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Osszefoglalo

Napjainkban egyre t6bb jarmd kozlekedik az utakon, ennek kovetkeztében egyre nehezebb
megfelel§ parkoldhelyet taldlni a lakohelyiink kérnyékén, bevasarlokézpontokban és kiilon-
b6z6 parkolohazakban. A parkolohely keresése idGigényes lehet, de az autoném jarmtvek el-
terjedése lehetdséget ad egy autoném parkolési rendszer megalkotasara, ami megtakarithatja

ezt az 1d6t.

Jelen dolgozat egy autonoém parkolasi rendszert mutat be, amely képes a parkolé bejarasa-
nak megtervezésére, mikozben a jarmd tetejére erésitett LIDAR segitégével észleli a jarmd
szamara megfelel parkolohelyeket, illetve ezek utan a parkolasi mandévert is képes megter-
vezni. A parkolasi rendszer kimenete szolgaltatja az alapjelet (referencia palyat, referencia

beavatkozo jeleket) egy zartkori szabalyozéshoz.

A fellelhetd szakirodalom a hatékony parkolohely keresésére elsGsorban parkolokban elhe-
lyezett szenzorokat alkalmaz, ezen moédszerek azonban csak az erre felkészitett parkolok-
ban alkalmazhatoak. Jelen dolgozat egy olyan altalanosan alkalmazhaté megoldast mutat
be, mely a parkolé bejaraséval, a jarmiivon elhelyezett érzékelsk segitségével detektélja
a szabad parkoléhelyeket. A dolgozat célja tobb kiilonbéz6 megoldas bemutatisa ezen
problémara. A parkolé bejarasahoz minden esetben ismert a bejarando parkold feliilnézeti
térképe. Az els§ modszer a celladekompozicidt alkalmazva a térképet sokszog alaki cellakra
bontja. A cellak szomszédossagi grafjanak felépitése utan meghatarozhato a bejarasi sor-
rend, melynek felhaszndlasaval utvonal tervezhets. A méasodik modszer ezzel szemben nem
végez dekompoziciot. Az algoritmus a térképen elhelyezkedd utak Voronoi-diagramjaboél

képes egy bejarandé utvonal tervezésére figyelembe véve a lehetséges parkoldhelyeket.

A szabad parkolohelyek észlelését egy LIDAR szenzor segiti eld, ahol az implementalt algo-
ritmus egy fuzzy alapd osztalyozast végez a megfelels parkolohely kivalasztésara. Ezen
osztalyozas tobb mindség jellemz6 figyelembevételére képes, tgy mint a kornyezé jar-

miivekhez vald igazités, illetve egy optimalis tavolsag figyelembevétele az tttest kbzepétsl.

A parkolasi mandvert megtervezd alrendszer folytonos gorbiiletii palyatervezést végez,

kielégitve az autdszerd mobilis robotokra vonatkozé kényszereket.

A kidolgozott algoritmusok Matlabban keriiltek implementalésra és szimulaciokban tortént

a tesztelésiik.



Abstract

Nowadays, more and more vehicles are running on the roads, that is the reason why it
is getting more difficult to find an adequate parking space near our home, in shopping
centers and parking lots. Searching for free parking spaces can be time-consuming. As
autonomous vehicles are becoming widely used, the opportunity is given to design a system

which performs this activity autonomously and spares this time.

This thesis presents an autonomous parking system, which performs the exploration of the
parking lot, the parking space detection with a LiDAR attached to the top of the vehicle,
and it plans the path of the parking maneuver itself. The output of this system provides

the reference signal (reference path, reference control signal) for a closed-loop control.

The literature provides methods of parking space detection, in which multiple sensors are
installed in parking lots. These methods can only be used in parking lots which are equipped
with these sensors. This thesis presents a generally applicable method, which detects park-
ing spaces with parking lot exploration using sensors attached to the vehicle. The purpose
of this thesis is to present multiple solutions for this problem. The bird’s-eye view map of
the parking lot is known in each case. The first method applies cell decomposition to divide
the map into polygonal cells. After the construction of the adjacency graph of the cells,
the graph traversal can be defined, from which a path can be planned. The second method
does not decompose the map. The exploration path is planned using the Voronoi-diagram

of the routes and taking the location of parking spaces into consideration.

The detection of free parking spaces is based on a LiDAR sensor, and the algorithm makes
a fuzzy based classification in order to select the adequate parking space. Throughout the
classification more quality features can be taken into consideration, like the alignment to

the neighboring vehicles and an optimal distance from the center of the road.

The path planning of the parking maneuver is performed with continuous curvature path

planning, in order to fulfill the constraints of car-like mobile vehicles.

The presented algorithms are implemented in Matlab and they were tested in simulations.



Chapter 1

Introduction

Since automobiles came into general use, the lack of sufficient parking spaces is forcing
drivers to circle around, sitting in the vehicle searching for free parking spaces. As au-
tonomous vehicles are becoming widely used, the opportunity is given to design a system
which performs this activity autonomously [1]. The biggest advantage of this system would

be that it spares highly valuable time for the driver.

The literature provides methods of parking space detection, in which multiple sensors
are installed in parking lots. In |2| a method is presented, which utilizes the installed
CCTYV (Closed-Circuit Television) system for the detection based on image processing. [1]
shows multiple solutions for this problem. It presents expert systems, fuzzy logic based
systems, wireless sensor based systems, GPS (Global Positioning System) based systems,
vehicular communication systems, vision based systems and other miscellaneous systems.
Internet of Things (IoT) and smart city ecosystem based parking systems can also be the
appropriate base of the smart parking according to [3]. CirPark is an active solution for
efficient parking [4]. It provides Intelligent Parking Guidance System (iPark), Efficient Led
Lighting System (LEDPark) and Electric Vehicle Charging System (EVPark). The common
part of the mentioned methods is the need for extra infrastructure, devices and sensors
in order to detect the vacant parking spaces. This fact is the most serious disadvantage
of these methods, because developing systems like them can be very expensive and time-

consuming.

Since autonomous vehicles are becoming available for everyone, it is a manifest idea to
design a smart parking system in which the vehicle is smart, instead of installing additional
sensors in the parking areas. A smart vehicle is equipped with sensors in order to be able to
drive autonomously and detect the free parking spaces. The advantage of a system like this
is that it can perform the autonomous parking in a traditional parking place, so it is not
needed to make the parking places smart. This approach seems to be the more practical

way to create autonomous parking systems.

Available self-parking cars can detect the free parking spaces of appropriate size and per-

form the parking maneuver, but they are not capable of exploring the whole parking lot



autonomously (e.g [5]). Because of this, chauffeurs need to drive around the parking lot
searching for parking spaces. The main target of this thesis is to present a parking system,

which can perform the whole parking task autonomously.

The main tasks of the smart parking system are the exploration of the parking lot and
meanwhile detecting the free parking spaces. In this thesis, methods for parking lot explo-

ration and parking space detection are presented.

The heart of the matter of the parking lot exploration is driving around the whole parking
lot until an appropriate parking space is found. This task is similar to the Coverage Path

Planning methods [6].

Trapezoidal cell decomposition method is commonly used as the first step of the coverage
path planning of a robot in a polygonal environment. Complete Coverage Path Planning
(CPP) is used to determine the path of a mobile robot passing through all points of the
workspace while avoiding obstacles. The coverage path planning algorithms have wide ap-
plication in robotics including cleaning, mowing, exploration of areas etc. In that approach
trapezoidal cell decomposition can be used to divide the the environment into smaller

regions for effective coverage |7].

In the approach presented in this thesis, cell decomposition is used to provide a map that
is covered by polygonal cells. From this map an adjacency matrix can be determined which
describes the adjacency graph. Knowing the adjacency graph the graph traversal can be
specified.

An algorithm was also implemented, that provides a one step method, that uses the Voronoi

diagram of the map, regarding the possible parking zones.

A parking space detection method is also presented in this thesis. The detection is per-
formed with a help of a LiDAR, and different quality factors are assigned to the detected

parking spaces in order to select the most appropriate one.

The thesis is organized as follows: Chapter 2 describes the whole system to which the park-
ing lot exploration belongs. In Chapter 3, the background and the steps of the trapezoidal
cell decomposition are presented. This chapter also discusses some details of the actual
implementation. The next steps of the parking lot exploration, which include the creation
of the adjacency matrix based on the decomposition, and creating the graph traversal
from the adjacency graph are discussed too. Chapter 4 discusses a modified version of the
trapezoidal cell decomposition, and methods for creating the adjacency matrix and the
traversal. The last step of the actual offline exploration is the feasible path planning from

the points of graph traversal, which is presented in Chapter 5.

Another method of parking lot exploration has also been implemented, which is discussed
in Chapter 6. In Chapter 7, the second subsystem of the autonomous parking system is
discussed, where a fuzzy based parking space detection method is also presented. Finally

the conclusions and the future work are presented in Chapter 8.



Chapter 2
Parking system

The parking lot exploration is part of an autonomous parking system, which can perform
the whole parking task (see Fig. 2.1). This autonomous system is made up of subsystems.

Different subsystems require different types of maps.

The exploration is the first step of the procedure. In the first step a map of the whole
parking lot is needed, as the exploration is a global procedure. This map considers all the
free and occupied parking spaces as obstacles. When the global planning has finished, the

vehicle starts moving along a planned path, exploring the parking lot.

During this, the second subsystem is activated, where a LiDAR attached to the top of
the vehicle sweeps the parking lot searching for a free parking space of adequate size.
This subsystem performs a local search, for which only the sensor is needed. The LiDAR
provides a 3 dimensional image of the surroundings from which a bird’s-eye view map can

be created (described in Chapter 7), where free parking spaces are considered as free space.

When the LiDAR detects an appropriate parking space it activates the third subsystem
where a feasible path to the parking space, and the continuous curvature path of the
parking maneuver are planned. The last step is driving along the planned path to the

parking space autonomously, and executing the parking maneuver.

As the literature does not provide solution to parking lot exploration, like the method
presented in this thesis, Section 2.1 gives the formulation of the parking lot exploration

problem.
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2.1 Formulation of the parking lot exploration problem

Let C' C R? define the workspace of the parking lot exploration and .4 denotes the vehicle.

x
denotes the position of the vehicle

Yy

in a fix frame. (The orientation of the vehicle is not taken into account.) The workspace

The state of the vehicle is ¢ = v , where A(q) C C.
Y

consists of obstacles (Cops C C) and free spaces (Cpree = C\ Cops), some of which are
needed to be visited (Cyis € C'tree). The vehicle can move only in free spaces (Vg € Cfyee)-

The vehicle moves on a collision free path (7), where s; € R is a scalar path parameter
(s €[0,T], T is the length of the whole path).

T:5+q , Vs€[0,T]: 7(s) € Cree (2.1)

The movement of the vehicle can be described with a nonlinear equation:

q(tes1) = fa(te), uk) (2.2)

where wuy, is the control signal in the k** sampling time. In this case Vk 3 uy, where 7(s;41) =
J(7(sk), ug).-

L(q) C C denotes the points, that can be seen from a given position. Taking into consid-
eration the range of the LiDAR (0):

L(q) ={z€C[llg— =l <}, (2.3)

where ||g — z|| is the Euclidean distance between ¢ and z points.

Points seen during traversing the path:

s€[0,t]

The target is to reach every position, that should be visited during the exploration:

Cuis C L(7(T)) (2.5)

Other constraints, that should be taken into consideration:

e The start position is given 7(0) = gins

e Cost can be assigned to the path: wy(7) (e.g. length of the path)



Given preferable positions, near which the parking spaces are looked for firstly. wa(q)

cost can be assigned to g € Cree position (e.g. distance from the goal position)

The traversal can be interrupted, when a condition is met (parking space detected
with LiDAR)

When stopping on the flying the cost of the traversal is w1 (7(s1)) + wa(7(s1)) (cost

of the path up to now plus cost of the current position)

There could be constraints for the order of configurations in 7 path (e.g one-way

streets)

10



Chapter 3
Trapezoidal cell decomposition

As the first step of the parking system, the parking lot exploration is needed to be per-
formed. In order to plan a path, which drives along all the possible parking spaces, the map
of the parking lot is required to be divided into smaller parts, in which the path planning
can be executed easily. It is assumed, that every point of a cell can be seen from any point
of the cell.

3.1 Method

The input of the algorithm is a binary image (Fig. 3.1a), that represents the map of the
parking lot from bird’s-eye view. The goal is to determine a path through which the vehicle
reaches all possible parking zones. The first step of this method is the decomposition of

the map.

Trapezoidal cell decomposition [8,9] is a method used to decompose the free space into
convex polygonal® cells. Let C,ps define the set of points that belongs to the obstacles, and
Cree denote the set of points that belongs to the non-obstacle points. As a consequence
Cobs U Cpree = C includes all points of the map. Let P denote the set of vertices used to
define Cpps. The goal is to extend rays from Vp € P upwards and downwards through Cf,.e
until Cops is hit or the edge of the image is reached.

Steps of cell decomposition:

1. Performing low pass filtering, in order to avoid false corner detection

2. Performing any corner detection (e.g. Harris [10]) (Fig. 3.1b) - determining the set

of vertices P
3. Sorting corners (p) in ascending order based on = coordinate (Fig. 3.1c)

4. Extending rays from Vp € P (Fig. 3.1d)

'trapezoidal or triangular

11
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Figure 3.1: Steps of cell decomposition

5. Determining the corner points describing each cell:

e Trapezoidal cells have 4 distinct corner points

e Triangular cells have only 3 distinct corner points?

Step 1 creates a blurred image. As a consequence the transitions from Cppee to Cyps are
continuous, which draws the consequence, that only the real corners of the image will be

detected by Harris corner detection.

As the map has a finite resolution Steps 2 and 4 might decrease the robustness of the
method. In order to make the method robust, double-thresholding is applied (see Fig. 3.2),

while exectuting the actual ray extensions (Step 4).

e In order to increase the scale invariance of the decomposition, the use of ¢ is intro-
duced. This threshold eliminates the influence of the extension of the corner points.
Threshold 7 should describe the radius of a circle, within which, all ¢ € C' points

are considered as part of the corner point p € P.

e &9 is required after the use of ;. It is used to detect cases when it is not possible to

extend ray in a given direction from the corner point. €2 should be smaller than the

2For the implementation, all cells are stored as trapezoidal cells, but triangular cells have 2 corner points
with the same coordinates.

12



Figure 3.2: Each point within 1 (inside the green circle) belongs to the corner
point

minimal distance that is needed to get to the closest object. The application of this

thresholds is introduced, as the binary image has a finite resolution.

The following correlation between €1 and €5 should be true:

g9 > €1 (3.1)

As the corners are sorted in ascending order (based on x coordinate) in Step 3 (see
Fig. 3.1c), the map is scanned along x axis in Step 4. Algorithm 1 performs both the
scanning process and the extension of rays upwards and downwards from the vertices of
the obstacles. The upper and the lower points of the rays are stored as cell borders as
these rays will become the sides of the cells. The output of Algorithm 1 provides the input
of Algorithm 2, where the corresponding cell borders are to be found, which describe a
cell. In order to decrease the scale invariance of the decomposition, the use of €; and &3 is

required while performing the ray extensions (Algorithm 1).

13



Algorithm 1 Ray extension upwards and downwards

Require: cornersinAscendingOrder, Cops
Ensure: cellBorders

1: cellBorders = [ |;

2: 3 =1;

3: for i = 1 to numberO fCorners do

4:  anitialCorner < cornersInAscendingOrder[il;

5. upperCellPoint +
findUpperCellPointWithSameXCoordinate (initialCorner, Cops, €1);
if dist(initialCorner upperCell Point)> e, then

cell Borders[j| < [upperCell Point,initialCorner];

Je=J+ 1L
end if
10:  lowerCell Point <

findLowerCellPoint WithSameXCoordinate (initialCorner, Cyps, £1);

11:  if dist(initialCorner,lowerCell Point)> €5 then

12: cell Borders[j| < [initialCorner,lowerCell Point];
13: j—J+1

14:  end if

15:  if No ray could be extended in any direction then
16: cell Borders[j| < [initialCorner,initialCorner];
17 j—Jj+1

18:  end if

19: end for

Fig. 3.3a-3.3b show an example for the application of €1, where the corner point A had an
extension, but it did not influence the decomposition, as the algorithm found both B and
C points, with which two cell borders B — A and A — C are found.

Fig. 3.3c-3.3d show an example for the application of g9, where from corner point D no ray
could be extended upwards, as the distance of the closest point cgosest € Cops Was smaller
than €9, and cgpsest Was definitely not part of the cornerpoint D, as the distance between
D and cgjpsest was higher than €1 . The algorithm found point £ downwards within Cls,
where the distance measured between D and E was higher than €2. As a consequence,

points D and E will make the border of a cell.

The last step of decomposition is to find the corresponding cell borders, as all cells have
both left and right side borders.

The adjacent cells must have a common border, that is not required to be of the same
length. As a consequence, the only requirement for these common borders is the overlapping
of the rays. Due to this requirement, in Step 5, it is not only the correspondence of the cell

borders that should be determined, but the possibility of the cell border extensions should

14
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be checked too, while the cell remains convex. (Convex cell should have a nonzero area,

and no points of Cyps should be inside the cell.) Algorithm 2 performs the search of the

corresponding cells.
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Algorithm 2 Finding final cells

Require: cellBorders

Ensure: finalCells
1. finalCells = [ |;
2: =1
3: for i = 1 to numberO fCell Borders — 1 do

4:  leftSideO fCell < cell Borders]il;

5. for k =i+ 1 to numberO fCell Borders do

6 rightSideO fCell < cell Borders[k;

7: newCell = [leftSideO fCell, rightSideO f Celll;

8 if newCell is convex then

9 break;

10: end if

11:  end for

12:  if newCell is convex then

13: if rightSideO fCell can be extended and newCell remains convex then
14: rightSideO f Cell <extendCellBorder(rightSideO fCell, cell Borders);
15: newCell = [leftSideO fCell, rightSideO f Celll;

16: end if

17: if leftSideO fCell can be extended and newCell remains convex then
18: leftSideO fCell +—extendCellBorder(leftSideO fCell, cell Borders);
19: newCell = [leftSideO fCell, rightSideO fCell];

20: end if

21: finalCells[j] = newCell;

22: j—J+1

23:  end if

24: end for

3.2 Creating the adjacency matrix

As the cells are given with the coordinates of their corners, the coordinates of each side
of the cells are known. If the decomposition is executed along the x axis, two cells are
adjacent if the left side of one cell has common points with the right side of the other cell.
If the decomposition is executed along the y axis, the up and downsides of the cells should
be taken into consideration. In order to avoid false detection of adjacent cells a threshold is

determined for the minimal number of common points. The width of the vehicle in pixels

is a manifest choice for this threshold (see Fig. 3.4).

The creation of the adjacency matrix is presented in Algorithm 3. This algorithm creates

a symmetric n X n matrix, where n is the number of the cells.

16
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Figure 3.4: In case of Carwidth 1 Cell 1 and Cell 2 are adjacent, but in case
of Carwidth 2 they are not.

Algorithm 3 Creating the adjacency matrix for trapezoidal cells

Require: finalCells

Ensure: adjacencyMatrix
1: adjacencyM atriz < zeros(numberO f FinalCells);
2: for i = 1 to numberO fFinalCells — 1 do
3:  for j =i+ 1 to numberOfFinalCells do

4 if rightXCoordinateOf( finalCells[i])==leftXCoordinateOf( finalCells[j]) then
5 commonPoints = [ |;

6: rightSide < getRightSide (finalCells]i));

7: leftSide < getLeftSide (finalCells[j));

8 commonPoints <intersect (rightSide,leftSide);

9 if length(commonPoints) > carWidth x 1.5 then

10: adjacencyMatriz[i, j] = 1;

11: adjacencyMatriz[j,i| = 1;

12: end if

13: end if

14: end for
15: end for

If the map has two-way streets only, the adjacency matrix is symmetric. In case of one-way
streets the adjacency matrix is a general matrix, as it is permitted to go from one cell
to the other but it is prohibited to go in the opposite direction. In this case Algorithm 3
should be slightly modified.

17



3.3 Determining the graph traversal

Algorithm 4 Creating the graph traversal of the trapezoidal cells

Require: finalCells,adjacencyMatrixz
Ensure: cellsInOrder

1. markCellAsUnvisited( finalCells);

2: 14 1;

3: markCellAsVisited( finalCells[i]);

4: cellsInOrder[l] = finalCells]i];

5: stackList = [ |;

6: while any(isUnvisited( finalCells)) do

7. for j =1 to numberOfFinalCells do

8 newCell Found = false;

9: if adjacencyMatriz|i, j] == 1 and isUnvisited( finalCells[j]) ==true then
10: markCellAsVisited( finalCells[j]);

11: newCell Found <+ true;

12: stack Listlend 4 1] < cellsInOrder[end);
13: cellsInOrder(end + 1] < finalCells[j];
14: end if

15:  end for
16:  if newCell Found == false then

17: cellsInOrder[end + 1] < stackList[end);

18: stackListlend] < | ]; {deleting the last element}
19: i < indexOf(cellsInOrder|end));

20:  end if

21: end while

The adjacency matrix of the cells describes if two cells are adjacent or not for each pair of

cells. If two cells are adjacent the vehicle can pass from one cell to the other [11].

Firstly, every cell should be marked as unvisited. (Initially, it is possible to mark only those
cells as unvisited which must be visited (Cy;s, described in Section 2.1) and the other cells

(Ctree \ Cuis) can be initialized as visited.)

The initial cell is marked as visited and it is the first cell in the order-list. After that, one of
the unvisited neighboring cells is chosen as the following cell in the visit order and this cell
goes to the end of the order-list. If there is no unvisited adjacent cell, a backtrack is needed
to the cell which has an unvisited neighboring cell. This backtrack can be implemented

with a stack-list.

Stack-list is used to store the cells in order, and when backtracking is needed, cells are
visited again in reverse order from the end of the stack-list. So during backtracking cells
are pushed to the end of the order-list in reverse order from the end of the stack-list and

they are deleted from the stack-list when they are visited again.

18
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Figure 3.5: Ezample of adjacency graph traversal in a map (black areas rep-
resent the parking areas and the obstacles, colorful areas represent
the road surfaces), red arrows represent the backtracks

Finally, when no unvisited cells are left, the order-list stores the cells in order, which gives

the actual graph traversal (see Fig. 3.5).

Algorithm 4 presents the creation of the traversal.

19



Chapter 4
Rectangular cell decomposition

As Fig. 3.5 shows, there are several cells with large areas. It is disadvantageous because
the path planning for these cells is not clear. (E.g. if the path goes through the center
of the cell, which is a manifest solution, the distance from the parking spaces might be
too large to detect them with LiDAR, or sometimes the path does not go through all the
points of the cell, which should be visited (Cy;s, described in Section 2.1).) The presented
trapezoidal cell decomposition (see Section 3.1) divides the map into polygonal cells along
the = axis. It is a subjective choice along which axis the decomposition is performed.
The decomposition can be executed along the y axis, too. This gives the base idea of the

modified decomposition: first, decompose the map along the = axis, then along the y axis.

4.1 Steps of the decomposition

This modified decomposition can be executed by the following steps:

1. Performing trapezoidal cell decomposition along = axis (see Fig. 4.1a)

2. Performing trapezoidal cell decomposition along y axis (see Fig. 4.1b)

3. Finding the intersections of the cells decomposed along = and y axis (see Fig. 4.1c)

4. Storing the cells
The method of Step 1 is detailed in Section 3.1. Step 2 is nearly the same as Step 1, the
only difference is the direction of the decomposition. It is possible to rotate the image of
the map by £90°and use the same method as is Step 1. In this case the coordinates of cells
are needed to be rotated by F90°. In Step 3 the intersections of the cell areas are needed

to be determined for each cell-pair. These intersected cells are the final decomposition of

the map.
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(a) Decomposition along x axis (b) Decomposition along y azis

(C) Intersections of the cells from decompositions (d) Final cells generated by the modified decompo-
along x and y axis sution

Figure 4.1: Rectangular cell decomposition

4.2 Creating the adjacency matrix

By modifying the trapezoidal cell decomposition method, the creation of the adjacency
matrix becomes different from the method detailed in Chapter 3.2. The main difference is
in the arrangement of the cells. In this case every cell has 4 adjacent cells (upper, lower, left
and right neighbor), so it is manifest to store the indices of the neighboring cells for every
cell. The adjacency matrix stores the indices of the adjacent cells in the following order:
left, right, upper, lower neighbor. Cells neighboring obstacles and cells in the edges of the
map do not have 4 neighboring cells, in this case the neighboring obstacles and edges are
considered as their neighbors. (An implementational solution can be if these false neighbors
are stored with dummy indices e.g -1 or not a number). The adjacency matrix is a n x 4
matrix (instead of the n x n matrix, presented in Section 3.2), where n is the number of
the cells. Two cells are adjacent if the left side of one cell has common points with the right
side of the other cell, or the upper side of one cell has common points with the lower side
of the other cell. Algorithm 5 presents the creation of the adjacency matrix. The algorithm
handles the roads as bidirectional, but with a minor modification it can handle one-way

streets, too.
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Algorithm 5 Creating the adjacency matrix for rectangular cells

Require: finalCells
Ensure: adjacencyMatrix
1. adjacencyMatriz < zeros(numberO f FinalCells,4); {adjacencyMatrixz stores the
indices of the adjacent cells in the following order: left, right, upper, lower neighbor}
2: for i = 1 to numberO fFinalCells — 1 do
3:  rightSidel < getRightSide(finalCells|i]);
4:  leftSidel < getLeftSide(finalCells[i]);
5. upperSidel < getUpperSide(finalCells[i]);
6: lowerSidel + getLowerSide(finalCells]i]);
7. for j =i+ 1 to numberO fFinalCells do
8 rightSide2 < getRightSide( finalCells[j]);
9: leftSide2 < getLeftSide( finalCells[j]);
10: upperSide2 < getUpperSide( finalCells[j]);

11: lowerSide2 < getLowerSide( finalCells[j));
12: commonPointsLR + intersect(leftSidel, rightSide2);
13: commonPointsRL < intersect(rightSidel,leftSide2);
14: commonPointsUD <« intersect(upperSidel, lowerSide2);
15: commonPointsDU <« intersect(lowerSidel, upperSide2);
16: if length(commonPointsLR) > carWidth * 1.5 then
17: adjacencyMatrixz[i, 1] = j;

adjacencyMatrix(j, 2] = 1;
18: end if
19: if length(commonPointsRL) > carWidth * 1.5 then
20: adjacencyMatrix(i, 2] = j;

adjacencyMatriz(j, 1] = 1;
21: end if
22: if length(commonPointsUD) > carWidth = 1.5 then
23: adjacencyMatrix[i, 3] = j;

adjacencyMatriz(j, 4] = 1;
24: end if
25: if length(commonPointsDU) > carWidth = 1.5 then
26: adjacencyMatriz[i, 4] = j;

adjacencyMatriz(j, 3] = 1;
27: end if
28: end for
29: end for
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4.3 Determining the graph traversal

In spite of the fact, that the structure of the adjacency matrix differs from the one detailed
in Chapter 3.2, it can be used nearly the same way to determine the graph traversal. The
traversal method presented in Chapter 3.3 can be used with a little modification (only the
handling of the matrix is needed to be modified). In this case every cell has 4 neighbors,

just one in each direction (left, right, up, down).

Taking the advantage of this, a traversal can be planned which avoids reversing when
it is possible (in case of dead ends it is impossible to avoid reversing)(see Algorithm 6).
Fig. 3.5 shows a traversal in which there are a lot of reversing, and some of them could be
eliminated. From the initial cell it is possible to go to any of the unvisited adjacent cells,
and the passing direction is stored. After that, those neighboring cells are preferred, which
are unvisited and are not in the reverse direction. (E.g. if one of the cells is visited from the
left side, from that cell the least preferred direction is to the left. The traversal direction
will be left only in case of dead ends.) The neighboring cells are tested in the preferred
order whether they are unvisited. If an adjacent cell is unvisited, this cell is chosen to be
visited. It is possible, that every neighboring cell is visited, in this case the adjacent cell
in the most preferred direction is revisited. In case of dead ends the only adjacent cell is
in the reverse direction, so this cell is going to be revisited. Every visited cell is added to
the end of the order-list. The algorithm runs till all the cells are visited or the order-list of
the cells is longer than a specified value (e.g. 3 times the number of the cells). Finally, the

order-list stores the cells in the adequate order.

It is possible to assign preference to the directions. In this case the order of testing the
cells - as possible following cells - is based on the preference. Of course random preference

is also permitted, then directions are preferred equally.

Compared to the method detailed in Chapter 3.3, the main advantage of Algorithm 6 is
avoiding reversing, but the disadvantage is that it visits a cell multiple times and there

may remain unvisited cells in the end (see Fig. 4.2).
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Algorithm 6 Creating the graph traversal of the rectangular cells

Require: finalCells, adjacencyMatrix

Ensure: cellsInOrder

1:

—_ = =
N = O

13:
14:
15:
16:
17:
18:
19:

cells + finalClells;
actualCell < cells[1];
markCellAsVisited (actualCell);
cellsInOrder(1] < actualCell;
preference < [up, down, left,right];
while there is any unvisited cell do
neighbors + getdNeighbours(actualCell, adjacency Matrizx),
neighborToGoTo + getBestUnvisitedNeighbor(neighbors, cells, pre ference);
if no neighborToGoT o found then
neighborToGoTo + getBestVisitedNeighbor(neighbors, cells, pre ference);
end if
preference <—disFavorReversal(pre ference, actualCell, neighborToGoTo);
{Reordering preference array, where the reverse direction is the last element}
actualCell < neighborToGoT o
cellsInOrder[end + 1] < actualCell
markCellAsVisited (actualCell)
if length(cellsInOrder)>3*length(cells) then
break;
end if

end while

—

Figure 4.2: Ezample of adjacency graph traversal in a map (black areas rep-
resent the parking areas and the obstacles, colorful areas represent
the road surfaces) red arrows represent the backtracks
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4.4 Wavefront algorithm based traversal

A more effective method of determining the traversal is inspired by the grid-based coverage
using the wavefront algorithm, usually used in Coverage Path Planning tasks [6]. This
algorithm is applied in grid-based coverage, so in this approach the decomposed map is
treated as a grid. As cells are of different size, grid is different from the traditional grid. A
start and a goal point are also needed for the algorithm, so it is expedient to choose the
initial cell as both the start and goal destination (see Fig. 4.3). In this case the adjacency
matrix presented in Section 4.2 is used, but a distance value is assigned to every cell. The
distance value is 0 at the goal cell, then every neighboring cell gets one bigger distance

value. This step is repeated until there are unmarked cells left.

This algorithm is very similar to Algorithm 6, the main difference between them is in the
preference of the directions. The traversal starts from the starting point and the wavefront
algorithm firstly visits those unvisited neighboring cells, which have the highest distance
value. This algorithm also tries to avoid reversing, so the reverse direction is the least
preferred direction. If a cell has only visited adjacent cells, the one with the highest distance
value will be the following cell (see Fig. 4.4). If the start and goal cells are the same, the

traversal leads to the furthest cells at first.

The presented traversal does not drive back to the initial cell, but every cell is visited in the
end. However, in reality it is a frequent occasion when no parking space is found in the first
traversal around the parking lot. In this case the best strategy is to repeat this traversal
until an adequate parking space is found. By the application of this method the algorithm
can be forced to return to the initial cell by remarking the initial cell as unvisited when
there are no unvisited cells left. Another solution can be marking the last cell as initial cell

and recreating the traversal.
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Initial cell

0 4
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4 2 4 6
4 3 4 6
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Figure 4.3: Distance values assigned to the cells

Figure 4.4: Ezample of adjacency graph traversal in a map (black areas rep-
resent the parking areas and the obstacles, colorful areas represent
the road surfaces) red arrows represent the backtarcks
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Chapter 5
Path planning

Knowing the graph traversal it is possible to plan a feasible path for the vehicle [12]. In
order to avoid collisions with the obstacles in the map, the obstacles should be inflated
by the radius of the circumscribed circle of the vehicle. In this case the vehicle can be
considered as a point. It is possible to plan the path of the corners of the vehicle, but it
is more compute-intensive. (The vehicle is approximated with circle only for the parking
lot traversal, during the parking maneuver planning the paths of the corners of the vehicle

are calculated, too.)

From each cell at least one point is needed to be chosen, which is used for the path planning.
This point can be the mass center of the cell, one of the corners or other parameter of the

cell.

There are several methods to plan feasible paths between the chosen points. For example
continuous curvature path planning [13] can be used to design a path that uses the chosen
points in adequate order to calculate the path (see Fig. 5.1). In case of a simple map it
can be enough to choose only one point from each cell, but in case of a more complex map

the going-over of the cell should be planned, too.

Fig. 5.1 shows an example for a continuous curvature path, planned using the mass centers
of the cells. In case of backtracks the mass center of the cell should be pushed by the double
size of the minimal turning radius of the car to the left and to the right (or up and down
depending on the situation of the cells). Because of this, in the cell, where the turnaround
is performed, there are two points used for path planning instead of one. This duplication
of the point is needed so that there should be enough space between the points for the
vehicle, in order to be able to perform the turnaround in one maneuver. It is possible that
the cell is too small for the vehicle to turn around, in this case the vehicle can reverse
on the same path, it came into the cell. Backtracks can be easily detected from the cell
traversing, as the cell before and after the cell, in which the turnaround is needed, are the

Same.
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Chapter 6

Voronoi diagram based method

Chapter 3-4 described the trapezoidal cell decomposition, which can realize the second
subsystem of the autonomous parking system, described in Chapter 2. In that approach
the free space had been decomposed into polygonal cells, with which a graph traversal could
be planned. In this chapter another possible realization of the subsystem is presented, which
creates the Voronoi diagram of the binary image. These methods do not differ in terms
of output and the input types, as both require a binary image, and provide a possible
exploration path. The only differences are the method, and the exploration path provided

by the algorithms. The presented method considers the roads as bidirectional.

(a) Binary image of the road surface (b) Binary image of the parking zones

Figure 6.1: Binary images storing road surface and parking zones. Black color
represents obstacles
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The Voronoi diagram based method requires a binary image. From the binary image, the
Voronoi diagram / skeleton can be determined. The Voronoi diagram of the road surface
provides a set of points, that lies at the same distance from both sides of the road or from
both sides of the lane. As the map of the road surface of the parking lot is known (see
Fig. 6.1a), and the places where parking spaces (see Fig. 6.1b) are to be looked for are also
known, a route can be planned throughout the parking lot. In order to determine the route,
descriptive properties [14] of the different parking zones should be determined, such as the
centroids, or the extremum. With the help of these properties those points of the Voronoi

diagram can be pointed out that are close to these parking space descriptive points.

6.1 Steps of the method

1. Creating the Voronoi diagram (Fig. 6.2a) from the binary image (Fig. 6.1a) of the

road surface

2. Defining the connected components (see colorful objects in Fig. 6.2b) from the binary

image (Fig. 6.1b) of the parking zones - algorithm explained in Section 6.2

3. Determining the centroids (or other descriptive points) of the parking zones (see blue

markers in Fig. 6.2b)

4. Determining the closest points of the Voronoi diagram to the centroids (see red

markers in Fig. 6.2¢)

5. Determine the sequence of points to be reached (see colorful lines in Fig. 6.2c) -

algorithm explained in Section 6.3

6. Finding the shortest route between the set of points (Fig. 6.2d) [15]
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(a) Voronoi diagram of the road surface

(C) Sequence of route points. Blue markers

are the centroids of the parking zones
while the colorful lines are the route sec-
tions between closest points (red markers)
of the Voronoi diagram

(b) Colorful objects are the possible parking

zones. Blue markers represent the cen-
troids of the parking zones

¥
*

£ X

(d) Final Route. Green line represents the fi-

nal route, while red markers are the clos-
est points of the Voronoi diagram to the
centroids

Figure 6.2: Main steps of Voronoi diagram based method
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6.2 Defining the connected components

A parking lot is made up of parking zones, which have several parking spaces. A set of
parking spaces makes a parking zone. These zones are separate from each other, but the
road surface makes these zones accesable from other parking zones. The Voronoi diagram
based method takes the location of the parking zones into consideration. In order to be
able to determine the descriptive properties of the parking zones (such as the centroids
or extremum), the pixels of the parking zones should be determined, which describe the
parking zone as an object. Algorithm 7 performs the search of the pixels that belong to
the same object, by labeling the pixels. [16]

Algorithm 7 Defining the connected components

Require: binaryO f ParkingZones
Ensure: connectedComponents
1: connectedComponents < [ |;

L < 1; {L is the label of the object}
p + getFirstUnlabeledObjectPixel(binaryO f ParkingZones);
if No p is found then

return connectedComponents
end if
connectedComponents < assignLabel ToPixel(L,p);
p <getNeighbourObjectPixelOfPixel(p,binaryO f ParkingZones);
if No p is found then

L+ L+1;

GOTO 3
: else
GOTO 7
: end if

e e e
Ll e

Algorithm 7 provides all the object pixels, which are the pixels of the parking zones, labeled
for each separate zone. As a conseqgence all descriptive points of the parking zones can be

determined. For example the calculation of the centroid is provided by (6.1). [16]

W H W H W H
MOOZZZI(:Evy)> Mlozzzl’*f(%y% MUIZZZy*I(:va)

=0 y=0 =0 y=0 =0 y=0 (61)

c— <M10 M01>
Moo’ Moo

The input of the calculation (6.1) is the binary image of a given parking zone I(z,y), where
W is the width, and H is the height of the image. For the calculation of the centroid (C),
the calculation of the moments of zero (Myo) and first (Myg, My1) orders are required.
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6.3 Determine the sequence of points to be reached

The calculation of the sequence of points to be reached is a crucial part of the Voronoi
diagram based method. It is not enough to find the points to be reached, but a traversal

close to the optimal solution should be found too.

6.3.1 Airline based distance traversal

It seems to be a manifest choice to visit parking zones first, that are close to each other.
This would mean that the algorithm would first visit places where the dispersion of the
parking zones is dense. The sequence of points provided by this algorithm can be seen in
Fig. 6.2c. In that case the airline distance was measured between these parking zones. As

Fig. 6.2d shows, all centroids (marked with red markers) were reached.

The huge disadvantage of this method is that no cost optimization is taken into account.
Which means that the vehicle can reverse each time it has reached a parking zone, in order
to travel to the next one. Another disadvantage of this method can be seen in Fig. 6.2d,
where the vehicle only travels till the centroid is reached. This could cause that only half

of the parking zone is explored.

6.3.2 Graph based traversal

To find a close optimal solution for the traversal, a graph should be created from the
Voronoi diagram, where all centroids would be nodes. The edges represent the road surface
between the parking zones. If the Voronoi diagram does not contain any road crossings
a parking zone might have only 2 neighbors. In that case the traversal is trivial until all

nodes are reachable.

When crossroads are found in the Voronoi diagram, which is the most likely case in reality,
multiple traversal options can be found with different costs. To represent the crossroads in
the graph, all crossing should be added to the graph as nodes. After that the nodes of the
centroids might have only 2 neighbors, but the crossing nodes might have any number of

neighbors. The graph created from the Voronoi diagram can be seen in Fig. 6.3.
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Figure 6.3: Graph created from the Voronoi diagram
Note: The edges between the nodes represent the road with the
distance between the vertices
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Traversal of the graph

Let G = (V,E) denote the undirected graph, where V is the set of vertices with the
number of nodes N < oo, and E denotes the set of edges between the vertices. Let v, €
V. denote the vertices, that represent the closest points of the Voronoi-diagram to the
parking zone centroids and V., C V. As a consequence V,. = V \ V., where V,. is the
set of vertices representing the road crossings. The weight of the edge Ve € F is denoted
by w(e), where w(e) > 0. Between two vertices (v;,v; € V), where i # j, the edges
(ep € E, p=1..n), appointing the shortest path between v; and v; determine the cost
function c(vi,v;) = Xy, epw(€p), where c(vi,vj) > 0if i # j. The goal of the traversal is

to find the permutation of vertices S (v.) for which the total cost (6.2) is minimal.

—1
C= C(Si,Si_H) (62)
i=1

Let G. = (V¢, E.) denote the graph, where V_ is the set of vertices that represent the
closest points of the Voronoi-diagram to the parking zone centroids, and E. is the set of
edges between the vertices. The edge Ve, € F. is created so that: e, = e, ;, where
€e;; = {Veisvejt € B and vej,ve; € Ve €V, or when 3 €c;; than ecp = e Uey, =

{ve,is Vrea} U{Vrca, Ve }, where e, e, € E and vy q € Vie -

If the graph G. = (V., E.) contains a Hamiltonian cycle, the traversal should be equal to
the Hamiltonian path Hy. The Hamailtonian path would minimize C', however it is known
that it is an NP-hard problem to determine whether G, = (V, E.) has a Hamiltonian
cycle. What is more, in real parking lots, there are usually more than two dead ends,

which means that no Hamiltonian cycle can be found.

When speaking about vertex exploration, the manifest choices seem to be the Breadth-first
search (BFS) and Depth-first search (DFS) algorithms [17]. These algorithms use opposite
strategies of graph exploration. BF'S provides a sequence of nodes Sy (v.), where first the
neighboring vertices of the initial vertex, than the neighbors of these neighboring vertices
would be explored recursively. This would result in a path where the number of the vehicle
reversal is extremely high, which is rather undesirable. In contrast to BFS, DFS algorithm
provides a path where the number of the vehicle reversal is minimal, however the total cost

C is not taken into consideration at all.

The lack of optimal algorithmic solution leads to the use of artificial intelligence (AI). The
function of the total cost C' is provided by (6.2), and the goal is to minimize this function.
For this purpose a genetic algorithm has been implemented, which tries to minimize the

cost of the graph traversal, which also results in the minimization of the vehicle reversals.

Genetic algorithms [18] are inspired by the process of natural selection. An initial pop-

ulation is provided, from which the fittest individuals are selected for reproduction. The
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recombination of the selected individuals provide a new population of offsprings. Similarly
to biological effects, an offspring might contain mutated genes, which make the population
more diverse. The offsprings are reinserted into the original population, with a specific
rate of reinsertion, that is affected by the environmental factors, the fitness of the new
offsprings, and other conditions. These steps are repeated in each generation until forever,

or until the optimal solution is reached.

In the approach of graph traversal optimality, the initial population is made up of individ-
uals which have the genes of Sy (v.) in random permutations. The fitness of the individuals
is determined by the order of the individual in terms of cost effectiveness. The objective

function that should be minimized is the total cost function described by (6.2).

As a consequence the individual with the lowest cost is the fittest, and the one with the
highest cost is the least fit. After a certain number of generations, by selecting the the
fittest individual of the last generation, the cost function is close enough to the optimal

solution.

The genetic algorithm was tested with the following parameters:

e Number of elements in V. : 20

Number of individuals in each generation: 50

Maximal number of generations: 200

Generation gap: 80%

Probability of mutation: 1%

Reinsertion rate of offsprings: 40%
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Figure 6.4: The values of the cost function (6.2) for the best individual in each
generation

Fig. 6.4 shows that the randomly initialized first population had a best individual with
total cost of 8849. The next 60 generations could not improve the cost of the traversal.

The last generation had a lower cost of traversal with the total cost of 8710.

The final path shown in Fig. 6.5, starts from the vertex marked with green numbers of
visit order , and travels along all vertices of the graph G, that represent the closest points
of the centroids to the Voronoi diagram. Although the traversal contains some reversal of

the vehicle, the cost function has decreased in comparison to the random traversal.
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Figure 6.5: The traversal after the last generation, where the visit orders are
assigned to each vertex. The verter marked with green numbers is
the initial and final point of the traversal
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Chapter 7
Parking space detection

Chapters 3-6 described possible realizations of the first subsystem of the whole autonomous
parking system, presented in Chapter 2. This chapter gives the basics of the second sub-
system, which is the parking space detection. The sensor that has been used is a VLP-16
LiDAR [19].

7.1 LiDAR description

The VLP-16 sensor uses an array of 16 infra-red (IR) lasers paired with IR detectors to
measure distances to objects. The device is mounted securely within a compact, weather-
resistant housing. The array of laser /detector pairs spins rapidly within its fixed housing to
scan the surrounding environment, firing each laser approximately 18,000 times per second,

providing, in real-time, a rich set of 3D point data.

Advanced digital signal processing and waveform analysis provide highly accurate long-
range sensing, as well as calibrated reflectivity data, enabling easy detection of retro-
reflectors like street-signs, license plates, and lane markings. Combining 16 laser/detector
pairs into one VLP-16 sensor and pulsing each at 18.08 kHz enables measurements of up

to 300,000 data points per second — or double that in dual return mode. [19]

7.2 Processing LIDAR data in MATLAB

Data processing is performed in MATLAB, where a preprocession of raw data is performed

in order to increase the efficiency of the calculations.

7.2.1 Raw data from LiDAR

Data from LiDAR is stored in pointCloud object, which is a 3D-object storing |z, y, z| coor-

dinates of obstacles points. As a consequence the pointCloud determines the surroundings

39



of the LiDAR in Cartesian coordinate system, where the LiDAR is located at the origin
(0,0,0).

Figure 7.1: Ezample pointCloud object read from LiDAR. Figure depicts the
same measurement from different viewpoints

Fig. 7.1 shows an example of the data read from LiDAR. As it can be seen it is a 3

dimensional representation of the surroundings, where the LIDAR is located at the origin.

7.2.2 Effect of the orientation of the LIDAR sensor

The orientation of the LiDAR differs from the reference coordinate system. The center of
the vehicle represents the origin of the reference coordinate system. In order to simplify
further calculations let the orientation matrix, denoted by A, be the identity matrix, and
let the position (po) of the vehicle be at the origin. Let K, denote the reference coordinate

system.

1 0 0| 0

Ao | Po 01 0 1] 0
Ko=|—- | —|=]0 0 | 0 (7.1)

oT | 1 - - - | -

0 0 0 | 1]
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Figure 7.2: Reference system of the LiDAR [19]

The vehicle is moving along x axis (see Fig. 7.2.). Let K denote the frame fixed to the
middle point of the LIDAR!. As in most cases the K; coordinate system is not identical
with K,, a transformation is required in order to determine distances relative to the frame

fixed in the middle point of the vehicle.

The transformation can be expressed with a transformation matrix called homogenous

transformation matriz (Tp;).

K = To 1Ko = To)1 = KIK, ! (7.2)

As K, is an identity matrix in (7.1) there is no need for inverse calculation in (7.2). Which
means that for the further calculations the homogenous transformation matriz is the frame

fixed to the center of the sensor.

To1=Ky=| - | - (7.3)

'Or any other sensor that is used for detection
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7.2.3 Ground segmentation

The LiDAR is mounted on top of the vehicle at the height of hg (see Fig. 7.3).

Figure 7.3: LiDAR location on top of the vehicle [20]

By specifying both hg and the maximal height of interest hy,,q, a simple ground and high
object segmentation can be performed. The eliminations of the obstacle points that do not

influence the occupancy of a given parking place, is performed by (7.4).

f(@i,yi,21) = L]t zi<__h° v # > hma Vi (7.4)
[mi,yi7zi], otherwise

This method of ground segmentation was introduced, to make faster execution possible.
Another possibility for ground segmentation is based on the surface normal, which in
case of a 3 dimensional space would be ng = [0,0,1] vector. In the future phase of the

development, the segmentation based on the surface normal will be used.
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As the planning of the parking maneuver is a two-dimensional problem, after ground seg-
mentation by projecting all the 16 layers of data to the x — y plane, the map is created in

bird’s-eye view (See Fig. 7.4).

Original ma
60 T T T 9 T P
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Figure 7.4: Bird’s-eye view map, after projection to the x — y plane

7.2.4 Alignment of coordinate system

The parking places are to be searched parallel with, or perpendicular to the vehicle. As
the vehicle might not be perfectly aligned, there might be a need for alignment, so that
the parking places are to be searched parallel with, or perpendicular to the orientation of

the vehicle.

As Fig. 7.4 depicts, the roadside is not parallel with the x axis, which is the orientation of

the vehicle. In order to solve the misalignment, an angle of rotation « should be determined.

The steps of alignment are the following:

1. Creating a binary image form the 2 dimensional matrix storing all obstacle coordi-

nates
2. Performing Canny edge detection on the image [16]

3. Using Hough transformation [16] to determine the most significant lines between the
angles of —45° and 45°.

4. The angle of the most significant line determines the original rotation.
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Creating a binary image

Figure 7.5: Binary image of the bird’s-eye view map

The binary image (Fig. 7.5) is created in order to be able to calculate the derivative with

the help of Canny edge detection.
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Performing Canny edge detection on the image

As Hough transformation provides a more robust Hough-line detection in derivative images,

Canny edge detection is performed before executing the transformation to Hough-space.

Figure 7.6: Performing Canny edge detection on binary image
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Hough transformation

In order to get the parameters of the significant edges, the image needs to be transformed
to (0, p) parameter space, where p is the length of the normal of the line, and 6 is the
angle between z-axis and the normal of the line. In this case the equation of the line is:
p = x*xcos(f)+y=sin(f) . As a consequence in this parameter space, lines are points, and

points are sine curves.

Hough transform

-1500

-1000

-500

500

1000

1500

(a) Performing Canny edge detection on binary image (b) The most significant line in the binary image
belonging to 0 parameter

Figure 7.7: Hough space detection of the most significant line

Fig. 7.7a shows the edge detected binary image in Hough space. Where most sine curves
intersect, there is the most significant line (marked with green square). Fig. 7.7b shows the

line to which the 6 parameter belongs.

Inverse rotation of the image

As it has been already mentioned, it is only the angle of rotation that is required for the
alignment of the coordinate system. The output of Hough transform is the 6 parameter. As
0 is the angle between the normal of the line, and the z-axis, the original angle of rotation
is a = —6, but for the inverse transformation —a = 6 is needed. This result in the following

inverse transformation matrix:

R-! = c?s(—a) —sin(—a) _ c9s(9) —sin(6) _RT (75)
sin(—a)  cos(—a) sin(f)  cos(6)
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Figure 7.8: Alignmnet of bird’s-eye view map Fig. 7.4

Fig. 7.8. depicts the aligned map, so in the further steps the parking places are to be

detected parallel with, or perpendicular to the x axis.

7.3 Recognition of adequate parking spaces

Section 7.2 descriped the preprocessing of the raw data arriving from the LiDAR sensor,
including coordinate transforms for orientational corrections, ground segmentation, reduc-
tion of the 3 dimensional problem to a 2 dimensional one and the final alignments before
parking space recognition. This section presents a method of the parking space detection,
based on only LiDAR measurements. All further image processing methods are performed
on the aligned bird’s-eye view map that can be seen in Fig. 7.8. For the further methods,
only the positive z coordinates are taken into consideration, as the vehicle is moving along
the x axis, and circling around the possible parking zones. This makes faster execution

possible, and decreases the redundancy of the detection.

7.3.1 Searching for adequate sized parking spaces

One of the main purposes of the 2nd subsystem is to find an adequate sized parking space
for the vehicle. The most common types of the parking spaces are parallel and perpendicular
parking. For both types, the algorithm is the same, but the parameters are different. The
parameters of the algorithm are the dimensions of the vehicle including additional safety

distances.

Fig. 7.9 depicts the parameters of the vehicle that are required for the parking space
detection. It is important to note, that for both parallel and perpendicular parking, the

47



minimal height

B, 03
minimal width

(a) Perpendicular parking parameters

A D

minimal height

B C
minimal width

(b) Parallel parking parameters

Figure 7.9: Minimal sizes of different parking types

width and height parameters might not be the same, and in reality these are usually of

different values.

Scanning the map

The manifest method of searching an adequate sized parking space is by scanning the map
along the z axis. As the required width and height parameters of the parking types are
known, it is sufficient to create scanning-boxes that span the cordinate system along y axis

and have the same width as needed for the parking.

Searching parking places

0 o Searching parking places
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Figure 7.10: Left - parallel parking space scanning,
Right - perpendicular parking space scanning
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After scanning the map along the z axis (see Fig. 7.10), all the possible bounding boxes
can be determined that represent possible parking spaces. These bounding boxes have the

same width and height as the corresponding parking type.

An adequate sized parking space must meet only two requirements:

¢ No obstacle should be found within the bounding box of the parking space

e The parking space should be reachable along y axis

The aftermath of these requirements is that two sets of bounding boxes are created for

both parallel and perpendicular parking.

7.3.2 Grading of parking spaces inspired by fuzzy logic

Section 7.3.1 described the method of finding adequate sized parking spaces. The algorithm
only took the car parameters and the safety distances into consideration. It is foreseeable
that with this method, the autonomous vehicles would park in the middle of the road,
or would overhang the parking spaces. When finding a parking space it is not enough to
find a parking space of adequate size, but several aspects, such as the alignment with the
nearby cars or the distance measured from the actual location etc, should be taken into

consideration.

To satisfy all these aspects we present a method of grading the parking spaces inspired
by fuzzy logic. The presented method gives a quality factor of the parking spaces in the
interval of [0, 1].

The method presented can handle multiple aspects, that influence the quality of a parking
space. In this thesis two quality influencing factors are defined. One for the alignment with
the nearby vehicles, and one for the distance needed to get to the parking place from the
actual location of the vehicle. In order to obtain these quality factors, grading functions

are introduced.

Grading the alignment

The alignment of the vehicle to the nearby vehicles is an important quality factor of a
parking place. Sometimes it is not possible to park properly, without an overhang, to a
parking space, as obstacles might be in the way or for other reasons. In order to detect these
cases, it should be checked, whether the vehicle can be aligned with the nearby vehicles.
This means, that for parallel parking the vehicle should be aligned with the vehicle in front
and the vehicle at the back. In case of a perpendicular parking the vehicle should be aligned
with the left and right side vehicles. Let’s call this case the perfect alignment (see green

bounding box in Fig. 7.11). By determining the exact coordinates of the perfect alignment,
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Figure 7.11: The perfect alignment is marked with a green bounding boz, all
other depicted bounding bozes get a lower alignment point

a distance can be measured between this perfect alignment and the best possibly reachable

alignment, that is influenced by the obstacles occurring in the parking place.

If due to any reasons the vehicle can not be aligned with the nearby vehicles, a distance
can be measured along the y-axis from the perfect alignment (see green bounding box in
Fig. 7.11). By assigning a function (in this case a triangular function) to this measurement

(see Fig. 7.12), the quality of the alignment can be determined.

Function for grading alignment

0.9 4

0.6 1

0.5 b

0.4 r 1

Points for alignment

0.1 q

0 L 1 1 1 L
-4 -3 -2 -1 0 1

Distance [m]

N
w
E

Figure 7.12: Quality of alignment is provided by a triangular function
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The grading function shown in Fig. 7.12 has the following properties:

e The center of the function is always 0, as the input is the distance measured from

the perfect alignment

e The distances from which the quality of the parking is 0, meaning the total lack of

alignment, can be chosen arbitrarily

Grading the distance between the actual location and the parking place

The goal of the whole autonomous parking system is to find a parking space as fast as
possible. However parking places that are detected too close to the vehicle have a higher
chance of being middle road parking places, which is undesirable, although it does not

mean that too close parking places should be excluded.

The grading function, that is introduced for grading the parking place based on the distance
measured from the actual location, is a Gaussian function. Where the center of the function
if a hypothetical optimum. This optimum should be the average of the distances measured
between the center of the road and the center of the parking places.

] Function for grading distance from car
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Figure 7.13: Quality of distance measured from the vehicle is provided by a
Gaussian function

The function shown in Fig. 7.13 has the following properties:

e The center of the function (i) should be the average of the distances measured
between the center of the road and the parking places. This is the hypothetical

optimum

e The o parameter can be chosen arbitrarily, but the range of the LiDAR or any sensor

that has been used should be taken into consideration
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Getting the final grade

cost wy presented in Section 2.1.

give the final score.

with the following formula:

n
q= qu‘
i=1

02
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In this thesis 2 quality factors have been introduced. One for grading the alignment to the
nearby vehicles, and one for grading the distance measured from the actual location. It is

possible to create many grading functions of different quality altering aspects, such as the

All of these grades are scaled between [0, 1], and if any of these scores are 0, the final score

should be 0. As a consequence a simple arithmetical product of these quality factors can

Let’s suppose that we have n quality factors (now n = 2). Let ¢; denote the output of the
i-th grading function (see Fig. 7.14), where i = 1...n. The final grade ¢ can be determined

(7.6)



7.4 Simulation results
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Figure 7.15: Measured data in a simulated parking zone

Fig. 7.15a-7.15f show an example of a set up environment, where a room was simulating
the parking zone. Chairs and desks were arranged in specific patterns, so that the LIDAR
could detect free spaces as possible parking places. The simulation results show, that due
to the physical parameters of the vehicle, and the obstacles found in the map, it was not
possible to find an adequate parallel parking space (see Fig. 7.15¢). The algorithm found
four possible perpendicular parkings (see Fig. 7.15d), from which the box filled with green
color was the best one. The best parking place that was found during this scenery received

~ 0.98 points for the distance, and 1 for the alignment.
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Fig. 7.15e-7.15f show another measurement, where the best parking place that was found,
was a parallel parking place with ~ 0.985 points. In this measurement perpendicular park-
ing places were found too, but the alignment was not as successful as in case of the parallel

parking.

After the success of the simulations in a room, the algorithm was tested in a set of data
provided by Velodyne Inc. The measurement provided by the company was taken place in
a busy street, with real traffic and pedestrians. The results of the testing can be seen in
Fig. 7.16.
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Figure 7.16: Testing the algorithm on a set of data provided by Velodyne Inc

Fig. 7.16 shows the testing of the algorithm on a real set of data. The results show, that the
algorithm found the parallel parking to be the best one, as the perpendicular parking was

too far from the middle of the road, which could have led to a possible sidewalk parking.

Further testings of the algorithm on a set of data, provided by Velodyne Inc can be seen

in a video linked in the bibliography. [21]
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Chapter 8

Conclusion and future work

In this thesis methods were presented for parking lot exploration and parking space detec-
tion. The literature provides methods of parking space detection, in which multiple sensors
are installed in parking lots. This fact is the most serious disadvantage of these methods,
because developing systems like them can be very expensive and time-consuming. Our ap-
proach in comparison, has provided a method in which a vehicle is equipped with sensors
in order to be able to drive autonomously and detect the free parking spaces. Thus, this

approach seems to be the more practical way to create autonomous parking systems.

The first presented method for parking lot exploration is the trapezoidal cell decomposition.
This method decomposes the map to polygonal cells and then, a traversal can be created
knowing the adjacency matrix of the cells. The decomposed map is made up of several
cells of big areas. When visiting these cells, it is possible that the planned path does not
go through the whole cell.

The solution for this problem can be the modification of the cell decomposition: decompose
the map along both = and y axes. In this case the intersections of the decomposed cells
are the final cells of the method. These cells have smaller areas and each cell has only 4
neighboring cells, so handling the adjacency matrix becomes easier. This advantage leads
to another method for creating the traversal of the cells. The undesirable reversing can
be eliminated by forbidding reversal when it is possible. In case of dead ends reversing
cannot be eliminated, as the vehicle must go back to the cell, from which it came. This cell

traversing method gives the opportunity to assign preferences to the passing directions.

A more effective way to assign preferences to the directions is based on wavefront algorithm.
This time an initial and goal cell is needed to be chosen. It is a manifest idea to choose the
initial cell as the goal cell, too. Then preference values are assigned to the cells, based on the
distance from the initial/goal cell by 4-neighborhood. This method provides a traversal,
in which cells are revisited less often. It is possible to avoid reversing the same way, as

presented before.

The biggest disadvantage of the presented cell decomposition based exploration methods
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is that a polygonal map is required for them. Voronoi diagram based exploration provides

a solution for this problem, as it works in case of a general map.

Voronoi diagram based method, in comparison to the trapezoidal decomposition, does not
require the environment to be polygonal. This means that the presented method gives
a solution for the exploration, in general environments. The biggest disadvantage of the
method is the fact, that a graph created from the Voronoi diagram might not contain a
Hamiltonian cycle, and in addition to this, the decision whether it has one, is an NP-hard
problem. This thesis discusses several methods of the graph traversal including a simple
airline-distance based method, Breadth-first search and Depth-first search algorithms. As
these methods do not take the cost function into consideration, we have implemented a
genetic algorithm, that is trying to minimize the objective function expressed with the
total cost of the path. Voronoi diagram based method gives the exploration path of the
parking lot. When the traversal of the path begins, a LIDAR sensor attached to the vehicle
starts detecting the adequate parking places.

The second subsystem of the autonomous parking system is the parking space detection.
This subsystem uses a LiDAR, attached to the vehicle, to scan the environment. The
subsystem performs the necessary alignments that are required, due to the fact, that the
vehicle is moving along the planned path, during this process. Deriving from the vehicle
parameters, the safe-parking principles and several other requirements for the adequate
parking places, a grading of the parking places inspired by fuzzy logic is also presented
in this thesis. The presented method gives the possibility to take as many constraints,

requirements, and preferences into consideration as the developer or the driver wants.

This thesis also includes simulation of the parking zones, where the second subsystem was
tested. Furthermore, after the success of simulations, the subsystem was tested on a set of

data provided by Velodyne Inc.

In the actual state of development, most of the algorithms were tested in simulations. The
future work will include the tests in real environment, involving an autonomous vehicle,
equipped with an AutoBoz and a LiDAR sensor. Future work also includes improving the

algorithms to be able to plan the exploration of multi-storey car parks.
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