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Kivonat

Adatok tulajdonjogának és biztonságának növekvő jelentősége miatt a Zero Knowledge
proof (tudásmentes bizonyítás, ZKP) protokollok a kriptográfiai kutatás alapkövévé váltak,
és egyre szélesebb körben használatosak. Mivel a hatékony ZKP-k kialakítása bonyolult,
magasabb szintű, főként imperatív nyelvekre szabott keretrendszereket hoztak létre ennek
könnyítése érdekében.

Ezzel párhuzamosan növekszik az érdeklődés a deklaratív programozási nyelvek iránt a
hozzáférés-ellenőrzés, az authorizáció, és az általános eljárásrendek kiértékelése terén. Ezen
területek szorosan kapcsolódnak az adatvédelemhez, és nagyban hasznosítanak adatvédelmet
megőrző technológiákat.

ZKP-k és a deklaratív programozási nyelvek integrációja még kiforratlan terület, kü-
lönösen olyan kontextusokban, ahol eljárásrendek érvényesítése szükséges. Bevezetjük az
Önkiértékelésű Eljárásrendek fogalmát: az értékelt eljárásrendet, annak alanya által kiszámí-
tott eredményét, a számítás igazolását és minden egyéb nyilvános bemenetét kriptográfiailag
összekapcsoljuk, így egy saját magában értelmezhető bizonyítást kapunk a kiértékelésre.
Célunk a következő kulcskérdés megválaszolása: Hogyan használhatjuk ki a Prolog nagy
kifejezőerejét zökkenőmentesen, miközben fenntartjuk a ZKP-k erős adatvédelmi garanciáit
egy Önkiértékelésű Eljárásrend keretein belül?

Munkánkban egy Prologra szabott, magas szintű ZKP keretrendszert mutatunk be.
Prolog meta-interpretáció felhasználásával és az eljárásrend kiértékelések hatékony rep-
rezentációjával hidat képzünk a kifejező eljárásrendek és a ZKP-k adatvédelmi garanciái
között. Keretrendszerünk a privát bemeneti adatok biztonságára összpontosít egy publikus
eljárásrend mellett. Az architektúra képes hatékonyan ellenőrizni a Prolog kiértékelési fáit
és lehetőséget biztosít a Prolog programokhoz aritmetikai áramkörök létrehozására, melyek
képesek a bizonyítási fa ellenőrzésére a bemeneti adatok magánjellegének védelme mellett.

Továbbá bemutatjuk keretrendszerünk implementációját egy pénzügyi-jellegű példán
keresztül, nevezetesen a lakossági energiavásárlást államilag támogató eljárásrenddel, amely
privát adatként védi a felhasználó fogyasztását. A kiértékelés eredményét egy Önkiérté-
kelésű Eljárásrendbe integrálva - a bizonyítással és a nyilvános bemenetekkel együtt - az
alany igazolhatja, hogy mennyi támogatásra jogosult, anélkül, hogy felfedné a mögöttes
fogyasztását.

Munkánk bemutatja a Prolog és a ZKP-k integrálásának lehetőségeit, és új megközelí-
tést nyújt a privát adatokat védő deklaratív eljárásrendek fejlesztése terén. Keretrendszerünk
kiindulásként szolgálhat a jövőbeli kutatásokhoz, potenciális alkalmazásokkal olyan te-
rületeken, mint az Önrendelkezésű Identitások, a Korlát-Logikai Programozás és egyéb
területeken.
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Abstract

Given the rising interest in data ownership and security, Zero Knowledge proof (ZKP)
protocols have emerged as a cornerstone of cryptographic research and are becoming
increasingly widely used. As performant ZKPs are convoluted to design, frameworks for
higher-level, mostly imperative languages have been proposed for generating ZKPs.

At the same time, there has been a resurgence of interest in declarative programming
languages in the context of access control, authorization, and general policy enforcement
and evaluation. These fields closely relate to privacy and would greatly benefit from
privacy-preserving techniques.

There is a gap in integrating ZKPs with declarative programming languages, especially in
contexts requiring rigorous policy enforcement. We introduce the concept of Self-Evaluated
Policies: the evaluated policy, its result computed by the subject, the proof of computation,
and all public inputs are cryptographically bound together and can by themselves serve as
proof of compliance. We aim to answer the pivotal question: How can one seamlessly harness
the strengths of Prolog’s expressive power while ensuring the robust privacy guarantees of
ZKPs within a Self-Evaluated Policy?

In this paper, we present a high-level ZKP framework tailored to Prolog. By leveraging
Prolog’s meta-interpretation capabilities and by constructing an efficient representation
of the evaluations, we bridge the gap between expressive policy definition and the robust
privacy assurances of ZKPs. Our framework focuses on protecting private input data for
a public policy. The architecture can efficiently verify Prolog proof trees and provides a
mechanism to generate arithmetic circuits specific to a Prolog program, which is able to
validate the proof tree while preserving the privacy of underlying data.

We detail the implementation of our framework over an example financial use case, specifi-
cally, privacy-enhanced governmental support allocation for residential energy expenses. By
bundling the result of the evaluation into a Self-Evaluated Policy together with the proof
and public inputs, the subject can prove how much support they are entitled to without
revealing their underlying consumption.

Our approach highlights the possibilities of integrating Prolog with ZKPs and offers
insights for advancements in privacy-preserving policy evaluations. Our framework serves
as a reference for future research, with potential applications in domains like Self-Sovereign
Identities, Constraint Logic Programming, and beyond.
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Chapter 1

Introduction

In today’s world, data ownership and security have developed from peripheral concerns
to paramount priorities. As individuals and institutions increasingly interact in digital
realms, the necessity for privacy, confidentiality, and transparency emerges at the forefront
of technological discourse. In this context, people, private companies and public institutions
may recognize a shared need to preserve ownership over their identity, their data, and to
preserve their right to an explanation of the algorithms, rules, and policies they are subject
to. There are emerging solutions to fulfil these needs, coming from all over the field of
privacy and confidentiality-preserving technologies.

One general concern arises when a party is the subject of a ruleset, ranging from access
control to governmental support policies. For them to be able to receive the benefits, from
access to financing, they are obligated to share their data with the executor of the ruleset,
who evaluates based on the arguments provided, and returns an answer. Some solutions
arose to mitigate specific aspects of this conundrum. Self-sovereign identities to increase
ownership and decision power of individuals over their own data and identity, blockchain
infrastructure to provide an irrefutable, single source of truth, and most importantly to
our discussion, Zero-Knowledge Proofs, which enable innovative and pioneering privacy-
preserving practices.

To add to the collection of these methods, we are addressing the challenge of defining
and implementing a policy framework which allows its subjects to evaluate the policies
themselves, in private, on their own hardware. We call this kind of policy a Self-Evaluated
policy. We deemed that the policy should be written using a declarative language because
these kinds of policies are easier to develop, are widespread in the contexts of access control
and modern service platforms, and because they possess different computational structures,
such as proof trees in Prolog, that help us make our framework more efficient and modular.
Our language of choice is Prolog, because it natively supports arithmetics, among other
functions, and is well suited for meta-interpretation, thus, the generation of proof trees for
evaluations is attainable.

In this paper, we present the following new results:

• An efficient methodology to transform Prolog terms into a form suitable for utilization
within a zero-knowledge environment

• A novel framework for constructing zero-knowledge provers that facilitates verifying
the validity of a proof tree corresponding to a Prolog program, including arithmetic
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• A unique usage of Prolog meta-interpreters as the computational backbone of our
approach, as part of a modular architecture

• A Proof-of-concept implementation of the toolchain

Our paper is organised as follows: In Chapter 2, we introduce our example use case for
Self-evaluated Policies and enumerate its requirements. Then, we discuss paradigms and
specific technologies that help us realize this use case, specifically: Self-Sovereign Identities,
Zero-Knowledge Proof systems, and declarative policy languages. We build up the concepts
needed to understand Verifiable Credentials, the Circom Zero-Knowledge system, and
Prolog evaluation.

Then, in Chapter 3, we also discuss Circuitree [27] and Otti [8], two Zero-Knowledge tools
which we think are closely related to our work. We briefly introduce their approaches and
highlight the similarities between our systems.

The second part of our paper discusses our contributions: In Chapter 4, we introduce Prolog
Meta-interpretation, the process which enables us to generate Prolog proof-trees

Next, in Chapter 5 showcases how the proof trees are verified. It describes the constraint
system our framework generates.

In Chapter 6, we discuss and evaluate the implementation of our toolchain. We examine
its correctness, soundness, and completeness, test its performance, and put it in context
of the use-case and other systems. The source code ti our implementation is available on
GitHub1.

Finally, in Chapter 7, we conclude our results and write about the potential future work
relating to Self-evaluated Policies and our Circom-based toolchain.

1https://github.com/BlackLight54/Self-Evaluating-Policies-w-ZKPs
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Chapter 2

From Self-Sovereign Identities to
Self-Evaluated Policies

In this chapter, we detail our chosen use-case, the ZKP system and the declarative language
we use, and generally, present the background of our work.

2.1 Use-case for Self-Evaluated Policies

During the second part of 2022, the Bank of International Settlements (BIS) Innovation
Hub in London, in cooperation with the Bank of England, initiated an exploratory project
to create an API definition and a prototype implementation for retail Central Bank Digital
Currency (CBDC) systems. As a second phase of that project, at the beginning of 2023, the
BIS IH published an open call for participation to envision, define, and prototype CBDC
Use-Cases over the CBDC API and prototype called Project Rosalind [12].

A joint team 1 of BME and MNB, the Central Bank of Hungary was selected for participation,
defined and created a use case and gained the chance to showcase the use case to the
Central Banking community as a finalist of the Phase 2 tech-sprint [11].

The use-case revolves around energy price support, and showcases a scheme where citizens
do not have to prefinance energy price support; instead, they are supported on a per energy
bill basis, by submitting outstanding bills, and documents proving their various in-need
status personal aspects to a (governmental) support office.

Due to the online, per-bill, and per-citizen nature of the scheme, the support office is able
to apply energy price support policies with fine granularity, decide on support in real time,
and is able to apply policies which take into account multiple policy objectives. In the
prototype, these constitute the incentivization of energy use reduction (on a twelve-month
rolling window basis), and the protection of vulnerable groups of society (such as job
seekers, large families, pensioners, and single parents).

The prototype utilized innovative financial primitives of the Rosalind API to introduce
privacy between energy suppliers and citizens in the energy price support context: the
last step of the worked-out scheme is the payment of energy bills from citizen accounts,
to energy suppliers, so that the supplier is not aware whether that specific payment was
supported by the support office, and if it was, then to what extent. At the same time, the
protocol also ensures the atomicity of joint payment of the supported and the unsupported

1participants: I. Kocsis, L. Gönczy, B.Z. Péter, B.Á. Toldi, L. Ónozó, Á. Nyikes, G. Magyar
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part of bills, strongly reducing the level of trust necessary between citizens and the support
office in terms of the appropriate use of funds.

The experience gained with the successful prototype showed that there is further room
for improvement in a number of privacy and trust aspects. Importantly, in the current
scheme, although the current support policy may be published by the support office in a
publicly verifiable way, in the end, it is the support office that computes and decides on the
support allowance of any bill and citizen. From the privacy point of view, it is questionable
whether a scheme where privacy-sensitive information has to be submitted to the support
office in a fully interpretable and irreprudiable way is optimal. We believe that at least
the option of enabling the self-evaluation of such policies, and the withholding of as much
sensitive information as possible should be worked out. This way, although the choice is
influenced certainly by a great number of non-technical (legal, policy, etc.) considerations,
decision-makers and the public influencing decisions can be aware of this alternative.

Certainly, Self-evaluation of policies creates the need for proving the correctness and validity
of self-computed support allowances. The key research questions of this work were motivated
by this goal; we plan to integrate the results back into the already existing prototype.

To fulfil this use-case, we define the requirements of a Self-evaluated policy:

• An evaluable representation of the policy can be transferred to its subject through a
trusted channel

• The subject can evaluate the policy based on the public and private facts they hold,
in private, on their own hardware

• The subject can create a Zero-Knowledge Proof of the result of their evaluation,
meaning they are able to prove the outcome of the evaluation without revealing any
private facts they hold

• The subject can communicate this proof through a trusted channel

2.2 Self-Sovereign Identities

In recent years, Self-Sovereign Identities (SSI) emerged as a novel solution for trusted
data distribution over the internet. According to Brian Behlendorf, GM for Blockchain,
Healthcare, and Identity at the Linux Foundation, SSI is "the most crucial fix for today’s
broken Internet." [7] It is a decentralized, peer-to-peer identity architecture based on the
principle that each peer has total control over the identifiers they own or are subject to. We
will briefly summarize the key building blocks of SSI, similarly as laid out by Drummond
Reed and Alex Preukschat [7], with a focus on Verifiable Credentials, which provide a
solution for standardised management of trusted data to be used as a Self-evaluated Policy,
and also serve as its container, meaning the policy can be communicated in a trusted and
verifiable way. Leveraging SSI, we have a cryptographic framework for communicating and
distributing facts, policies, and proofs in a peer-to-peer and privacy-preserving way over
the Internet.

2.2.1 ToIP protocol stack

The protocol stack, which serves as the entry point into the introduction of SSI, is the Trust
Over IP (ToIP) [51] protocol stack (Fig.2.1). It aims to bring together and standardize
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Figure 2.1: Trust Over IP Stack: https://trustoverip.org/toip-model/

the main ideas in SSI as a trust layer over the internet. We mainly focus on Verifiable
Credentials located on the technology side of the stack in the Data Exchange Protocols
Layer later in our introduction, because these are the objects our toolchain gets its trusted
input from, meaning the policy, the public inputs, and the private inputs are inside Verifiable
Credentials. To summarize the roles of the layers, the lower two levels of the stack focus
on meeting the technical requirements of digital trust with blockchains and secure and
private transaction protocols. In contrast, the top two layers focus on meeting human
requirements with cryptographic credential protocols, which can be integrated into specific
but standardised software ecosystems. Our toolchain would fit between Layer 3 and Layer
4 in this paradigm because it is a method for exchanged policy data to be interpreted and
acted on.

In summary, a ToIP protocol can establish trusted, secure, and private peer-to-peer con-
nections, issue, exchange, and verify digital credentials, and store public credential data
on Verifiable Data registries, which may use decentralized or distributed record-keeping
technologies.

2.2.1.1 Verifiable Credentials

"A verifiable credential is a tamper-evident credential that has authorship that can be
cryptographically verified." [39]

Credentials contain claims about their subject made by their issuers, usually in JSON-LD
format, cryptographically linked to both their issuer and their subject. These claims can
then be verified by presenting them to a Verifier, through a verifier, meaning the claims are
communicated through a secure channel, with the instructions and resources (e.g. signatures
and public keys, possibly from PKI) to verify their origin and subject.

Digital credentials are held within digital wallets, which are digital structures designed to
store Verifiable Credentials securely, and with the ability to present these Credentials using
various cryptographic approaches.

A key type of Verifiable Credentials relevant to our use-case is Anonymous Credentials
[37], which allow their controllers to prove a subset of claims in their Verifiable Credential
(i.e. selective disclosure), or some statement about their attributes without revealing their

5
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identity or even the underlying attribute. Anonymous Credentials use Zero-Knowledge
Proofs that enable verifiably answering questions, such as "Are you above the legal drinking
age?" without revealing any sensitive data. We detail an example of this type of Credential
scheme in Section 2.3.

Through SSI and Verifiable Credentials, it is possible to distribute policies and claim
facts about a subject in a privacy-preserving way. In this paper, we aim to leverage these
possibilities to enable an entity to enforce a policy without getting to know the underlying
facts that the policy is evaluated on.

2.3 Survey of Zero-Knowledge Proof systems

In this section, we define and introduce Zero-Knowledge Proof systems, explore a few
concepts related to them, and discuss some existing frameworks, with considerations on
how do they fit into our approach.

2.3.1 Definiton and examples

Definition 1 (Zero-Knowledge Proof). A cryptographic scheme where a
Prover is able to convince a Verifier that a statement is true, without providing
any more information than that single bit (that is, that the statement is true
rather than false). �

Computer Security Resource Center
Information Technology Laboratory [23]

The concept of Zero-Knowlege Proofs originates from Goldwasser et al. [30].

The classic example of a Zero-Knowledge Proof Protocol is the story of Ali Baba’s
cave [48]. There are two people: Peggy - the Prover -, and Victor - the Verifier. The story
takes place in a ring-shaped cave, with the entrance on one side and a magic door on the
other, which can only be opened and passed through by recanting a secret word. Peggy
knows this secret word and wishes to prove this fact to Victor, but without sharing the
word itself. There is a method for Peggy to prove knowledge of the secret to Victor, which
is Zero-Knowledge, meaning she doesn’t have to reveal the secret: Peggy enters the cave
and chooses a path while Victor waits outside. Unseen by Victor, she chooses to walk either
clockwise or counterclockwise. Victor then enters the cave and calls out the direction from
which he expects Peggy to emerge. Knowing the secret word allows Peggy to always meet
Victor’s expectations, either by walking back the way she entered or using the secret word
to pass through the magic door.

A single iteration gives Peggy a 50% chance of success even if she doesn’t know the secret, as
she might randomly choose the correct path. Repeating the protocol reduces the probability
of a false positive, with ten iterations leaving only a 2−10 = 0.0009% chance that Peggy is
deceiving.

This story is an example of an Interactive Zero-Knowledge Protocol, where the two
parties engage in an interactive exchange of information, through which the Verifier can
ascertain that the Prover indeed possesses the knowledge they claim.

In many SSI ecosystems, Zero-Knowledge proofs, specifically set-membership [41], and
range proofs [19] are used. A well-demonstrated and implemented in this regard is selective
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Figure 2.2: The example of Ali Baba’s cave (from
What is Zero Knowledge Protocol (ZKP)?)

disclosure of certain facts about a subject’s credentials, often dubbed Anonymous Creden-
tials. [37, 7] A common example of this is age verification for the purchase of controlled
goods. Currently, in most countries, when one wishes to buy alcohol, they must show an
identification card, which has a picture and their birthdate and may also show potentially
much more information about the subject, such as identification number, their mother’s
maiden name, what type of vehicles they are allowed to drive; facts which are irrelevant
for the purpose of age verification. Selective disclosure in this context means that one only
has to prove the fact that they are above the drinking age, but not their exact birthdate or
any other information.

There are established cryptographic frameworks for this use case in SSI, called Selective
Disclosure Predicates, for example, in Hyperledger Aries [34]. However, they only offer
set-membership (an element is within a set) [41] and range (a number is within a range)
[19] proofs, which only allow them to construct proofs for simple use-cases such as this.

Our goal in this paper with Self-evaluated Policies is to extend this paradigm onto more
complex predicates and use-cases, such as the use-case we discussed in Section 2.1.

2.3.2 Basic properties of Zero-Knowledge Proof systems

We introduce some basic but essential properties of Zero-Knowledge proofs, which according
to Mohr et al. [42], all ZKP systems must satisfy

Definition 2 (Completeness). For all true statements being proven, there exists a proof
that the Verifier will accept. �

Definition 3 (Soundness). For all false statements attempted to be proven, there does
not exist any proof that the Verifier would accept. �

Definition 4 (Zero-knowledge). The Verifier does not learn any additional information
from the proof or the protocol other than the fact that the statement is indeed true. �

2.3.3 Types of ZKPs

Current Zero-Knowledge Proof protocols can be categorized along a few properties[43]:

Interactive Zero-Knowledge Proofs A type of ZKP protocol that allows multiple
messages between the Verifier and the Prover.

7
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Non-Interactive Zero-Knowledge Proofs A type of ZKP protocol that only allows a
single message from the Prover to the Verifier.

Proofs of knowledge A protocol not only allowing the Prover to prove that a statement
is true but also that they know a witness to the truthfulness of the statement.

Arguments of knowledge A proof not only says that the statement is true, but the
prover also knows why it is true.

Succint arguments of knowledge Communication complexity and verifier time are
polylogarithmic in computation size.This effectively means that proofs stay relatively
small ( i.e. ∼ 1000 bytes ), even for extensive programs, and they can be verified in a
short amount of time ( i.e. ∼ 1000 ms ). Succinct arguments and proofs are preferred
due to their efficiency. [16]

Need for a Trusted setup Some protocols require a setup "ceremony" before any sound
proofs can be generated, called a trusted setup.

Definition 5 (Transparency). A proof system is transparent if it does not require
a trusted setup, meaning there is no need for a trusted entity to distribute keys in a
setup phase. [44] �

For one example, zk-SNARKs require a trusted setup phase. During this phase, a
common reference string (CRS) is generated, a set of public parameters for creating
and verifying proofs. However, in the process, it generates ”toxic waste” as well. With
this toxic waste, anyone could generate ”fake” proofs. For this reason, the setup is
”trusted” because the prover and the verifier must trust that the generator keeps the
toxic waste secret (or removes it). Multiparty trusted setup ”ceremonies” usually
address this shortcoming2. One example of this type of these is the Powers-of-Tau to
the People [46, 36].

Y=C(x,w)
Public

function

Public
input

Secret
inputs

Public
output

Setup: (C,P) → (pk,vk)

Prove: (pk, x, w) → Proof

Verify: (vk,Proof, x, Y ) → Bool

Figure 2.3: zk-SNARK setup, proving, and verification activities based on a computation
definition [52]

The need to perform a setup ceremony each time a proof needs to be generated can
be mitigated by using an universal setup, a method used by PLONK [26]. This means

2Source: [52]
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that the setup only needs to be done once, and that can be used for every program,
not just one. A large number of participants can generate a reusable, and trusted
universal reference string (powers of tau [36, 46]), that is well known through which
the generation of ZKPs is made more efficient.

Zero-knowledge proofs can be constructed from NP problems. In fact, Goldreich et al. [29]
showed that every language in NP has a zero-knowledge proof, given specific cryptographic
assumptions. In practical terms, the two most significant types of ZKP constructions
currently are zk-SNARKs and zk-STARKs.

2.3.3.1 zk-SNARKs

zk-SNARK stands for Zero-Knowledge Succinct Non-Interactive Argument of
Knowledge, representing an advancement in the field of zero-Knowledge protocols. [31]
Unlike interactive zero-knowledge proofs, where the prover and verifier engage in a back-
and-forth dialogue, zk-SNARKs allow the prover to generate a single, compact proof
that can be quickly verified by any party. This non-interactive nature not only enhances
efficiency but also broadens the applicability of zk-SNARKs in various decentralized and
distributed systems.

In zk-SNARKs, the "succinct" aspect is particularly crucial, as it ensures that the proofs
are not only short in length but also require minimal computational resources to verify,
irrespective of the complexity of the statement being proven. It is imperative to acknowledge
that the efficiency of zk-SNARKs comes at the cost of requiring a trusted setup, which,
if compromised through the leakage of sensitive intermediate values, the so-called "toxic
waste", could potentially jeopardize the security of the entire system. Despite this, the
integration of zk-SNARKs in various domains, such as privacy-preserving computation,
attests to their potential in enhancing both security and efficiency in digital interactions.

2.3.3.2 zk-STARKs

zk-STARK stands for zero-knowledge Succint Transparent ARguments of Knowledge.
[13] They utilize an Arithmetic Execution Trace, a technique that enables the conversion
of program execution into a polynomial form. This transformation allows for the efficient
verification of program execution’s correctness, without revealing the actual data or the
specific details of the computation. The transparent nature of zk-STARKs means they
do not require a trusted setup, mitigating the risk associated with the potential exposure
of sensitive information during the setup phase.

Furthermore, zk-STARKs demonstrate resilience against quantum attacks, ensuring their
applicability and robustness in the post-quantum era. This post-quantum resilience is
attributed to their reliance on post-quantum resilient cryptographic hash functions. The
succinctness of zk-STARKs ensures that proofs are compact and can be verified efficiently,
regardless of the computational complexity of the underlying statement. This property
holds significant promise for enhancing efficiency and security across various domains,
particularly in decentralized and distributed systems, where scalability and efficiency are
paramount.
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2.4 ZKP frameworks for computational models

In recent year, quite a few ZKP compilers and protocols emerged with differing characteris-
tics, many of which we explored in the previous section. Many of these ZKP systems, among
other capabilities such as set-membership and range proving, provide the ability to prove
the execution of a computation. Many of these frameworks offer higher level abstractions,
such as Zilch’s ZeroJava [44], but many of them in the end compile to a Rank-1 Constraint
System (R1CS) [54], or to Arithmetic Circuits, which in turn can be transpiled into R1CS.

For our use-case, we identified the following requirements that the underlying ZKP system
should have:

Non-interactive The proof needs to be able to be verified by multiple parties, and it
should be able to be used in blockchain settings, for example, as part of a Smart
Contract.

Universal Requires less trust in the setup, as only one of the participants needs to be
faithful in the setup process to be valid, and with 200+ participants in a universal
setup, it is not likely that the setup is compromised.

Procedurally programmable As we are proving the evaluation of declarative policies
(see Section 2.5), we don’t necessarily need an OOP abstraction model, but some
programming model is required because we deem that the development complexity of
straight Arithmetic Circuits for our approach would be too high. Thus a procedurally
programmable system is preferred.

Mature For our approach, we would prefer to use a system that is well-documented,
has fewer early failures, has an active community, and is overall mature. This eases
development and provides trust that this dependency of our system will be maintained
well into the future.

While, as of November 2023, various systems have been published [15, 44, 22, 40, 18, 10, 17,
28, 20, 8, 35], surveying the existing research (Table 2.1), two solutions seemed especially
adaptable for our use-case: Circom and LegoSNARKs.

Circom Circom [35] is a domain-specific language developed by iden3. It has a compiler
that developers can use to create R1CS-based ZKP programs without needing to understand
the underlying math behind it. It has an extensive standard library to help with common
tasks. It also has an implementation for multiple proving systems, such as gorth16 [32],
Plonk [26], and FFlonk [25], available in two libraries: SnarkJS and rapidsnark.

The representation in Figure 2.43 delineates the operational flow of the Circom framework.
Initially, the developer formulates a Circom program using the specialized domain-specific
language. This program is subsequently compiled into R1CS format. Utilizing this R1CS
representation, a setup phase is executed through a universal setup mechanism, yielding both
proving and verification keys. Upon code execution, tools such as SnarkJS or rapidsnark
generate the corresponding witness. Leveraging this witness and the pre-established proving
key, a zero-knowledge proof is produced. Furthermore, it is possible to generate an Ethereum
verification smart contract written in Solidity using the verification key.

3Based on the figure in [52] for ZoKrates
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Code Generated R1CS
Compile

Witness Setup

Compute witness Universal setup

Proving key Verification key

Proof

Generate proof

Verification
(Smart contract)

Export verifier

Figure 2.4: Circom workflow

LegoSNARKs LegoSNARK represents an advanced modular architecture tailored for
assembling zkSNARKs by integrating specialized proof gadgets. This architecture provides
a comprehensive toolkit for commit-and-prove zkSNARKs (CP-SNARKs), facilitating
the development of novel CP-SNARKs from fundamental proof gadgets and extending
commit-and-prove functionalities to a range of pre-existing zkSNARKs. Key benefits
of employing LegoSNARK encompass its adaptability, reusability, and the potential for
enhanced computational efficiency due to its modular design. Contrariwise, challenges
surround the complexity of mastering the modular system and potential constraints in
accommodating computations that do not align seamlessly with the inherent proof module
structure.

ZKP system Protocol Non-
interactive

Universal Ease of Use Compiler
Avail-
able

TinyRAM [15] zk-SNARK Procedural
ZoKrates [22] zk-SNARK Procedural
PLONK [26] zk-SNARK Arithmetic Circuts N/A
Bulletproofs [19] zk-ShNARK Arithmetic Circuts N/A
Circom [35] zk-SNARK Procedural
zk-STARK [14] zk-STARK Assembly N/A
Zilch [44] zk-STARK OOP

Table 2.1: Comparison of different ZKP systems [44]
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2.5 Declarative policies

As the language of our Self-evaluated Policy, we use a declarative programming language,
because, as stated by Godden et al. [27], they are very desirable for policy definition by
virtue of their expressiveness, ease of development, completeness, and performance. To this
end, we surveyed a few declarative languages as candidates for our Self-evaluated Policy
language:

2.5.1 Open Policy Agent and REGO

Open Policy Agent (OPA)[2] is a rapidly emerging policy evaluation tool used on
modern service platforms such as Kubernetes, Docker, and, most importantly, among
existing Self-Sovereign Identity platforms [5]. OPA is designed to unify policy enforcement.
It provides a high-level declarative language to define policies, called REGO. By leveraging
JSON as its data format, OPA ensures a lightweight and interoperable approach to
policy representation, making it an attractive option for organizations operating in diverse
technological environments.

REGO is purpose-built for expressing policies over structured data. It enables users to
specify policies that are both expressive and easy to reason about, ensuring that the
intentions behind policies are clear and unambiguous. The language’s syntax is designed to
be accessible, with a focus on allowing users to express complex policies in a straightforward
manner. This approach facilitates the adoption of OPA, as users are able to quickly become
proficient in Rego and start defining policies that are tailored to their specific needs.

One obstacle to using OPA in a ZKP system is its complex evaluation semantic, meaning
that OPA, opposed to Datalog and Prolog, generates an imperative evaluation plan which
can be compiled to WASM, that contains imperative structures, API calls, and a changing
application state. It may be possible to make OPA Zero-Knowledge, for example with
the zkWASM[6] framework and using the compiled WASM, but this solution didn’t fit our
approach, and its feasibility is unclear.

Open Policy Agent stands out as a robust and versatile tool for policy evaluation.
While its emergence is relatively recent, OPA’s potential for impact in the realm of policy
evaluation is substantial, warranting close attention and consideration in this field.

2.5.2 Datalog

Datalog is a query and rule language for deductive databases. It is based on the logic
programming paradigm, information is represented using facts and rules. Facts are basic
statements that express explicit pieces of information, and rules define relationships between
different facts, allowing for the derivation of new facts from existing ones.

The language is particularly well-suited for expressing recursive queries and is used in
various domains such as program analysis, knowledge representation, database management,
and access control. Datalog is designed to be more expressive than traditional relational
database query languages like SQL, while also being more tractable and easier to optimize
than full-fledged logic programming languages like Prolog.

One of the key features of Datalog is its simplicity and declarative nature, which allows
users to focus on specifying what they want to compute, rather than how to compute it.
This makes Datalog programs easier to understand, maintain, and optimize compared to
imperative programming languages.

12



A note regarding pure Datalog is that by itself, it cannot handle arithmetic, although
extensions exist to resolve this limitation, like DatalogZ.

Datalog provides a powerful and flexible framework for expressing complex queries and
relationships in a concise and readable manner, making it a valuable tool for a wide range
of applications in computer science and related fields. Still, it has its limitations.

2.6 Prolog as policy language

As the decalarative policy language for our prototype of Self-Evaluated Policies, we chose
Prolog. The reason for this are the following:

• Compared to Open Policy Agent’s REGO, Prolog’s resolution semantics are much
simpler, and therefore it is a much better candidate for a first prototype using our
approach. Specifically it is relatively convenient to create proof of evaluation rather
than proof of execution using proof trees and meta-interpretation, as we discuss in
Section 4.2 and Section 4.3.

• Compared to pure Datalog, Prolog offers built-in functions, which when reified
with a meta-interpreter (Section 4.3), are easily integrated into a proof of evaluation
(Section 4.3.3), proving functions such as arithmetic, list-management, and many
more, which are missing from Datalog. There is also a major difference between
the evaluation model of the two languages. Datalog evaluates queries bottom-up,
while Prolog uses a top-down approach. Also, there already exists a Zero-Knowledge
reasoner for Datalog, Circuitree [27], which fills the niche of pure Datalog policy
evaluation. We discuss Circuitree as a related work in Section 3.1.

We now introduce the syntax and semantics of Prolog statements and then present the
evaluation semantics relevant to our use case, proof of policy evaluation. In a sense, we
first show how Prolog programs are written and then discuss how they are evaluated.

2.6.1 Syntax

Our objective in this section is to describe Prolog’s fundamental representation syntax,
within the context of First-Order Predicate calculus, including terms, predicates, rules,
facts, atoms, programs, and goals.

Definition 6 (First-Order Predicate calculus). Given a set V of variables, a set F
of function symbols, a set P of predicate symbols, and the logical symbols ¬,∧,∨,→, ∀,∃,
the predicate calculus is a formal system that extends propositional calculus by allowing
quantification over variables and the use of predicates. [38]

• Terms: A term is either a variable from V, a constant (called an atom in Prolog),
or a composite formed by applying a function symbol from F to a tuple of terms.
For example, if f is a function symbol in F and X and Y are variables in V, then
f(X, Y ) is a term.

• Predicates: Predicates are Boolean-valued functions, with zero or more arguments.
Given a predicate symbol P from P with arity n and terms t1, t2, ..., tn, the expression
P (t1, t2, ..., tn) is a predicate.
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English Predicate calculus Prolog
and ∧ ,
or ∨ ;
if (Horn clause) ← :-
not ¬ not

Table 2.2: Connectives syntax in Prolog [38]

• Logical Connectives: These are symbols that are used to combine predicates into
more complex expressions:

– ¬P : Negation, the truth value is the opposite of P .
– P ∧Q: Conjunction, true only if both P and Q are true.
– P ∨Q: Disjunction, true if at least one of P or Q is true.
– P → Q: Implication, false only if P is true and Q is false.

• Quantifiers: They express properties or relations over all or some members of the
domain:

– ∀x P (x): Universal quantification, states that P is true for all instances of x in
the domain.

– ∃x P (x): Existential quantification asserts that there exists at least one instance
of x in the domain for which P is true. �

Predicates in predicate calculus can express the properties and relations of objects, and they
can be used to construct detailed and expressive mathematical statements. The expressive
power of predicate calculus goes beyond that of propositional calculus due to its capability
to handle variables, quantifiers, and predicates. For example, in predicate calculus we can
say "All women are intelligent." instead of "Kate is intelligent.", "Sarah is intelligent.", "Eva
is intelligent.", and so on [38].

Definition 7 (Prolog Rule). A Prolog rule represents an implication in the predicate
calculus and forms the basis of reasoning within a Prolog program. A rule in Prolog has
the following syntax:

a : - b1, b2, b3, . . . , bn

Which can be interpreted in the form:

A← B1, B2, . . . , Bn

Where:

• A is the head of the rule, representing a predicate that is concluded to be true if the
body is true.

• B1, B2, . . . , Bn constitute the body of the rule, which are predicates that must be
satisfied for the head A to hold. Each Bi for 1 ≤ i ≤ n is a predicate that the Prolog
system will attempt to prove true. �
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The interpretation of the rule is that if all predicates in the body (on the right-hand side
of ←) are true, then the predicate in the head (on the left-hand side) is also true.

A Prolog rule is a Horn clause with one positive literal A and n ∈ N negative literals
¬B1,¬B2, . . . ,¬Bn.

Definition 8 (Horn Clause). A Horn clause is a clause (a disjunction of literals) with
at most one positive literal. In other words, a Horn clause can be in one of three forms:

1. A single positive literal (Fact): A.

2. A disjunction of negative literals (Goal): ¬B1 ∨ ¬B2 ∨ · · · ∨ ¬Bn.

3. A disjunction of one positive literal and any number of negative literals (Rule):
¬B1 ∨ ¬B2 ∨ · · · ∨ ¬Bn ∨A. �

The name Horn clause is derived from the logician Alfred Horn, who identified this subset
of clauses in propositional logic [33]. Horn clauses are significant due to their computational
properties: determining satisfiability for a conjunction of Horn clauses can be done in
polynomial time, whereas it is NP-complete for general clauses [33, 21, 24].

Definition 9 (Prolog Fact). A fact in Prolog is a rule with no body. It is an atomic
formula that is unconditionally true in the context of the program P . It may be a predicate
with arity 0 · · ·n. It has the form:

a.

Where a is a predicate. �

For instance, in Prolog, parent(alice, bob) can be a fact stating that Alice is a parent of
Bob.

Definition 10 (Prolog Atoms). In the context of Prolog, an atom is a fundamental,
indivisible entity used to represent a constant value. It is a term with no internal structure
discernible within Prolog. Common examples of atoms include:

• Alphanumeric strings beginning with a lowercase letter (e.g., ‘apple‘, ‘john‘).

• Strings of special characters (e.g., ‘+-/*‘).

• Strings enclosed in single, or double quotes (e.g., ‘’Hello World’‘, ‘"Hello World"‘).

Atoms can appear as arguments to predicates, as the names of functors in compound terms,
or as elements in a list. �

In essence, atoms in Prolog are constants, function symbols, and predicate symbols in
predicate calculus, providing a way to represent specific, unchanging values.

Definition 11 (Prolog Program). A Prolog program P is a finite set consisting of
Prolog rules and Prolog facts. Formally, let R be the set of all possible Prolog rules and F
be the set of all possible Prolog facts, then:

P ⊆ R ∪ F

The program represents a knowledge base (database) in which the rules define relationships
and implications between predicates, and the facts establish foundational truths. When
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queried with a goal, the Prolog interpreter attempts to derive the truth of the goal using
the rules and facts in P through a process of logical inference. The entirety of P provides
the context and knowledge against which such queries are evaluated. We further explain
the exact semantics of this mechanism in the next subsection. �

Essentially, a Prolog program serves as both a repository of knowledge and a mechanism
for reasoning about that knowledge. For example, consider the following program:
parent(anne, bob).
parent(bob, carol).
ancestor(X, Y) :- parent(X, Y).
ancestor(X, Y) :- parent(X, Z), ancestor(Z, Y).

This program means that Bob is Alice’s parent, Carol is Bob’s parent, all parents are
ancestors, and all parents of ancestors are ancestors. We can then query this program to
find out if a given person is the ancestor of any other.

Definition 12 (Prolog Goal). In the context of a Prolog program P , a goal G represents
a logical assertion or query that seeks confirmation of its truth value within the knowledge
represented by P . Formally, given the universe of all possible predicates P, a goal G can
be defined as:

G ⊆ P

Each predicate within G is a proposition that the Prolog system is tasked to verify using
the rules and facts from P . The intrinsic semantics of G is a request for the system to find
evidence, based on the knowledge in P , that supports the truth of the assertions within G,
or to deduce their falsity in the absence of such evidence.

To denote that goal G can be satisfied over program P , we use the following notation:

P ⊢ G �

Using Prolog’s syntax, a goal can be written as:

• A single predicate: parent(anne, bob).

• A conjunction of multiple predicates: parent(anne, bob), parent(bob, carol).

2.6.2 Resolution Semantics

Now that we defined Prolog programs, the following questions arise:

• How does prolog evaluate the queried goals?

• What assumptions does it have?

• How does it handle arithmetic efficiently?

"The Prolog interpreter uses pattern-directed search to find whether these queries logically
follow from the contents of the database. The interpreter processes queries, searching
the database in left to right depth-first order to find out whether the query is a logical
consequence of the database of specifications. Prolog is primarily an interpreted language.
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Some versions of Prolog run in interpretive mode only, while others allow compilation of
part or all of the set of specifications for faster execution." [38]

Following the SWI-Prolog convention, we will refer to these pre-compiled rules and facts
as built-in predicates, and will treat them as a special case, because their de-compilation
is not supported by the meta-predicates, and need to be proven some other way, as we
discuss in Section 4.3. They offer various functionalities ranging from arithmetic operations,
list manipulation, to advanced features like file I/O, meta-programming, etc. They are
often implemented in a low-level language and don’t have the clear logical semantics that
user-defined Prolog rules have.

The program - database, knowledge base - is a model of a world made up of facts, over
which we can ask questions.
program:

parent(anne, bob).
parent(bob, carol).
ancestor(X, Y) :- parent(X, Y).
ancestor(X, Y) :- parent(X, Z), ancestor(Z, Y).

query: ?- ancestor(anne,carol).
true.

To reason over this "world", we must take the following assumption:

Definition 13 (Closed world assumption). In Prolog, the closed world assumption,
also known as negation as failure is the assumption that “anything is false whose opposite
is not provably true.” [38] �

The computational efficiency gained by this assumption is undercut in some context by the
complexity of development and the difficulty in utilising multi-valued logics. [38] Before
going over the algorithm Prolog usues for evaluation, we must define a few key concepts:

Definition 14 (Variable binding). In Prolog, a variable binding means the specific
values taken up by the variables in an expression. These values must be consistent for each
variable. �

For example, in the expression ancestor(X, Y) :- parent(X, Z), ancestor(Z, Y). a valid variable
binding must give values to the X,Y, and Z variables consistently.

Definition 15 (Substitution). Substitution refers to the assignment of specific terms
to the variables within an expression to render it a ground expression (i.e., an expression
with no free variables).

Formally, a substitution θ is represented as a set of pairs x1/t1, x2/t2, . . . , xn/tn, where
each xi is a distinct variable and each ti is a term. When applied to a Prolog expression, it
replaces every occurrence of variable xi with the corresponding term ti. �

For instance, consider this rule and fact in Prolog:
parent(X, Y) :- mother(X, Y).
mother(mary, john).

To provide an example, if we pose a query ?- parent(mary, Y)., Prolog seeks to unify the goal
with the rule’s head. During this process, a substitution X/mary, Y/john is identified and
applied, rendering the goal satisfiable.

To solve a query, prolog searches the knowledge base using the backtrack algorithm. It goes
through the following steps [38]:
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1. Unification: The Prolog interpreter starts by searching from the top of the program
to find a rule or fact that matches the first goal. If it finds a match, it will "unify" the
matching rule/fact’s head with the goal. Unification involves finding a substitution of
variables that makes two predicates identical. If no such substitution exists, unification
fails.

2. Recursive Evaluation: If the goal was unified with a rule (as opposed to a simple
fact), then the body of that rule becomes the new set of goals that need to be satisfied.
Prolog then recursively attempts to satisfy each of these sub-goals.

3. Backtracking: If Prolog fails to satisfy any of the sub-goals, it will backtrack, undoing
any bindings of variables it made during the failed attempt and then trying alternative
rules or facts. This process continues until either the goal is satisfied, or all possible
rules and facts have been tried and found wanting.

There are two other attributes of prolog resolutions to note, which which will help us
confirm the correctness of our approach, both for the policy and the proof generation [9].

Soundness If Prolog concludes that a goal is true, it must indeed be a logical consequence
of the program. This ensures reliability. If prolog tells us that a fact is true, we can
be sure it is. For example, consider a knowledge base that has the facts "All men are
mortal" and "Socrates is a man." If you query if "Socrates is mortal", a sound system
would rightly affirm this.

Completeness If a goal is a logical consequence of the program, Prolog will eventually
conclude it’s true, given infinite time and memory. This ensures exhaustiveness,
meaning Prolog will return all results of a query with enough resources.

In summary, the essence of Prolog’s evaluation mechanism is a depth-first search with
backtracking, trying to unify the queried goal with known facts and rules in the program.
It operates under specific assumptions, has some limitations but is empowered by a set of
built-in predicates. When it comes to creating proofs of evaluation, special considerations
have to be made, especially for built-in predicates to ensure that the proof generated is
logically sound.
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Chapter 3

Related Works

3.1 Circuitree: A Datalog Reasoner in Zero-Knowledge

Circuitree [27] is a Datalog reasoner in Zero-Knowledge, meaning it can reason over
Datalog facts and rules without revealing the underlying facts to the verifier. It operates
on a Datalog dataset, and encrypted private inputs. Its main advantages are that it
operates over a high-level declarative language, which makes it a very good candidate
for defining access-control policies. It is a really fast and well-optimized Zero-Knowledge
System, both in terms of proof generation and proof verification time. It can be integrated
into other applications and toolchains. Goodden et al. highlight many possible use cases
for their system, from which we would specifically feature that Circuitree may serve as an
alternative approach for The W3C’s linked data proofs[1], from which Verifiable Credentials
would greatly benefit. We were greatly inspired by their approach, however, there are some
major differences between our systems.

3.1.1 Approach to Datalog reasoning in Zero-Knowledge

The approach of Circuitree can be outlined as following Datalog’s bottom up resolution
semantics, and then manually constructing an R1CS using Bulletproofs, by adding con-
straints based on the steps the resolution takes, as opposed to proving the imperative run of
a foreign resolution engine. This approach allows Godden et al. to provide groundbreaking
performance, while using a declarative language. Same as Datalog’s resolution semantics,
their solution is iterative, meaning the application of the rules happens in a loop. The main
use case, which they use as an example through their paper, is a COVID-19 certificate based
access control system, which is a great example for the possible uses of declarative policies.
The computational complexity of their implementation is well defined, and they offer some
insightful optimizations. Of course, there are some limitations, both some inherent to
Datalog, and some because of the current capabilities and performance of Zero-Knowledge
protocols, specifically Bulletproofs. One aim of Godden et al. is to mend the shortcomings
of pure Datalog by implementing arithmetic in their system.
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Figure 3.1: Relations between application, Circuitree, proof system and underlying crypto-
graphic primitives. Source: Circuitree: A Datalog Reasoner in Zero-Knowledge,
page 2 [27]

3.2 Efficient Representation of Numerical Optimization
Problems for SNARKs

In their paper, Angel et al. propose Otti [8], a general-purpose zk-SNARK compiler which
provides support for numerical optimization problems, such as Linear Programming, Semi-
Definite Programming, and a class of Stochastic Gradient Descent instances. As input,
Otti takes arbitrary optimization problems defined in a subset of C, and produces an R1CS
optimality checker, along with a witness to this checker using a foreign solver, meaning
it can use state-of-the art solvers, while still providing a Zero-Knowledge Proof. It was
tested with the Spartan proof system, and provided orders of magnitude faster proof times,
because "on average, proof generation for LP and SDP is 30–40× more expensive than
finding the solutions themselves using existing solvers."

Figure 3.2: High-level workflow of Otti. Source: Efficient Representation of Numerical
Optimization Problems for SNARKs page 4227
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3.2.1 Brief overview of Otti

The core idea of Otti is to separate the evaluation of a CSP, and the proof of the optimality
of the solution. To this end, they utilize certificates of optionality, which is a computational
structure, using which it is possible to verify the optimality of CSP solutions. They also
introduce probabilistic certificates of optimality, which is a construct proving the estimated
optimality of Stochastic Gradient Descents.

Angel et al. verify, test, and evaluate Otti for all stated usecases in detail, and on a wide
array of datasets. They note very significant performance improvement compared to existing
systems.

Our approach inherits methods from both Circiutree and Otti. Circuitree defines the
architecture of a ZKP system proving the evaluation of a declarative program, focusing on
the policy evaluation use-case. Otti uses computational structure of certificates of optimality
and foreign solvers to prove optimaltiy of a CSP. Simmilarly, we use the computational
structure of a proof-tree, and use the SWI-PL foreign envirovment in our system.
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Chapter 4

A ZKP-based approach for
Self-evaluated Policies

Our approach to Self-evaluated Policies leverages existing techniques from previous research
(Chapter 3), as well as several unique solutions to the problem of Zero-Knowledge policy
evaluation. To prove that a policy written in Prolog has been evaluated with the private
inputs, we use a proof-tree, which is a computational structure that can be efficiently
manufactured and is a certificate that the policy has been evaluated correctly. [49]

After a proof tree is generated using a foreign Prolog implementation, we feed it into
a "checker" arithmetic circuit (Chapter 5), which ensures its validity, i.e., it hasn’t been
tampered with or maliciously generated, and generates a Zero-Knowledge proof, showing
the fact that the Prover has evaluated the policy, and the evaluation finished with some
result. This process is visualized by Figure 4.1 and 4.2.

We hope that by enabling the use of any high-performance Prolog solver, like SWI-Prolog
[3], we make our system more modular and hopefully achieve better performance than by
reimplementing a solver in arithmetic circuits.

4.1 Adding provable private facts to a knowledge base

To reason over private facts in an external Prolog environment, we must be able to prove
that the private facts that come from Verifiable Credentials are true. In SSI, the truth of the
facts is proven by them being signed by a trusted Issuer. There are existing Zero-Knowledge
systems that can prove that a message has been signed without revealing the underlying
message. [45] We outline a few approaches for how private facts may be extracted from the
Verifiable Credential and how their proof may be integrated into our system:

Extracting facts from a Verifiable Credential (VC)

Storing Prolog facts in VC One clean solution would be to store the Prolog facts
in the VC by themselves. This obviously puts the burden on the Issuer to
include them in the Verifiable Credential in the first place. This simply means
the JSON-LD contains a field that contains the Prolog facts in the Prolog syntax.

Converting JSON-LD to Prolog facts Another approach is to convert JSON-
LD into Prolog syntax. This poses the challenge that then the converting
algorithm’s execution should be provable in some way. This could be done using
recursive proofs, ZKP gadgets, or by extending the existing proving logic.
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Prolog source files Policy

Prover logic preparation

5.1 Proof-tree checker
R1CS network

(Circom)

4.4.1 Prolog term symbol table

Private facts
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Generate ZKP
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I. Design
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Figure 4.1: Overview of our proposed toolchain
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Prover

Proof Verification key

IV. Verification

Receive

Receive

Verify signature

Verify proof

Figure 4.2: Overview of the verification side

Integrating proof of private facts into our approach

Extend Proof-tree checker 5.1 R1CS network As we are defining our Arith-
metic Circuits with Circom, which takes arbitrary input, an adequate first idea
would be to extend our proof-tree checking logic by verifying the prolog facts or
their correct conversion. This isn’t trivial, as writing arithmetic circuits, even
through the abstraction of Circom, is still challenging. Nevertheless, according
to our experience with Circom, this approach is certainly viable.

Linking proof-gadgets The linking of small specialized proof gadgets has been
proven viable by LegoSNARK [20]. Specifically, leveraging their proof system,
we would be able to integrate our circuits along with a fact verification logic.

We think that this architectural decision, as in how do we integrate JSON-LD facts into
our Zero-Knowledge system, is mainly a question of how we should integrate within other
systems, specifically how do we fit into an application within an SSI ecosystem. As our
paper concentrates on the core functions and optimizations of Self-evaluated Policies, we
defer a more extensive analysis of these approaches to future work.

If the Prover has their private and public facts (from a Verifiable Credential), they can be
joined with the policy definition into a single knowledge base, over which they can reason.
This means that they can evaluate whether they satisfy specific expectations of the policy
or can perform calculations defined within.
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4.2 Proof trees

For proving the correct evaluation of a Prolog program, we utilize proof trees, also known
as resolution trees, as defined by Russel and Norvig. [49]

Definition 16 (Proof Tree). Let P be a program and G a goal. If P ⊭ G, then the proof
tree for G is empty. Otherwise, it is a tree t recursively defined as follows:

• if there is a fact f in P and a substitution θ such that Gθ = fθ, then Gθ is a leaf of t .

• otherwise there must be a clause H ← B1, . . . , Bn ∈ P and a substitution θ′ such
that Hθ′ = Gθ′ and P ⊨ Bjθ′∀j, Gθ′ is the root of t and there is a subtree of t for
each ∀Bjθ′ which is a proof tree for Bjθ′. �

Paraphrasing the definition, a proof tree is a tree whose nodes are rules defined in the
program and whose leaves are facts in the knowledge base. Each node is the head of a
Horn clause, and its children are its body.

A proof tree proves that goal G can be reached over program P because the verifier can
trace back each unification and each fact to the knowledge base. [49]

Other approaches for proving the evaluation of a program - both declarative and imperative
- often rely on explicitly retracing the steps of the execution of the program from beginning
to end and adding a constraint to the constraint system with each step from a valid starting
state, thus inductively proving that the program executed, and therefore, the evaluation is
correct. Our approach differs in a key way, specifically that by creating a proof tree first
and then proving its correctness, we decouple the execution and proof generation phases.

A valid goal may have more than one corresponding proof tree, meaning there are multiple
ways to unify the predicates and facts. It is possible to produce and use all proof trees that
may exist for a given goal for a given program, by, for example, using a visitor pattern.[47]
For our purposes, we want to verify that the goal can be reached. To this end, in our paper,
we will consider only one of the proof trees because a single proof tree is sufficient proof
that a goal can be reached.

An example proof tree can be seen on figure 4.3.
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ancestor(anne,carol)

parent(anne,bob) ancestor(bob,carol)

true parent(bob,carol)

true

Figure 4.3: Example proof tree

4.2.1 Pruning Proof Trees

To simplify proof trees or increase their expressive power, especially in the context of ZKPs
, we use a technique used by Passerini et al. [47], the pruning of proof trees.

During the creation of a proof of evaluation, built-in predicates pose challenges. As men-
tioned, they are pre-compiled and thus unavailable to be reasoned over using the built-in
meta-predicates. They often have diverging or prolog-variant specific semantics, but we can
define a subset of them, which have clear meaning regardless of the different prolog-variants,
such as =/2 for unification, is/2 for arithmetics, findall/3 for knowledge list creation, and
so on.

One approach is to replace them with equivalent logical constructs where possible. Another
approach, especially for complex built-ins, is to trust their operation and treat them as
"black boxes" with a known input-output behaviour.

To this end, we define a pruned proof tree, where the leaves are not only facts of the
knowledge base, but built-in predicates as logical statements, which evaluate to true.
Essentially expanding the previous definition:

• If G is a built in predicate, there must be substitution θ′′ such that Gθ′′ ⊢ P and
Gθ′′ ∼ true, then G is a leaf of t.

During the verification of a proof tree which contains built-in predicates, we must, of course,
check not only if they are the subgoal of the previous goal but that they are indeed logically
true.

This technique allows us to use built-in predicates in our proof trees and, thus, in our policy
programs, which enables not only the use of arithmetic but also many other precompiled
functions prolog has if we are able to check their truth value during verification.

This process is visualized on figure 4.4.
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sum(5,2)

Y is X1 + X2

X1 + X2

Figure 4.4: Example proof tree pruning

4.3 Generating proof-trees using meta-interpretation

Our approach relies on generating a proof tree for a Prolog goal. While there are im-
perative ways for creating such trees, e.g. Tau-Prolog’s derivation tree [4], we chose
meta-interpretation as our method of choice because Prolog is very well-suited for meta-
interpretation, and specifically for proof-tree generation; and also to demonstrate how can
Prolog be used inside a ZKP toolchain not just as a policy language, but as an active part
of the toolchain. In this section, we define meta-interpretation, show a couple of examples
in Prolog, and propose how proof trees may be generated with this technique, specifically
in the context of providing proof for program evaluation. For our understanding of meta-
interpretation and, in particular, Prolog meta-interpretation, we rely on the definitions and
techniques of Markus Triska’s The Power of Prolog and chapter 6 of George F. Luger’s AI
Algorithms, Data Structures, and Idioms in Prolog, Lisp, and Java. [53, 38]

4.3.1 Meta-interpretation in prolog

Interpretation is a fundamental concept in computer science, encompassing the evaluation
of programs, and it plays a vital role both theoretically and practically. One instance of
interpretation is when a program evaluates other programs, as is the case with language
interpreters. For instance, a program reading and adjusting its settings from a configuration
file interprets the "configuration language" encoded within that file. Another example would
be interpreted scripting languages, such as JavaSricpt or Python.

Meta-interpretation, on the other hand, introduces a layer of abstraction by having an
interpreter for a language similar to, or even identical to, its own implementation language.
In essence, meta-interpretation allows an interpreter to evaluate programs written in the
same language as itself. This concept leads to unique possibilities for introspection, recursion,
and self-evaluation within the interpreter.

Definitions

object-level the level of the program being interpreted
meta-level the level of the meta-interpreter
meta-circular a meta-interpreter that can interpret its own source code
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absorption a meta-interpreter uses an implicit language feature
reification a meta-interpreter makes a language feature explicit, observable
meta-call when a goal is dynamically invoked: Goal. call(Goal). This is available

in Prolog out of the box.
reflection and introspection : a program’s ability to examine itself, available in

many other languages, e.g. Java. In Prolog, the main tool for introspection,
among others, is also a meta-call: clause(Goal, Body).

Prolog stands out as particularly well-suited for meta-interpretation for several reasons.

• Firstly, Prolog programs can be naturally represented as Prolog terms, making
them easily inspectable and manipulable using built-in mechanisms. This intrinsic
homoiconic nature, shared with languages like Lisp and machine language, simplifies
the meta-interpreter’s task[50].

• Secondly, Prolog’s implicit computation strategy and support for all-solutions predi-
cates enable concise specifications within interpreters. This feature is not exclusive
to Prolog, as languages like Tcl and PostScript also possess it, but Prolog’s seamless
integration is notable.

• Thirdly, Prolog allows variables from the object-level (the program being interpreted)
to be treated as variables on the meta-level (the interpreter). This feature enables the
interpreter to delegate the handling of the interpreted program’s binding environment
to the underlying Prolog engine. In essence, Prolog’s simplicity, where the primary
construct is in the form of Head ← Body facilitates this alignment of object-level
and meta-level features, making it unique among languages.

By using established meta-interpretation techniques [38], we can re-define the semantics
of Prolog, such that - in a program written in the sublanguage understood by the meta-
interpreter - we can reason about any true statement. The method can be thought of as
asking Prolog "how" it evaluates the current goal recursively. To satisfy the definition, we
can use the clause/2 meta-predicate, which takes a goal term, and if it evaluates to true,
gives the body of the valid unification, which are the predicates the goal unifies to.

If the body is the true fact, the goal is a fact and satisfies the first part of the definition.
program:

parent(anne,bob).

?- clause(parent(anne,bob),B)
B = true

If the body contains other predicates, then the goal is a rule and satisfies the second part
of the definition. Then recursively calling clause/2 on the body predicates, we can produce
the corresponding subtrees.
program:

parent(anne, bob).
parent(bob, carol).
ancestor(X, Y) :- parent(X, Y).
ancestor(X, Y) :- parent(X, Z), ancestor(Z, Y).

?- clause(ancestor(anne,carol),B)
B = (parent(anne,bob), ancestor(bob,carol))

At the core of a basic Prolog meta-interpreter lies the ability to prove the evaluation of
a Prolog program. This is accomplished by interpreting the queried Prolog program and
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extracting the states represented as nodes within the proof tree. One such foundational
meta-interpreter is the "vanilla" meta-interpreter.

The vanilla meta-interpreter begins with the base case, where it asserts that any query
for "true" always holds. It then proceeds to handle conjunctions, representing them as "A,
B," by recursively invoking itself for both A and B. In the general case, it employs the
"clause(G, Body)" mechanism to extract clauses and recursively interpret the body. [53]
vanilla meta-interpreter:

mi(true).
mi((A,B)) :-

mi(A),
mi(B).

mi(Goal) :-
Goal \= true,
Goal \= (_,_),
clause(Goal, Body),
mi(Body).

Despite its simplicity, the vanilla meta-interpreter has limitations, including absorbing
most language functions, generating false choice points, and struggling to handle built-
in predicates due to their often private and precompiled nature within specific Prolog
implementations. Nevertheless, this basic structure serves as a foundation for Prolog
meta-interpreters.

Prolog meta-interpreters can be significantly enhanced in terms of performance, complexity,
and simplicity(with as few as two clauses by modifying the representation of the object-level
program). This opens up possibilities for further optimizing and refining the interpretation
process, which we demonstrate in the next section by defining a meta-interpreter that is
able to generate proof trees to be used in our toolchain.

4.3.2 Proof-tree generation

Utilizing prolog’s meta-interpretation capabilities[53], we can generate proof trees that can
stand as the basis of verification for the evaluation of a program. To produce a proof tree,
a meta-interpreter needs to reify the unification of a goal, which can be done with the
clause/2 predicate, as shown before, then store each subgoal in the correct tree structure
and also reify the recursive unification of the subgoals, meaning the body of the original
goal.

Using the following techniques [38], we build the proof tree recursively, with the proofs of
the goals woven together into the proof tree. The proof of true fact is true, and the proof of
two predicates and-ed together is the list of their proofs. The proof of a disjunction is either
one or the other subgoal’s proof. By these principles, this is what a basic meta-interpreter
capable of generating proof-trees may look like:
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mi_proof_tree(true, [true]).

mi_proof_tree((A, B), Proof) :-
mi_proof_tree(A, ProofA),
mi_proof_tree(B, ProofB),
append([ProofA, ProofB], Proof).

mi_proof_tree((A; _), Proof) :-
mi_proof_tree(A, Proof).

mi_proof_tree((_; B), Proof) :-
mi_proof_tree(B, Proof).

mi_proof_tree(Goal, [Goal|Proof]) :-
clause(Goal, Body),
mi_proof_tree(Body, Proof).

These reifications - truth checking, conjunction, disjunction, and of course, the unification
of generic goals - are viable for simple programs but are far from the complete set. For
example, a meta-interpreter may reify negation, cuts, and built-in predicates such as
is/2(arithmetic) and findall/3. To this end, we define a sublanguage which our meta-
interpreter understands, thus defining the exact expressiveness of our proven programs. We
discuss these considerations in the next subsection.

4.3.3 Sub-language definition and other considerations

A meta-interpreter capable of generating proof trees can reason over programs which only
contain language features which it reifies, and we can only verify the inferences of a proof
tree if the semantics of the statements are well-defined - for predicates in the program the
definition is explicit, for built-in predicates, no so much.

To avoid running into undefined or under-defined behaviour using our approach, we posit
that each toolchain - i.e. meta-interpreter, encoder, prover generator - is able to reason over
a well-defined sub-language of Prolog (Section 4.3.3). The semantics need to be consistent
in each step; a proof tree of a predicate must show unification the same way the prover
generator accepts them - e.g. If the body of an indication is returned as an array from the
meta-interpreter, the prover generator shouldn’t try to understand them as a right-recursive
tree -, the meta-interpreter must only prune the predicates the prover generator is defined to
understand the semantics of - e.g. the meta interpreter prunes is/2 and the prover generator
understands that the predicate N is 1 + 1 built-in means N equals two -, and more broadly,
should operate on a white-list like approach, meaning only those inputs are accepted in
each tool, for which behaviour is clearly and explicitly defined.

In essence, a sub-language definition for a toolchain is a dictionary of language constructs,
with a clear definition of their semantics corresponding to each one of them, which the
tools understand.

A key decision in how we choose to define our sub-language is whether we include and thus
allow negation in Prolog programs. Prolog is capable of handling negation all by itself, but
it breaks a crucial

One other consideration is the use of SLD trees - which are another established representation
of Prolog program evaluation - , and why we avoid them. As stated by Passerini et al. [47],
SLD trees are vastly more complex, more unstructured, and contain - for our purposes -
unimportant information, such as information about failed paths. The goal of our approach
is to prove that a prolog goal is a consequence of a policy program, and therefore because
proof trees provide sufficient proof of that fact, we chose to use them over SLD trees for
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their simplicity, and with the assumption that a smaller input tree corresponds to a smaller
prover generation and proving time.

4.4 Representation of prolog proof trees

To utilize the Prolog proof trees derived from our meta-interpreter within a ZKP framework,
it is imperative to encode the tree into a format compatible with the designated toolchain.
In the subsequent section, we delineate the methodology employed for the encoding of the
Prolog resolution trees.

4.4.1 Encoding prolog terms and predicates

The smallest components of the Prolog resolution trees are the terms and the predicates.
Each term and predicate is systematically assigned a distinct numerical value through
enumeration. A predicate is characterized by an array of integers, wherein the initial
integer represents the predicate’s identifier, followed by the numbers corresponding to the
predicate’s arguments. Additionally, specific terms such as "true" and "false" and arithmetic
operators (e.g., "+" "-" "is" or "/=") are encoded analogously to predicates.

For uniformity, the encoded predicate arrays must adhere to a consistent length. When a
predicate array contains fewer arguments than the standard length, zero-padding should
be applied to denote vacant slots. However, incorporating list arguments directly would
result in excessively large predicate arrays. To circumvent this, list arguments are extracted
from predicates and stored in a designated lookup table storage structure. This lookup
table retains the entirety of the list data without increasing the size of the predicates. Each
extracted list argument is substituted with its corresponding index within the lookup table.
It’s essential to highlight that this lookup table is also maintained at a uniform size for
standardization.

4.4.1.1 Encoding Example

Consider the previously mentioned Prolog program:
parent(anne, bob).
parent(bob, carol).
ancestor(X, Y) :- parent(X, Y).
ancestor(X, Y) :- parent(X, Z), ancestor(Z, Y).

The respective encoding for the terms and predicates are as follows:

anne → 1
bob → 2
carol → 3

parent → 4
ancestor → 5

true → 6
false → 7

Table 4.1: Term and predicate symbol table for the Alice-ancestor example
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Given this encoding:

→ The Prolog term parent(anne,bob)parent(anne,bob) is translated to the array: [4, 1, 2].

→ The special term "true" is encoded as [6, 0, 0].

This encoding provides a structured numerical representation of the Prolog terms and
predicates.

4.4.2 Encoding the tree nodes

In the constructed resolution tree, every node consists of two components: the ’goal’ and
its corresponding ’unification’ list. The ’goal’ refers to a predicate, which is encoded
as delineated in 4.4.1. Meanwhile, the ’unification’ list component comprises an array
containing arrays of encoded predicates. It’s important to ensure that the number of
unification lists present in each node remains consistent throughout the entire resolution
tree.

4.4.2.1 Example tree node

Within the framework of our resolution tree, let’s examine a specific node for better
comprehension. Let’s use the same Prolog program as in our previous example in sec-
tion 4.4.1.1. Suppose the Goal is represented as [5, 1, 3], which translates to the predicate
parent(anne,carol). Moving on to the Unifications, they are presented as [[5, 2, 3], [4, 1, 2]].
These encoded sequences correspond to the predicate ancestor(bob,carol) and
parent(anne,bob), respectively. In essence, this node’s primary objective is to determine
if Anne is Carol’s parent, as depicted by the encoded predicate [5, 1, 3]. The unifications
offer potential resolutions, signifying relationships such as Bob being an ancestor of Carol
and Anne being Bob’s parent.
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ancestor(X,Y) :- parent(X,Y)
...

goals: [[5, 1, 3], . . .]
unification list: [[[5, 2, 3], [4, 1, 2]], . . .]
bucket: []
childrenCount: [2, 1 . . .]

Figure 4.5: Encoding represenattion

4.4.3 Representation of the Proof Tree

In our computational framework, the proof tree is transformed into a linear array consisting
of encoded data structures. Sequentially, each node in the array is immediately followed
by its child nodes. This linearization process employs a Breadth-First Search traversal of
the proof tree. To accommodate the variability in the number of children per node, it is
essential to maintain an auxiliary array that records the child count for each respective
node.

Built-in predicates are represented similarly; they can be recognized by the fact that they
have no children but don’t unify with ”true”. The checker circuit recognizes them because
their semantics must programmed for them to work. When they are recognized, the checker
activates a constraint equal to their semantics.

The final representation is visualized on figure 4.5
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Chapter 5

Constraint system representation
of proof tree checking

5.1 Algorithm for Verifying the Proof Tree

The algorithm’s primary objective is to ensure that a given Prolog proof tree accurately
represents valid resolutions in a given Prolog program using ZKPs. By encoding this tree as
an array depicting the complete BFS path, we ensure efficient processing and verification.
The core steps of the algorithm are outlined below:

5.1.1 Node Validation

To guarantee the integrity of the proof tree, each node must accurately reflect its intended
Prolog goal and the associated unifications. This stage is highlighted in figure 5.1.

goals
unifications

child1 child2

Figure 5.1: Node verification highlight

For every node in the tree, the algorithm inspects the goal ( head ) and its corresponding
unifications ( body ). If the goal is represented as a rule in the Prolog program, the aim is
to ensure a perfect match between the parameters of both. For instance, if a node presents
a goal represented as a(x,y), and its corresponding unification is denoted by b(x,y), then
the parameters (x,y) should be identical across both the goal and the unification.

If the goal is a predicate that is known to exist with some arguments in the knowledge base,
the algorithm must cross-check if the goal with the correct arguments is in the knowledge
base.

This is also the phase where arithmetic operations are checked from the unification list.
This ensures that the values used in the proof tree are indeed correct.
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This part of the verification procedure is demonstrated with pseudo-code in Algorithm 1.

Algorithm 1 The algorithm to check if a tree node was valid with the prolog program
1: procedure checkProofTreeNode(proof-tree node)
2: goal← the goal of the node
3: unification← the list of unifications
4: knowledgeBase← The names of the goals that should be checked against the knowledge base
5: builtIns← The names of the predicates that have their semantics defined
6: if goal.predicateName in knowledgeBase then
7: assert isV alidInKnowledgeBase(goal)
8: if goal.predicateName in knowledgeBase then
9: assert isV alidBuiltIn(goal, knowledgeBase)

10: for i in 0..len(unification) do
11: for j in j..len(unification) do
12: if unification[i].predicateName == unification[j].predicateName then
13: for k in 0..len(unification) do
14: for l in 0..len(unification) do
15: if unification[i][k].variableName == unification[j][l].variableName then
16: assert unification[i][k].value == unification[j][l].value

17: return true

5.1.1.1 Example

Let’s take our previous example Prolog program about the ancestors of bob and carol,
and assume that our goal is to prove that anne is the ancestor of carol. In the root of
the proof tree for this statement, we will see our goal and its unifications. In this node,
we need to ensure that all the variables are filled in with the same parameters as in its
definition. This process is demonstrated in figure 5.2. Essentially, we need to make sure
that if the first parameter of the goal is anne, then the first parameter in the first part of
the unification body is also anne, and so on.

ancestor(anne, carol)

Goal

parent(anne,bob) ancestor(bob,carol)

Unifications

Figure 5.2: Node checking example

5.1.2 Transition Verification

To ensure the logical progression and coherence of the proof tree, the algorithm verifies the
transitions between parent nodes and their respective child nodes. This part is highlighted
in figure 5.3.
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goals
unifications

child1 child2

Figure 5.3: Transition verification highlight

Each unification in a parent node should correctly transition to its child nodes in the tree.
For example, if a parent node has a unification defined as b(x,y), the subsequent child node
should accurately present a goal of b(x,y). This check ensures the logical flow and accuracy
of goal transitions within the tree.

Algorithm 2 The algorithm to check if a tree node was valid with the prolog program
1: procedure checkTransition(proof-tree root)
2: unification← root.unification
3: children← root.children
4: for i in 0..len(children) do
5: assert children[i].goal.name == unification[i].name
6: assert children[i].goal.args.len() == unification[i].args.len()
7: for j in 0..len(children[i].goal.args) do
8: assert children[i].goal.args[j] == unification[i].args[j]
9: return true

5.1.3 Recursive Processing

To guarantee the holistic verification of the entire proof tree, the algorithm adopts a
recursive approach.

goals
unifications

child1 child2

Figure 5.4: Recursive verification highlight

After verifying a node and its immediate transitions, the algorithm proceeds to its child
nodes. By recursively applying the steps of node validation and transition verification, the
algorithm ensures that each tree segment, from root to leaves, adheres to the intended
Prolog program’s logic and structure. This process part is highlighted in figure 5.4.

The procedure is summarized in algorithm 3.
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Algorithm 3 Recursive processing of proof tree nodes
1: procedure processNode(proof-tree node)
2: children← the children of the current node
3: checkP roofT reeNode(node)
4: checkT ransition(node)
5: for i in 0...len(children) do
6: checkP roofT reeNode(children[i])
7: checkT ransition(children[i])

5.1.4 Additional constraints

To further bolster the robustness of the validation process, several additional constraints
have been posited to certify that the proof tree retains a ’well-structured’ demeanour:

Constraint on the root node: It’s essential to ensure that the root node does not have
an empty clause as its goal. This stipulation underpins the foundational logic driving the
algorithm.

Constraint Concerning Empty Nodes: Should a node be void of content, its child
nodes must be similarly empty, thereby preserving the entire tree’s structural integrity and
logical coherence.

5.1.5 Verifying built-in predicates

Because their semantics need to be defined in advance, as stated in Section 4.2.1, the
checker circuit can recognize them, and activate a constraint equal to their semantics.

For example, for the predicate A is B + C, the corresponding constraint is A === B + C.
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Chapter 6

Circom-based toolchain and
evaluation

We implemented a proof-of-concept toolchain for our approach. Specifically, we created
a policy for the use case defined in Section 2.1, designed a meta-interpreter along the
requirements laid out in Section 4.3, created a symbol table logic along the lines of 4.4.1,
along with proof-tree encoding 4.4, and finally a Circom code generator, which can create
policy-specific Proof-tree checker Circom programs, which in turn compile into R1CS,
through which we realise the demands of Chapter 5.

6.1 Meta-interpreter

The meta-interpreter we designed is capable of generating proof trees for Prolog programs.
This proof tree is structured as a recursive dictionary, where each node contains the current
goal, and its children -stored as a list - are the predicates that unify with it.

The interpreted programs can contain conjunction, disjunction, built-in predicates, and,
of course, general goals because the Meta-interpreter reifies these language features. The
specific behaviour for each is the following:

Conjunction The proof trees of the conjoined goals are joined because both are unified
with the previous goal.

Disjunction From the disjoined proof trees, the Meta-interpreter selects the unified one,
which defaults to the first if both can be unified.

Built-in predicates The built-in predicates are pruned, meaning they are marked as
special leaves, which have to be checked with a different logic than normal facts,
specifically by their exact semantics.

General goals For general goals, the Meta-interpreter unifies the body of the goal predi-
cate. If they are facts, they unify with true.

The meta-interpreter only obtains a single correct proof tree because that is sufficient
proof for a program evaluation. Of course, the consideration that has to be made during
policy design is that if the given goal has variables, either all evaluations result in the
same variable substitutions or all variable substitutions are accepted if they are the logical
consequences of the program.
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The meta-interpretation returns a proof tree, which is converted to JSON format, to be
processed by the encoding logic and then the Circom checker. We achieve this by using
the previously mentioned meta-interpretation techniques, meta-calls, and SWI-Prolog’s
JSON library. Because Prolog is sound and complete, the Meta-interpreter inherits these
properties, meaning that if a goal is the consequence of the interpreted program, the
Meta-interpreter will find its proof tree. It will never find a proof tree for a goal that is
not the consequence of the program. Also, we tried it on a few Prolog programs, like the
alice-ancestor example, the bob-grandpa example, and standard predicates, such as sum,
and of course, the policy for our use-case.

During these evaluations, the Meta-interpreter reached the correct conclusions within
milliseconds.

6.2 Encoding logic

In our ZKP framework, a dedicated encoding mechanism is deployed to construct a symbol
table explicitly tailored to represent Prolog terms. This procedure commences with the
initial parsing of the Prolog source file. Subsequently, each term within the program
is assigned a unique identifier through an enumeration-based approach. This process is
initiated by identifying and cataloguing all atoms, followed by progression to predicate
names, and culminates in the finalisation with variable terms. This systematic methodology
ensures an adequate characterisation of Prolog terms within the ZKP context.

Utilising this technique, we guarantee each term has a unique identifier, permitting direct
referencing via its assigned number. Our decision to adopt enumeration stems from its
inherent simplicity, offering a straightforward process to construct a collision-free symbol
table.

6.3 Circom program generator

The Circom code generator orchestrates the assembly of a program tailored for generating
zero-knowledge proofs. Initially, it undertakes the task of parsing the prolog program. After
this, it forms the symbol table, a process delineated in section 6.2.

To realise the whole assembly of the ZKP program, the code generator leverages a pre-
established template file. At the Circom layer, the generator formulates a distinct template
for each Prolog clause, verifying every rule embedded within said clause. The methodology
for this is expounded upon in section 5.1.1.

For the instantiation of these templates, we’ve conceptualised a distinct component template.
This entity is entrusted with the task of invoking the specific component requisite for the
evaluation of a particular node, a responsibility executed by our code generator.

Moreover, the component incorporates the knowledge base of the Prolog program directly
into the resultant code, embodied within a standalone knowledge-base checker component.

6.4 Performance evaluation

In our empirical analysis, we evaluated the proposed methodology utilising a sample policy
derived from the use case delineated in Section 2.1. The Prolog representation of this policy
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comprises multiple clauses, encompasses list manipulation, executes arithmetic functions,
and integrates both disjunctive and conjunctive operations. Within this policy’s proof tree,
the observed maximal depth was 15, and the highest branching factor was 13. Additionally,
an encoded predicate contained five constituent elements.

In the given experiment, the generation of a zero-knowledge proof was completed in
approximately 13 minutes. The arithmetic circuit encompassed over 1.1 million constraints.
This result highlights the effectiveness and robustness of our toolchain in managing tasks
of significant complexity and magnitude. Furthermore, the demonstrated performance
confirms its applicability for our specific use case.

During our testing, we observed that the number of constraints grows linearly based on
the maximum number of nodes in the proof tree.

6.4.1 Comparison with Other Systems

To objectively evaluate the efficiency of our toolchain, we draw a comparative analysis with
analogous systems, specifically Circuitree [35], detailed in section 3.1. Circuitree’s depth
tree encompasses 5 levels with approximately 105 constraints, and the proof generation time
within their framework is approximately 100 seconds. Despite the variations in foundational
methodologies, it is discernible that our toolchain exhibits proficiency in handling challenges
of increased arithmetic circuit complexity within an acceptable temporal scope.

6.4.2 Further testing

In subsequent research, we aim to assess our methodology using an automated evaluation
system designed to analyse Prolog programs of varying complexity and dimensions. Such
an examination could clarify the scalability of this approach.

6.4.3 Improving performance

A consideration for policy design for our approach, because of the nature of arithmetic
circuits, is maximum proof-tree size. Suppose the range of proof-tree sizes the policy
program can produce varies. In that case, the generated circom code always has to assume
the maximum size, increasing the size of the circuit and thus decreasing the performance,
although only linearly, as stated before.

6.4.4 Integration with Other Systems

Our toolchain is designed not just for standalone utility but also for interoperability. With
the capability to integrate with ’traditional’ blockchains, we can employ Plonk to generate a
verifier smart contract for platforms like Ethereum using Circom. Furthermore, our toolchain
successfully meets the initial use case we set out to solve, emphasising its effectiveness and
adaptability.
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Chapter 7

Conclusion

We successfully designed a framework for creating Self-evaluated Policies written in Prolog,
using the Circom compiler. The framework is modular in the sense that it is able to use any
Porolog implementation and the many Zero-Kownledge Protocols supported by Circom.
We verified that this approach to ZKP design is feasible, both in terms of architecture and
performance. Our evaluation of the proof-of-concept toolchain showed that our encoding
approach allows for linear scaling of proof times with input size, which is a very desirable
attribute. The tools were tested individually, and integrated together, with a wide range of
inputs. The results show that with our approach, Self-evaluated Policies are achievable, and
hold many opportunities for further research and improvement. Certainly, a key takeaway
from our research is that Zero-Knowledge systems are rapidly increasing in capability and
possible complexity, along with their performance and ease of use.

In the future, we aim to validate our system more rigorously, with a model-based approach.
We also want to improve its performance by optimizing the checker circuit. Furthermore,
we plan to integrate our results into the BME-MNB government energy support use-case
prototype discussed in Section 2.1
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