
Budapest University of Technology and Economics

Faculty of Electrical Engineering and Informatics

Department of Control Engineering and Information Technology

Parking lot exploration strategy

Student Scientific Conference

Authors Supervisor

Ádám Anna Barbara Gincsainé Dr. Szádeczky-Kardoss Emese

Kocsány László

October 25, 2019

Contents

Összefoglaló 3

Abstract 4

1 Introduction 5

2 Parking system 7

2.1 Formulation of the parking lot exploration problem 9

3 Trapezoidal cell decomposition 11

3.1 Method . 11

3.2 Creating the adjacency matrix . 16

3.3 Determining the graph traversal . 18

4 Rectangular cell decomposition 20

4.1 Steps of the decomposition . 20

4.2 Creating the adjacency matrix . 21

4.3 Determining the graph traversal . 23

4.4 Wavefront algorithm based traversal . 25

5 Path planning 27

6 Voronoi diagram based method 29

6.1 Steps of the method . 30

6.2 De�ning the connected components . 32

6.3 Determine the sequence of points to be reached 33

6.3.1 Airline based distance traversal . 33

6.3.2 Graph based traversal . 33

1

7 Parking space detection 39

7.1 LiDAR description . 39

7.2 Processing LiDAR data in MATLAB . 39

7.2.1 Raw data from LiDAR . 39

7.2.2 E�ect of the orientation of the LiDAR sensor 40

7.2.3 Ground segmentation . 42

7.2.4 Alignment of coordinate system . 43

7.3 Recognition of adequate parking spaces . 47

7.3.1 Searching for adequate sized parking spaces 47

7.3.2 Grading of parking spaces inspired by fuzzy logic 49

7.4 Simulation results . 53

8 Conclusion and future work 55

Acknowledgement 57

Bibliography 59

2

Összefoglaló

Napjainkban egyre több járm¶ közlekedik az utakon, ennek következtében egyre nehezebb

megfelel® parkolóhelyet találni a lakóhelyünk környékén, bevásárlóközpontokban és külön-

böz® parkolóházakban. A parkolóhely keresése id®igényes lehet, de az autonóm járm¶vek el-

terjedése lehet®séget ad egy autonóm parkolási rendszer megalkotására, ami megtakaríthatja

ezt az id®t.

Jelen dolgozat egy autonóm parkolási rendszert mutat be, amely képes a parkoló bejárásá-

nak megtervezésére, miközben a járm¶ tetejére er®sített LiDAR segítégével észleli a járm¶

számára megfelel® parkolóhelyeket, illetve ezek után a parkolási man®vert is képes megter-

vezni. A parkolási rendszer kimenete szolgáltatja az alapjelet (referencia pályát, referencia

beavatkozó jeleket) egy zártkör¶ szabályozáshoz.

A fellelhet® szakirodalom a hatékony parkolóhely keresésére els®sorban parkolókban elhe-

lyezett szenzorokat alkalmaz, ezen módszerek azonban csak az erre felkészített parkolók-

ban alkalmazhatóak. Jelen dolgozat egy olyan általánosan alkalmazható megoldást mutat

be, mely a parkoló bejárásával, a járm¶vön elhelyezett érzékel®k segítségével detektálja

a szabad parkolóhelyeket. A dolgozat célja több különböz® megoldás bemutatása ezen

problémára. A parkoló bejárásához minden esetben ismert a bejárandó parkoló felülnézeti

térképe. Az els® módszer a celladekompozíciót alkalmazva a térképet sokszög alakú cellákra

bontja. A cellák szomszédossági gráfjának felépítése után meghatározható a bejárási sor-

rend, melynek felhasználásával útvonal tervezhet®. A második módszer ezzel szemben nem

végez dekompozíciót. Az algoritmus a térképen elhelyezked® utak Voronoi-diagramjából

képes egy bejárandó útvonal tervezésére �gyelembe véve a lehetséges parkolóhelyeket.

A szabad parkolóhelyek észlelését egy LiDAR szenzor segíti el®, ahol az implementált algo-

ritmus egy fuzzy alapú osztályozást végez a megfelel® parkolóhely kiválasztására. Ezen

osztályozás több min®ség jellemz® �gyelembevételére képes, úgy mint a környez® jár-

m¶vekhez való igazítás, illetve egy optimális távolság �gyelembevétele az úttest közepét®l.

A parkolási man®vert megtervez® alrendszer folytonos görbület¶ pályatervezést végez,

kielégítve az autószer¶ mobilis robotokra vonatkozó kényszereket.

A kidolgozott algoritmusok Matlabban kerültek implementálásra és szimulációkban történt

a tesztelésük.

3

Abstract

Nowadays, more and more vehicles are running on the roads, that is the reason why it

is getting more di�cult to �nd an adequate parking space near our home, in shopping

centers and parking lots. Searching for free parking spaces can be time-consuming. As

autonomous vehicles are becoming widely used, the opportunity is given to design a system

which performs this activity autonomously and spares this time.

This thesis presents an autonomous parking system, which performs the exploration of the

parking lot, the parking space detection with a LiDAR attached to the top of the vehicle,

and it plans the path of the parking maneuver itself. The output of this system provides

the reference signal (reference path, reference control signal) for a closed-loop control.

The literature provides methods of parking space detection, in which multiple sensors are

installed in parking lots. These methods can only be used in parking lots which are equipped

with these sensors. This thesis presents a generally applicable method, which detects park-

ing spaces with parking lot exploration using sensors attached to the vehicle. The purpose

of this thesis is to present multiple solutions for this problem. The bird's-eye view map of

the parking lot is known in each case. The �rst method applies cell decomposition to divide

the map into polygonal cells. After the construction of the adjacency graph of the cells,

the graph traversal can be de�ned, from which a path can be planned. The second method

does not decompose the map. The exploration path is planned using the Voronoi-diagram

of the routes and taking the location of parking spaces into consideration.

The detection of free parking spaces is based on a LiDAR sensor, and the algorithm makes

a fuzzy based classi�cation in order to select the adequate parking space. Throughout the

classi�cation more quality features can be taken into consideration, like the alignment to

the neighboring vehicles and an optimal distance from the center of the road.

The path planning of the parking maneuver is performed with continuous curvature path

planning, in order to ful�ll the constraints of car-like mobile vehicles.

The presented algorithms are implemented in Matlab and they were tested in simulations.

4

Chapter 1

Introduction

Since automobiles came into general use, the lack of su�cient parking spaces is forcing

drivers to circle around, sitting in the vehicle searching for free parking spaces. As au-

tonomous vehicles are becoming widely used, the opportunity is given to design a system

which performs this activity autonomously [1]. The biggest advantage of this system would

be that it spares highly valuable time for the driver.

The literature provides methods of parking space detection, in which multiple sensors

are installed in parking lots. In [2] a method is presented, which utilizes the installed

CCTV (Closed-Circuit Television) system for the detection based on image processing. [1]

shows multiple solutions for this problem. It presents expert systems, fuzzy logic based

systems, wireless sensor based systems, GPS (Global Positioning System) based systems,

vehicular communication systems, vision based systems and other miscellaneous systems.

Internet of Things (IoT) and smart city ecosystem based parking systems can also be the

appropriate base of the smart parking according to [3]. CirPark is an active solution for

e�cient parking [4]. It provides Intelligent Parking Guidance System (iPark), E�cient Led

Lighting System (LEDPark) and Electric Vehicle Charging System (EVPark). The common

part of the mentioned methods is the need for extra infrastructure, devices and sensors

in order to detect the vacant parking spaces. This fact is the most serious disadvantage

of these methods, because developing systems like them can be very expensive and time-

consuming.

Since autonomous vehicles are becoming available for everyone, it is a manifest idea to

design a smart parking system in which the vehicle is smart, instead of installing additional

sensors in the parking areas. A smart vehicle is equipped with sensors in order to be able to

drive autonomously and detect the free parking spaces. The advantage of a system like this

is that it can perform the autonomous parking in a traditional parking place, so it is not

needed to make the parking places smart. This approach seems to be the more practical

way to create autonomous parking systems.

Available self-parking cars can detect the free parking spaces of appropriate size and per-

form the parking maneuver, but they are not capable of exploring the whole parking lot

5

autonomously (e.g [5]). Because of this, chau�eurs need to drive around the parking lot

searching for parking spaces. The main target of this thesis is to present a parking system,

which can perform the whole parking task autonomously.

The main tasks of the smart parking system are the exploration of the parking lot and

meanwhile detecting the free parking spaces. In this thesis, methods for parking lot explo-

ration and parking space detection are presented.

The heart of the matter of the parking lot exploration is driving around the whole parking

lot until an appropriate parking space is found. This task is similar to the Coverage Path

Planning methods [6].

Trapezoidal cell decomposition method is commonly used as the �rst step of the coverage

path planning of a robot in a polygonal environment. Complete Coverage Path Planning

(CPP) is used to determine the path of a mobile robot passing through all points of the

workspace while avoiding obstacles. The coverage path planning algorithms have wide ap-

plication in robotics including cleaning, mowing, exploration of areas etc. In that approach

trapezoidal cell decomposition can be used to divide the the environment into smaller

regions for e�ective coverage [7].

In the approach presented in this thesis, cell decomposition is used to provide a map that

is covered by polygonal cells. From this map an adjacency matrix can be determined which

describes the adjacency graph. Knowing the adjacency graph the graph traversal can be

speci�ed.

An algorithm was also implemented, that provides a one step method, that uses the Voronoi

diagram of the map, regarding the possible parking zones.

A parking space detection method is also presented in this thesis. The detection is per-

formed with a help of a LiDAR, and di�erent quality factors are assigned to the detected

parking spaces in order to select the most appropriate one.

The thesis is organized as follows: Chapter 2 describes the whole system to which the park-

ing lot exploration belongs. In Chapter 3, the background and the steps of the trapezoidal

cell decomposition are presented. This chapter also discusses some details of the actual

implementation. The next steps of the parking lot exploration, which include the creation

of the adjacency matrix based on the decomposition, and creating the graph traversal

from the adjacency graph are discussed too. Chapter 4 discusses a modi�ed version of the

trapezoidal cell decomposition, and methods for creating the adjacency matrix and the

traversal. The last step of the actual o�ine exploration is the feasible path planning from

the points of graph traversal, which is presented in Chapter 5.

Another method of parking lot exploration has also been implemented, which is discussed

in Chapter 6. In Chapter 7, the second subsystem of the autonomous parking system is

discussed, where a fuzzy based parking space detection method is also presented. Finally

the conclusions and the future work are presented in Chapter 8.

6

Chapter 2

Parking system

The parking lot exploration is part of an autonomous parking system, which can perform

the whole parking task (see Fig. 2.1). This autonomous system is made up of subsystems.

Di�erent subsystems require di�erent types of maps.

The exploration is the �rst step of the procedure. In the �rst step a map of the whole

parking lot is needed, as the exploration is a global procedure. This map considers all the

free and occupied parking spaces as obstacles. When the global planning has �nished, the

vehicle starts moving along a planned path, exploring the parking lot.

During this, the second subsystem is activated, where a LiDAR attached to the top of

the vehicle sweeps the parking lot searching for a free parking space of adequate size.

This subsystem performs a local search, for which only the sensor is needed. The LiDAR

provides a 3 dimensional image of the surroundings from which a bird's-eye view map can

be created (described in Chapter 7), where free parking spaces are considered as free space.

When the LiDAR detects an appropriate parking space it activates the third subsystem

where a feasible path to the parking space, and the continuous curvature path of the

parking maneuver are planned. The last step is driving along the planned path to the

parking space autonomously, and executing the parking maneuver.

As the literature does not provide solution to parking lot exploration, like the method

presented in this thesis, Section 2.1 gives the formulation of the parking lot exploration

problem.

7

Parking lot
exploration

Map of the
 parking lot

(parking spaces are
obstacles)

Parking space
detection with LiDAR

Exploration
path

Path planning for the
paking maneuver

Coordinates of the
detected parking

space

Quality of
the detected

parking
space

Kinematic parameters
of the vehicle

Kinematic parameters
of the vehicle

Path of the
maneuver

Reference
signals

Perfoming the
parking maneuver

Point cloud detected
by LiDAR

Reference
signals

Figure 2.1: Flowchart of the parking task

8

2.1 Formulation of the parking lot exploration problem

Let C ⊂ R2 de�ne the workspace of the parking lot exploration and A denotes the vehicle.

The state of the vehicle is q =

[
x

y

]
, where A(q) ⊂ C.

[
x

y

]
denotes the position of the vehicle

in a �x frame. (The orientation of the vehicle is not taken into account.) The workspace

consists of obstacles (Cobs ⊂ C) and free spaces (Cfree = C \ Cobs), some of which are

needed to be visited (Cvis ⊆ Cfree). The vehicle can move only in free spaces (∀q ∈ Cfree).

The vehicle moves on a collision free path (τ), where si ∈ R is a scalar path parameter

(s ∈ [0, T], T is the length of the whole path).

τ : s 7→ q , ∀s ∈ [0, T] : τ(s) ∈ Cfree (2.1)

The movement of the vehicle can be described with a nonlinear equation:

q(tk+1) = f(q(tk), uk) (2.2)

where uk is the control signal in the kth sampling time. In this case ∀k ∃ uk, where τ(sk+1) =

f(τ(sk), uk).

L(q) ⊂ C denotes the points, that can be seen from a given position. Taking into consid-

eration the range of the LiDAR (δ):

L(q) = {z ∈ C | ‖q − z‖ ≤ δ}, (2.3)

where ‖q − z‖ is the Euclidean distance between q and z points.

Points seen during traversing the path:

L(τ(t)) =
⋃

s∈[0,t]

L(τ(s)) (2.4)

The target is to reach every position, that should be visited during the exploration:

Cvis ⊆ L(τ(T)) (2.5)

Other constraints, that should be taken into consideration:

� The start position is given τ(0) = qinit

� Cost can be assigned to the path: w1(τ) (e.g. length of the path)

9

� Given preferable positions, near which the parking spaces are looked for �rstly. w2(q)

cost can be assigned to q ∈ Cfree position (e.g. distance from the goal position)

� The traversal can be interrupted, when a condition is met (parking space detected

with LiDAR)

� When stopping on the �ying the cost of the traversal is w1(τ(s1)) + w2(τ(s1)) (cost

of the path up to now plus cost of the current position)

� There could be constraints for the order of con�gurations in τ path (e.g one-way

streets)

10

Chapter 3

Trapezoidal cell decomposition

As the �rst step of the parking system, the parking lot exploration is needed to be per-

formed. In order to plan a path, which drives along all the possible parking spaces, the map

of the parking lot is required to be divided into smaller parts, in which the path planning

can be executed easily. It is assumed, that every point of a cell can be seen from any point

of the cell.

3.1 Method

The input of the algorithm is a binary image (Fig. 3.1a), that represents the map of the

parking lot from bird's-eye view. The goal is to determine a path through which the vehicle

reaches all possible parking zones. The �rst step of this method is the decomposition of

the map.

Trapezoidal cell decomposition [8, 9] is a method used to decompose the free space into

convex polygonal1 cells. Let Cobs de�ne the set of points that belongs to the obstacles, and

Cfree denote the set of points that belongs to the non-obstacle points. As a consequence

Cobs ∪ Cfree = C includes all points of the map. Let P denote the set of vertices used to

de�ne Cobs. The goal is to extend rays from ∀p ∈ P upwards and downwards through Cfree
until Cobs is hit or the edge of the image is reached.

Steps of cell decomposition:

1. Performing low pass �ltering, in order to avoid false corner detection

2. Performing any corner detection (e.g. Harris [10]) (Fig. 3.1b) - determining the set

of vertices P

3. Sorting corners (p) in ascending order based on x coordinate (Fig. 3.1c)

4. Extending rays from ∀p ∈ P (Fig. 3.1d)

1trapezoidal or triangular

11

(a) Binary image of the map

(b) Detection of corners with Canny edge de-
tection. Red markers represent the de-
tected corners

(c) The obstacles are depicted as black col-
ored objects with the vertices indexed in
ascending order from P1 to P12

(d) Rays are extended from ∀p ∈ P

Figure 3.1: Steps of cell decomposition

5. Determining the corner points describing each cell:

� Trapezoidal cells have 4 distinct corner points

� Triangular cells have only 3 distinct corner points2

Step 1 creates a blurred image. As a consequence the transitions from Cfree to Cobs are

continuous, which draws the consequence, that only the real corners of the image will be

detected by Harris corner detection.

As the map has a �nite resolution Steps 2 and 4 might decrease the robustness of the

method. In order to make the method robust, double-thresholding is applied (see Fig. 3.2),

while exectuting the actual ray extensions (Step 4).

� In order to increase the scale invariance of the decomposition, the use of ε1 is intro-

duced. This threshold eliminates the in�uence of the extension of the corner points.

Threshold ε1 should describe the radius of a circle, within which, all c ∈ C points

are considered as part of the corner point p ∈ P .

� ε2 is required after the use of ε1. It is used to detect cases when it is not possible to

extend ray in a given direction from the corner point. ε2 should be smaller than the
2For the implementation, all cells are stored as trapezoidal cells, but triangular cells have 2 corner points

with the same coordinates.

12

 Figure 3.2: Each point within ε1 (inside the green circle) belongs to the corner
point

minimal distance that is needed to get to the closest object. The application of this

thresholds is introduced, as the binary image has a �nite resolution.

The following correlation between ε1 and ε2 should be true:

ε2 > ε1 (3.1)

As the corners are sorted in ascending order (based on x coordinate) in Step 3 (see

Fig. 3.1c), the map is scanned along x axis in Step 4. Algorithm 1 performs both the

scanning process and the extension of rays upwards and downwards from the vertices of

the obstacles. The upper and the lower points of the rays are stored as cell borders as

these rays will become the sides of the cells. The output of Algorithm 1 provides the input

of Algorithm 2, where the corresponding cell borders are to be found, which describe a

cell. In order to decrease the scale invariance of the decomposition, the use of ε1 and ε2 is

required while performing the ray extensions (Algorithm 1).

13

Algorithm 1 Ray extension upwards and downwards

Require: cornersInAscendingOrder, Cobs
Ensure: cellBorders

1: cellBorders = [];

2: j = 1;

3: for i = 1 to numberOfCorners do

4: initialCorner ← cornersInAscendingOrder[i];

5: upperCellPoint←
�ndUpperCellPointWithSameXCoordinate (initialCorner, Cobs, ε1);

6: if dist(initialCorner,upperCellPoint)> ε2 then

7: cellBorders[j]← [upperCellPoint, initialCorner];

8: j ← j + 1;

9: end if

10: lowerCellPoint←
�ndLowerCellPointWithSameXCoordinate (initialCorner, Cobs, ε1);

11: if dist(initialCorner,lowerCellPoint)> ε2 then

12: cellBorders[j]← [initialCorner, lowerCellPoint];

13: j ← j + 1;

14: end if

15: if No ray could be extended in any direction then

16: cellBorders[j]← [initialCorner, initialCorner];

17: j ← j + 1;

18: end if

19: end for

Fig. 3.3a-3.3b show an example for the application of ε1, where the corner point A had an

extension, but it did not in�uence the decomposition, as the algorithm found both B and

C points, with which two cell borders B −A and A− C are found.

Fig. 3.3c-3.3d show an example for the application of ε2, where from corner point D no ray

could be extended upwards, as the distance of the closest point cclosest ∈ Cobs was smaller

than ε2, and cclosest was de�nitely not part of the cornerpoint D, as the distance between

D and cclosest was higher than ε1 . The algorithm found point E downwards within Cobs,

where the distance measured between D and E was higher than ε2. As a consequence,

points D and E will make the border of a cell.

The last step of decomposition is to �nd the corresponding cell borders, as all cells have

both left and right side borders.

The adjacent cells must have a common border, that is not required to be of the same

length. As a consequence, the only requirement for these common borders is the overlapping

of the rays. Due to this requirement, in Step 5, it is not only the correspondence of the cell

borders that should be determined, but the possibility of the cell border extensions should

14

(a) From corner point A rays could be extended
both upwards and downwards

(b) Extension of corner A

(c) From corner point D ray
could be extended only down-
wards

(d) No ray can be extended up-
wards from corner point D,
as obstacle is detected up-
wards between ε1 and ε2

Figure 3.3: Examples for ray extension

be checked too, while the cell remains convex. (Convex cell should have a nonzero area,

and no points of Cobs should be inside the cell.) Algorithm 2 performs the search of the

corresponding cells.

15

Algorithm 2 Finding �nal cells

Require: cellBorders

Ensure: finalCells

1: finalCells = [];

2: j = 1;

3: for i = 1 to numberOfCellBorders− 1 do

4: leftSideOfCell← cellBorders[i];

5: for k = i+ 1 to numberOfCellBorders do

6: rightSideOfCell← cellBorders[k];

7: newCell = [leftSideOfCell, rightSideOfCell];

8: if newCell is convex then

9: break;

10: end if

11: end for

12: if newCell is convex then

13: if rightSideOfCell can be extended and newCell remains convex then

14: rightSideOfCell←extendCellBorder(rightSideOfCell, cellBorders);

15: newCell = [leftSideOfCell, rightSideOfCell];

16: end if

17: if leftSideOfCell can be extended and newCell remains convex then

18: leftSideOfCell←extendCellBorder(leftSideOfCell, cellBorders);

19: newCell = [leftSideOfCell, rightSideOfCell];

20: end if

21: finalCells[j] = newCell;

22: j ← j + 1;

23: end if

24: end for

3.2 Creating the adjacency matrix

As the cells are given with the coordinates of their corners, the coordinates of each side

of the cells are known. If the decomposition is executed along the x axis, two cells are

adjacent if the left side of one cell has common points with the right side of the other cell.

If the decomposition is executed along the y axis, the up and downsides of the cells should

be taken into consideration. In order to avoid false detection of adjacent cells a threshold is

determined for the minimal number of common points. The width of the vehicle in pixels

is a manifest choice for this threshold (see Fig. 3.4).

The creation of the adjacency matrix is presented in Algorithm 3. This algorithm creates

a symmetric n× n matrix, where n is the number of the cells.

16

Figure 3.4: In case of Carwidth 1 Cell 1 and Cell 2 are adjacent, but in case
of Carwidth 2 they are not.

Algorithm 3 Creating the adjacency matrix for trapezoidal cells

Require: finalCells

Ensure: adjacencyMatrix

1: adjacencyMatrix← zeros(numberOfFinalCells);

2: for i = 1 to numberOfFinalCells− 1 do

3: for j = i+ 1 to numberOfFinalCells do

4: if rightXCoordinateOf(finalCells[i])==leftXCoordinateOf(finalCells[j]) then

5: commonPoints = [];

6: rightSide← getRightSide (finalCells[i]);

7: leftSide← getLeftSide (finalCells[j]);

8: commonPoints←intersect (rightSide, leftSide);

9: if length(commonPoints) > carWidth ∗ 1.5 then
10: adjacencyMatrix[i, j] = 1;

11: adjacencyMatrix[j, i] = 1;

12: end if

13: end if

14: end for

15: end for

If the map has two-way streets only, the adjacency matrix is symmetric. In case of one-way

streets the adjacency matrix is a general matrix, as it is permitted to go from one cell

to the other but it is prohibited to go in the opposite direction. In this case Algorithm 3

should be slightly modi�ed.

17

3.3 Determining the graph traversal

Algorithm 4 Creating the graph traversal of the trapezoidal cells

Require: finalCells, adjacencyMatrix

Ensure: cellsInOrder

1: markCellAsUnvisited(finalCells);

2: i← 1;

3: markCellAsVisited(finalCells[i]);

4: cellsInOrder[1] = finalCells[i];

5: stackList = [];

6: while any(isUnvisited(finalCells)) do

7: for j = 1 to numberOfFinalCells do

8: newCellFound = false;

9: if adjacencyMatrix[i, j] == 1 and isUnvisited(finalCells[j]) ==true then

10: markCellAsVisited(finalCells[j]);

11: newCellFound← true;

12: stackList[end+ 1]← cellsInOrder[end];

13: cellsInOrder[end+ 1]← finalCells[j];

14: end if

15: end for

16: if newCellFound == false then

17: cellsInOrder[end+ 1]← stackList[end];

18: stackList[end]← []; {deleting the last element}

19: i← indexOf(cellsInOrder[end]);

20: end if

21: end while

The adjacency matrix of the cells describes if two cells are adjacent or not for each pair of

cells. If two cells are adjacent the vehicle can pass from one cell to the other [11].

Firstly, every cell should be marked as unvisited. (Initially, it is possible to mark only those

cells as unvisited which must be visited (Cvis, described in Section 2.1) and the other cells

(Cfree \ Cvis) can be initialized as visited.)

The initial cell is marked as visited and it is the �rst cell in the order-list. After that, one of

the unvisited neighboring cells is chosen as the following cell in the visit order and this cell

goes to the end of the order-list. If there is no unvisited adjacent cell, a backtrack is needed

to the cell which has an unvisited neighboring cell. This backtrack can be implemented

with a stack-list.

Stack-list is used to store the cells in order, and when backtracking is needed, cells are

visited again in reverse order from the end of the stack-list. So during backtracking cells

are pushed to the end of the order-list in reverse order from the end of the stack-list and

they are deleted from the stack-list when they are visited again.

18

Figure 3.5: Example of adjacency graph traversal in a map (black areas rep-
resent the parking areas and the obstacles, colorful areas represent
the road surfaces), red arrows represent the backtracks

Finally, when no unvisited cells are left, the order-list stores the cells in order, which gives

the actual graph traversal (see Fig. 3.5).

Algorithm 4 presents the creation of the traversal.

19

Chapter 4

Rectangular cell decomposition

As Fig. 3.5 shows, there are several cells with large areas. It is disadvantageous because

the path planning for these cells is not clear. (E.g. if the path goes through the center

of the cell, which is a manifest solution, the distance from the parking spaces might be

too large to detect them with LiDAR, or sometimes the path does not go through all the

points of the cell, which should be visited (Cvis, described in Section 2.1).) The presented

trapezoidal cell decomposition (see Section 3.1) divides the map into polygonal cells along

the x axis. It is a subjective choice along which axis the decomposition is performed.

The decomposition can be executed along the y axis, too. This gives the base idea of the

modi�ed decomposition: �rst, decompose the map along the x axis, then along the y axis.

4.1 Steps of the decomposition

This modi�ed decomposition can be executed by the following steps:

1. Performing trapezoidal cell decomposition along x axis (see Fig. 4.1a)

2. Performing trapezoidal cell decomposition along y axis (see Fig. 4.1b)

3. Finding the intersections of the cells decomposed along x and y axis (see Fig. 4.1c)

4. Storing the cells

The method of Step 1 is detailed in Section 3.1. Step 2 is nearly the same as Step 1, the

only di�erence is the direction of the decomposition. It is possible to rotate the image of

the map by ±90°and use the same method as is Step 1. In this case the coordinates of cells

are needed to be rotated by ∓90°. In Step 3 the intersections of the cell areas are needed

to be determined for each cell-pair. These intersected cells are the �nal decomposition of

the map.

20

(a) Decomposition along x axis (b) Decomposition along y axis

(c) Intersections of the cells from decompositions
along x and y axis

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

(d) Final cells generated by the modi�ed decompo-
sition

Figure 4.1: Rectangular cell decomposition

4.2 Creating the adjacency matrix

By modifying the trapezoidal cell decomposition method, the creation of the adjacency

matrix becomes di�erent from the method detailed in Chapter 3.2. The main di�erence is

in the arrangement of the cells. In this case every cell has 4 adjacent cells (upper, lower, left

and right neighbor), so it is manifest to store the indices of the neighboring cells for every

cell. The adjacency matrix stores the indices of the adjacent cells in the following order:

left, right, upper, lower neighbor. Cells neighboring obstacles and cells in the edges of the

map do not have 4 neighboring cells, in this case the neighboring obstacles and edges are

considered as their neighbors. (An implementational solution can be if these false neighbors

are stored with dummy indices e.g -1 or not a number). The adjacency matrix is a n × 4

matrix (instead of the n × n matrix, presented in Section 3.2), where n is the number of

the cells. Two cells are adjacent if the left side of one cell has common points with the right

side of the other cell, or the upper side of one cell has common points with the lower side

of the other cell. Algorithm 5 presents the creation of the adjacency matrix. The algorithm

handles the roads as bidirectional, but with a minor modi�cation it can handle one-way

streets, too.

21

Algorithm 5 Creating the adjacency matrix for rectangular cells

Require: finalCells

Ensure: adjacencyMatrix

1: adjacencyMatrix ← zeros(numberOfFinalCells, 4); {adjacencyMatrix stores the

indices of the adjacent cells in the following order: left, right, upper, lower neighbor}

2: for i = 1 to numberOfFinalCells− 1 do

3: rightSide1← getRightSide(finalCells[i]);

4: leftSide1← getLeftSide(finalCells[i]);

5: upperSide1← getUpperSide(finalCells[i]);

6: lowerSide1← getLowerSide(finalCells[i]);

7: for j = i+ 1 to numberOfFinalCells do

8: rightSide2← getRightSide(finalCells[j]);

9: leftSide2← getLeftSide(finalCells[j]);

10: upperSide2← getUpperSide(finalCells[j]);

11: lowerSide2← getLowerSide(finalCells[j]);

12: commonPointsLR← intersect(leftSide1, rightSide2);

13: commonPointsRL← intersect(rightSide1, leftSide2);

14: commonPointsUD ← intersect(upperSide1, lowerSide2);

15: commonPointsDU ← intersect(lowerSide1, upperSide2);

16: if length(commonPointsLR) > carWidth ∗ 1.5 then
17: adjacencyMatrix[i, 1] = j;

adjacencyMatrix[j, 2] = i;

18: end if

19: if length(commonPointsRL) > carWidth ∗ 1.5 then
20: adjacencyMatrix[i, 2] = j;

adjacencyMatrix[j, 1] = i;

21: end if

22: if length(commonPointsUD) > carWidth ∗ 1.5 then
23: adjacencyMatrix[i, 3] = j;

adjacencyMatrix[j, 4] = i;

24: end if

25: if length(commonPointsDU) > carWidth ∗ 1.5 then
26: adjacencyMatrix[i, 4] = j;

adjacencyMatrix[j, 3] = i;

27: end if

28: end for

29: end for

22

4.3 Determining the graph traversal

In spite of the fact, that the structure of the adjacency matrix di�ers from the one detailed

in Chapter 3.2, it can be used nearly the same way to determine the graph traversal. The

traversal method presented in Chapter 3.3 can be used with a little modi�cation (only the

handling of the matrix is needed to be modi�ed). In this case every cell has 4 neighbors,

just one in each direction (left, right, up, down).

Taking the advantage of this, a traversal can be planned which avoids reversing when

it is possible (in case of dead ends it is impossible to avoid reversing)(see Algorithm 6).

Fig. 3.5 shows a traversal in which there are a lot of reversing, and some of them could be

eliminated. From the initial cell it is possible to go to any of the unvisited adjacent cells,

and the passing direction is stored. After that, those neighboring cells are preferred, which

are unvisited and are not in the reverse direction. (E.g. if one of the cells is visited from the

left side, from that cell the least preferred direction is to the left. The traversal direction

will be left only in case of dead ends.) The neighboring cells are tested in the preferred

order whether they are unvisited. If an adjacent cell is unvisited, this cell is chosen to be

visited. It is possible, that every neighboring cell is visited, in this case the adjacent cell

in the most preferred direction is revisited. In case of dead ends the only adjacent cell is

in the reverse direction, so this cell is going to be revisited. Every visited cell is added to

the end of the order-list. The algorithm runs till all the cells are visited or the order-list of

the cells is longer than a speci�ed value (e.g. 3 times the number of the cells). Finally, the

order-list stores the cells in the adequate order.

It is possible to assign preference to the directions. In this case the order of testing the

cells - as possible following cells - is based on the preference. Of course random preference

is also permitted, then directions are preferred equally.

Compared to the method detailed in Chapter 3.3, the main advantage of Algorithm 6 is

avoiding reversing, but the disadvantage is that it visits a cell multiple times and there

may remain unvisited cells in the end (see Fig. 4.2).

23

Algorithm 6 Creating the graph traversal of the rectangular cells

Require: finalCells, adjacencyMatrix

Ensure: cellsInOrder

1: cells← finalCells;

2: actualCell← cells[1];

3: markCellAsVisited(actualCell);

4: cellsInOrder[1]← actualCell;

5: preference← [up, down, left, right];

6: while there is any unvisited cell do

7: neighbors← get4Neighbours(actualCell, adjacencyMatrix);

8: neighborToGoTo← getBestUnvisitedNeighbor(neighbors, cells, preference);

9: if no neighborToGoTo found then

10: neighborToGoTo← getBestVisitedNeighbor(neighbors, cells, preference);

11: end if

12: preference←disFavorReversal(preference, actualCell, neighborToGoTo);

{Reordering preference array, where the reverse direction is the last element}

13: actualCell← neighborToGoTo

14: cellsInOrder[end+ 1]← actualCell

15: markCellAsVisited(actualCell)

16: if length(cellsInOrder)>3∗length(cells) then
17: break;

18: end if

19: end while

Figure 4.2: Example of adjacency graph traversal in a map (black areas rep-
resent the parking areas and the obstacles, colorful areas represent
the road surfaces) red arrows represent the backtracks

24

4.4 Wavefront algorithm based traversal

A more e�ective method of determining the traversal is inspired by the grid-based coverage

using the wavefront algorithm, usually used in Coverage Path Planning tasks [6]. This

algorithm is applied in grid-based coverage, so in this approach the decomposed map is

treated as a grid. As cells are of di�erent size, grid is di�erent from the traditional grid. A

start and a goal point are also needed for the algorithm, so it is expedient to choose the

initial cell as both the start and goal destination (see Fig. 4.3). In this case the adjacency

matrix presented in Section 4.2 is used, but a distance value is assigned to every cell. The

distance value is 0 at the goal cell, then every neighboring cell gets one bigger distance

value. This step is repeated until there are unmarked cells left.

This algorithm is very similar to Algorithm 6, the main di�erence between them is in the

preference of the directions. The traversal starts from the starting point and the wavefront

algorithm �rstly visits those unvisited neighboring cells, which have the highest distance

value. This algorithm also tries to avoid reversing, so the reverse direction is the least

preferred direction. If a cell has only visited adjacent cells, the one with the highest distance

value will be the following cell (see Fig. 4.4). If the start and goal cells are the same, the

traversal leads to the furthest cells at �rst.

The presented traversal does not drive back to the initial cell, but every cell is visited in the

end. However, in reality it is a frequent occasion when no parking space is found in the �rst

traversal around the parking lot. In this case the best strategy is to repeat this traversal

until an adequate parking space is found. By the application of this method the algorithm

can be forced to return to the initial cell by remarking the initial cell as unvisited when

there are no unvisited cells left. Another solution can be marking the last cell as initial cell

and recreating the traversal.

25

3

4

5

6

7

2

4

6

0

1

2

3

4

5

2

4

6

4

3

4

5

6

7

4

6

8

5

6

7

8

9

Initial cell

Figure 4.3: Distance values assigned to the cells

Figure 4.4: Example of adjacency graph traversal in a map (black areas rep-
resent the parking areas and the obstacles, colorful areas represent
the road surfaces) red arrows represent the backtarcks

26

Chapter 5

Path planning

Knowing the graph traversal it is possible to plan a feasible path for the vehicle [12]. In

order to avoid collisions with the obstacles in the map, the obstacles should be in�ated

by the radius of the circumscribed circle of the vehicle. In this case the vehicle can be

considered as a point. It is possible to plan the path of the corners of the vehicle, but it

is more compute-intensive. (The vehicle is approximated with circle only for the parking

lot traversal, during the parking maneuver planning the paths of the corners of the vehicle

are calculated, too.)

From each cell at least one point is needed to be chosen, which is used for the path planning.

This point can be the mass center of the cell, one of the corners or other parameter of the

cell.

There are several methods to plan feasible paths between the chosen points. For example

continuous curvature path planning [13] can be used to design a path that uses the chosen

points in adequate order to calculate the path (see Fig. 5.1). In case of a simple map it

can be enough to choose only one point from each cell, but in case of a more complex map

the going-over of the cell should be planned, too.

Fig. 5.1 shows an example for a continuous curvature path, planned using the mass centers

of the cells. In case of backtracks the mass center of the cell should be pushed by the double

size of the minimal turning radius of the car to the left and to the right (or up and down

depending on the situation of the cells). Because of this, in the cell, where the turnaround

is performed, there are two points used for path planning instead of one. This duplication

of the point is needed so that there should be enough space between the points for the

vehicle, in order to be able to perform the turnaround in one maneuver. It is possible that

the cell is too small for the vehicle to turn around, in this case the vehicle can reverse

on the same path, it came into the cell. Backtracks can be easily detected from the cell

traversing, as the cell before and after the cell, in which the turnaround is needed, are the

same.

27

Path

0 500 1000 1500

X [meters]

0

200

400

600

800

1000

Y
 [m

et
er

s]

Figure 5.1: Example for a map exploration in a parking lot, this path belongs
to the traversal shown in Fig. 4.4

28

Chapter 6

Voronoi diagram based method

Chapter 3-4 described the trapezoidal cell decomposition, which can realize the second

subsystem of the autonomous parking system, described in Chapter 2. In that approach

the free space had been decomposed into polygonal cells, with which a graph traversal could

be planned. In this chapter another possible realization of the subsystem is presented, which

creates the Voronoi diagram of the binary image. These methods do not di�er in terms

of output and the input types, as both require a binary image, and provide a possible

exploration path. The only di�erences are the method, and the exploration path provided

by the algorithms. The presented method considers the roads as bidirectional.

(a) Binary image of the road surface

(b) Binary image of the parking zones

Figure 6.1: Binary images storing road surface and parking zones. Black color
represents obstacles

29

The Voronoi diagram based method requires a binary image. From the binary image, the

Voronoi diagram / skeleton can be determined. The Voronoi diagram of the road surface

provides a set of points, that lies at the same distance from both sides of the road or from

both sides of the lane. As the map of the road surface of the parking lot is known (see

Fig. 6.1a), and the places where parking spaces (see Fig. 6.1b) are to be looked for are also

known, a route can be planned throughout the parking lot. In order to determine the route,

descriptive properties [14] of the di�erent parking zones should be determined, such as the

centroids, or the extremum. With the help of these properties those points of the Voronoi

diagram can be pointed out that are close to these parking space descriptive points.

6.1 Steps of the method

1. Creating the Voronoi diagram (Fig. 6.2a) from the binary image (Fig. 6.1a) of the

road surface

2. De�ning the connected components (see colorful objects in Fig. 6.2b) from the binary

image (Fig. 6.1b) of the parking zones - algorithm explained in Section 6.2

3. Determining the centroids (or other descriptive points) of the parking zones (see blue

markers in Fig. 6.2b)

4. Determining the closest points of the Voronoi diagram to the centroids (see red

markers in Fig. 6.2c)

5. Determine the sequence of points to be reached (see colorful lines in Fig. 6.2c) -

algorithm explained in Section 6.3

6. Finding the shortest route between the set of points (Fig. 6.2d) [15]

30

 (a) Voronoi diagram of the road surface

(b) Colorful objects are the possible parking
zones. Blue markers represent the cen-
troids of the parking zones

(c) Sequence of route points. Blue markers
are the centroids of the parking zones
while the colorful lines are the route sec-
tions between closest points (red markers)
of the Voronoi diagram

(d) Final Route. Green line represents the �-
nal route, while red markers are the clos-
est points of the Voronoi diagram to the
centroids

Figure 6.2: Main steps of Voronoi diagram based method

31

6.2 De�ning the connected components

A parking lot is made up of parking zones, which have several parking spaces. A set of

parking spaces makes a parking zone. These zones are separate from each other, but the

road surface makes these zones accesable from other parking zones. The Voronoi diagram

based method takes the location of the parking zones into consideration. In order to be

able to determine the descriptive properties of the parking zones (such as the centroids

or extremum), the pixels of the parking zones should be determined, which describe the

parking zone as an object. Algorithm 7 performs the search of the pixels that belong to

the same object, by labeling the pixels. [16]

Algorithm 7 De�ning the connected components

Require: binaryOfParkingZones

Ensure: connectedComponents

1: connectedComponents← [];

2: L← 1; {L is the label of the object}

3: p← getFirstUnlabeledObjectPixel(binaryOfParkingZones);

4: if No p is found then

5: return connectedComponents

6: end if

7: connectedComponents← assignLabelToPixel(L,p);

8: p←getNeighbourObjectPixelOfPixel(p,binaryOfParkingZones);

9: if No p is found then

10: L← L+ 1;

11: GOTO 3

12: else

13: GOTO 7

14: end if

Algorithm 7 provides all the object pixels, which are the pixels of the parking zones, labeled

for each separate zone. As a conseqence all descriptive points of the parking zones can be

determined. For example the calculation of the centroid is provided by (6.1). [16]

M00 =
W∑
x=0

H∑
y=0

I(x, y), M10 =

W∑
x=0

H∑
y=0

x ∗ I(x, y), M01 =

W∑
x=0

H∑
y=0

y ∗ I(x, y)

C =

(
M10

M00
,
M01

M00

) (6.1)

The input of the calculation (6.1) is the binary image of a given parking zone I(x, y), where

W is the width, and H is the height of the image. For the calculation of the centroid (C),

the calculation of the moments of zero (M00) and �rst (M10,M01) orders are required.

32

6.3 Determine the sequence of points to be reached

The calculation of the sequence of points to be reached is a crucial part of the Voronoi

diagram based method. It is not enough to �nd the points to be reached, but a traversal

close to the optimal solution should be found too.

6.3.1 Airline based distance traversal

It seems to be a manifest choice to visit parking zones �rst, that are close to each other.

This would mean that the algorithm would �rst visit places where the dispersion of the

parking zones is dense. The sequence of points provided by this algorithm can be seen in

Fig. 6.2c. In that case the airline distance was measured between these parking zones. As

Fig. 6.2d shows, all centroids (marked with red markers) were reached.

The huge disadvantage of this method is that no cost optimization is taken into account.

Which means that the vehicle can reverse each time it has reached a parking zone, in order

to travel to the next one. Another disadvantage of this method can be seen in Fig. 6.2d,

where the vehicle only travels till the centroid is reached. This could cause that only half

of the parking zone is explored.

6.3.2 Graph based traversal

To �nd a close optimal solution for the traversal, a graph should be created from the

Voronoi diagram, where all centroids would be nodes. The edges represent the road surface

between the parking zones. If the Voronoi diagram does not contain any road crossings

a parking zone might have only 2 neighbors. In that case the traversal is trivial until all

nodes are reachable.

When crossroads are found in the Voronoi diagram, which is the most likely case in reality,

multiple traversal options can be found with di�erent costs. To represent the crossroads in

the graph, all crossing should be added to the graph as nodes. After that the nodes of the

centroids might have only 2 neighbors, but the crossing nodes might have any number of

neighbors. The graph created from the Voronoi diagram can be seen in Fig. 6.3.

33

Figure 6.3: Graph created from the Voronoi diagram
Note: The edges between the nodes represent the road with the
distance between the vertices

34

Traversal of the graph

Let G = (V,E) denote the undirected graph, where V is the set of vertices with the

number of nodes N < ∞, and E denotes the set of edges between the vertices. Let vc ∈
Vc denote the vertices, that represent the closest points of the Voronoi-diagram to the

parking zone centroids and Vc ⊆ V . As a consequence Vrc = V \ Vc, where Vrc is the

set of vertices representing the road crossings. The weight of the edge ∀e ∈ E is denoted

by w(e), where w(e) > 0. Between two vertices (vi, vj ∈ V), where i 6= j, the edges

(ep ∈ E, p = 1...n), appointing the shortest path between vi and vj determine the cost

function c(vi, vj) =
∑
∀ep∈E w(ep), where c(vi, vj) > 0 if i 6= j. The goal of the traversal is

to �nd the permutation of vertices SN (vc) for which the total cost (6.2) is minimal.

C =

N−1∑
i=1

c(si, si+1) (6.2)

Let Gc = (Vc, Ec) denote the graph, where Vc is the set of vertices that represent the

closest points of the Voronoi-diagram to the parking zone centroids, and Ec is the set of

edges between the vertices. The edge ∀ec,k ∈ Ec is created so that: ec,k = eci,j , where

eci,j ≡ {vc,i, vc,j} ∈ E and vc,i, vc,j ∈ Vc ⊆ V , or when @ eci,j than ec,k = el ∪ em =

{vc,i, vrc,a} ∪ {vrc,a, vc,j}, where el, em ∈ E and vrc,a ∈ Vrc .

If the graph Gc = (Vc, Ec) contains a Hamiltonian cycle, the traversal should be equal to

the Hamiltonian path HN . The Hamiltonian path would minimize C, however it is known

that it is an NP -hard problem to determine whether Gc = (Vc, Ec) has a Hamiltonian

cycle. What is more, in real parking lots, there are usually more than two dead ends,

which means that no Hamiltonian cycle can be found.

When speaking about vertex exploration, the manifest choices seem to be the Breadth-�rst

search (BFS) and Depth-�rst search (DFS) algorithms [17]. These algorithms use opposite

strategies of graph exploration. BFS provides a sequence of nodes SN (vc), where �rst the

neighboring vertices of the initial vertex, than the neighbors of these neighboring vertices

would be explored recursively. This would result in a path where the number of the vehicle

reversal is extremely high, which is rather undesirable. In contrast to BFS, DFS algorithm

provides a path where the number of the vehicle reversal is minimal, however the total cost

C is not taken into consideration at all.

The lack of optimal algorithmic solution leads to the use of arti�cial intelligence (AI). The

function of the total cost C is provided by (6.2), and the goal is to minimize this function.

For this purpose a genetic algorithm has been implemented, which tries to minimize the

cost of the graph traversal, which also results in the minimization of the vehicle reversals.

Genetic algorithms [18] are inspired by the process of natural selection. An initial pop-

ulation is provided, from which the �ttest individuals are selected for reproduction. The

35

recombination of the selected individuals provide a new population of o�springs. Similarly

to biological e�ects, an o�spring might contain mutated genes, which make the population

more diverse. The o�springs are reinserted into the original population, with a speci�c

rate of reinsertion, that is a�ected by the environmental factors, the �tness of the new

o�springs, and other conditions. These steps are repeated in each generation until forever,

or until the optimal solution is reached.

In the approach of graph traversal optimality, the initial population is made up of individ-

uals which have the genes of SN (vc) in random permutations. The �tness of the individuals

is determined by the order of the individual in terms of cost e�ectiveness. The objective

function that should be minimized is the total cost function described by (6.2).

As a consequence the individual with the lowest cost is the �ttest, and the one with the

highest cost is the least �t. After a certain number of generations, by selecting the the

�ttest individual of the last generation, the cost function is close enough to the optimal

solution.

The genetic algorithm was tested with the following parameters:

� Number of elements in Vc : 20

� Number of individuals in each generation: 50

� Maximal number of generations: 200

� Generation gap: 80%

� Probability of mutation: 1%

� Reinsertion rate of o�springs: 40%

36

Figure 6.4: The values of the cost function (6.2) for the best individual in each
generation

Fig. 6.4 shows that the randomly initialized �rst population had a best individual with

total cost of 8849. The next 60 generations could not improve the cost of the traversal.

The last generation had a lower cost of traversal with the total cost of 8710.

The �nal path shown in Fig. 6.5, starts from the vertex marked with green numbers of

visit order , and travels along all vertices of the graph Gc, that represent the closest points

of the centroids to the Voronoi diagram. Although the traversal contains some reversal of

the vehicle, the cost function has decreased in comparison to the random traversal.

37

 Figure 6.5: The traversal after the last generation, where the visit orders are
assigned to each vertex. The vertex marked with green numbers is
the initial and �nal point of the traversal

38

Chapter 7

Parking space detection

Chapters 3-6 described possible realizations of the �rst subsystem of the whole autonomous

parking system, presented in Chapter 2. This chapter gives the basics of the second sub-

system, which is the parking space detection. The sensor that has been used is a VLP-16

LiDAR [19].

7.1 LiDAR description

The VLP-16 sensor uses an array of 16 infra-red (IR) lasers paired with IR detectors to

measure distances to objects. The device is mounted securely within a compact, weather-

resistant housing. The array of laser/detector pairs spins rapidly within its �xed housing to

scan the surrounding environment, �ring each laser approximately 18,000 times per second,

providing, in real-time, a rich set of 3D point data.

Advanced digital signal processing and waveform analysis provide highly accurate long-

range sensing, as well as calibrated re�ectivity data, enabling easy detection of retro-

re�ectors like street-signs, license plates, and lane markings. Combining 16 laser/detector

pairs into one VLP-16 sensor and pulsing each at 18.08 kHz enables measurements of up

to 300,000 data points per second � or double that in dual return mode. [19]

7.2 Processing LiDAR data in MATLAB

Data processing is performed in MATLAB, where a preprocession of raw data is performed

in order to increase the e�ciency of the calculations.

7.2.1 Raw data from LiDAR

Data from LiDAR is stored in pointCloud object, which is a 3D-object storing [x, y, z] coor-

dinates of obstacles points. As a consequence the pointCloud determines the surroundings

39

of the LiDAR in Cartesian coordinate system, where the LiDAR is located at the origin

(0,0,0).

Figure 7.1: Example pointCloud object read from LiDAR. Figure depicts the
same measurement from di�erent viewpoints

Fig. 7.1 shows an example of the data read from LiDAR. As it can be seen it is a 3

dimensional representation of the surroundings, where the LiDAR is located at the origin.

7.2.2 E�ect of the orientation of the LiDAR sensor

The orientation of the LiDAR di�ers from the reference coordinate system. The center of

the vehicle represents the origin of the reference coordinate system. In order to simplify

further calculations let the orientation matrix, denoted by Ao, be the identity matrix, and

let the position (po) of the vehicle be at the origin. Let Ko denote the reference coordinate

system.

Ko =

Ao | po

− | −
0T | 1

 =


1 0 0 | 0

0 1 0 | 0

0 0 1 | 0

− − − | −
0 0 0 | 1

 (7.1)

40

Figure 7.2: Reference system of the LiDAR [19]

The vehicle is moving along x axis (see Fig. 7.2.). Let Kl denote the frame �xed to the

middle point of the LiDAR1. As in most cases the Kl coordinate system is not identical

with Ko, a transformation is required in order to determine distances relative to the frame

�xed in the middle point of the vehicle.

The transformation can be expressed with a transformation matrix called homogenous

transformation matrix (To,l).

Kl = To,lKo =⇒ To,l = KlK
−1
o (7.2)

As Ko is an identity matrix in (7.1) there is no need for inverse calculation in (7.2). Which

means that for the further calculations the homogenous transformation matrix is the frame

�xed to the center of the sensor.

To,l = Kl =

Ao,l | p0,l

− | −
0T | 1

 (7.3)

1Or any other sensor that is used for detection

41

7.2.3 Ground segmentation

The LiDAR is mounted on top of the vehicle at the height of h0 (see Fig. 7.3).

Figure 7.3: LiDAR location on top of the vehicle [20]

By specifying both h0 and the maximal height of interest hmax a simple ground and high

object segmentation can be performed. The eliminations of the obstacle points that do not

in�uence the occupancy of a given parking place, is performed by (7.4).

f(xi, yi, zi) =

{ []
, if zi < −h0 ∨ zi > hmax[

xi, yi, zi
]
, otherwise

,∀i (7.4)

This method of ground segmentation was introduced, to make faster execution possible.

Another possibility for ground segmentation is based on the surface normal, which in

case of a 3 dimensional space would be n3 = [0, 0, 1] vector. In the future phase of the

development, the segmentation based on the surface normal will be used.

42

As the planning of the parking maneuver is a two-dimensional problem, after ground seg-

mentation by projecting all the 16 layers of data to the x− y plane, the map is created in

bird's-eye view (See Fig. 7.4).

Figure 7.4: Bird's-eye view map, after projection to the x− y plane

7.2.4 Alignment of coordinate system

The parking places are to be searched parallel with, or perpendicular to the vehicle. As

the vehicle might not be perfectly aligned, there might be a need for alignment, so that

the parking places are to be searched parallel with, or perpendicular to the orientation of

the vehicle.

As Fig. 7.4 depicts, the roadside is not parallel with the x axis, which is the orientation of

the vehicle. In order to solve the misalignment, an angle of rotation α should be determined.

The steps of alignment are the following:

1. Creating a binary image form the 2 dimensional matrix storing all obstacle coordi-

nates

2. Performing Canny edge detection on the image [16]

3. Using Hough transformation [16] to determine the most signi�cant lines between the

angles of −45o and 45o.

4. The angle of the most signi�cant line determines the original rotation.

43

Creating a binary image

Figure 7.5: Binary image of the bird's-eye view map

The binary image (Fig. 7.5) is created in order to be able to calculate the derivative with

the help of Canny edge detection.

44

Performing Canny edge detection on the image

As Hough transformation provides a more robust Hough-line detection in derivative images,

Canny edge detection is performed before executing the transformation to Hough-space.

Figure 7.6: Performing Canny edge detection on binary image

45

Hough transformation

In order to get the parameters of the signi�cant edges, the image needs to be transformed

to (θ, ρ) parameter space, where ρ is the length of the normal of the line, and θ is the

angle between x-axis and the normal of the line. In this case the equation of the line is:

ρ = x ∗ cos(θ)+ y ∗ sin(θ) . As a consequence in this parameter space, lines are points, and

points are sine curves.

(a) Performing Canny edge detection on binary image

(b) The most signi�cant line in the binary image
belonging to θ parameter

Figure 7.7: Hough space detection of the most signi�cant line

Fig. 7.7a shows the edge detected binary image in Hough space. Where most sine curves

intersect, there is the most signi�cant line (marked with green square). Fig. 7.7b shows the

line to which the θ parameter belongs.

Inverse rotation of the image

As it has been already mentioned, it is only the angle of rotation that is required for the

alignment of the coordinate system. The output of Hough transform is the θ parameter. As

θ is the angle between the normal of the line, and the x-axis, the original angle of rotation

is α = −θ, but for the inverse transformation −α = θ is needed. This result in the following

inverse transformation matrix:

R−1o =

[
cos(−α) − sin(−α)
sin(−α) cos(−α)

]
=

[
cos(θ) − sin(θ)

sin(θ) cos(θ)

]
= RT

o (7.5)

46

Figure 7.8: Alignmnet of bird's-eye view map Fig. 7.4

Fig. 7.8. depicts the aligned map, so in the further steps the parking places are to be

detected parallel with, or perpendicular to the x axis.

7.3 Recognition of adequate parking spaces

Section 7.2 descriped the preprocessing of the raw data arriving from the LiDAR sensor,

including coordinate transforms for orientational corrections, ground segmentation, reduc-

tion of the 3 dimensional problem to a 2 dimensional one and the �nal alignments before

parking space recognition. This section presents a method of the parking space detection,

based on only LiDAR measurements. All further image processing methods are performed

on the aligned bird's-eye view map that can be seen in Fig. 7.8. For the further methods,

only the positive x coordinates are taken into consideration, as the vehicle is moving along

the x axis, and circling around the possible parking zones. This makes faster execution

possible, and decreases the redundancy of the detection.

7.3.1 Searching for adequate sized parking spaces

One of the main purposes of the 2nd subsystem is to �nd an adequate sized parking space

for the vehicle. The most common types of the parking spaces are parallel and perpendicular

parking. For both types, the algorithm is the same, but the parameters are di�erent. The

parameters of the algorithm are the dimensions of the vehicle including additional safety

distances.

Fig. 7.9 depicts the parameters of the vehicle that are required for the parking space

detection. It is important to note, that for both parallel and perpendicular parking, the

47

(a) Perpendicular parking parameters

(b) Parallel parking parameters

Figure 7.9: Minimal sizes of di�erent parking types

width and height parameters might not be the same, and in reality these are usually of

di�erent values.

Scanning the map

The manifest method of searching an adequate sized parking space is by scanning the map

along the x axis. As the required width and height parameters of the parking types are

known, it is su�cient to create scanning-boxes that span the cordinate system along y axis

and have the same width as needed for the parking.

Figure 7.10: Left - parallel parking space scanning,
Right - perpendicular parking space scanning

48

After scanning the map along the x axis (see Fig. 7.10), all the possible bounding boxes

can be determined that represent possible parking spaces. These bounding boxes have the

same width and height as the corresponding parking type.

An adequate sized parking space must meet only two requirements:

� No obstacle should be found within the bounding box of the parking space

� The parking space should be reachable along y axis

The aftermath of these requirements is that two sets of bounding boxes are created for

both parallel and perpendicular parking.

7.3.2 Grading of parking spaces inspired by fuzzy logic

Section 7.3.1 described the method of �nding adequate sized parking spaces. The algorithm

only took the car parameters and the safety distances into consideration. It is foreseeable

that with this method, the autonomous vehicles would park in the middle of the road,

or would overhang the parking spaces. When �nding a parking space it is not enough to

�nd a parking space of adequate size, but several aspects, such as the alignment with the

nearby cars or the distance measured from the actual location etc, should be taken into

consideration.

To satisfy all these aspects we present a method of grading the parking spaces inspired

by fuzzy logic. The presented method gives a quality factor of the parking spaces in the

interval of [0, 1].

The method presented can handle multiple aspects, that in�uence the quality of a parking

space. In this thesis two quality in�uencing factors are de�ned. One for the alignment with

the nearby vehicles, and one for the distance needed to get to the parking place from the

actual location of the vehicle. In order to obtain these quality factors, grading functions

are introduced.

Grading the alignment

The alignment of the vehicle to the nearby vehicles is an important quality factor of a

parking place. Sometimes it is not possible to park properly, without an overhang, to a

parking space, as obstacles might be in the way or for other reasons. In order to detect these

cases, it should be checked, whether the vehicle can be aligned with the nearby vehicles.

This means, that for parallel parking the vehicle should be aligned with the vehicle in front

and the vehicle at the back. In case of a perpendicular parking the vehicle should be aligned

with the left and right side vehicles. Let's call this case the perfect alignment (see green

bounding box in Fig. 7.11). By determining the exact coordinates of the perfect alignment,

49

Figure 7.11: The perfect alignment is marked with a green bounding box, all
other depicted bounding boxes get a lower alignment point

a distance can be measured between this perfect alignment and the best possibly reachable

alignment, that is in�uenced by the obstacles occurring in the parking place.

If due to any reasons the vehicle can not be aligned with the nearby vehicles, a distance

can be measured along the y-axis from the perfect alignment (see green bounding box in

Fig. 7.11). By assigning a function (in this case a triangular function) to this measurement

(see Fig. 7.12), the quality of the alignment can be determined.

Figure 7.12: Quality of alignment is provided by a triangular function

50

The grading function shown in Fig. 7.12 has the following properties:

� The center of the function is always 0, as the input is the distance measured from

the perfect alignment

� The distances from which the quality of the parking is 0, meaning the total lack of

alignment, can be chosen arbitrarily

Grading the distance between the actual location and the parking place

The goal of the whole autonomous parking system is to �nd a parking space as fast as

possible. However parking places that are detected too close to the vehicle have a higher

chance of being middle road parking places, which is undesirable, although it does not

mean that too close parking places should be excluded.

The grading function, that is introduced for grading the parking place based on the distance

measured from the actual location, is a Gaussian function. Where the center of the function

if a hypothetical optimum. This optimum should be the average of the distances measured

between the center of the road and the center of the parking places.

Figure 7.13: Quality of distance measured from the vehicle is provided by a
Gaussian function

The function shown in Fig. 7.13 has the following properties:

� The center of the function (µ) should be the average of the distances measured

between the center of the road and the parking places. This is the hypothetical

optimum

� The σ parameter can be chosen arbitrarily, but the range of the LiDAR or any sensor

that has been used should be taken into consideration

51

𝑞1
𝑞2

Figure 7.14: The measured inputs of the funcitons are the green lines (crisp
input), and the outputs of the functions are q1 , q2

Getting the �nal grade

In this thesis 2 quality factors have been introduced. One for grading the alignment to the

nearby vehicles, and one for grading the distance measured from the actual location. It is

possible to create many grading functions of di�erent quality altering aspects, such as the

cost w2 presented in Section 2.1.

All of these grades are scaled between [0, 1], and if any of these scores are 0, the �nal score

should be 0. As a consequence a simple arithmetical product of these quality factors can

give the �nal score.

Let's suppose that we have n quality factors (now n = 2). Let qi denote the output of the

i-th grading function (see Fig. 7.14), where i = 1...n. The �nal grade q can be determined

with the following formula:

q =
n∏
i=1

qi (7.6)

52

7.4 Simulation results

(a) Bird's-eye view map created from LiDAR data

(b) Aligned map of the simulated parking zone

(c) No parallel parking zones were found during
this measurement

(d) Possible perpendicular spaces are marked with
colorful bounding boxes. The one with the �lled
green color is the best one

(e) Possible perpendicular parkings found during
the second measurement

(f) Possible parallel parkings found during the sec-
ond measurement

Figure 7.15: Measured data in a simulated parking zone

Fig. 7.15a-7.15f show an example of a set up environment, where a room was simulating

the parking zone. Chairs and desks were arranged in speci�c patterns, so that the LiDAR

could detect free spaces as possible parking places. The simulation results show, that due

to the physical parameters of the vehicle, and the obstacles found in the map, it was not

possible to �nd an adequate parallel parking space (see Fig. 7.15c). The algorithm found

four possible perpendicular parkings (see Fig. 7.15d), from which the box �lled with green

color was the best one. The best parking place that was found during this scenery received

∼ 0.98 points for the distance, and 1 for the alignment.

53

Fig. 7.15e-7.15f show another measurement, where the best parking place that was found,

was a parallel parking place with ∼ 0.985 points. In this measurement perpendicular park-

ing places were found too, but the alignment was not as successful as in case of the parallel

parking.

After the success of the simulations in a room, the algorithm was tested in a set of data

provided by Velodyne Inc. The measurement provided by the company was taken place in

a busy street, with real tra�c and pedestrians. The results of the testing can be seen in

Fig. 7.16.

(a) Bird's-eye view map created from LiDAR data

(b) Aligned map of the parking zone

(c) There were several parallel parking places detected.
The best one is marked with green borders

(d) There were several perpendicular parking places
detected. The best one is marked with green bor-
ders

Figure 7.16: Testing the algorithm on a set of data provided by Velodyne Inc

Fig. 7.16 shows the testing of the algorithm on a real set of data. The results show, that the

algorithm found the parallel parking to be the best one, as the perpendicular parking was

too far from the middle of the road, which could have led to a possible sidewalk parking.

Further testings of the algorithm on a set of data, provided by Velodyne Inc can be seen

in a video linked in the bibliography. [21]

54

Chapter 8

Conclusion and future work

In this thesis methods were presented for parking lot exploration and parking space detec-

tion. The literature provides methods of parking space detection, in which multiple sensors

are installed in parking lots. This fact is the most serious disadvantage of these methods,

because developing systems like them can be very expensive and time-consuming. Our ap-

proach in comparison, has provided a method in which a vehicle is equipped with sensors

in order to be able to drive autonomously and detect the free parking spaces. Thus, this

approach seems to be the more practical way to create autonomous parking systems.

The �rst presented method for parking lot exploration is the trapezoidal cell decomposition.

This method decomposes the map to polygonal cells and then, a traversal can be created

knowing the adjacency matrix of the cells. The decomposed map is made up of several

cells of big areas. When visiting these cells, it is possible that the planned path does not

go through the whole cell.

The solution for this problem can be the modi�cation of the cell decomposition: decompose

the map along both x and y axes. In this case the intersections of the decomposed cells

are the �nal cells of the method. These cells have smaller areas and each cell has only 4

neighboring cells, so handling the adjacency matrix becomes easier. This advantage leads

to another method for creating the traversal of the cells. The undesirable reversing can

be eliminated by forbidding reversal when it is possible. In case of dead ends reversing

cannot be eliminated, as the vehicle must go back to the cell, from which it came. This cell

traversing method gives the opportunity to assign preferences to the passing directions.

A more e�ective way to assign preferences to the directions is based on wavefront algorithm.

This time an initial and goal cell is needed to be chosen. It is a manifest idea to choose the

initial cell as the goal cell, too. Then preference values are assigned to the cells, based on the

distance from the initial/goal cell by 4-neighborhood. This method provides a traversal,

in which cells are revisited less often. It is possible to avoid reversing the same way, as

presented before.

The biggest disadvantage of the presented cell decomposition based exploration methods

55

is that a polygonal map is required for them. Voronoi diagram based exploration provides

a solution for this problem, as it works in case of a general map.

Voronoi diagram based method, in comparison to the trapezoidal decomposition, does not

require the environment to be polygonal. This means that the presented method gives

a solution for the exploration, in general environments. The biggest disadvantage of the

method is the fact, that a graph created from the Voronoi diagram might not contain a

Hamiltonian cycle, and in addition to this, the decision whether it has one, is an NP -hard

problem. This thesis discusses several methods of the graph traversal including a simple

airline-distance based method, Breadth-�rst search and Depth-�rst search algorithms. As

these methods do not take the cost function into consideration, we have implemented a

genetic algorithm, that is trying to minimize the objective function expressed with the

total cost of the path. Voronoi diagram based method gives the exploration path of the

parking lot. When the traversal of the path begins, a LiDAR sensor attached to the vehicle

starts detecting the adequate parking places.

The second subsystem of the autonomous parking system is the parking space detection.

This subsystem uses a LiDAR, attached to the vehicle, to scan the environment. The

subsystem performs the necessary alignments that are required, due to the fact, that the

vehicle is moving along the planned path, during this process. Deriving from the vehicle

parameters, the safe-parking principles and several other requirements for the adequate

parking places, a grading of the parking places inspired by fuzzy logic is also presented

in this thesis. The presented method gives the possibility to take as many constraints,

requirements, and preferences into consideration as the developer or the driver wants.

This thesis also includes simulation of the parking zones, where the second subsystem was

tested. Furthermore, after the success of simulations, the subsystem was tested on a set of

data provided by Velodyne Inc.

In the actual state of development, most of the algorithms were tested in simulations. The

future work will include the tests in real environment, involving an autonomous vehicle,

equipped with an AutoBox and a LiDAR sensor. Future work also includes improving the

algorithms to be able to plan the exploration of multi-storey car parks.

56

Acknowledgement

We are really thankful to our supervisor, Gincsainé Dr. Szádeczky-Kardoss Emese for her

coordination, kind guidance and encouragement.

57

Bibliography

[1] Faheem, S.A. Mahmud, G.M. Khan, M. Rahman, and H. Zafar. A survey of intelligent

car parking system. Journal of Applied Research and Technology, 11(5):714 � 726,

2013.

[2] Mikael Fernstrom Muftah Fraifer. Designing a smart car parking system (poc) proto-

type utilizing CCTV nodes: A vision of an IoT parking system via ucd process. Ad-

vances in Science, Technology and Engineering Systems Journal, 2(3):755�764, 2017.

[3] Fadi Al-Turjman and Arman Malekloo. Smart parking in IoT-enabled cities: A survey.

Sustainable Cities and Society, 49:101608, 2019.

[4] Circontrol, mobility and emobility solutions. URL: https://circontrol.com.

[5] Ford Active Park Assist. URL: https://www.ford.com.au/technology/active-park-

assist/.

[6] E. Galceran and M. Carreras. A survey on coverage path planning for robotics.

Robotics and Autonomous Systems, 61(12):1258�1276, 2013.

[7] I. Noreen A. Khan and Z. Habib. On complete coverage path planning algorithms for

non-holonomic mobile robots: Survey and challenges. Journal of Information Science

and Engineering, 33:101�121, 2017.

[8] S. LaValle. Planning Algorithms. Cambridge: Cambridge University Press, 2006.

[9] M. A. Akkus. Trapezoidal cell decomposition and coverage. Middle East Technical

University, Department of Computer Engineering.

[10] Ch. Harris and M. Stephens. A combined corner and edge detector. In Proc. of Fourth

Alvey Vision Conference, pages 147�151, 1988.

[11] S. Mukhopadhvay V. J. Lumelsky and K. Sun. Dynamic path planning in sensor-based

terrain acquisition. IEEE Trans. on Robotics and Automation, vol. 6(no. 4):462�472,

1990.

[12] Anna Barbara Ádám. Nonholonomic motion planning for an increment-dimensional

path planning method, Thesis. Budapest University of Technology and Economics,

2018.

58

[13] Th. Fraichard and A. Scheuer. From Reeds and Shepp's to continuous-curvature paths.

IEEE Transactions on Robotics, vol. 20(no. 6):1025�1035, 2004.

[14] Mathworks. Image Processing Toolbox: User's Guide (R2006a), 2016.

[15] S. Eddins. Exploring shortest paths. MATLAB Central Blogs. Published with

MATLAB® 7.13. Posted by Steve Eddins, November 2011.

[16] Márton Szemenyei. Számítógépes látórendszerek jegyzet. Budapest University of

Technology and Economics, 2019.

[17] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Cli�ord Stein. In-

troduction to Algorithms. The MIT Press, 2001.

[18] Béla Lantos. Fuzzy systems and genetic algorithms. 10 2019.

[19] Velodyne LiDAR Inc. VLP-16 User Manual, 02 2019.

[20] Elephant Insurance. Self-driving cars are closer than we may think, 2017.

[21] Tests of the parking space detection on sample data. URL:

https://www.youtube.com/watch?v=Z%5FV0HgxogvM.

59

	Összefoglaló
	Abstract
	Introduction
	Parking system
	Formulation of the parking lot exploration problem

	Trapezoidal cell decomposition
	Method
	Creating the adjacency matrix
	Determining the graph traversal

	Rectangular cell decomposition
	Steps of the decomposition
	Creating the adjacency matrix
	Determining the graph traversal
	Wavefront algorithm based traversal

	Path planning
	Voronoi diagram based method
	Steps of the method
	Defining the connected components
	Determine the sequence of points to be reached
	Airline based distance traversal
	Graph based traversal

	Parking space detection
	LiDAR description
	Processing LiDAR data in MATLAB
	Raw data from LiDAR
	Effect of the orientation of the LiDAR sensor
	Ground segmentation
	Alignment of coordinate system

	Recognition of adequate parking spaces
	Searching for adequate sized parking spaces
	Grading of parking spaces inspired by fuzzy logic

	Simulation results

	Conclusion and future work
	Acknowledgement
	Bibliography

