolio is assembled for C program verification utilizing
most of the techniques of Chapter 3. The process and methods of this tool-specific
portfolio assembly are also discussed during this chapter. The portfolio includes a
novel algorithmic improvement for explicit domain based CEGAR analysis, which is
capable of detecting and mitigating when the algorithm makes no progress and gets
“stuck” in an infinite loop and the usage of different empirical properties extracted
from the input program and the CFA in algorithm selection.

Evaluation Lastly in Chapter 5 a comparative evaluation was executed to demonstrate
how the dynamic portfolio performs, using two single configurations and a simple se-
quential portfolio of three configurations as a baseline. The results of the experiment
have shown that the dynamic portfolio outperforms the single configurations and the
static portfolio as well; excelling in number of solved tasks compared to the single
configurations and in the execution time required compared to the static portfolio.

7.2 Future Work

Theta is being developed and improved quickly and shortly there will be new features
added that I am planning to include in an improved portfolio. These features include
the capability of using several SMT solvers with their own strengths and weaknesses (e.g.
improving performance on bitvectors and floating point arithmetic), analysis of concurrent
programs, more granular product domains, loop invariants, lazy abstraction.

53

I would also like to utilize Theta’s capability of verification on several formalisms, employ-
ing it in two ways:

• adding portfolios that are not specific to software verification,

• enabling Theta to transform the input program or model to more than one formalism
and used that as a configuration possibility for algorithm selection.

It would also be important to benchmark on further tasks as support for more and more
C language elements is added. This could help both in finding improvement possibilities
and in ensuring the transferability and generality of the resulting portfolio, even on less
artificial, more realistic input programs and models.

As a long term plan it might also prove useful to try and pair this work with machine
learning techniques, such as neural networks when searching for useful program or model
properties and their connections to the algorithms’ strengths and weaknesses.

Also it would be an interesting direction to apply the general portfolio designing techniques
of this work to more verification tools, analyzing the differences between tools from the
portfolio viewpoint.

Acknowledgement I would like to thank the support and feedback of Ákos Hajdu.

This research was partially funded by the European Commission and the Hungarian Au-
thorities (NKFIH) through the Arrowhead Tools project (EU grant agreement No. 826452,
NKFIH grant 2019-2.1.3-NEMZ ECSEL-2019-00003).

54

Bibliography

[1] Zsófia Ádám, Gyula Sallai, and Ákos Hajdu. Gazer-Theta: LLVM-based Verifier
Portfolio with BMC/CEGAR (Competition Contribution). In Jan Friso Groote and
Kim Guldstrand Larsen, editors, Tools and Algorithms for the Construction and Anal-
ysis of Systems, pages 433–437, Cham, 2021. Springer International Publishing. ISBN
978-3-030-72013-1.

[2] Mohammad Afzal, A. Asia, Avriti Chauhan, Bharti Chimdyalwar, Priyanka Darke,
Advaita Datar, Shrawan Kumar, and R. Venkatesh. VeriAbs : Verification by
Abstraction and Test Generation. In 2019 34th IEEE/ACM International Con-
ference on Automated Software Engineering (ASE), pages 1138–1141, 2019. DOI:
10.1109/ASE.2019.00121.

[3] Sven Apel, Dirk Beyer, Karlheinz Friedberger, Franco Raimondi, and Alexander von
Rhein. Domain Types: Abstract-Domain Selection Based on Variable Usage. In
Hardware and Software: Verification and Testing, pages 262–278. Springer Inter-
national Publishing, 2013. DOI: 10.1007/978-3-319-03077-7_18. URL https:
//doi.org/10.1007/978-3-319-03077-7_18.

[4] Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT press,
2008. ISBN 978-0-262-02649-9.

[5] Thomas Ball, Andreas Podelski, and Sriram K. Rajamani. Boolean and cartesian
abstraction for model checking c programs. In Tiziana Margaria and Wang Yi, editors,
Tools and Algorithms for the Construction and Analysis of Systems, pages 268–283,
Berlin, Heidelberg, 2001. Springer Berlin Heidelberg. ISBN 978-3-540-45319-2.

[6] Mike Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs, and K. Rustan M.
Leino. Boogie: A modular reusable verifier for object-oriented programs. In Frank S.
de Boer, Marcello M. Bonsangue, Susanne Graf, and Willem-Paul de Roever, editors,
Formal Methods for Components and Objects, pages 364–387, Berlin, Heidelberg,
2006. Springer Berlin Heidelberg. ISBN 978-3-540-36750-5.

[7] Clark Barrett and Cesare Tinelli. Satisfiability modulo theories. In Handbook of Model
Checking, pages 305–343. Springer, 2018. DOI: 10.1007/978-3-319-10575-8_11.

[8] Dirk Beyer. Software verification and verifiable witnesses. In Christel Baier and
Cesare Tinelli, editors, Tools and Algorithms for the Construction and Analysis of
Systems, pages 401–416, Berlin, Heidelberg, 2015. Springer Berlin Heidelberg. ISBN
978-3-662-46681-0.

[9] Dirk Beyer. Software Verification: 10th Comparative Evaluation (SV-
COMP 2021). pages 401–422. Springer International Publishing, 2021.
DOI: 10.1007/978-3-030-72013-1_24. URL https://doi.org/10.1007/
978-3-030-72013-1_24.

55

http://dx.doi.org/10.1109/ASE.2019.00121
http://dx.doi.org/10.1007/978-3-319-03077-7_18
https://doi.org/10.1007/978-3-319-03077-7_18
https://doi.org/10.1007/978-3-319-03077-7_18
http://dx.doi.org/10.1007/978-3-319-10575-8_11
http://dx.doi.org/10.1007/978-3-030-72013-1_24
https://doi.org/10.1007/978-3-030-72013-1_24
https://doi.org/10.1007/978-3-030-72013-1_24

[10] Dirk Beyer and M. Erkan Keremoglu. CPAchecker: A Tool for Configurable Software
Verification. In Ganesh Gopalakrishnan and Shaz Qadeer, editors, Computer Aided
Verification, pages 184–190, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.
ISBN 978-3-642-22110-1.

[11] Dirk Beyer and Stefan Löwe. Explicit-State Software Model Checking Based on CE-
GAR and Interpolation. In Fundamental Approaches to Software Engineering, pages
146–162. Springer Berlin Heidelberg, 2013. DOI: 10.1007/978-3-642-37057-1_11.
URL https://doi.org/10.1007/978-3-642-37057-1_11.

[12] Dirk Beyer, Thomas A. Henzinger, Ranjit Jhala, and Rupak Majumdar. The software
model checker Blast. International Journal on Software Tools for Technology Transfer,
9(5-6):505–525, September 2007. DOI: 10.1007/s10009-007-0044-z. URL https:
//doi.org/10.1007/s10009-007-0044-z.

[13] Dirk Beyer, Thomas A. Henzinger, and Grégory Théoduloz. Configurable software
verification: Concretizing the convergence of model checking and program analysis.
In Werner Damm and Holger Hermanns, editors, Computer Aided Verification, pages
504–518, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg. ISBN 978-3-540-73368-
3.

[14] Dirk Beyer, Stefan Löwe, and Philipp Wendler. Reliable benchmarking: requirements
and solutions. 21(1):1–29, November 2017. DOI: 10.1007/s10009-017-0469-y. URL
https://doi.org/10.1007/s10009-017-0469-y.

[15] Armin Biere, Alessandro Cimatti, Edmund Clarke, and Yunshan Zhu. Symbolic
Model Checking without BDDs. In Tools and Algorithms for the Construction
and Analysis of Systems, pages 193–207. Springer Berlin Heidelberg, 1999. DOI:
10.1007/3-540-49059-0_14. URL https://doi.org/10.1007/3-540-49059-0_14.

[16] Armin Biere, Alessandro Cimatti, Edmund Clarke, and Yunshan Zhu. Symbolic
Model Checking without BDDs. In W. Rance Cleaveland, editor, Tools and Algo-
rithms for the Construction and Analysis of Systems, pages 193–207, Berlin, Heidel-
berg, 1999. Springer Berlin Heidelberg. ISBN 978-3-540-49059-3.

[17] Armin Biere, Marijn Heule, and Hans van Maaren. Handbook of satisfiability. IOS
press, 2009. ISBN 978-1-64368-161-0.

[18] Aaron R Bradley and Zohar Manna. The calculus of computation: Decision procedures
with applications to verification. Springer, 2007. ISBN 978-3-540-74112-1.

[19] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang.
Symbolic model checking: 1020 States and beyond. Information
and Computation, 98(2):142–170, 1992. ISSN 0890-5401. DOI:
https://doi.org/10.1016/0890-5401(92)90017-A. URL https://www.
sciencedirect.com/science/article/pii/089054019290017A.

[20] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang. Symbolic model
checking: 1020 States and beyond. Information and Computation, 98(2):142–170,
June 1992. DOI: 10.1016/0890-5401(92)90017-a. URL https://doi.org/10.
1016/0890-5401(92)90017-a.

[21] Cristiano Calcagno, Dino Distefano, Jeremy Dubreil, Dominik Gabi, Pieter Hooimei-
jer, Martino Luca, Peter O’Hearn, Irene Papakonstantinou, Jim Purbrick, and Dulma

56

http://dx.doi.org/10.1007/978-3-642-37057-1_11
https://doi.org/10.1007/978-3-642-37057-1_11
http://dx.doi.org/10.1007/s10009-007-0044-z
https://doi.org/10.1007/s10009-007-0044-z
https://doi.org/10.1007/s10009-007-0044-z
http://dx.doi.org/10.1007/s10009-017-0469-y
https://doi.org/10.1007/s10009-017-0469-y
http://dx.doi.org/10.1007/3-540-49059-0_14
https://doi.org/10.1007/3-540-49059-0_14
http://dx.doi.org/https://doi.org/10.1016/0890-5401(92)90017-A
https://www.sciencedirect.com/science/article/pii/089054019290017A
https://www.sciencedirect.com/science/article/pii/089054019290017A
http://dx.doi.org/10.1016/0890-5401(92)90017-a
https://doi.org/10.1016/0890-5401(92)90017-a
https://doi.org/10.1016/0890-5401(92)90017-a

Rodriguez. Moving fast with software verification. In Klaus Havelund, Gerard Holz-
mann, and Rajeev Joshi, editors, NASA Formal Methods, pages 3–11, Cham, 2015.
Springer International Publishing. ISBN 978-3-319-17524-9.

[22] Alonzo Church. A note on the Entscheidungsproblem. The Journal of Symbolic Logic,
1(1):40–41, 1936.

[23] Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.
Counterexample-guided abstraction refinement for symbolic model checking. Journal
of the ACM, 50(5):752–794, September 2003. DOI: 10.1145/876638.876643. URL
https://doi.org/10.1145/876638.876643.

[24] Edmund M. Clarke, Orna Grumberg, and David E. Long. Model checking and abstrac-
tion. ACM Transactions on Programming Languages and Systems, 16(5):1512–1542,
September 1994. DOI: 10.1145/186025.186051. URL https://doi.org/10.1145/
186025.186051.

[25] Mike Czech, Eyke Hüllermeier, Marie-Christine Jakobs, and Heike Wehrheim. Pre-
dicting Rankings of Software Verification Competitions. CoRR, abs/1703.00757, 2017.
URL http://arxiv.org/abs/1703.00757.

[26] Matthias Dangl, Stefan Löwe, and Philipp Wendler. CPAchecker with Support for
Recursive Programs and Floating-Point Arithmetic. In Christel Baier and Cesare
Tinelli, editors, Tools and Algorithms for the Construction and Analysis of Systems,
pages 423–425, Berlin, Heidelberg, 2015. Springer Berlin Heidelberg. ISBN 978-3-
662-46681-0.

[27] Priyanka Darke, Sakshi Agrawal, and R. Venkatesh. VeriAbs: A Tool for Scal-
able Verification by Abstraction (Competition Contribution). In Jan Friso Groote
and Kim Guldstrand Larsen, editors, Tools and Algorithms for the Construction and
Analysis of Systems, pages 458–462, Cham, 2021. Springer International Publishing.
ISBN 978-3-030-72013-1.

[28] Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In
Tools and Algorithms for the Construction and Analysis of Systems, volume 4963
of Lecture Notes in Computer Science, pages 337–340. Springer, 2008. DOI:
10.1007/978-3-540-78800-3_24.

[29] Yulia Demyanova, Helmut Veith, and Florian Zuleger. On the concept of variable
roles and its use in software analysis. In 2013 Formal Methods in Computer-Aided
Design. IEEE, October 2013. DOI: 10.1109/fmcad.2013.6679414. URL https:
//doi.org/10.1109/fmcad.2013.6679414.

[30] Yulia Demyanova, Thomas Pani, Helmut Veith, and Florian Zuleger. Empirical
software metrics for benchmarking of verification tools. Formal Methods in System
Design, 50(2-3):289–316, January 2017. DOI: 10.1007/s10703-016-0264-5. URL
https://doi.org/10.1007/s10703-016-0264-5.

[31] Daniel Dietsch, Matthias Heizmann, Betim Musa, Alexander Nutz, and Andreas
Podelski. Craig vs. Newton in software model checking. In Proceedings of the 2017
11th Joint Meeting on Foundations of Software Engineering, pages 487–497. ACM,
2017. DOI: 10.1145/3106237.3106307.

[32] Jean-Christophe Filliâtre and Andrei Paskevich. Why3 – Where Programs Meet
Provers. In ESOP’13 22nd European Symposium on Programming, volume 7792

57

http://dx.doi.org/10.1145/876638.876643
https://doi.org/10.1145/876638.876643
http://dx.doi.org/10.1145/186025.186051
https://doi.org/10.1145/186025.186051
https://doi.org/10.1145/186025.186051
http://arxiv.org/abs/1703.00757
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1109/fmcad.2013.6679414
https://doi.org/10.1109/fmcad.2013.6679414
https://doi.org/10.1109/fmcad.2013.6679414
http://dx.doi.org/10.1007/s10703-016-0264-5
https://doi.org/10.1007/s10703-016-0264-5
http://dx.doi.org/10.1145/3106237.3106307

of LNCS, Rome, Italy, March 2013. Springer. URL https://hal.inria.fr/
hal-00789533.

[33] Susanne Graf and Hassen Saidi. Construction of abstract state graphs with PVS. In
Computer Aided Verification, pages 72–83. Springer Berlin Heidelberg, 1997. DOI:
10.1007/3-540-63166-6_10. URL https://doi.org/10.1007/3-540-63166-6_10.

[34] Orna Grumberg, Doron A Peled, and EM Clarke. Model checking. MIT press Cam-
bridge, 1999. ISBN 978-0-262-03883-6.

[35] Ákos Hajdu and Zoltán Micskei. Efficient Strategies for CEGAR-Based
Model Checking. Journal of Automated Reasoning, 64(6):1051–1091, November
2019. DOI: 10.1007/s10817-019-09535-x. URL https://doi.org/10.1007/
s10817-019-09535-x.

[36] Matthias Heizmann, Jochen Hoenicke, and Andreas Podelski. Software Model Check-
ing for People Who Love Automata. In Natasha Sharygina and Helmut Veith, editors,
Computer Aided Verification, pages 36–52, Berlin, Heidelberg, 2013. Springer Berlin
Heidelberg. ISBN 978-3-642-39799-8.

[37] Matthias Heizmann, Yu-Fang Chen, Daniel Dietsch, Marius Greitschus, Jochen
Hoenicke, Yong Li, Alexander Nutz, Betim Musa, Christian Schilling, Tanja
Schindler, and Andreas Podelski. Ultimate Automizer and the Search for Perfect
Interpolants. In Dirk Beyer and Marieke Huisman, editors, Tools and Algorithms
for the Construction and Analysis of Systems, pages 447–451, Cham, 2018. Springer
International Publishing. ISBN 978-3-319-89963-3.

[38] Falk Howar, Malte Isberner, Maik Merten, Bernhard Steffen, and Dirk Beyer. The
RERS Grey-Box Challenge 2012: Analysis of Event-Condition-Action Systems. In
Tiziana Margaria and Bernhard Steffen, editors, Leveraging Applications of Formal
Methods, Verification and Validation. Technologies for Mastering Change, pages 608–
614, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg. ISBN 978-3-642-34026-0.

[39] Pascal Kerschke, Holger H. Hoos, Frank Neumann, and Heike Trautmann. Auto-
mated Algorithm Selection: Survey and Perspectives. 27(1):3–45, March 2019. DOI:
10.1162/evco_a_00242. URL https://doi.org/10.1162/evco_a_00242.

[40] F. Kordon, P. Bouvier, H. Garavel, L. M. Hillah, F. Hulin-Hubard, N. Amat.,
E. Amparore, B. Berthomieu, S. Biswal, D. Donatelli, F. Galla, , S. Dal Zilio, P.
G. Jensen, C. He, D. Le Botlan, S. Li, , J. Srba, . Thierry-Mieg, A. Walner, and
K. Wolf. Complete Results for the 2020 Edition of the Model Checking Contest.
http://mcc.lip6.fr/2021/results.php, June 2021.

[41] Martin Leucker, Grigory Markin, and Martin R Neuhäußer. A new refinement strat-
egy for CEGAR-based industrial model checking. In Hardware and Software: Verifica-
tion and Testing, volume 9434 of Lecture Notes in Computer Science, pages 155–170.
Springer, 2015. DOI: 10.1007/978-3-319-26287-1_10.

[42] Stefan Löwe, Mikhail Mandrykin, and Philipp Wendler. CPAchecker with Sequential
Combination of Explicit-Value Analyses and Predicate Analyses. In Erika Ábrahám
and Klaus Havelund, editors, Tools and Algorithms for the Construction and Analy-
sis of Systems, pages 392–394, Berlin, Heidelberg, 2014. Springer Berlin Heidelberg.
ISBN 978-3-642-54862-8.

58

https://hal.inria.fr/hal-00789533
https://hal.inria.fr/hal-00789533
http://dx.doi.org/10.1007/3-540-63166-6_10
https://doi.org/10.1007/3-540-63166-6_10
http://dx.doi.org/10.1007/s10817-019-09535-x
https://doi.org/10.1007/s10817-019-09535-x
https://doi.org/10.1007/s10817-019-09535-x
http://dx.doi.org/10.1162/evco_a_00242
https://doi.org/10.1162/evco_a_00242
http://dx.doi.org/10.1007/978-3-319-26287-1_10

[43] Kenneth L McMillan. Applications of Craig Interpolants in Model Checking.
In Tools and Algorithms for the Construction and Analysis of Systems, volume
3440 of Lecture Notes in Computer Science, pages 1–12. Springer, 2005. DOI:
10.1007/978-3-540-31980-1_1.

[44] Terence Parr. The definitive ANTLR 4 reference. Pragmatic Bookshelf, 2013. ISBN
978-1934356999.

[45] John R. Rice. The Algorithm Selection Problem. volume 15
of Advances in Computers, pages 65–118. Elsevier, 1976. DOI:
https://doi.org/10.1016/S0065-2458(08)60520-3. URL https://www.
sciencedirect.com/science/article/pii/S0065245808605203.

[46] Cedric Richter and Heike Wehrheim. PeSCo: Predicting Sequential Combinations of
Verifiers. In Dirk Beyer, Marieke Huisman, Fabrice Kordon, and Bernhard Steffen,
editors, Tools and Algorithms for the Construction and Analysis of Systems, pages
229–233, Cham, 2019. Springer International Publishing. ISBN 978-3-030-17502-3.

[47] Cedric Richter and Heike Wehrheim. Attend and represent: A novel view on algorithm
selection for software verification. In Proceedings of the 35th IEEE/ACM International
Conference on Automated Software Engineering, ASE ’20, page 1016–1028, New York,
NY, USA, 2020. Association for Computing Machinery. ISBN 9781450367684. DOI:
10.1145/3324884.3416633. URL https://doi.org/10.1145/3324884.3416633.

[48] Cedric Richter, Eyke Hüllermeier, Marie-Christine Jakobs, and Heike Wehrheim. Al-
gorithm selection for software validation based on graph kernels. 27(1-2):153–186,
April 2020. DOI: 10.1007/s10515-020-00270-x. URL https://doi.org/10.1007/
s10515-020-00270-x.

[49] Tamas Toth, Akos Hajdu, Andras Voros, Zoltan Micskei, and Istvan Majzik.
Theta: A framework for abstraction refinement-based model checking. In 2017 For-
mal Methods in Computer Aided Design (FMCAD). IEEE, October 2017. DOI:
10.23919/fmcad.2017.8102257. URL https://doi.org/10.23919/fmcad.2017.
8102257.

[50] Varun Tulsian, Aditya Kanade, Rahul Kumar, Akash Lal, and Aditya V. Nori. MUX:
algorithm selection for software model checkers. In Proceedings of the 11th Working
Conference on Mining Software Repositories - MSR 2014. ACM Press, 2014. DOI:
10.1145/2597073.2597080. URL https://doi.org/10.1145/2597073.2597080.

[51] Alan Mathison Turing. On computable numbers, with an application to the Entschei-
dungsproblem. Journal of Math, 58:345–363, 1936.

[52] Claes Wohlin, Per Runeson, Martin Höst, Magnus C. Ohlsson, Björn Regnell, and
Anders Wesslén. Experimentation in Software Engineering. Springer Berlin Heidel-
berg, 2012. DOI: 10.1007/978-3-642-29044-2. URL https://doi.org/10.1007/
978-3-642-29044-2.

59

http://dx.doi.org/10.1007/978-3-540-31980-1_1
http://dx.doi.org/https://doi.org/10.1016/S0065-2458(08)60520-3
https://www.sciencedirect.com/science/article/pii/S0065245808605203
https://www.sciencedirect.com/science/article/pii/S0065245808605203
http://dx.doi.org/10.1145/3324884.3416633
https://doi.org/10.1145/3324884.3416633
http://dx.doi.org/10.1007/s10515-020-00270-x
https://doi.org/10.1007/s10515-020-00270-x
https://doi.org/10.1007/s10515-020-00270-x
http://dx.doi.org/10.23919/fmcad.2017.8102257
https://doi.org/10.23919/fmcad.2017.8102257
https://doi.org/10.23919/fmcad.2017.8102257
http://dx.doi.org/10.1145/2597073.2597080
https://doi.org/10.1145/2597073.2597080
http://dx.doi.org/10.1007/978-3-642-29044-2
https://doi.org/10.1007/978-3-642-29044-2
https://doi.org/10.1007/978-3-642-29044-2

	Kivonat
	Abstract
	Introduction
	Background
	Formal Verification
	Model Checking Software Code
	A Simple Example
	Control Flow Automaton
	Reachability Problems

	CEGAR-based Model Checking Algorithms
	Abstraction
	Refinement
	The CEGAR Loop

	Verifying Software in Practice
	Utilizing configurability with Portfolios and Algorithm Selection
	Configuring CEGAR
	Executing Theta on the Simple Example

	Improving the Efficiency of Verification Tools Using Dynamic Portfolios
	Assumptions and Goal of the Work
	The Process of Verification
	Designing Sequential Portfolios
	Good Practices for Sequential Portfolio Design
	Examples for Sequential Portfolios

	Designing Dynamic Portfolios
	Dynamic Possibilities in a Portfolio
	Configuration Selection based on the Input
	Monitoring and Intervention
	Assembling a Dynamic Portfolio – A Detailed Example
	Choosing Configurations for Dynamic Configuration Selection
	The Problem of Overfitting

	Summary

	Designing a Dynamic Portfolio for Abstraction Refinement-Based Analysis
	The verification Process of Theta for C Programs
	The Empirical Method of Designing the Portfolio
	Manually Assembling a Portfolio
	Empirical Methods Used
	High-level Design Decisions

	An Improved CEGAR Algorithm Using Runtime Information
	Typical Issues during Verification
	Monitoring ARGs and Counterexamples
	Practical Considerations

	Configuration Selection Possibilities
	Choosing Abstract Domains
	Choosing Refinements
	Choosing Arithmetics
	Other Options

	Assembling the Complex Dynamic Portfolio
	Portfolio Introduction
	Technical Details
	Summarizing the Completed Portfolio

	Evaluation
	Experiment Design
	Research Questions
	Verification Tasks
	Subject and Baseline Configurations
	Variables
	Execution Environment

	Results
	RQ1: Solved Tasks
	RQ2: Execution Time
	Average and Total Execution Times
	Average Execution Times by Category

	Discussion
	Conclusion on the Performance of the Complex Portfolio
	Threats to Validity

	Related work
	Algorithm Selection in Software Verification
	Verification Tools Using Portfolios and Algorithm Selection
	Related Work on Theta

	Conclusion
	Summary of Results
	Future Work

	Bibliography

