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Kivonat

A neurális hálózatok sokoldalú eszközökké váltak a függvények közelítésére különböző tu-
dományterületeken. A hasznos alkalmazások egyre bővülő területei a biológia, a fizika,
a mérnöki és a pénzügyi tudományok. A kutatásokat jelenleg a struktúra közelítési ké-
pességeivel kapcsolatos, folyamatosan bővülő szakirodalom motiválja. Ezek az elméleti
eredmények azt mutatják be, hogy a neurális hálózatok képesek megtanulni a függvények
széles körének tetszőlegesen jó közelítését. Ebben a tanulmányban két olyan modern mód-
szert vizsgálok, amelyek a neurális hálózatokat függvények közelítésére használják fel: a
fizikával informált neurális hálózatokat (PINN) és az inverz függvényapproximációt.

Az első részben olyan módszert mutatok be, amelyet részben invertálható függvények
közelítésére lehet alkalmazni. Ezt a részt a pénzügyi modellek kalibrálása motiválta, ahol
az a feladat, hogy olyan modellparamétereket találjuk, amelyek reprodukálják a volatilitási
felületet. Egy kétlépéses tanítási módszert javaslok, amelyet az autoencoder architektúra
ihletett. A bemutatott algoritmus célja, hogy megoldást adjon egy olyan domén automa-
tikus felfedezésére, ahol egy részleges inverz pontosan közelíthető, miközben felgyorsítja
a nehezen reprezentálható vagy időigényes inverz függvények kiszámítását. Bemutatom,
hogy a sztochasztikus pénzügyi modellek kalibrálási ideje jelentősen felgyorsul, miközben
a pontosság csak kis mértékben csökken.

A második részben bemutatom a fizikával informált neurális hálózatok tanításával
kapcsolatos munkámat. A PINN-ek a neurális hálózatok egy olyan osztálya, ahol a tanítási
eljárásra egy puha megkötést teszünk. Ebben az esetben ez a megkötés egy parciális diffe-
renciálegyenlet, amelynek teljesítésére betanítjuk a hálózatot. Ebben az elméletibb részben
áttekintem a terület legújabb eredményeit, és megmutatom, hogyan alkalmazhatóak ezek
az elméleti eredmények egy hálózat tanítására, amely közelíti a híres Black-Scholes dif-
ferenciálegyenletet. Bemutatom, hogy a PINN keretrendszer sikeresen alkalmazható nem
differenciálható peremfeltételű differenciálegyenletekre. Kísérletezem olyan algoritmusok-
kal, amelyeknek célja a tanítási folyamat stabilizálása és felgyorsítása. A hatékonyság be-
mutatása mellett megvizsgálom a gradiens patológiákat, hiperparaméter keresést végzek
és tesztelek különböző optimalizálási módszereket. A hálózatok optimalizálásának további
segítésére egy fejlett eljárást is adok.

Ebben a tanulmányban a pénzügyi területen való alkalmazhatóságra fogok összponto-
sítani. Azonban a bemutatott megoldások további problémák széles körére is alkalmazha-
tóak. Emellett átfogó, lépésről lépésre haladó magyarázatokat adok, kísérő Jupyter note-
bookokon keresztül, megkönnyítve a gyors megértést és kísérletezést.
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Abstract

Neural networks have become versatile tools for approximating involved functions across
various scientific disciplines. The ever-growing domain of useful applications includes bi-
ology, physics, engineering and finance. Research is currently motivated by the constantly
growing literature on the approximation capabilities of this structure. These theoretical
results show that neural networks can learn to approximate a wide range of functions ar-
bitrarily well. In this study, I explore two recent approaches that leverage neural networks
to approximate functions: physics-informed neural networks (PINNs) and inverse function
approximation.
In the first part, I will present a neural network training method that can be used to
approximate partially invertible functions. This part was motivated by financial model
calibration, where the task is to find a set of model parameters that can match the volatil-
ity surface. I propose a two-step training method that is inspired by the autoencoder
architecture. The presented algorithm aims to provide a way to automatically discover
a domain where a partial inverse can be accurately approximated while also speeding up
the calculation of difficult-to-represent or time-consuming-to-calculate inverse functions.
I will demonstrate a significant speedup in the calibration time of the stochastic financial
models while accuracy decreases only marginally.
In the second part, I will present my work on training physics-informed neural networks.
PINNs are a class of neural networks where a soft constraint is placed on the training
procedure. In this case, this constraint is a partial differential equation that the network
is trained to satisfy. In this more theoretic part, I review recent advances in the field and
put them to use by training a network to approximate the famous Black-Scholes differ-
ential equation. I demonstrate that the PINN framework can be successfully applied to
differential equations with a non-differentiable boundary condition. I also conduct experi-
ments with the proposed algorithms aimed at stabilizing and speeding up training. Besides
showing the effectiveness, I investigate the gradient pathologies, conduct a hyperparam-
eter search and experiment with different optimization methods. I also give advanced
procedures to further aid the training of these networks.
In this study, I will focus on the applicability and effectiveness of the proposed methods
in financial applications. However, the presented solutions can be applied to a wide range
of problems. Additionally, I provide comprehensive, step-by-step explanations through
accompanying Jupyter notebooks, facilitating quick comprehension and experimentation.
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Chapter 1

Introduction

The following work focuses on financial derivatives, financial models and how to approxi-
mate functions that are used to price these products. The most basic financial derivatives
are options. These are instruments that derive their value from an underlying security
like stocks or exchange-traded funds (ETFs). The simplest kind of option is a European
call option, which offers the buyer the opportunity to buy the underlying asset at a pre-
determined price at a predetermined time. This raises a question: how can one calculate
the fair price of this contract in an ever-changing market? It took three brilliant minds
to answer this question: Robert Merton, Fischer Black and Myron Scholes. They were
awarded the Nobel Prize in Economics in 1997 for their outstanding work [4]. To better
understand the impact of their findings, one must consider the role of financial institutions
in the market. In essence, they are the guardians of risk management. By offering deriva-
tives as insurance, they allow various entities to hedge their market exposures, effectively
shielding them from potential adverse shifts in market conditions. Take the airline indus-
try, for instance. Here, fuel costs often constitute a large chunk of operational expenses.
As a protective strategy against spiralling oil prices, airlines often resort to purchasing
derivatives tethered to oil price fluctuations. In this scenario, a call option on oil serves
as a financial cushion, insulating airlines from abrupt and potentially crippling fuel cost
hikes. The market is responsible for providing these instruments at their fair price. The
three Nobel laureates discovered a way to determine the fair market price while also de-
vising a method for the banks to hedge the risk of the derivatives positions. This led to
a liquid and well-functioning derivatives market and a new branch of mathematics, the
theory of finance.
Despite decades of research, the Black-Sholes pricing formula is still widely used within
the industry. This simple model only requires five parameters to describe a European
call option: strike price, spot price, time to expiry, risk-free rate of interest and volatility.
Strike price and time to expiry are set by trading parties before the purchase. The owner
of the option can purchase the underlying at the previously specified strike price. The time
when this purchase can occur is determined by the time of expiry. The risk-free rate of
interest is what an investor can expect to earn on an investment that carries zero risk. An
example of this would be a zero-coupon bond issued by a central bank. Spot price refers
to the price of the underlying security. The most interesting among them is volatility. It
is an inherent phenomenon in the market, a statistical measure of the change in the price
of a security. Alternatively, it can be thought of as risk or uncertainty.
The ease of use and simplicity of the Balck-Scholes pricing formula lead to cases where it
fails to model aspects of the market. For example, the Black-Scholes model comes with the
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assumption of constant volatility, an inherent flaw of the model since empirical evidence
shows that volatility is time-dependent. The volatility smile stems from the observation
that far-out-of-the-money (OTM), where the strike (K ) is significantly lower than the
underlying’s price (S), options usually command higher prices, hence higher volatilities.
Volatility is often implied from liquid vanilla options thus the name implied volatility
(IV). The IV surface is a two-dimensional market description constructed by observing
available volatilities for different strikes and expiration dates. Due to its flaws, the Black-
Scholes model is insufficient to model the market accurately. Addressing this issue has led
to increasingly sophisticated models. One industry standard is the SABR model which
has become commonplace in most fixed-income desks [26]. Other notable models are the
Heston model [28] and the Heath–Jarrow–Morton model [12].
Financial models usually come in the shape of stochastic differential equations (SDE).
However, finding analytic formulas for these types of equations can be challenging. More-
over, a wide variety of derivatives are available in the market, many of them are so-called
exotic options. Arbitrage-free pricing of complex path-dependent options requires expen-
sive to compute Monte Carlo methods and model calibration. Model calibration, in this
case, amounts to finding a set of model parameters that match the observed volatilities of
the market as closely as possible. In the absence of an analytical solution to the under-
lying SDE, this problem usually boils down to least squares minimization using iterative
optimizers such as Levenberg-Marquard [35, 38]. Running iterative optimization can be
challenging since it requires the calculation of the Jacobian matrix of the volatility surface
with respect to the model parameters. Calibration can take up to 20 minutes due to the
relative slowness of the Monte Carlo method. Several solutions have been proposed to
solve this issue. The method proposed by Hernandez [27] describes the direct calibration
of model parameters from the IV surface. The two-step calibration introduced by Horváth
et al. [5] trains a network in the opposite direction and calibrates using approximate
derivatives. The common theme in these works is the offline training of the networks to
speed up online calibration. One contribution of this paper is a method to speed up the
online calibration from a few hundred milliseconds to a few microseconds. I also provide a
framework to accurately and quickly train a neural network to approximate non-injective
functions. In this context, the proposed technique opens the door to real-time calibration
of intricate models with a multitude of parameters. Beyond its immediate application,
this method also holds promise for broader engineering disciplines. Notably, it could offer
a viable solution for tackling ill-posed inverse problems, which involve inferring causative
factors from noisy measurements.
In the second part of this work, I show how to train physics-informed neural networks
(PINNs) to approximate the Black-Scholes pricing function. The PINN framework aims
to address one fundamental problem of deep learning [39, 40, 41]. Recent advances in deep
learning have yielded exciting results in language modelling, image generation and object
detection [21, 6, 16, 10]. One core ingredient that made their success possible is limitless
high-quality data. Neural networks work best in data-rich domains but their effectiveness
remains subpar in settings where data is sparsely available. The over-parametrization al-
lowed for flexibility but generalization requires prior knowledge or inductive bias. Achiev-
ing this requires clever network design like the convolutional neural network (CNN). This
architecture bakes translational invariance into the network’s architecture [33]. Another
notable architecture is the attention mechanism of large language models (LLMs). Their
architecture is invariant to the ordering of input tokens [13]. Clever network design is a te-
dious process and more an art than an exact science. This work and many others address
the problem of prior knowledge by exploring the construction of training regimes that
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allow for better generalization with the modification of the loss function in the following
way:

L(w) := 1
Nb

Nb∑
i=1

[ui −Nw(xi)]2 + λR[Nw(x)] . (1.1)

In this case, the loss L(w) consists of two parts: the mean squared error over the given
input-output pairs xi and ui, for i = 0, 1, . . . , Nb, plus a penalty or soft constraint in
the form of R[Nw(x)], sometimes also called the residual. Furthermore, w denotes the
parameters or the neural network, Nw represents the output of the neural network, Nb is
the batch size, and λ is the scaling factor for the residual loss.
Soft constraints have been successfully applied in other domains of deep learning, most
notably, the weight decay using L1 or L2 norms [25]. The penalty in the PINN case will
force the network to obey a partial differential equation. Recent advances have hinted at
possible uses in chaotic flow simulations and accurate weather dynamics modelling [15, 18].
I describe PINNs as a deep learning method, but they can be viewed as an alternative
to classical PDE solvers. An added benefit over previously developed methods, like finite
elements, is the possibility to train the network with extra input and get a family of
solutions as a single neural network [8]. My contributions will be the design and training
of a neural network that satisfies the Black-Scholes differential equation. I further expand
on previous work by augmenting the learning rate annealing algorithm proposed by Wang
et al. [20, 19].
Following the principles of Open Science, my results are available on GitHub: NN-
Approximation to facilitate understanding and further experimentation.
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Chapter 2

Microsecond Calibration

2.1 Model Calibration

In Chapter 1, I introduced the concept of model calibration. Calibration is the process of
finding parameters such that the model reproduces the observed market reality as closely
as possible. It is important to distinguish model parameters from the weights of the neural
networks. Hence, θ will refer to the parameters of the pricing model, and w will refer to
the parameters of the neural network. To formalize this, let’s define the pricing model as
M := M(θ) with parameters θ ∈ Θ in the set Θ ⊂ Rn, for some n ∈ N. Once M(θ) is fixed,
meaning the model and its parameters, all corresponding derivatives prices are also fully
specified. Using this definition, we can introduce a pricing map: P := P (M(θ), ϕ)→ Rm

for some m ∈ N where ϕ specifies the products we aim to price. The specified products are
usually liquid options for different strikes and expiries that can be observed in the market.
I denote the real market price of these options with Pmkt(ϕ).
Parameter calibration solves the following problem: given M and Pmkt(ϕ) find a set of
parameters θ so that the difference between Pmkt(ϕ) and P (M(θ), ϕ) is minimized:

θ̂ = arg min
θ∈Θ
∥P (M(θ), ϕ)− PMKT(ϕ)∥22 . (2.1)

Where ∥.∥2 represents the Euclidean norm. In practice, it is not possible to calibrate with
zero error. Noise in the market data and imperfect calibration schemes introduce errors
in a given calibration. Hedge funds and investment banks use sophisticated optimization
algorithms to find the optimal values of θ like Levenberg-Marquard [35, 38]. It is also
possible to use Gradient Descent or any other iterative optimization algorithm. The main
idea of Gradient Descent is the calculation of the Jacobian of the error with respect to θ
and then the update of the parameters:

θn+1 = θn − α
∂

∂θn
∥P (M(θn), ϕ)− PMKT(ϕ)∥22 . (2.2)

Where α is the learning rate.

2.2 Stochastic Models

In this section, I will describe two notable models that are widely used in industry.
The Black-Scholes model
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The model is described by the following stochastic differential equation [4]:

dS

S
= µ dt + σ dW . (2.3)

The symbols mean the following:

• S represents the price of the underlying. The price changes with time.

• σ represents the volatility, it is a constant.

• µ is the expected rate of return.

• W is a stochastic variable following a Wiener process.

dS, dt and dW represent an infinitesimally small change in S, t and W respectively. The
source of uncertainty in the model is W : its exact movement is unpredictable. However,
statistical description can be given, as it follows the following few rules.
The expectation is zero, it is a martingale:

E[Wt] = 0 . (2.4)

The variance is t:

Var(Wt) = t . (2.5)

Increments have a normal distribution, centered at zero:

Wt −W0 ∼ N(0, t) . (2.6)

The Heston model

The following SDE describes the Heston model [28]:

dSt = µSt dt +√νtSt dW S
t , (2.7)

dνt = κ(θ − νt) dt + ξ
√

νt dW ν
t , (2.8)

dW S
t · dW ν

t = ρ dt . (2.9)

The model has the following parameters:

• ρ is the correlation of W S
t , W ν

t .

• νt, the volatility at time t.

• θ, the long variance, or long-run average variance of the price; as t tends to infinity,
the expected value of νt tends to θ.

• κ, the rate at which νt reverts to θ.
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• ξ, the volatility of the volatility, or ’vol of vol’, determines the variance of νt.

The model Heston incorporates two distinct random processes: one governing the evolution
of the underlying asset and another controlling its volatility. Given that the volatility itself
is subject to stochastic behaviour, the model falls under the category of stochastic volatility
models. Figure 2.1 provides a visual comparison that highlights the significant differences
between the two models discussed in this section.

Figure 2.1: On the left, two probability density functions were
created using the Heston model and different correla-
tion parameters ρ compared with geometric Brownian
motion (GBM). On the right, is the volatility smile
produced by the model. The strike and ST is mea-
sured in dollars.

2.3 Pricing

The use of neural networks for representing functions is underpinned by universal ap-
proximation theorems. In 1989, Hornik, Stinchcombe, and White showed that multilayer
feed-forward networks, even with just a single hidden layer, can act as universal approx-
imators [30]. This foundational result establishes neural networks as robust tools for
high-dimensional function approximation. Subsequent research extended these findings to
reveal that neural networks not only have the ability to approximate a given function f
but also all of its derivatives up to order n [29]. This capability for accurate derivative
approximation is a critical feature that enables the implementation of two-step calibra-
tion methods or, in my case, a two-step training procedure. The precise estimation of
derivatives ensures that the network can be effectively employed for optimization.
Computationally slow-to-evaluate stochastic models are difficult to integrate in industrial
applications. This might limit the model’s applicability even if it possesses modelling
advantages. To fix this, various solutions have been proposed. Hernandez’s work proposes
a network N(w, θ) that learns to represent the inverse pricing function [27]. In deep
learning terms a dataset D = {(xi, ui) : xi ∈ Rm, ui ∈ Rn, xi = P (M(ui), ϕ), i = 1 . . . Nd}
is created where xi is one sample of volatilities produced by a model M with parameters
ui. The parameters ui are sampled from a predetermined domain. It is then used to train
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a simple neural network with the following objective:

w∗ = arg min
w

1
Nd

Nd∑
i=1

(N(xi; w)− ui)2 . (2.10)

However, there is no guarantee that two sets of parameters ui and uj , i ̸= j, produce the
same volatilities. A slight change in one parameter could be offset by slight changes in
other parameters. It is not reasonable to expect that for one set of volatilities, only one
set of parameters exists that can produce it. Mathematically speaking, we can not expect
the inverse pricing map to be injective in the modelled domain [3]. We can not even be
sure if an inverse exists. Many functions do not have an inverse but by restricting the
domain a partial inverse may exist.
Realizing this problem Horváth et al. proposed a two-step calibration procedure [5]. The
first step is learning the pricing function P instead of the inverse of P. To achieve this only
flipping of the dataset D is required. Now the input of the network N are parameters of
the stochastic model and outputs are volatilities. Hence, the new training objective is the
following:

w∗ = arg min
w

1
Nd

Nd∑
i=1

(N(ui; w)− xi)2 . (2.11)

The second step is calibration, where they replace the expensive-to-evaluate pricing func-
tion P with a neural network N :

θ̂ = arg min
θ∈Θ
∥N(θ, w)− PMKT(ϕ)∥2 . (2.12)

I propose a two-step training procedure to learn a partial inverse pricing function. It is
a direct approach like the one proposed by Hernandez but with a remedy to the original
paper’s shortcomings. First, we normalize the previously described dataset D. This means
the SDE parameters are transformed using MinMax scaling into the range of [−1, 1]:

ui := 2×
(

ui −min(u)
max(u)−min(u)

)
− 1 . (2.13)

A network N : Rn → Rm is then trained to represent the pricing function as previously
described. Before the second training step, the weights of N are frozen, meaning they
will not change during the backward pass. We introduce a secondary network, denoted
as N ′ : Rm → Rn, which is initialized randomly. Subsequently, we construct a composite
function N∗(x) := N(N ′(x)). The optimization objective in this context is to approximate
the identity function via N∗. Given the universal approximation capabilities of neural
networks for continuous functions, achieving this goal should be feasible. As the training
progresses, N ′ is tuned to map volatilities to their corresponding parameters. When
training converges, applying N ′ followed by N yields the identity function, confirming
that N ′ serves as a partial inverse of N . This approach is particularly effective as N ′

is capable of autonomously discovering a domain where it can successfully construct this
partial inverse. The approximated inverse will be one of several possible partial inverses
depending on the random initialization of N ′. Finally, we train N∗ with the following loss
function:

L(w) = 1
Nd

Nd∑
i=1

(N∗(xi; w)− xi)2 + 1
Nd

Nd∑
i=1

max
(
0, |N ′(xi; w)| − 1

)
. (2.14)
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To better understand how this network functions, we can draw parallels between it and
the autoencoder neural architecture [2]. Autoencoders usually take an image as input,
which is then fed into two connected networks called the encoder and the decoder. After
the encoder, a bottleneck is introduced by restricting information flow to a few hundred
activations. The decoder then tries to decode this hidden state back into the original
image. The better the reconstruction the more information is stored in the hidden state.
However, this hidden state is usually random and not easily interpretable. We are trying
to achieve something similar but we constrain the hidden state by first training on the
pricing map. One important consideration is the out-of-sample accuracy of the pricing
network N . It is a well-known fact that networks do not generalize well. Thus, we must
restrict the outputs of the network N ′ to the domain where we trained N . To achieve this
a second term is added to the loss in Equation (2.14). Where |.| represents the absolute
value function. It is trivial to see that if the hidden state is within the range [−1, 1]
then the second term is zero, otherwise some positive number. In simple terms, this soft
constraint forces the outputs of N ′ to be within [−1, 1].

2.4 Evaluation and Comparison

Evaluation can be tricky in this problem. It is infeasible to compare the calibration with
the parameters we have in the training data as we know that the pricing map might not be
injective. To verify the validity of a given calibration, the original pricing function must
be rerun. With the implied volatility produced by the Heston model, we can calculate the
evaluation metric. I used mean squared and mean absolute error to compare the calibration
with the market volatility. The results achieved by two-step training are competitive with
the original two-step calibration method proposed in [5]. Moreover, both techniques use
the same neural network as pricing map representation their accuracy should be equivalent
in most cases. I observed slightly worse calibration with my method. The results of my
calibration can be seen in Figure 2.2 and 2.3.

Figure 2.2: Calibration for a random sample of the test set calcu-
lated with the Heston model. Input data refers to the
observed volatilities that we are trying to calibrate to.

The main advantage of the method described here is the speedups achieved by the re-
duced need for only a single forward pass of the network. In contrast, the prior method
necessitated repeated evaluations of the pricing map, coupled with the computation of
the Jacobian matrix, often resulting in dozens of iterations before achieving successful
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Figure 2.3: Distribution of the mean squared and mean absolute
errors plotted against different strikes and expiration
dates.

calibration. Although automatic differentiation has made the differentiation of networks
relatively efficient, the multiple passes intrinsic to these traditional methods remain a
significant computational bottleneck. Elimination of the need for multiple evaluations of
the network, we can achieve ten to twenty-fold speedup. Moreover, neural networks are
highly optimized for parallel computation enabling the calibration of multiple surfaces
at the same time. By setting the batch size optimally, say at 1800 in our instance, and
processing all test samples concurrently, we can realize calibration speeds that clock in at
the microsecond range per sample. This is shown in Figure 2.4.

Figure 2.4: Time required to calibrate one sample. The batch size
that was used for calibration is in the parentheses.

Choosing between the two-step calibration and two-step training methods necessitates the
thorough evaluation of one’s objectives. If the primary goal is to achieve swift, real-time
calibration, particularly in scenarios reminiscent of high-frequency computational tasks,
the two-step training approach appears more favourable. However, if you value accuracy
and adaptability more, two-step calibration becomes the method of choice. An important
technical nuance to remember regarding two-step training is that any modifications to the
minimization objective can be intricate, primarily due to the need for model retraining.
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Therefore, when implementing a model, these considerations should be the centre of the
decision-making process.

2.5 Intuition in One-Dimension Using the Sinusoidal Func-
tion

It is difficult to visualize the learning using the Heston model since the parameters are in
a five-dimensional space. To illustrate the power of this training paradigm we can first
look at how it learns the familiar inverse of f(x) = sin(x). We know that if we restrict
the domain of f to [−π/2, π/2] we can construct the inverse f−1(x) = arcsin(x). Let’s
construct a dataset D = {(xi, ui) : xi ∈ [0, 10], ui = sin(xi), i = 1 . . . n}. It is trivial to
learn the mapping from xi to ui but the function is not invertible in the specified domain.
If we simply flip the dataset the network fails to learn the inverse. When we apply two-step
training we get a random partial inverse. All the described behaviours can be observed in
Figure 2.5. The top left image shows the approximation of sine, and the top right image
depicts the naive approximation and how it fails to approximate arcsin. The bottom left
image shows the random partial inverse found by the training. To better showcase the
accuracy, I shifted the partial inverse down so that it lines up with the arcsin function.

Figure 2.5: Neural network representation of sine on (a). The
naive solution to the inverse problem fails to learn
the function on (b). A random partial inverse was
found by the training on (c). The partial inverse found
shifted down so that a comparison with arcsin is pos-
sible on (d).
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2.6 Efficient Training

Training neural networks with high precision and efficiency remains a complex task, de-
spite significant advancements in deep learning over recent years. Balancing architecture,
hyperparameters, and the vastness of data have driven researchers and practitioners to
continuously seek optimal strategies. In light of this, I’ve assembled a list of best prac-
tices. These guidelines focus on accelerating training while improving model accuracy.
Additionally, recommendations on architectural choices and hyperparameter settings are
provided, based on empirical findings and industry benchmarks.
Architecture selection stands as a foundational step in the process of training a neural
network. Evidence suggests that deep networks often outperform their wide and shallow
counterparts. Corroborating this, Zhou Lu et al. established that there exists a certain
category of networks that cannot be replicated by any shallow network, provided its size
does not surpass a certain exponential bound [23]. Stemming from this, a deep yet compact
network is used in this work. Nevertheless, the construction of deep networks introduces
unforeseen complexities. The vanishing and exploding gradient problems emerge as the
most pronounced among these challenges just to name a few. To counteract these issues,
it is advisable to utilize a deep residual network [14]. This well-known architecture facili-
tates efficient gradient propagation during the backward pass. Additionally, convolutional
networks have been empirically proven to boost accuracy while demanding fewer parame-
ters. Through convolution, these networks adeptly extract spatial information embedded
within the volatility surface [7, 43].
Network initialization is one of the main innovations that makes training modern deep
networks stable and reliable. Glorot et al. described a network initialization scheme for
ReLU networks that prevents the magnification and explosion of activations and gradients
[24]. On the other end of the spectrum is the vanishing gradient problem that plagued
networks that required tanh or sigmoid activations. If not managed carefully, the activa-
tions of a neuron could take on extreme values. The derivative of the mentioned activation
functions is almost zero if the input is sufficiently large or small. This can lead to neurons
getting stuck and unable to learn. An efficient solution is the He initialization [22].
The Choice of Optimizer can also lead to significant improvements in performance.
Currently, two of the most widely-used optimizers are Adam [34] and AdamW [37]. Both
are highly effective for function approximation tasks. The efficiency of these optimizers can
be further enhanced by implementing strategies such as learning rate decay or increasing
the batch size as training approaches completion.
Regularization is a cornerstone of most contemporary neural networks. Owing to their
overparameterized nature and the unclear processes they operate by, neural networks
are prone to overfitting. Implementing regularization compels them to generalize, subse-
quently strengthening their robustness and capabilities. Methods such as dropout [17],
layer normalization [1], batch normalization [32], weight decay [25], and early stopping
[42] are frequently employed to mitigate overfitting. It is important to note that some of
these methods serve dual purposes, functioning both as regularization and normalization
techniques.
Notably, batch normalization offers advantages beyond mere regularization, such as main-
taining a consistent internal distribution of activations. However, based on my personal
observations, refraining from regularization often yields superior outcomes. Allowing the
network to pointwise converge to the underlying smooth function typically proves to be a
better approach. This observation is noteworthy because it challenges prevailing assump-
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tions about the necessity of regularization for effective neural network training, although
it should be emphasized that this finding is specific to the context discussed in this work.
Conversely, the objective often revolves around aligning with real-world market data,
which might not always be immaculate. Monte Carlo pricing can introduce another layer
of imperfection; at times, the simulation may not generate a sufficient number of paths to
determine a credible implied volatility for far out-of-the-money options. This dilemma is
showcased in Figure 2.6.

Figure 2.6: Broken implied volatilities produced by a Monte Carlo
simulation.
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Chapter 3

Pricing with Physics Informed
Neural Networks

Most physical phenomena can be represented using partial differential equations (PDEs).
This includes the dynamics of a pendulum, Maxwell’s equations governing electromag-
netism, and the intricate Navier-Stokes equations that describe fluid flow. Despite the
fundamental nature of these equations, solving them remains challenging; for instance,
the Navier-Stokes equation has eluded solutions for over a century. Historically, numer-
ous techniques have been proposed to address such PDEs, with Physics-informed Neural
Networks (PINNs) emerging as a modern approach to this age-old challenge.
PINNs serve as versatile function approximators designed especially for situations where
data is scarce or of dubious quality. By incorporating prior knowledge of the physical
system into the network, often in the form of a PDE, it serves as a regularizing force,
steering the optimization towards a more universal solution. Essentially, the primary
objective of the PINN framework is to emulate the inherent solution dictated by the PDE.
Various domains, be it engineering, biology, chemistry, or meteorology, are underpinned by
precise physical laws. The fusion of neural networks with these domains holds the promise
of intriguing outcomes. Nonetheless, the area of applying neural networks to these prob-
lems is developing, with several challenges hindering the training processes. Addressing
these limitations could truly harness the capabilities of neural networks. Conventional
methods for solving PDEs without analytical solutions often resort to numerical strate-
gies like the finite element, finite difference, or finite volume methods. Yet, once adeptly
trained, neural networks promise significant computational acceleration.
In the subsequent sections of this study, I explore the use of PINNs to approximate the
renowned Black-Scholes PDE continuing the theme of financial mathematics. This PDE
was derived by Hull [31] from the SDE discussed in Chapter 2. The unique advantage
of this equation is that it has a known analytical solution, permitting precise accuracy
assessments.

3.1 General Setup

The data-driven solution of PDEs starts with the problem definition. Let u(t, x) represent
the underlying solution to a system of non-linear partial differential equations. In general,
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the problem can be described in the following way:

ut + Nx[u] = 0, x ∈ Ω, t ∈ [0, T ] . (3.1)

Here Nx is a non-linear differential operator that can contain second or higher-order deriva-
tives, ut is the underlying (hidden) solution of the PDE and Ω is the domain. Without
boundary and initial value conditions, there are infinitely many solutions to the PDE. The
following equations describe them:

u(x, 0) = h(x), x ∈ Ω, (3.2)

u(x, t) = g(x, t), t ∈ [0, T ], x ∈ ∂Ω . (3.3)

Here ∂Ω denotes the boundary of Ω. Furthermore, u(x, 0) corresponds to the initial value
condition that is described by h(x), and g(x, t) describes the behaviour of the function u
on the boundary of Ω. Raissi et al. proposed to represent u(x, t) with a neural network
fw(x, t) [39]. We can now define the residual:

Rw(x, t) := ∂

∂t
fw(x, t) + Nx[fw(x, t)] . (3.4)

The residual gauges the ability of the network to satisfy the PDE. While manually differen-
tiating intricate functions can be daunting, automatic differentiation offers a streamlined
way to handle the differentiation of neural networks with efficiency [11]. Following this,
a dataset must be formulated. This is done by randomly selecting points from both the
domain and its boundary. With the dataset established, the subsequent step involves
defining a loss function. This loss encompasses the combined values from the boundary
condition, initial value condition, and the residual. Based on the work done by Raissi
et al. we finally arrive at the minimization objectives. For the boundaries, we know the
behaviour of the underlying function exactly so the minimization objective is trivial:

Lb(w) := 1
Nb

Nb∑
j=1

[
fw(xj , tj)− g(xj , tj)

]2
, (3.5)

Li(w) := 1
Ni

Ni∑
j=1

[
fw(xj , 0)− h(xj , 0)

]2
, (3.6)

Lr(w) := 1
Nr

Nr∑
j=1

[(
∂

∂t
fw(xj , tj) + Nx[fw(xj , tj)]

)2]
. (3.7)

The combined minimization objective can be written down as:

L(w) := λbLb(w) + λiLi(w) + λrLr(w) . (3.8)

The loss is the weighted sum of the residual, initial, and boundary losses, each scaled by
their respective weighting coefficients λb, λi and λr. These coefficients allow us to control
the relative importance of each loss component in the overall optimization process. We
can then minimize this loss function using stochastic gradient descent like Adam. One
advantage of this method is the ability to freely sample as many points from the domain as
needed. Typical millions to hundreds of millions of points are sampled through thousands
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to hundreds of thousands of epochs [8, 19]. I want to stress that learning is not supervised
as there is no exact solution to learn from. The points are randomly sampled and then
the constraints are minimized.

3.2 The Black-Scholes PDE

In this section, I discuss the details of how to implement the previously described algo-
rithms in the Black-Scholes case. I will denote the underlying solution to the Black-Scoles
PDE as C(S, t) since calculations will be done for European call options. The initial value
condition and the boundary conditions have very intuitive and easy-to-grasp meanings so
I will describe these first. At time T , the value of the option can be calculated from the
payout function:

C(S, T ) = max{S −K, 0} . (3.9)

A call option gives the holder the option to buy the underlying security at the predeter-
mined time and price. In this work, I will consider the underlying security to be a stock.
If at t = T the price of the underlying S is above the strike price K the investor can buy it
for K and sell it for S, hence they made a profit of S−K. If the price is below the strike,
they will choose not to buy the security and the value of the option is 0. To summarize,
the payout of a European call is its initial value condition. The price of the underlying S
can take on values x ∈ [0,∞). If the underlying’s price hits 0 the price of the call is also
0. This follows from the fact that if the price hits zero the company is bankrupt and has
zero value left for the shareholders:

C(0, t) = 0 . (3.10)

The last boundary condition is the case when S → ∞. We know that the price follows a
Brownian motion with drift r and standard deviation σ based on Equation 2.3. Given the
known price S at time t, the expected value of S at time T , denoted as E[S(T )], can be
found using the formula:

E[S(T )] = S(t)er(T −t) . (3.11)

where r is the continuously compounded rate. If the option is sufficiently in the money,
the probability P (S(0) > K) approaches 1. So we can calculate the option price without
taking into account the non-linear part of the payout function at time T . We can then
discount the price back to the present value. Putting all this together the call option value
for deep-in-the-money options is the following:

C(S(T ), T ) = E[S(T )]−K = S(t)er(T −t) −K, (3.12)

C(S(t), t) = S(t)−Ke−r(T −t) . (3.13)

In financial mathematics the term used to describe E[S(T )] in (3.11) is the forward price.
Moreover, the price calculated in (3.12) is the intrinsic value of the option.
Finally, the Black-Scholes PDE can be derived from the stochastic differential equation
[31]. The following equation describes the resulting PDE:

∂C

∂t
+ 1

2σ2S2 ∂2C

∂S2 + rS
∂C

∂S
− rC = 0 (3.14)
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3.3 Automatic Differentiation

Calculation of the constraint seems like a difficult challenge as it involves the calculation of
first and second-order derivatives. This would be true for a method like finite differences.
Luckily, pytorch [9] allows for automatic differentiation. This makes it possible to calculate
the partial derivatives of a function specified by a computer program. The following
code snippet describes the calculation of the three partial derivatives that are required to
compute the PDE constraint.

Algorithm 1 Algorithm for Calculating Derivatives
1: Input: input, t, s
2: outputs← NetworkForwardPass(input)
3: outputs← RescaleOutputs(outputs)
4: dV dt← Grad(outputs, t)
5: dV dS ← Grad(outputs, s)
6: d2V dS2← Grad(dV dS, s)

3.4 Gradient Pathologies

Early deep neural networks encountered issues during training, such as the exploding and
vanishing gradient problem, mentioned in Chapter 2. PINNs also face these hitches. While
they’ve shown potential in some scenarios, there are times they don’t derive the intended
solution.
Research by Wang et al. revealed a specific challenge with PINNs [19]. They found
that the gradients of Lr can be notably larger than those of Lb or Li. This imbalance
in gradient magnitudes can cause the training process to undervalue the boundary and
initial conditions. They call this effect stiffness in the training process. Addressing these
gradient disparities is vital to ensure PINNs work effectively and provide reliable results.
Building on the observations of Wang et al., my own research on the Black-Scholes PDE
further corroborates their results. In my experiment, I subjected a basic neural network
to training over 8000 epochs and subsequently examined the gradient statistics for its
initial three layers. As depicted in Figure 3.1, there’s a clear representation of gradient
distributions associated with every component of the loss function. The spread of the
histogram offers an insight into the gradient’s variance — a wider spread indicates a
greater variance in the gradients.
To address this challenge, a straightforward learning rate annealing algorithm was intro-
duced [19]. My experiments validate the efficacy of this method for the specific problem.
The algorithm evaluates the gradients for every segment of the loss, subsequently adjust-
ing the individual loss components using the derived statistics using the formula described
by Equations (3.16), (3.15) and (3.17). Consistent with their observations, Figure 3.2
distinctly illustrates that the gradients exhibit a normal distribution where all loss com-
ponents have roughly the same standard deviation.
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Figure 3.1: Stiffness in the training dynamic using a naive ap-
proach. bd1, bd2 and bd3 refer to the initial and bound-
ary conditions described in Section 3.2 and pde refers
to the residual.

λb = ∥∇wLi(w)∥2 + ∥∇wLb(w)∥2 + ∥∇wLr(w)∥2 + 2
∥∇wLb(w)∥2

, (3.15)

λi = ∥∇wLi(w)∥2 + ∥∇wLb(w)∥2 + ∥∇wLr(w)∥2 + 2
∥∇wLi(w)∥2

, (3.16)

λr = ∥∇wLi(w)∥2 + ∥∇wLb(w)∥2 + ∥∇wLr(w)∥2 + 2
∥∇wLr(w)∥2

. (3.17)

Here ∇wLi(w) denotes the gradients of the loss Li with respect to w.
The original authors suggested recalculating the training statistics every few hundred to
a thousand epochs. This recommendation is made to mitigate performance degradation,
as this computation can be resource-intensive. Additionally, they highlighted that the
parameters λb, λi, and λr might exhibit somewhat stochastic behaviour, oscillating during
the training process. When utilizing an optimizer that incorporates gradient statistics,
such as momentum or Adam, these constant and erratic fluctuations could potentially
impede the training progress.
The aforementioned algorithm enabled the training of the network. However, I observed
that the learning still tends to stagnate and fails to converge. The primary obstacle was
identified to be the boundary conditions. In their absence, a PDE can have infinitely many
solutions. Once the losses are rescaled, the boundary conditions face challenges in rivalling
the residual loss. This results in a plateau in the boundary losses while the residual loss
keeps reducing. Consequently, achieving convergence to the accurate solution becomes
unattainable.
I propose introducing a correction term to their algorithm to hasten the convergence of
the boundary and initial value conditions in the early phases of the training. Once these
conditions begin to converge, the correction term diminishes in magnitude, allowing the
learning rate annealing algorithm to take the forefront. My experiments indicate that
this adjustment significantly boosts performance. The results of this modification are
illustrated in Figure 3.3.
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Figure 3.2: Stiffness in the training dynamic after
normalization.bd1, bd2 and bd3 refer to the ini-
tial and boundary conditions described in Section 3.2
and pde refers to the residual.

Figure 3.3: Comparison of the learning rate annealing algorithm
proposed by Wang et al. in blue and my algorithm in
orange.

αi := θ/(θ + epoch) + 1, (3.18)

αb := θ/(θ + epoch) + 1, (3.19)

L(w) := αbλbLb(w) + αiλiLi(w) + λrLr(w) . (3.20)
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This straightforward extension necessitates a single parameter θ. When θ is set to zero, the
optimization process remains unchanged compared to the originally proposed algorithm.
As the number of epochs progresses, the magnitude of the correction terms diminishes.
Integrating these methodologies led to rapid, efficient, and stable training. As demon-
strated in Figure 3.4, the learning curves are outlined for both training and test losses.
Given that we are working with the Black-Scholes PDE, an analytical solution exists. This
permitted the computation of exact prices for the test set, facilitating the derivation of
a mean squared error loss. In contrast, for the training data, the boundary and residual
losses are displayed.

Figure 3.4: On the left: mean squared test error. On the right:
the training loss by components. The sum of each
individual component would be the total training loss.

3.5 Efficient Training

As explained in Chapter 2, effective training hinges on architecture design. In the scope of
this research, I employed a residual network equipped with ReLU activations. This simple
feed-forward architecture was subsequently trained using the Adam optimizer, learning
rate decay, and the methodology introduced in this study. A valuable tactic to boost
performance, especially when Adam’s convergence stalls, is to resort to a quasi-Newton
algorithm instead of Adam for optimization purposes. Torch offers an optimizer, L-BFGS
[36], which can be leveraged to further reduce the training error. I must note, however, that
this algorithm is inherently crafted for full batch learning, thereby preventing the feasibility
of employing mini-batches for network training. Furthermore, based on my empirical
observations, the learning process occasionally diverges owing to numerical instabilities,
leading to non-numeric values.
To further optimize performance, I conducted a hyperparameter search with the sole goal
of reducing the test error. The results of which are detailed in Table 3.1.
The selection of the appropriate domain is key for the training of neural networks. It is
important to ensure that input values lie within the range of [-1, 1]. This normalization
is vital as it prevents activation values from becoming excessively large, which can lead
to erratic training dynamics. One common approach to achieve this normalization is by
employing MinMax or some other scaling on the inputs.
Beyond normalization, there are other considerations linked to the nature of the problem
at hand. For example, working with large spot prices can pose challenges. Even though
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Hyperparameter Value

Width 16
Depth 14
Residual blocks 6
Epochs 20000
Learning rate (start) 0.001
Learning rate decay step size 8000
Learning rate decay rate (γ) 0.4
Batch size 512
θ 1000

Table 3.1: Hyperparameters and their corresponding values for the model training.

high spot prices can be representative of real-world scenarios, they can introduce com-
plexities in training. Specifically, call values derived from these high spot prices can be
quite large, potentially hindering the network’s convergence. Therefore, to ensure both
representativeness and computational efficiency, it is advisable to be careful in choosing
spot prices for neural network training. This applies to the other parameters as well to a
lesser extent.
Thus, it is not merely about representing the real-world scenario but also about ensuring
that the model’s learning process remains efficient and stable. Striking this balance, I have
confined my experiments within the domain specified in Table 3.2. This domain offers a
reasonable mix of practical relevance and computational efficiency.

Parameter Range

Spot Price (S) [0, 20]
Strike Price (K ) 5
Expiration (T ) [0.1, 10]
Interest Rate (r) [0.005, 0.1]
Volatility (σ) [0.001, 0.2]

Table 3.2: Parameters and their corresponding ranges.

3.6 Results

Evaluating the results proved to be challenging due to the significant influence of the
neural network’s initialization on learning. For a credible comparison between distinct
techniques, it was essential to maintain consistency in initialization. With an optimized
architecture and carefully calibrated hyperparameters, the effectiveness of the learning
rate annealing method was evident. This is exhibited in Figure 3.5, where an impressive
decrease in the test error can be observed.
One notable drawback of the proposed method is the sudden spiking in test error when
gradient statistics are recalculated for the learning rate annealing algorithm, as illustrated
in Figure 3.5. This surge in error can be attributed to sudden changes in the backpropa-
gated gradients. While the error usually subsides after a few iterations, as the optimizer
adjusts to the updated optimization objective, this transient instability presents a signifi-
cant challenge to the method’s reliability.
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Figure 3.5: Comparison of my work (Advanced) and no learning
rate annealing (Naive). Note that the y-axis is a log
scale.

This is particularly true for optimizers that are dependent on gradient statistics, such as
Adam and AdamW. In Figure 3.6, the probability density of the training process reaching
a specific loss level for both methods is shown. This graph reveals that although the
advanced method can achieve higher accuracies, the highly variable distribution indicates
instability is still present. Future research is required to mitigate this limitation of the
algorithm. One potential approach is to employ a learning rate warm-up following each
update of the parameters λb, λi, and λr. Another strategy could involve synchronizing
the learning rate decay steps with these parameter updates. Such synchronization would
ensure that a reduced learning rate is in effect when gradient statistics are recalculated,
thereby minimizing the risk of test loss spiking.

Figure 3.6: Comparison of expected loss after 20,000 iterations of
the two methods.
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Afterwards, I showed that the model’s learning genuinely converges across the entire
training domain. To accomplish this, I computed the mean absolute error across a two-
dimensional cross-section of the domain. This data was then visualized as a heat map in
Figure 3.7. While the accuracy appears to diminish for elevated spot prices, it’s important
to stress that with a fixed K (strike price), the associated call option’s price will naturally
be more significant.

Figure 3.7: Mean absolute error heat map for fixed r, σ and K.

In the end, the convergence of the network to the inherent solution is demonstrated in
Figure 3.8. By holding all parameters constant, save for one, interpolation is carried
out over the designated range. Within the plot, the neural network’s approximation is
labelled as "Predicted" while the true analytical solution is denoted as "Actual". This
visually confirms the network’s ability to closely match the genuine solution.

Figure 3.8: On the left: interpolation of time for a given set of K,
S, r and σ. On the right: interpolation of the spot
price for a given set of K, t, r and σ
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Chapter 4

Conclusion and Future Work

In this comprehensive two-part study, I explored the capabilities of neural networks as
universal function approximators for high-dimensional problems in the realm of finance. I
introduced an innovative algorithm that promises a thousand-fold speed enhancement in
the field of financial model calibration and inverse function approximation. I explored the
use case and compared it to previous state-of-the-art solutions. Furthermore, I underscored
the effectiveness of the PINN framework in accurately approximating the Black-Scholes
equation. I validated the accuracy of my findings through comparison with the analytical
solution. Additionally, I conducted an extensive hyperparameter tuning to optimize model
performance. Building upon the learning rate annealing algorithm proposed by Wang et
al., I introduced enhancements that demonstrated the algorithm’s efficacy in enabling
convergence of PINNs. I also showed that PINNs can converge even when the initial
condition is not differentiable.
Building on this foundation, the research emphasizes the pivotal role of architecture se-
lection, domain considerations, and normalization in ensuring efficient training. The ex-
periments revealed that meticulous attention to these factors, coupled with the proposed
algorithm, not only speeds up the training process but also ensures robust convergence,
as evidenced by the comparative analyses. Through extensive experimentation and eval-
uations, this work makes a compelling case for the transformative potential of neural
networks in addressing these intricate computational challenges.
Future work for both methodologies presented here holds immense potential. While the
PINN framework might find some limitations in finance, given the sector’s demand for
ultra-precise outcomes and clear interpretability, other domains could benefit substantially
from its application. Specifically, the realms of fluid dynamics and various physical systems
stand to gain significantly. The capability of the PINN framework to model complex
systems and capture intricate details places it as a promising tool in these fields. Simulating
phenomena that have traditionally been computationally intensive or challenging could
become more efficient and accurate, unlocking new possibilities and insights for researchers.
There also exists a promising avenue for combining the two methodologies presented in
this work. Specifically, this combination could offer a robust solution to ill-posed inverse
problems. In such cases, the underlying physical system could be modelled using PINNs,
while the inverse problem could be approximated using the method proposed herein.
The inverse approximation method proposed in this work is suitable for financial model
calibration, however, the industry values precision above all else. Regulation and diffi-
culty of interpretation might hinder its use cases. A more suitable environment would

23



be where real-time calibration is essential. This could include rapidly changing systems
where constant measurement is needed to control their evolution.
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