
1

Gábor Kövesdán

HEURISTIC PATTERN
MATCHING OF POSIX

REGULAR EXPRESSIONS

SUPERVISOR

Gábor Bányász
BUDAPEST, 2011

2

Table of Contents
1. Kivonat .. 3
2. Abstract ... 4
3. Introduction ... 5
4. Background ... 6
5. Literal Matcher for TRE ... 9

5.1. Handling Different Kinds of Input ... 10
5.2. Adapting the algorithm to case-insensitive match 11
5.3. Handling Dots and Anchors ... 11
5.4. Reverse Matching .. 12

6. Using Heuristics .. 13
6.1. Longest Literal Fragment Heuristics .. 13
6.2. Prefix Heuristics ... 13
6.3. Fixed-length Heuristics .. 14
6.4. Heuristic Arrays ... 14

7. Other Considerations ... 16
7.1. Use Byte-Counted Buffers ... 16
7.2. Using REG_NEWLINE ... 16
7.3. Avoid Copies .. 17

8. Benchmarks and Conclusions ... 18
8.1. The Test Program ... 18
8.2. The Test Environment .. 18
8.3. The Results .. 18

9. Conclusion ... 20
Bibliography .. 21
Glossary ... 22

3

1. Kivonat

A POSIX reguláris kifejezések implementációi hagyományos esetben DFA vagy
NFA automatát valósítanak meg. Az előbbi a nagy állapottér miatt bizonyos
esetekben nagyon sok memóriát használhat fel, megvalósítása bonyolultabb,
nagyobb terjedelmű. Az NFA megvalósítás egyszerűbb, memóriafelhasználása
optimális, de teljesítményben elmarad a DFA implementációktól.

A reguláris kifejezések illesztése kiemelkedően fontos feladat, mert sok alkalmazás
igényli azt. A FreeBSD saját grep programján történt fejlesztések világossá tették,
hogy a gyenge teljesítmény bizonyos esetekben felhalmozódhat, és kritikussá
válhat, ugyanakkor az extrém memóriahasználat sem megengedhető, főleg a
beágyazott rendszerekben történő felhasználás miatt.

A GNU grep a C könyvtár implementációját megkerüli és heurisztikákat
használva jobb teljesítményt ér el. Ezt az elvet érdemes lenne a reguláris
kifejezések implementációjában megvalósítani. A GNU grep azonban egy
független szoftverkomponens, és nincs befolyása a C könyvtár felett, csak így tudja
elérni, hogy minden környezetben gyors legyen.

A dolgozat szerzője úgy döntött, hogy a FreeBSD operációs rendszer C
könyvtárában létrehoz egy hatékony reguláris kifejezés implementációt, így
minden ráépülő program profitál a hatékonyságából. Habár az ötlet részben már
létezett a GNU grepben, a vizsgálatok alapján ez az első általános célú reguláris
kifejezés implementáció, amely így működik. A dolgozat bemutat pár elméletileg
megfontolandó módszert arra, hogy hogyan lehet heurisztikusan közelíteni a
reguláris kifejezéseket, és ezáltal jobb teljesítményt elérni.

4

2. Abstract

Implementations of POSIX regular expressions usually use a DFA or NFA
automaton. The former tends to have a big memory footprint because of its big
state space and its implementation is more complex and less concise. The NFA
implementation is simpler, has an optimal memory footprint but it does not perform
so well as DFAs.

Pattern matching of regular expressions is a crucial task because a great many of
applications need it. The development of FreeBSD's grep utility has shown that the
poor performance can sum up in some situations, becoming critical. In contrast,
an extreme memory usage cannot be allowed, especially because of FreeBSD's
common usage as an embedded platform.

GNU grep uses some shortcuts against the C library implementation and achieves
a better performance by using heuristics. This principle should be implemented in
the regular expression matcher. However, GNU grep is an independent component
and has no control over the C library, so it can only achieve the same efficiency
in all environments in this way.

The author of this paper decided to create an efficient regular expression
implementation for the C library of the FreeBSD operating system, so that all
utilities that depend on it can benefit from its efficiency. Although the idea
already existed partly in GNU grep, according to preliminary research, this is the
first general purpose regular expression implementation that works in this way.
This paper explains some potential techniques of how to approximate regular
expressions with heuristics and achieve a better performance.

5

3. Introduction

This paper is a case study on replacing GNU grep and the old regex engine
in FreeBSD and tries to summarize all of the relevant conclusions. First, some
pieces of background information are provided that explain the importance of
this project and also summarize the factors that had to be taken into account.
After this introductionary information, a section describes literal pattern matching
and its possible generalizations and extensions and then another section talks
about possible heuristics that can be used to approximate regular expressions with
literal or almost literal fragments that can be matched with a faster algorithm
than the usual automaton. As we will see, the different approaches have different
advantages and disadvantages so the concrete decisions may differ in different
situations. This work focuses on the overall performance and tries to choose those
methods that are the most efficient in general cases. After the explanation of the
heuristic approaches, a short benchmark shows the current performance that has
been achieved so far, as of 2011 October.

The subject explained here supposes some basic knowledge in automata theory
and programming in POSIX environment. For those, who do not feel confident in
these areas, it is recommended to read the short glossary at the end of the paper
that contains the most important acronyms and terms. If necessary, the referred
bibliography also explains about the subject.

6

4. Background

In the FreeBSD Project, it has always been an objective — although a lower
priority one — to get rid of GNU software. It has various reasons. First of all,
GNU software is licensed under the GPL license, which does not suit very well
the BSD philosophy. Although it guarantees the software itself and any of its
derivative works to remain open source, it is not actually free in the terms of how
the BSD community interprets freedom because it limits the commercial use and
companies cannot build their products on these pieces of software and keep their
business secret at the same time. This does not motivate companies to use these
pieces of software and participate in their development. Another approach is to
use a more permissive license that allows commercial use without the obligation
of contributing anything back. Nevertheless, a great many of companies that use
such software decide to contribute back. In such a way, they get the support of
the community: highly experienced developers can review the code, users can try
it out and report back bugs, and so on, which can lead to a better product for the
company. This is definitely a mutual interest.

The replacement of GNU software is not just about the license. Instead of strictly
conforming to standards and having a clear policy on API changes, GNU software
tends to be very authoritative. The developers often just take non-standard solutions
and they do not seem to have a strict policy against breaking the API or breaking
compatibility between two version. BSD developers are more conservative and
cautious in this question but depending on GNU software prohibits them to follow
a stricter policy.

Sometimes there are also other considerations but these two are most probably
those of highest importance. In 2008, the author of this paper made efforts to
replace the GNU grep program in FreeBSD with a BSD-licensed version. The
grep program is a small command-line utility that is used to look for matching
lines in files for a specified regular expression. [1] During the development,
it was discovered that GNU grep is huge but extremely fast because it uses
some internal optimizations to heuristically approximate the possible matching
fragments of the text and only calls the regex engine [2] on such fragments. What

7

it actually does is taking the longest literal part of the pattern or patterns and
approximating the matches with either the Boyer-Moore or the Commentz-Walter
algorithm, depending on if we have one or multiple patterns. This means, the major
part of the text is processed with an alternative algorithm that is faster than the
automaton. This strategy significantly cuts down the processing time. It was also
seen that GNU grep sometimes consumes too much memory because it uses a DFA
implementation and it is not just a theoretical threat. A developer of a company
that uses FreeBSD in embedded systems reported such cases.

These facts lead to the following conclusions:

• It would be more beneficial to implement various strategies in the regex engine
instead of the grep utility because the code would be more cohesive, keeping
the utilities small and clean. Furthermore, all utilities that use regex pattern
matching could benefit from it. However, it is not possible with a totally POSIX-
conformant API as explained later becasue it uses NUL-terminated strings and
not byte-counted buffers, which requires reading the input text character at a
time. Besides, GNU grep has to include the optimizations if it wants to remain
fast on all platforms because it has no control over the libc implementation that
is present on the system. In contrast, a new regex library could integrate these
ideas providing an alternative interface for byte-counted buffers.

• Performance is crucial because in large searches the drawback can sum up. It
suggests a fast DFA implementation but it is very complex and can take too
much memory. An NFA implementation is simpler and more memory-friendly
but slower.

• If the major part of the search is done with a faster algorithm and the automaton
is rarely called to verify the heuristically approximated match, the performance
drawback of NFAs shall become moderate, while still keeping the low memory
consumption, so a heuristic NFA matcher seems to be a good trade-off.

In this phase of the development, it was decided to get a new and efficient regex
engine first. The currently used implementation is that old one written by Henry
Spencer. The author himself stated that this implementation was not efficient and
the code is not maintained any more. The following requirements were pinned up
for the future regex engine of FreeBSD:

8

• Must be written in C/C++, preferably C because it will be part of libc.

• Must have a good license.

• Must be efficient, yet should use NFA instead of DFA or somehow limit the
memory usage.

• Must have a clear and easily maintainable code.

• Must have good I18N-capabilites. Should accept wide string input, not just
single- and multi-byte strings.

• Must be POSIX-conformant.

There was an implementation that suited all of the requirements and it was TRE,
which is an open source, portable and general-purpose regex library. Besides, it has
an alternative interface for wide strings and also accepts byte-counted buffers, not
just NUL-terminated strings. TRE was designed with efficiency considerations in
mind and its memory consumption is also predictable. [5] The plan was to integrate
it to FreeBSD's libc and extend it with the heuristic capabilities. The heuristic
capabilities will be integrated into TRE but they will form a new layer on top of
the implementation, just like in GNU grep. They will try to solve the matching or
narrowing down the context and only call the automaton if necessary.

9

5. Literal Matcher for TRE

Literal matching is the first important step to optimize the regular expression
engine. It will be used directly for literal patterns and it is the basis of heuristically
approximating non-literal patterns. Literal matching is not a new problem. There
are numerous existing algorithms but they are very general and need adaptation to
be used in a regular expression matcher. There are a couple of problems that are
not present in purely literal matching:

• Both pattern and input text can be provided as single- or multi-byte or wide
string.

• Matching may be case-insensitive.

• Sometimes it is important where the match begins and ends, sometimes we only
care about the fact if there is a match or not.

• The dot character and the beginning of line and end of line anchors are relatively
easy to handle. It would be a good idea to adapt the algorithm to handle these
characters, as well.

The Turbo Boyer-Moore and the Quick Search algorithms will be used here as
a starting point. These are well-known algorithms and there are various detailed
descriptions and sample implementations online [6] [7] [8], so they are not detailed
here.

These algorithms work for cases when the pattern (that is, a shorter text) is specified
and processed first and the input (a longer text) can vary in future matches. In
the generalizations of the algorithms, one important consideration is to keep the
number of the matching phase steps low and possibly trade them off for extra
steps in the processing phase. The pattern is short and only processed once, while
the input text is longer and there tend to be more matching tries (that is, usually
scanning the whole text for matches), so it is usually negligible if new steps are
introduced in the processing phase but extra steps in the matching phase can sum
up.

10

The adaptation to the dot character and anchors and the reverse matching are ideas
that were implemented by Sean C. Farley <scf@FreeBSD.org> for freegrep. The
rest is introduced by the author.

It is also worth to note here that when multiple patterns are searched, the input text
has to be scanned multiple times because the algorithms mentioned above only deal
with one pattern. There are algorithms that can handle multiple patterns at the same
time and find matches by reading the input text only once. One such algorithm
is the Commentz-Walter algorithm that is used by GNU grep. What GNU grep
does is constructing the longest literal fragment for each regular expression and
finding possibly matching lines with this algorithm. However, this algorithm is not
applicable here because:

• The grep utility is line-based (as if the REG_NEWLINE flag were used), while
general regex matching is not. If the longest literal fragment is not a prefix
of the pattern, the input text has to be scanned from the beginning of the text
or beginning of the line of our match is line-based. The former is definitely
impractical but the second shall be efficient in practice.

• The POSIX API is limiting because regcomp only takes one regular
expression, so it is not possible to process all the patterns together by using the
standard interface.

5.1. Handling Different Kinds of Input
Storing the pattern in one of the forms would cause that the input supplied in the
other form would have to be converted at matching time. As described before,
it is not really desired because it will significantly decrease the performance. It
is a better idea to reserve some extra space and store the pattern in both forms.
The POSIX standard says that matching regular expressions is based on the byte
sequence representation of the character and not on the actual meaning of it, so
the common algorithms can be used on char * input regardless if it contains
a single-byte or a multi-byte character. However, the byte-length and the number
of characters is not necessarily the same, so the shift values have to be calculated
for the both forms but it is done in processing time so the overhead is negligible.
Patterns are usually not long so this approach does not take too much memory and
computational time, while the performance gain is huge.

11

Nevertheless, using the algorithm for wide strings raises a problem. When working
with char * strings, the bad character shift values are usually stored in and
looked up from an array of integer values that is indexed with the byte value of
the character. In all systems that support Unicode, wchar_t is defined to be a 4-
byte integer type because the whole Unicode character set does not fit in a more
narrow type. If we only use one byte for shift value that still means 2^32 bytes,
which is more than 4 GB, so it is practically impossible. Fortunately, the number of
distinct shift values is equal to the number of distinct characters in the pattern, and
the rest of the characters have the same shift value. This suggests storing a default
value and using a hash table for the distinct values. If the hash table is implemented
properly, it adds only a small overhead compared to the traditional solution, and
still, the pattern was also stored and processed in char * forms, so this overhead
only applies to wide string input.

5.2. Adapting the algorithm to case-insensitive match

The conventional solution for this problem is using single-case pattern and single-
case input. However, this means that the whole input text would have to be
converted to single-case, which adds a lot of extra steps at the matching phase. It is a
better solution to store the bad character shift values for both cases and calculate the
good suffix shift values on a single-case pattern because it trades off the matching
phase steps for some extra processing time. In this way, only those characters have
to be converted at matching phase that are actually compared. If we have big shift
values, it may be more efficient but in worse cases it may actually be much worse.
Probably, it can be decided by analyzing the pattern, which strategy to use.

5.3. Handling Dots and Anchors

Both basic and extended regular expressions define beginning of line (^) and end
of line ($) anchors. It is actually very simple to check these and they do not require
running the automaton. What they actually need is a check at the borders of the
match; whether they are the first or last character or whether they are preceded or
followed by a newline character.

The dot character, which matches any single character is also very easy to
implement in the Quick Search algorithm. Actually, it does not need any other
adaptation than modifying the comparing code to always return true for dot

12

and limiting the maximum bad character shift, based on the last dot. It has to be
checked, which is more efficient: using the Quick Search algorithm with a smaller
maximum shift and avoiding the automaton totally or using a purely literal heuristic
(maybe longest literal fragment or prefix) and then call the automaton.

In fact, there are more considerations than those described above because the
REG_NEWLINE processing time flag and the REG_NOTBOL and REG_NOTEOL
matching time constants influence the actual behavior of the anchors and the dot
character but it is straightforward to add these checks to the code.

5.4. Reverse Matching

If matching the dot character is implemented as described in the previous section,
the last dot can significantly limit the maximum shift value. If reversing the pattern
the last dot is earlier, it would result in a higher maximum shift and the inverse of
the Quick Search algorithm could be used, that is, using the reversed pattern and
starting to match from the end of the text. This would result in better performance,
however regexec must return the first match through its pmatch parameter,
unless the pattern was prepared with the REG_NOSUB flag, so it can only be used
when the pattern was compiled with this flag.

13

6. Using Heuristics

This section describes the kinds of heuristics that have been considered for the
optimization. It also explains some of the factors that influence efficiency and
applicability. As we will see, there is no best solution and to find one that is good
enough, the techniques have to be tried out to check, which ones perform well in
practice.

6.1. Longest Literal Fragment Heuristics

This is the technique that GNU grep uses and it consists of taking the longest
literal fragment of the pattern and using that one to locate possibly matching
fragments. The heuristic itself is not that accurate (compared to the array of
heuristics, for example) but the idea is to be able to scan the text with big shift
values. Furthermore, the longer the literal fragment is, its statistical occurrence will
be lower in a random text. Although a prefix heuristic can exactly tell where the
possible match starts, it may also give more false positives if it is shorter than the
longest literal fragment.

The most important problem with this heuristic is that it cannot be applied in any
general case. The grep utility is line-based, that is, there cannot be any newline
characters inside the matching text (just as if REG_NEWLINE were used). So if
we find a match for the heuristic, what we should do is isolating the matching line
and pass it to the automaton. With general regex matching, newlines can also occur
inside the matching text, so even if we found a match for the heuristic, we still
would have to scan all the previous text. This means that this technique is not really
applicable in general regex matching, except when the pattern is compiled with
REG_NEWLINE, which mimics the grep behavior.

6.2. Prefix Heuristics

This is the simplest form of using a heuristic. The idea is simply taking the longest
literal prefix of the pattern, for example, using “int” instead of “int[13][26]_t”. The
prefix is quite simple to construct, all that has to be done is to read the pattern from
the beginning and stop at the first unescaped special character.

14

The problem with this heuristic is that if there is an early false positive in a long text
and then a long fragment without matches, then a big part of the text will be read
by the automaton. If the pattern represents a fixed-length text — that is, there are
no repetition characters or collating elements that consists of of multiple characters
— it may be possible to limit the context, where the automaton is called.

6.3. Fixed-length Heuristics

It is usually possible to use a dot instead of a bracket expression because it still
represents one character. One exception is when collating elements or equivalence
classes are used because they break this rule. In general, this kind of heuristic can
always be used as long as the pattern only matches a string from a given length, so
it is referred here as fixed-length heuristic. In this case, the maximum shift of the
literal matcher may be lower than with a prefix heuristic but it may avoid calling
the automaton in more cases. For example, when the pattern is “int[13][26]_t” the
prefix heuristic would be “int”, which would give a false positive for “int ret;” and
the automaton would have to be called, while “int.._t” would avoid the automaton
using a maximum shift of 2 instead of 3. So it is not definitively clear, which way is
better. The efficiency of these two kinds of heuristics is a function of the concrete
pattern, the statistical characteristics of the input string and the effective cost of
calling the underlying automaton. In contrast to the prefix heuristic, a false positive
does not degrade the performance.

6.4. Heuristic Arrays

Even when matches can have variable-length, it is possible to give a more accurate
heuristic, which will be referred here as a heuristic array. It is actually not a
heuristic but an array of fixed-length heuristics that are constructed from fixed-
length fragments of the pattern. For example, an input fragment that matches
“fooo*ba[rz]z+abc” will also match the following patterns in this order: “foo”,
“ba.z”, “abc”. In other cases, the we may have a heuristic array, where the end
of the match is open because it ends with a repretition character. In such cases, a
false positive may degrade the performance but the statistical occurrence of a false
positive is lower with a heuristic array than with a simple prefix heuristic.

The consideration that we had about fixed-length patterns, also applies here: “ba.z”
has a maximum shift of 1, while “ba” would give 2.

15

Besides, there is another factor to consider. If the statistical characteristics of the
input text are such that a matching prefix is usually followed by a whole match then
the intermediate part is checked by both the literal algorithm and the automaton.
In such cases, a simple prefix heuristic could result in a better performance.

It may also be a good idea to drop short intermediate heuristics that have a low
maximum shift and only rely on the longer fragments.

16

7. Other Considerations

Having an efficient regular expression engine does not guarantee that all of the
utilities that link to it will be in fact efficient. There are some considerations
and guidelines that we will have to take into account when writing utilities that
use regular expressions. These are quite inter-related issues and require some
extensions over the standard POSIX API.

7.1. Use Byte-Counted Buffers

The POSIX API functions use NUL-terminated strings and not byte-counted
buffers. This requires reading the input text one character at a time to find
the end of the input and thus ruins the literal algorithms that can shift various
characters at once. Fortunately, TRE introduced an alternative interface, providing
the regncomp and regnexec functions that take the length of the pattern and
the input text respectively. This does not just eliminate the need to read all the
input characters but allows using NUL characters in the patterns and the text.
Although it is not standard-conformant any more, the difference is very small and
thus portability can easily conserved with preprocessor macros.

Although TRE's solution is definitely more elegant, it is worth to note that
Henry Spencer's implementation that became like a “de facto” standard in BSD
distributions, also offered a non-standard solution to specify where the pattern
ends. This was the REG_PEND flag. And the another BSD-specific extension, the
REG_STARTEND flag also allowed calculating the length of the input text.

7.2. Using REG_NEWLINE

When the utility is line-based, that is, a match cannot overlap multiple lines, it is
usually redundant to split the input text to lines and call regexec for all of the
lines. Splitting the lines requires reading the input characters one-by-one to find
the newline characters, just like in the case of NULs, as described above. It is more
practical to process the pattern with the REG_NEWLINE flag and let the regular
expression library quickly skip lines by shifting with the proper amount. It is only
possible if we can use byte-counted buffers through some extensions described
above.

17

One exception from this shortcut is when we want to count lines for some reason,
for example, with the -n option of grep. In this case, it is actually necessary to
read the input characters one-by-one.

7.3. Avoid Copies

When files are read or lines actually have to be separated, it is a common error to
copy data into an internal buffer. All copies should be avoided and the raw buffer
should be passed to regexec directly. It can only be done if the raw data is either
NUL-terminated or there is any way to tell the matcher how long the input is, for
example using the non-standard regnexec or the REG_STARTEND flag. When
reading from files, the easiest way is to use the mmap [3] system call and pass the
mapped memory directly to the matcher.

18

8. Benchmarks and Conclusions

8.1. The Test Program

The test program used for the benchmarks is a little grep-alike program. It uses
mmap to map the files without any copies and then traverses the content by
calling regexec with the REG_STARTEND flag. These decisions were to reduce
the overhead to the possible minimum. It only has options to recursively scan a
directory, to use BRE, ERE or literal match, to work in case-independent mode
or to use REG_NEWLINE. These are all important tunables for the benchmark.
The program does not really implement any error-checking features. If one file
cannot be opened, it will be just skipped. At this point, there may be bugs in the
heuristic code but the code generally works as expected. It is important to make
sure the proper behavior because if the new matcher code does not work correctly,
the comparison makes absolutely no sense.

8.2. The Test Environment

The test environmet was FreeBSD 10-CURRENT from October 2011. Being a
development version, it was compiled with malloc debugging options that add
some overhead but what we are interested in is the relative performance of the pure
and the heuristic regular expression code. The tests were run on three different
implementations: the current one in libc developed by Henry Spencer, TRE without
heuristic features and TRE with heuristic features. The kernel has been recompiled
to remove some kernel debuging options and superfluous device drivers and the
system was started in single user mode to disable background programs that take
CPU time from the running tests.

8.3. The Results

Some vague comparisons showed that generally the most efficient solution is to
always shift as much as possible, that is, purely literal heuristics are better than
those containing dots and the patterns that contain dots can be matched faster
if it is approximated with a purely literal heuristic than using the generalized
Quick Search algorithm. However, that may still be a useful generalization for less
feature-rich search languages that support a joker character.

19

It can also be seen that in some cases the current libc implementation is still faster.
The reason is probably that it is a DFA implementation but if we take a look at
the corresponding results of the heuristic matcher, we can see that the difference is
usually quite small and it scales quite well as the length of the pattern grows.

In general, the results are pretty positive. The performance growth is higher than
40 % in all tested cases and in some cases it is more than 80 %.

The following table summarizes the results for the three cases and the performance
growth between the original TRE code and the optimized one. All measurements
were taken five times after some ignored tries because the first runs tend to be
slower because of caching. The average of the five results was taken. The test data
was the whole /usr/include directory of the system.

As it can be seen, the patterns have been chosen to test the specific literal matching
and heuristic features. There are fixed patterns with distinct letters and also periodic
ones. Then we have fixed length patterns and such that are not fixed-length but can
be approximated with a heuristic array.

Table 1. Test Restults

Pattern libc-regex TRE TRE-heur Performance
growth

a 1.29 sec 1.2 sec 0.14 sec 88.33 %
abc 0.24 sec 1.51 sec 0.57 sec 62.25 %
abcdefgh 0.15 sec 1.51 sec 0.31 sec 79.47 %
abcdefghijklmn
opqrstuv

0.14 sec 1.51 sec 0.21 sec 86.09 %

abcdabcd 0.15 sec 1.51 sec 0.31 sec 79.47 %
abbabbbaaba 0.15 sec 1.51 sec 0.26 sec 82.78 %
unsigned.*int.*; 4.88 sec 2.05 sec 1.17 sec 42.93 %
unsigned.* 2.92 sec 1.65 sec 0.83 sec 49.70 %
unsigned.. 0.22 sec 1.45 sec 0.27 sec 81.38 %

20

9. Conclusion

The results have shown clearly that it is possible to increase the performance of
automaton-based regular expression engines by using heuristics. These ideas may
be generalized and used with other formal languages. It was also clear that the
greedy approach was the efficient one, that is, using always the best maximum
shift possible. However, this paper only reflects the current status of this research.
For example, the longest fragment heuristic could also be implemented exclusively
for cases, when the REG_NEWLINE flag is used, or although dots are not used in
the heuristics, the length of the matching fragment could be calculated for those
patterns that match a fixed-length text and this could be used to further limit the
use of the automaton to a more narrow context in some cases. It would also be
useful to check the method presented for REG_ICASE and he traditional single-
case approach for patterns of different length. There may be other little tricks and
ideas to try out and it is also worth to use a profiler to find the pieces of code that
are called most often so that the most critical bottlenecks can be found. Hopefully,
these ideas will be checked soon as part of this project.

21

Bibliography
[1] IEEE Std 1003.1-2008. The Open Group Base Specifications Issue 7. 9.

Regular Expressions. http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/
V1_chap09.html#tag_09.

[2] IEEE Std 1003.1-2008. The Open Group Base Specifications Issue 7. regcomp,
regerror, regexec, regfree - regular expression matching. http://pubs.opengroup.org/
onlinepubs/9699919799/functions/regcomp.html.

[3] IEEE Std 1003.1-2008. The Open Group Base Specifications Issue 7. mmap - map
pages of memory. http://pubs.opengroup.org/onlinepubs/9699919799/functions/
mmap.html.

[4] Introduction to Automata Theory, Languages, and Computation. 2nd edition. J.E.
Hopcroft. R. Motwani. J.D. Ullman. ISBN 0-201-44124-1.

[5] TRE - The free and portable approximate regex matching library. About. Ville Laurikari.
http://laurikari.net/tre/about/.

[6] A Fast String Searching Algorithm. Robert S. Boyer. J. Strother Moore. http://
www.cs.utexas.edu/~moore/publications/fstrpos.pdf.

[7] A Very Fast Substring Search Algorithm. Daniel
M. Sunday. http://delivery.acm.org/10.1145/80000/79184/p132-sunday.pdf?
ip=152.66.152.135&acc=ACTIVE
%20SERVICE&CFID=65026445&CFTOKEN=46914591&__acm__=
1319712540_a83791abbc9e261a492dd469f2e0963a.

[8] Exact String Matching Algorithms. Christian Charras. Thierry Lecroq. http://igm.univ-
mlv.fr/~lecroq/string/string.pdf.

[9] Efficient submatch addressing for regular expressions.. Master's thesis. Ville Laurikari.
http://laurikari.net/ville/regex-submatch.pdf.

[10] freebsd-current Mailing List. Why is GNU grep fast?. http://lists.freebsd.org/pipermail/
freebsd-current/2010-August/019310.html.

22

Glossary
A

Application Programming Interface (API)
The set of public functions of a subsystem that allow external components to use the provided
functionality.

Automaton
Model of a machine that has states and transitions. The transitions take input characters and
change the state of the machine based on the input character.

B
Berkeley Software Distribution (BSD)

A UNIX-derivative operating system that was developed at the University of California,
Berkeley. Today, there are different operating systems that emerged from BSD, like FreeBSD.
They are not considered to be UNIX-derivatives any more because the original UNIX code
has been replaced.

BSD license (BSDL)
Free software license that originates from the BSD system but is commonly used nowadays.
It permits commercial use and closed source derivative products.

D
Deterministic Finite Automaton (DFA)

An automaton that works deterministically, that is, receiving a specific input character in a
specific state can have at most one transition to another specific state. Transitions on empty
input are not allowed.

F
FreeBSD

An open source operating system that emerged from BSD.

G
GNU General Public License (GPL)

GNU's free software license. Requires that derivative works remain under the GPL license.
Commercial use is not directly limited but modifications and derivative works must be open
source, which is not always beneficial for commercial vendors. Because of this property, this
license is sometimes called “viral” among developers that do not agree with this limitation.

GNU's Not Unix (GNU)
A free software project that develops an open source operating system and related pieces of
programs. They use the GPL license.

23

grep
A command-line utility defined by POSIX that scans files for lines that match a specified
regular expression.

I
Internalization (I18N)

The process of making a software work properly with several input/output languages, taking
into account the specific characteristics and features of each one.

N
Non-deterministic Finita Automaton (NFA)

An automaton that allows several transitions for the same state and input character
combination, or even transition on empty input. Thus, an NFA can be in several states at the
same time.

P
POSIX

A standard that pretends to ensure the portability of software.

R
regular expression (regex)

A formal language that can be used for pattern matching, which in turn is used for software
features like advanced search or input validation.

	Heuristic pattern matching of POSIX regular expressions
	Table of Contents
	1. Kivonat
	2. Abstract
	3. Introduction
	4. Background
	5. Literal Matcher for TRE
	5.1. Handling Different Kinds of Input
	5.2. Adapting the algorithm to case-insensitive match
	5.3. Handling Dots and Anchors
	5.4. Reverse Matching

	6. Using Heuristics
	6.1. Longest Literal Fragment Heuristics
	6.2. Prefix Heuristics
	6.3. Fixed-length Heuristics
	6.4. Heuristic Arrays

	7. Other Considerations
	7.1. Use Byte-Counted Buffers
	7.2. Using REG_NEWLINE
	7.3. Avoid Copies

	8. Benchmarks and Conclusions
	8.1. The Test Program
	8.2. The Test Environment
	8.3. The Results

	9. Conclusion
	Bibliography
	Glossary

