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Összefoglaló 

Napjainkban a mesterséges intelligencia szerepe növekvő tendenciát mutat, 

egyre több területen van hatással életünkre, az ember és a digitális eszközök 

összefonódása egyre jellemzőbb modern társadalmunkban. Az elektronikus 

szerkezetek azonban már nemcsak szórakozásra, hanem a monoton és unalmas 

tevékenységek kiváltására, a hibalehetőségek csökkentésére, a pontosság, valamint a 

produktivitás növelésére is alkalmasak. 

A gépi látás – mely a mesterséges intelligencia egyik fontos ága - segítségével 

berendezéseink képesek az azokat körülvevő világ észlelésére, automatizált 

vizsgálatok, valamint koordinálási feledatok elvégzésére. A gépi látás segítségével a 

képfeldolgozási feladatok számos esetben sokkal komplexebb módon valósíthatók 

meg, mint a hagyományos szenzorok segítségével, így lehetővé válik az emberi 

tényező kizárása, s ezáltal a minőség növelése, azonban ennek ára is van, hiszen 

jellemzően az ilyen rendszerek felépítése sok esetben bonyolultabb. 

Az egyik igen izgalmas és jelentős érdeklődést kiváltó alkalmazási területnek 

a közlekedés tűnik jelenleg, az önvezető autók esetleges elterjedésében fontos szerepet 

fog játszani a mesterséges intelligencia is. A közlekedésben az egyik legnagyobb 

kihívás a jármű körül lévő objektumok felismerése, e célból különféle algoritmusokat 

fejlesztettek ki, mindnek hátránya azonban, hogy valós idejű alkalmazásuk esetén 

erőforrásigényük magas. 

Munkámban egy olyan mély tanulás (deep learning) alapú megoldást dolgozok 

ki, mely az erőforrásigény csökkentését tűzi ki célul. A megoldás meglévő 

objektumfelismerő algoritmuson alapszik, ez fogja a rendszer bemenetét szolgáltatni, 

s az általam kidolgozott Long Short-Term Memory (LSTM) alapú hálózat a meglévő 

objektumok típusából, illetve korábbi elhelyezkedésükből próbál meg a jövőbeli 

elhelyezkedésükről információt adni, ily módon nem válna szükségessé minden 

képkockára, hanem elég csak bizonyos időközönként újra lefuttatni az 

objektumfelismerő algoritmusokat. A megvalósítandó hálózat az LSTM hálózatok 

idősoros jóslásának fajtájához tartozik. Ez annyit jelent, hogy az időben korábban 

történt eseményekből próbálunk meg a bekövetkező jövőbeli eseményekre valamiféle 

előrejelzést adni. Az ilyen hálózatoknak több korábbi időpillanatban történt adatot is 

be lehet adni bemenetnek, így növelve az előrejelzés pontosságát, melyet természtesen 
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az is erősen befolyásol, hogy mennyi idővel előre szeretnénk információkat kapni a 

modelltől. 

Az ideális modell megtalálása érdekében a legnépszerűbb metrikákat (MABO 

– Mean Average Best Overlap, mAP – Mean Average Precision) használom. A 

feladatot nehezíti a sok változó tényező, mint a tanult osztályok száma, a bemeneti 

adatok száma (mennyi korábbi adat szolgáljon bemenetnek), valamint hogy milyen 

időtávra predikáljunk előre. 

Összességében tehát objektumok mozgásának előrejelzését fogom 

megvalósítani idősor alapú LSTM hálózattal, melyet MABO és mAP metrikákkal 

fogok kiértékelni. A modell által előrejelzett eredmények pedig lineáris regresszió 

által meghatározott eredményekkel kerülnek összevetésre. 
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Abstract 

Nowadays, the role of artificial intelligence is increasing; it has more and more 

areas affecting our lives, the intertwining of humans and digital devices are becoming 

more and more common in our modern society. Electronic devices, however, do not serve 

sole entertainment purposes but are also capable of carrying out monotonous and boring 

activities, thus reducing defect potential, while increasing accuracy and productivity. 

With machine vision - a branch of artificial intelligence -, our devices can detect 

the world around them, to carry out automated tests and to execute tasks needing 

coordination. With machine vision, these image processing tasks can be accomplished in 

a much more complex way than with traditional sensors, so humans can be excluded 

increasingly to improve the quality, but it also comes with a price, because the design of 

such systems is more complicated. 

Creating solutions for the automotive industry is one of the most exciting areas of 

application, artificial intelligence will play an important role in the possible spreading of 

self-driving cars. One of the biggest challenges in the transportation sector is the 

recognition of objects around the vehicle, and various algorithms have been developed 

for this purpose. However, they have a disadvantage since their resource requirements are 

high in real-time applications. 

In this work, I am trying to develop a deep learning based solution that can reduce 

this resource requirement. The solution is based on an existing object recognition 

algorithm that will provide the input for the system. The „remembering” (Long Short-

Term Memory - LSTM) network I have developed will try to provide information about 

the future location of the objects based on their the exact class and their previous 

locations, so it would not be necessary to run the object recognition algorithm at all times, 

it would need to be re-run only after a certain period. The network that is going to be 

developed belongs to the time series prediction type of the LSTM networks. This means 

that we are trying to forecast events based on events that happened earlier in time. Such 

networks can take inputs from multiple earlier moments in time, thus increasing the 

precision of forecasting, which is naturally heavily influenced by how long in the future 

we want to receive information from the model. 

To find the ideal model, I will use different metrics (MABO - Mean Average 

Bounding Box Overlap, mAP – Mean Average Precision). The task is made complex by 
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the many variable factors such as the number of classes to train for, the number of input 

data (how many previous data should serve as input), and how far to predict in the future. 

All in all, I am going to predict the movement of objects with a time series based 

LSTM network, which I will evaluate with MABO and mAP metrics. The results 

predicted by the model are compared with the results determined by linear regression. 
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1 Introduction 

Imagination has always played an important role in the life of humanity. The 

greatest scientific fictions of the XX. century revolved mainly around thinking, feeling 

robots with artificial intelligence (AI). The scientists knew of course, that artificial 

intelligence is quite far away from their current knowledge, however very important 

researches were lead at this time that serve as a foundation for the science of today. 

Thanks to the work of our predecessors, we have come a long way, yet the real artificial 

intelligence is still far from us, but there are significant steps forward almost in every field 

of the application of the AI. Artificial intelligence has many variants; one of those is 

machine learning. 

Nowadays machine learning is getting more and more popular, its usage finds a 

way in almost every aspect of our lives, we should just think about our music listening 

habits, e.g. YouTube and Spotify always manage to recommend us new songs, and in the 

very high percentage of cases, let us be honest, we do like their recommendations. 

Another example could be the new way of unlocking of our phones, namely just by 

looking at it. This feature involves deep learning for the face detection via the camera. 

This use-case, object recognition and object detection, is one of the main area of the 

research of this field, this is mainly due to its versatile forms of applications. Object 

recognition is the process of identifying different objects in an image, while object 

detection goes a step further, it also determines the positions of the recognised objects. 

Object recognition and detection can help us automate many tedious tasks, like 

evaluating invoices for accounting, face detection and thus ensuring security at crowd 

events, improving industrial processes or even for driving. The latter one is maybe the 

most progressive field of work today: developing a fully autonomous car is a main goal 

of many companies and researchers as well. An autonomous car needs to be able to 

recognise and detect every objects related to it and to the traffic in its surrounding, and it 

should be able to track them as well. This task is not trivial at all, although there are 

promising solutions regarding this topic. The state-of-the-art algorithms, that will be 

introduced in Section 2 have really good performance in recognising and detecting objects 

even in real-time, but they have one important downside, namely the performance, the 

computing capacity needed to carry out these complex tasks. Real-time object detection 
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usually has high computational demands that are generally satisfied by high performance 

Graphical Processing Units (GPUs). These components usually come with quite a high 

price tag and with the need of a reliable power supply with huge capacity. These criteria 

makes it challenging or even impossible to use these algorithms in real-time in various 

environments, such as in smartphones, or even in cars. 

The main goal of this thesis is to develop an algorithm that can track the trajectory 

of objects in videos with lower computational needs. This can be achieved if not all 

frames are processed, but some frames are left out and neural networks delivers a 

predicted location of the objects for the future frames, so the processing of the frames in 

between becomes unnecessary. 
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2 Related Deep Learning techniques 

2.1 Object detection algorithms 

What is object detection exactly? Object detection is object classification and 

object localization performed jointly. This means that an object detection algorithm has 

two main tasks, it has to predict, what kind of object is on the image, and where that object 

is exactly on the image. (Figure 1) 

These algorithms usually have at least five outputs per each identified class, the 

class label of the object, and the four coordinates identifying the so called bounding box, 

that can be seen in the image below as well. The coordinates of the bounding box can 

vary in different ways. The algorithm can return the centre of the bounding box, and the 

length of the sides of the box, another possibility would be to return the coordinates of 

the top left corner, and the length of the sides, or it can deliver the minimum and 

maximum coordinates of the sides of the box projected on both axes. 

 

Figure 1. Object detection: object classification and localization together (Source: http://cv-

tricks.com/object-detection/faster-r-cnn-yolo-ssd/) 

Object detection algorithms can be divided into two main categories: 

 region-based algorithms 

 single-shot algorithms 

http://cv-tricks.com/object-detection/faster-r-cnn-yolo-ssd/
http://cv-tricks.com/object-detection/faster-r-cnn-yolo-ssd/
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The most known algorithms of these categories are going to be introduced in the 

coming subsections. 

2.1.1 Region-based object detection algorithms 

The most trivial approach for object detection would be to use sliding windows of 

various sizes over the image, and evaluate all windows one-by-one with a CNN. That 

would create a given classification result for each window, after that we should create an 

algorithm that chooses the right windows as final results. This method is quite slow 

however, and that is mainly because of the many different windows we have to evaluate. 

R-CNN was created to help with this problem. 

2.1.1.1 R-CNN 

R-CNN stands for Regions with CNN (Convolutional Neural Network) features 

[1]. This object detection system consists of three modules.  

The first generates approx. 2000 category-independent region proposals using a 

special method, called selective search. Selective search takes into consideration that an 

object can occur at any scale within the image. Furthermore, some objects have less clear 

boundaries then other objects. Therefore, all object scales have to be taken into account. 

Diversification plays an important role as well, this means that there is no single optimal 

strategy to group regions together (lots of variables, e.g. lighting conditions), so instead 

of a single strategy, which works well in most cases, selective search has a diverse set of 

strategies to deal with all cases. The last main feature of selective search is that it should 

be “reasonably fast [2].”  

The second module is a large convolutional neural network that extracts a fixed-

length (4096) feature vector from each region. In order to compute features for a region 

proposal, first we must convert the image data in that region into a form that is compatible 

with the CNN (its architecture requires inputs of a fixed 227 × 227 pixel size). From the 

many possible transformations of our arbitrary-shaped regions, the simplest one is used. 

Regardless of the size or aspect ratio of the candidate region, we warp all pixels in a tight 

bounding box around it to the required size. Prior to warping, we dilate the tight bounding 

box so that at the warped size there are exactly p pixels of warped image context around 

the original box (we use p = 16). 

The third module is a set of classs-specific linear SVMs. 
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To sum up in a nutshell, R-CNN takes an input image, creates regions that 

possibly contain an object, then those regions are evaluated with the help of a CNN. The 

CNN used for image classification can be pre-trained Figure 2. 

 

Figure 2. R-CNN workflow (Source: [1]) 

2.1.1.2 Fast R-CNN 

Fast R-CNN stands for Fast Region-based Convolutional Network method (Fast 

R-CNN) for object detection [3]. This algorithm was created to improve the main 

problems with R-CNN, which were: 

 Training is a multi-stage pipeline. R-CNN first finetunes a CNN on 

object proposals using log loss. Then, it fits SVMs to CNN features. These 

SVMs act as object detectors, replacing the softmax classifier learnt by 

fine-tuning. In the third training stage, bounding-box regressors are 

learned. 

 Training is expensive in space and time. For SVM and bounding-box 

regressor training, features are extracted from each object proposal in each 

image and written to disk. With very deep networks, such as VGG16, this 

process takes 2.5 GPU-days for the 5k images of the VOC07 trainval set. 

These features require hundreds of gigabytes of storage. 

 Object detection is slow: Detection with VGG16 takes 47s / image (on a 

GPU). 

The network first processes the whole image with several convolutional (conv) 

and max pooling layers to produce a conv feature map. So instead of running a CNN for 

each window (~2000 times per image), we simply run it once. After that a Region of 

Interest (RoI) pooling layer extracts a fixed-length feature vectors from the feature map. 



 12 

Each feature vector is fed into a sequence of fully connected (fc) layers that finally branch 

into two sibling output layers: one that produces softmax probability estimates over K 

object classes plus a catch-all “background” class and another layer that outputs four real-

valued numbers for each of the K object classes. Each set of 4 values encodes refined 

bounding-box positions for one of the K classes. (Figure 3) 

Fast R-CNN can use pre-trained networks as well, although they need to be 

modified a bit in order to work. First, the last max pooling layer is replaced by a RoI 

pooling layer that is configured by setting H and W to be compatible with the net’s first 

fully connected layer. Second, the network’s last fully connected layer and softmax are 

replaced with the two sibling layers described earlier (a fully connected layer and softmax 

over K + 1 categories and category-specific bounding-box regressors). Third, the network 

is modified to take two data inputs: a list of images and a list of RoIs in those images. 

The main reasons that Fast R-CNN is faster than R-CNN are that the Conv feature 

map for an image is calculated once, and that the training is faster since we only need to 

train one network instead of three, training all network weights with back-propagation is 

an important capability of Fast R-CNN. 

 

Figure 3. Fast R-CNN workflow (Source: [3]) 

Fast R-CNN has proven to be faster in training and testing time as well, but due 

to the fact, that the region proposals are the result of another model (using selective 

search), the improvement is not as good as it could be. 

2.1.1.3 Faster R-CNN 

“Our observation is that the convolutional feature maps used by region-based 

detectors, like Fast RCNN, can also be used for generating region proposals [4].” 
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The sentence above is the key to understand Faster R-CNN. Basically by 

integrating the region proposition into the same network that is used for classification as 

well makes the algorithm a lot faster, since region proposition was the main bottleneck 

up until this time. 

 

Figure 4. Faster R-CNN workflow (Source: [4]) 

But how does this region proposition work? For the region proposal generation a 

small network has to slide over the convolutional feature map output by the last shared 

convolutional layer. The input of this network is an n×n window over the feature map. 

Each sliding window is mapped to a lower-dimensional feature. This feature serves as an 

input two FC layers, a box regression (reg) and a box-classification layer (cls). (Figure 4) 

At each sliding window position multiple region proposals are computed, the 

maximum number of the proposals is denoted as k. The reg layer has 4k outputs (4 

coordinates per bounding boxes), the cls layer outputs 2k scores, which determines the 

probability whether there is an object to be found in the proposal or not. 

Anchor boxes are typical bounding boxes that can be found on images, and they 

are associated with a scale and aspect ratio. 
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Figure 5. Region Proposal Network (RPN) (Source: [4]) 

So after the extraction of the feature map, we generate region proposals with the 

help of the RPN, and then the output of the RPN is fed into the classifier, which results 

in different kind of classifications and tightened bounding boxes. (Figure 5) 

2.1.1.4  R-FCN 

R-FCN stands for Region-based Fully Convolutional Network [5]. Although this 

algorithm is region based, meaning that it uses the popular two-stage object detection 

strategy that consists of region proposal, and region classification, it is not a direct 

successor of R-CNN in contrast to Fast R-CNN and Faster R-CNN. 

 

Figure 6. Overall architecture of R-FCN (Source: [5]) 
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To incorporate translation variance into FCN, a set of position-sensitive score 

maps is constructed by using a bank of specialized convolutional layers as the FCN 

output. Each of these score maps encodes the position information with respect to a 

relative spatial position (e.g., “to the left of an object”). On top of this FCN, we append a 

position-sensitive RoI pooling layer that shepherds information from these score maps, 

with no weight (convolutional/fc) layers following. The entire architecture is learned end-

to-end. All learnable layers are convolutional and shared on the entire image, yet encode 

spatial information required for object detection, see in Figure 6. 

Region Proposal Network (RPN) is used for the extraction of candidate regions. 

Given the proposal regions (RoIs), the R-FCN architecture is designed to classify the RoIs 

into object categories and background. In R-FCN, all learnable weight layers are 

convolutional and are computed on the entire image. The last convolutional layer 

produces a bank of k2 position-sensitive score maps for each category, and thus has a k2 

(C + 1)-channel output layer with C object categories (+1 for background). The bank of 

k2 score maps correspond to a k × k spatial grid describing relative positions. For example, 

with k × k = 3 × 3, the 9 score maps encode the cases of {top-left, top-center, top-right, 

..., bottom-right} of an object category, this can be seen in Figure 7. 

 

Figure 7. Key idea of R-FCN for object detection (Source: [5]) 

“Simply put, R-FCN considers each region proposal, divides it up into sub-regions, and 

iterates over the sub-regions asking: “does this look like the top-left of a baby?”, “does 

this look like the top-center of a baby?” “does this look like the top-right of a baby?”, etc. 

It repeats this for all possible classes. If enough of the sub-regions say “yes, I match up 
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with that part of a baby!”, the RoI gets classified as a baby after a softmax over all the 

classes. [6]” This process is illustrated in Figure 8. 

With this setup, R-FCN is able to simultaneously address location variance by proposing 

different object regions, and location invariance by having each region proposal refer 

back to the same bank of score maps. These score maps should learn to classify a cat as 

a cat, regardless of where the cat appears. Best of all, it is fully convolutional, meaning 

all of the computation is shared throughout the network. 

As a result, R-FCN is several times faster than Faster R-CNN, and achieves comparable 

accuracy [6].” 

 

Figure 8. Visualization when a RoI (Region of Interest) does not correctly overlap the object 

(Source: [5]) 
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2.1.2 Single shot object detection algorithms 

Up until now we have dealt with region-based object detection algorithms. The 

main feature of these networks is that first they generate region proposals, after that comes 

the classification of those regions with the help of convolutional layers. 

Single shot object detection algorithms do these steps at once, in a “single shot”, 

they predict the classes and bounding boxes simultaneously. 

2.1.2.1 Single Shot Multibox Detector (SSD)  

The SSD [7] approach is based on a feed-forward convolutional network that 

produces a fixed-size collection of bounding boxes and scores for the presence of object 

class instances in those boxes, followed by a non-maximum suppression step to produce 

the final detections. The early network layers are based on a standard architecture used 

for high quality image classification (truncated before any classification layers), which 

we will call the base network. We then add auxiliary structure to the network to produce 

detections with the following key features: 

 Multi-scale feature maps for detection: We add convolutional feature layers to the 

end of the truncated base network. These layers decrease in size progressively and 

allow predictions of detections at multiple scales. The convolutional model for 

predicting detections is different for each feature layer. 

 Convolutional predictors for detection: Each added feature layer (or optionally an 

existing feature layer from the base network) can produce a fixed set of detection 

predictions using a set of convolutional filters. These are indicated on top of the SSD 

network architecture in Fig. 10. For a feature layer of size m × n with p channels, the 

basic element for predicting parameters of a potential detection is a 3 × 3 × p small 

kernel that produces either a score for a category, or a shape offset relative to the 

default box coordinates. At each of the m × n locations where the kernel is applied, it 

produces an output value. The bounding box offset output values are measured relative 

to a default box position relative to each feature map location. 

 Default boxes and aspect ratios: A set of default bounding boxes is associated with 

each feature map cell, for multiple feature maps at the top of the network. The default 

boxes tile the feature map in a convolutional manner, so that the position of each box 

relative to its corresponding cell is fixed. At each feature map cell, we predict the 
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offsets relative to the default box shapes in the cell, as well as the per-class scores that 

indicate the presence of a class instance in each of those boxes. Specifically, for each 

box out of k at a given location, we compute c class scores and the 4 offsets relative to 

the original default box shape. This results in a total of (c + 4)k filters that are applied 

around each location in the feature map, yielding (c + 4)kmn outputs for a m × n feature 

map. For an illustration of default boxes, please refer to Fig. 9. The default boxes are 

similar to the anchor boxes used in Faster R-CNN [4], however they are applied to 

several feature maps of different resolutions. Allowing different default box shapes in 

several feature maps let us efficiently discretize the space of possible output box 

shapes, see Figure 9. 

 

Figure 9. Default bounding boxes (Source: [7]) 

The workflow of SSD is basically as follows: 

 Generation of several feature maps at different scales with convolutional 

layers 

 Evaluation of the feature maps with a 3x3 convolutional filter  

 For each location in each of these feature maps, a 3x3 convolutional filter 

is used to evaluate a small set of default bounding boxes, which are the 

same bounding boxes used by the anchor boxes of the Faster R-CNN. 

 Prediction of the class probabilities and bounding box offsets for each box 
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Figure 10. The architecture of SSD (Source: [7]) 

SSD is more accurate than previous single shot algorithms, because it outputs 

bounding box offset values and class probabilities at each extra feature layer (Figure 10). 

Since each extra feature layer is smaller than the previous one, the effective receptive 

field of the layers in the end of the network is getting bigger, see Figure 11. 

 

Figure 11. Changing effective receptive field after the extra feature layers (Source: 

https://medium.com/mlreview/a-guide-to-receptive-field-arithmetic-for-convolutional-neural-

networks-e0f514068807) 

2.1.2.2 YOLOv3 

YOLO (You Only Look Once) was a state-of-the-art object detection system [8], 

SSD was released after that and it was faster and more accurate than YOLO as well. After 

that the creators of YOLO started working on a better network, that was YOLOv2 [9], an 
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improved version of YOLO. YOLOv2 introduced many new features compared to 

YOLO, like batch normalization, usage of anchor boxes…etc. In the spring of 2018, after 

I started to work on this thesis, an even newer version of YOLO, YOLOv3 [10], came 

out. YOLOv3 has many developments too, but in order to have a better understanding of 

them, first I am describing the basic idea behind YOLO. 

 

Figure 12. Original YOLO architecture (Source: [8]) 

The original architecture can be seen in Figure 12. First YOLO divides the image 

into multiple grids. The actual implementation of YOLO has different number of grids. 

(7x7 for training YOLO on PASCAL VOC dataset), for the illustration below 4x4 grid is 

used. (Figure 13) 

 

Figure 13. YOLO input and output (Source: [11]) 
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The training data has a specific structure as well. “If C is the number of unique 

objects in our data, S*S is number of grids into which we split our image, then our output 

vector will be of length S*S*(C+5). For e.g. in above case, our target vector is 4*4*(3+5) 

as we divided our images into 4*4 grids and are training for 3 unique objects: Car, Light 

and Pedestrian.” [11] The +5 can be split into two main parts, one field carries the value 

whether or not the central point of an object is present in the actual grid, the remaining 4 

fields give us the coordinates of the bounding boxes. This is important so that we do not 

count one object multiple times in different grids. 

After this, a deep convolutional neural network with loss function as error 

between output activations and label vector is created. Basically, the model predicts the 

output of all the grids in just one forward pass of input image through a CNN. 

In order to be able to detect multiple objects in one grid cell, anchor boxes are 

used. (Figure 14) In addition to having 5+C labels for each grid cell (where C is number 

of distinct objects), the idea of anchor boxes is to have (5+C)*A labels for each grid cell, 

where A is required anchor boxes. If one object is assigned to one anchor box in one grid, 

other object can be assigned to the other anchor box of same grid. So that one object could 

not be detected multiple times, non-max suppression is applied. Non-max suppression 

removes the low probability bounding boxes, which are very close to a high probability 

bounding boxes. 

 

Figure 14. YOLO with anchor boxes (Source: [11]) 
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Now that we have a basic understanding of YOLO, we can have a look at the new 

features and changes introduced by YOLOv3. 

The most important change is that the focus in case of YOLOv3 was rather the 

accuracy than the speed, and this can be observed in the architecture as well. 

YOLOv3 uses a variant of Darknet, a custom framework used for the training of 

neural networks, with a network of 53 layers trained on Imagenet. For object detection 

53 extra layers after the previous 53 layer network, that is why it is called Darknet-53. 

All together YOLOv3 has 106 layers, which is substantially more than the 30 layers of 

YOLOv2, so the shift in the direction of accuracy in exchange of speed can be seen in the 

architecture too. 

Another new feature is that YOLOv3 predicts boxes at three different scales, 

meaning, that now, similarly to SSD, it can detect objects of variable sizes easier than 

before. 

The next improvement is that YOLOv3 in total uses nine anchor boxes, three 

anchor boxer for each scale. Now we have three scales, each divided into different grids, 

and for each grid we have three anchor boxes to predict, and if we sum this all up, it 

means that the number of predicted bounding boxes in 10647, which is ten times more, 

than YOLOv2 had. This is contributing to making the prediction process slower, 

compared to YOLOv2 too. 

In previous versions of YOLO a softmax layer was used to determine which class 

belongs to a given anchor box, the one with the highest probability. The use of a softmax 

layer assumes the classes are mutually exclusive, but it is not always the case. E.g. when 

a dataset has both animal and dog class in it, then both labels should be predicted, this is 

called multilabel classification. In YOLOv3 independent logistic classifiers are used in 

order to achieve multilabel classification. 

2.2 Long Short Term Memory networks 

Long Short Term Memory[12][13] (LSTM) networks are a special kind of 

recurrent neural networks. Recurrent neural networks (RNN) are such networks, which 

contain loops, so that they can contain previous information that was fed to it, 

“remember” previous inputs. This way the network becomes capable of solving such 

tasks, which depend heavily on having contextual information as well not just only the 
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single one input that was actually fed at a single moment. Tasks like this are e.g. sentence 

creation, predicting the next word in a sentence or movement prediction based on 

previous frames. 

LSTM networks provide a solution to the problem, that there is always a gap 

between an information and the time when that information is going to be useful, when it 

is going to influence the prediction, this is called long-term dependency. Normal RNN-s 

are not capable of handling too big of a gap like that, but LSTM networks are, they were 

created in order to handle long-term dependencies. But how do they work? 

In an LSTM network, there are repeating modules, just like in case of regular 

RNN-s, but the main difference is in the structure of these modules. In the repeating 

modules of an LSTM network, there are four interacting neural layers opposed to the 

single layer of a regular RNN. These four layers can be represented as “gates”, they decide 

whether an information should be kept or not, whether it should be updated or not. The 

information that these gates are going to influence is the cell state or cell memory, which 

flows straightforward from one module to another and this is partly the reason for why 

LSTM networks can cover larger gaps than regular RNN-s. 

The first gate is the so called forget gate (Equation 1), it decides how much of the 

historical information we should forget. 

Γ𝑓 = 𝜎(𝑊𝑓[𝑎<𝑡−1>, 𝑥<𝑡>] + 𝑏𝑓) (1) 

In Equation 1 we can see the actual mathematical representation of the forget gate, 

its influence on the output is going to be explained further a bit later. The forget gate is 

basically a sigmoid function and the input of this function consists of two main parts, the 

weighted (Wf) values of the historical information (a<t-1>) and the actual input (x<t>) and 

the bias values (bf). In every equation in this section the letter W is denoting the weights, 

the letter a is denoting the historical output data, x represents the actual input and b is the 

bias. 

The second gate is the update gate (Equation 2), it shows by how much the 

historical value should be modified in order to keep it up to date. 

Γ𝑢 = 𝜎(𝑊𝑢[𝑎<𝑡−1>, 𝑥<𝑡>] + 𝑏𝑢) (2) 

Now we know whether or not we should update the old values, but how are we 

going to modify them, what are the new values? 
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�̃�<𝑡> = 𝑡𝑎𝑛ℎ(𝑊𝑐[𝑎<𝑡−1>, 𝑥<𝑡>] + 𝑏𝑐) (3) 

In Equation 3 we see the new candidate values (c) for the cell state overwriting, 

which would overwrite the old, historical values, they are simply calculated with a tanh 

function. 

𝑐<𝑡> = Γ𝑢 ∗  �̃�<𝑡> + Γ𝑓 ∗  𝑐<𝑡−1> (4) 

Equation 4 represents the calculation method for the new cell state values. It is the 

sum of two main parts. On the one hand it uses the above described forget gate to 

determine how much exactly we are going to forget and on the other hand we can see the 

update gate, which determines by how much we are modifying the old values by the new 

ones. 

The fourth gate is the output gate (Equation 5). This gate is playing a major role 

in creating the output data for an actual repeating module. 

Γ𝑜 = 𝜎(𝑊𝑜[𝑎<𝑡−1>, 𝑥<𝑡>] + 𝑏𝑜) (5) 

𝑎<𝑡> = Γ𝑜 ∗ tanh 𝑐<𝑡> (6) 

In Equation 6 we see how the output gate is put to use. For the calculation of the 

output value the forget gate is multiplied by the above calculated value of the cell state, 

modified by the tanh function.  

To sum up, all repeating modules have three inputs (the actual input, the historical 

output values and the cell state values) and two outputs (the actual output, the actual cell 

state value). Based on this structure it can be seen that these modules can be linked easily 

to one another, making it possible to create bigger networks, consisting of multiple 

repeating modules really simple. Sometimes a single module can have a third output as 

well, and that would be the actual output of the calculation, which is led directly 

“outwards”, that could be directly saved and not piped into the next module. 
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3 Setting objectives 

After we review the different object detection algorithms, I would like to 

summarize once again, what the objectives of this thesis are. 

I would like to build a system that consists of two main parts. 

 The first main part is the chosen object detection algorithms, which is processing the 

images and saving the results of this detection process. 

 The second part comes into play, when the object detection algorithm managed to 

produce enough input data for the predicting network, that, depending from the 

chosen network, is going to need a certain number of inputs from earlier frames. 

Based on the input data, the predicting network is going to output a possible future 

location for each object that was previously detected by the object detection 

algorithm. 

The process described above is going to make up a constant loop, meaning that after a 

successful prediction we return to the chosen object detection algorithm in order to be 

able to feed further inputs for the prediction network. We can achieve the reduction of 

hardware needs through the skipping of processing certain number of frames. We can 

skip to process some frames, because we have already a future location for all the objects 

detected earlier and we do not need their exact position in between the earlier, detected 

and the predicted frames. The hardware and energy needs of such a system would be 

lower than one of a constantly running detection algorithm. 

Another important point to note would be, that with this solution we could act 

earlier in time, based on our predictions of the future, this could be used extensively in 

many fields, e.g. in transportation. 
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4 System Design 

The main goal of this thesis is to create a neural network that is capable of 

predicting the trajectory, the movements of various objects in videos. For this, I am using 

a state-of-the-art object detection algorithm, which has to deliver a classification and four 

bounding box coordinates for a given object in a frame. 

The process of determining the state-of-the-art algorithm to be used can be seen 

in Figure 15. We use a dataset, which consists of videos, where very frame is annotated, 

then both YOLO and SSD process the videos and the results of these algorithms is 

processed on a metric, the exact describing of the metric is going to be discussed later, in 

Chapter 5.2.1 

 

Figure 15. Evaluation process 

After an appropriate object detection algorithm was chosen, the next step of the 

work begins. This step includes the creation of a neural network, which is capable of 

predicting the shift in the bounding box coordinates over n frames and determining the 

correct class label as well, shown in Figure 16.  
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Figure 16. Prediction of the shift in the coordinates of the bounding boxes. 

The full workflow is intended to work the following way (Figure 17): 

 Input a video, input frames from a video 

 Based on the current and previous frames, predict the class labels and the 

bounding box coordinates for the next n-th frames 

In case of a video the output of the neural network can be inspected quite well. 

 

Figure 17. Complete workflow 

The system for development is a workstation that runs Ubuntu (Linux) with 

Nvidia GeForce GTX TITAN X (with 12 GB GDDR5 memory), Intel(R) Core(TM) i7-

4790 CPU@3.60GHz and 32 GB RAM installed. The main programming language, this 

being a development process, is going to be Python 3.6, while of course other tools, such 

as bash scripts, are going to be used extensively as well. 

The system that is going to be developed is going to consist of two main parts. 

The first main part is going to be the chosen object detection algorithm that is 

producing the input data necessary for the prediction network. The model of the object 

detection algorithm is going to be loaded into the memory at the start of the program, so 

that we do not have to load it each and every time we need to process an image. So the 

mailto:CPU@3.60GHz
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object detection algorithm is going to be running constantly, while waiting for inputs, for 

images to process. 

The second main part is the prediction system. This system utilises the data that 

was delivered by the object detection algorithm and predicts future locations of the earlier 

detected objects. After the prediction, the execution is going to continue with the object 

detection again, making this a two-step loop. 

Thanks to the prediction, we can skip the processing of certain images, frames, so 

that the processing of a video is going to require much less hardware resources. 
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5 Dataset and evaluation 

5.1 Dataset 

The dataset used for the comparison of the different algorithms is the ImageNet 

Large Scale Visual Recognition Competition (ILSVRC) 2015 VID dataset. [14] 

Properties of the dataset: 

 This dataset consists of videos of various resolution and length, the frames 

of the videos are also included in a separate directory structure 

  Every frame of the videos is annotated. The annotations are saved in XML 

format 

 For the determination of the class labels (Figure 18), a map file is 

necessary, which maps the codes of the classes to human readable class 

labels. 

 The full dataset is approximately 100GB and is divided into training, 

validation and test sets. The size of these sets are respectively 51 GB, 8 

GB and 14 GB 

 All together 1122397 annotated frames, from which 866870 frames are 

annotated by hand (more than 77%) 

 All frames of the videos are available as JPEG images as well. 

 

Figure 18. A segment of the map file 
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5.2 Evaluation of the dataset 

Because the whole proposed system is based on an existing object detection 

algorithm that can produce the necessary input data for the prediction network, the 

capabilities of the object detection algorithms, which were possible candidates for this 

role, needed to be evaluated first in order to be able to continue the developing of the rest 

of the system. 

5.2.1 Evaluation metrics 

5.2.1.1 Mean Average Best Overlap 

The evaluation framework consists of a bash script, which runs SSD and YOLO 

for the given videos and saves the results into a given hierarchy. The other part of the 

framework is a Python script, which calculates the results based on the results from the 

object detection and from the ground truth values. The metrics used for the evaluation is 

the Mean Average Best Overlap (MABO). [2] To understand MABO, first we need to get 

to know to the Average Best Overlap (ABO), since MABO is merely a generalization of 

that.  

“To calculate the Average Best Overlap (Equation 7) for a specific class c, we 

calculate the best overlap between each ground truth annotation gi
c ∈ Gc and the object 

hypotheses L generated for the corresponding image, and average:” [2] 

𝐴𝐵𝑂 =  
1

|𝐺𝐶|
∑ 𝑚𝑎𝑥𝑙𝑗𝜖𝐿𝑂𝑣𝑒𝑟𝑙𝑎𝑝(𝑔𝑖

𝑐 , 𝑙𝑗)

𝑔𝑖
𝑐𝜖𝐺𝑐

 
(7) 

,where Overlap (Equation 8) is the area of the intersection of the two bounding 

boxes divided by the union of those: 

𝑂𝑣𝑒𝑟𝑙𝑎𝑝(𝑔𝑖
𝑐 , 𝑙𝑗) =  

𝑎𝑟𝑒𝑎(𝑔𝑖
𝑐) ∩ 𝑎𝑟𝑒𝑎(𝑙𝑗)

𝑎𝑟𝑒𝑎(𝑔𝑖
𝑐) ∪ 𝑎𝑟𝑒𝑎(𝑙𝑗)

 (8) 

MABO is the mean ABO over the different classes. In our case, we calculate the 

mean of the ABO values over the frames, then the mean of the ABO values for the 

different classes. 



 31 

5.2.1.2 Mean Average Precision 

Mean Average Precision (mAP)[15] is the most used metric for object detection 

algorithms, this is partly thanks to the Pascal Visual Object Classes Challenge[16], where 

it became the main metric for the evaluation. 

In order to understand mAP, first we have to understand recall and precision. 

Recall (Equation 9) gives us, how much of the relevant data we have found. 

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 (9) 

Precision (Equation 10) gives us, how big of a portion of the found data was 

actually correct. 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 (10) 

From our prediction results, which are organized in a descending order of the 

confidence level, we can create the recall-precision curve. This curve is usually not 

smooth at all, so in order to get a smooth curve we take eleven points (0, 0.1, 0.2, ... , 1) 

from it, and interpolate a curve, and the area below that curve is the average precision 

(AP). (Equation 11) 

𝐴𝑃 =
1

11
∑ 𝜌𝑖𝑛𝑡𝑒𝑟𝑝(𝑟)

𝑟𝜖{0,0.1,…,1}

 (11) 

,where  

𝜌𝑖𝑛𝑡𝑒𝑟𝑝(𝑟) =  𝑚𝑎𝑥�̃�≥𝑟𝜌(�̃�) (12) 

Equation 12 means, that we do not take the exact precision values at the observed 

points (r), but rather a maximum precision whose recall value is greater than r. 

If we calculate the AP values for all the different object classes and then calculate the 

mean of those, we get the mAP value. 
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5.2.2 Evaluation results 

As the main goal is to track the objects as precisely as possible, below are some 

demonstration images, which show the ground truth values and the results of the object 

detection algorithms: 

 

Figure 19. Ground truth bounding boxes (with green) and the middle point of those (blue and red) 

and the result of YOLO bounding box (black) and its middle point(white) 

In Figure 19 we can see that the predicted bounding box from YOLO is quite 

accurate compared to the ground truth bounding box. The smaller train on the left was 

not found in this frame, but thank to its small ground truth bounding box this does not 

matter as much, since in the metric we have to compute a mean of the overlap values, so 

this component has a little weight in the sum. 

 

Figure 20. The movement of the middle points of the ground truth bounding boxes (blue and red) 

over the whole video, and the predicted center points for SSD (left, with black) and YOLO (right, 

with black) 

In Figure 20 we can see the movement of two objects compared to the ground 

truth movement in a video tracked by both SSD and YOLO. The trajectory was formed 
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from the movement of the middle points of the bounding boxes. In this instance YOLO 

showed better tracking capabilities than SSD, because the results of YOLO are closer to 

the ground truth red line than the results of SSD, besides YOLO was capable of 

recognising the second train on the left hand side, while SSD missed it completely. Next 

we have to investigate the full, overall results of these algorithms. 

The full evaluation with metrics AP and ABO as discussed above on the full 

dataset resulted as follows (The dataset has thirty classes, in Table 1. only those classes 

are present, that were recognised by either of the algorithms): 

Table 1. Evaluation results of the metrics on the dataset 

       Metrics     

 

Classes 

AP (%) ABO 
S

S
D

 

Y
O

L
O

 

S
S

D
 

Y
O

L
O

 

bear 0 18.72 0 0.86 

bicycle 45.09 45.90 0.69 0.73 

bird 34.08 52.68 0.73 0.78 

bus 63.10 64.30 0.78 0.77 

car 58.53 57.87 0.75 0.80 

dog 37.16 45.55 0.78 0.82 

elephant 0 63.93 0 0 

horse 63.39 78.67 0.80 0.84 

sheep 29.54 25.12 0.74 0.86 

train 67.70 71.30 0.79 0 

zebra 0 69.98 0 0.83 

 

 

 

I 
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In Table 2. we can see the overall results for the two algorithms, in the calculation 

of the values only those classes were taken into consideration that were recognised by the 

given algorithm: 

Table 2. The results of the prediction processes 

                 Metrics     

 

Algorithms 

mAP(%) MABO 

SSD 49.82 0.76 

YOLO 54.00 0.81 

 

As we can see in the table above, the results of YOLO are better considering both 

mAP and MABO, higher numbers are better in both instances. 

The results of the MABO evaluation has quite a graphic meaning: it shows in how 

big of a ratio the ground truth and the predicted bounding boxes are overlapping. 

An important side to consider is the hardware utilisation during the prediction (Table 3.).  

Table 3. The hardware utilization results of the prediction processes 

     Hardware utilisation     

 

 

Algorithms 

CPU 

(%) 

Memory 

(%) 

Streaming 

Multiprocessor 

Utilisation 

(%) 

GPU 

Memory 

Utilisation 

(%) 

SSD 103.15 7.78 42.67 
28.28 

YOLO 103.98 1.41 42.67 19.45 

 

The hardware utilisation results are very similar, YOLO utilises the CPU slightly 

more, while SSD is more reliant on both GPU and RAM memory. 

The summary of the results is that YOLO can track the movements of objects 

better than SSD at the moment. Based on the two metrics, MABO and mAP, the results 

of YOLO exceed the result of SSD in both metrics. In case of mAP YOLO is better than 
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SSD by more than 4% and in case of MABO it is better by 0.05, meaning it can detect 

objects more accurately, than SSD. 

There is not a significant difference between the two in the hardware utilisation 

results, so for the next phase of the work YOLO will be the base algorithm. 

The conclusion, that YOLOv3 is more precise, than SSD, is also supported by 

official measurements. (Figure 21.) 

 

Figure 21. Speed and accuracy comparison of different algorithms[10] 
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6 Proposed solution 

The fully realised system consists of two main parts. One part is the object 

detection system, which is responsible for the creation of the input data for the other main 

part of the system, the predicting network, which then predicts future locations for the 

detected objects. 

6.1 Object detection system 

The object detection system is a framework written in Python, which incorporates 

both the chosen object detection solution, YOLOv3, and the network used for prediction. 

The object detection system loops over the images of a video, and then feeds these 

images to the object detection algorithm, alongside with the sequential number of the 

image. The object detection algorithm was modified to save the results in a given folder 

and the name of the result file is equivalent to the sequential number of the image, this 

makes the evaluation process much easier, because the ground truth annotations for the 

images in the dataset are named in the same convention. 

But how do we know when to give the next image as input for the YOLO network? 

Naturally, YOLO has a variable processing speed and time per images, so based on that 

theoretically we could wait a time long enough and then feed the next image to the YOLO 

algorithm accordingly. This solution however would not be too efficient, so in order to 

achieve a higher processing speed, another solution was implemented. After the 

framework loads the YOLO model into the memory, another thread is started, which reads 

constantly the output of the subprocess running YOLO. Since the output of YOLO was 

modified to indicate the end of the image processing with a given string, this way we can 

easily see whether or not YOLO is ready for the next input. 

While implementing this method, two main difficulties arose. First I did not want 

to start another thread, because the subprocess management in Python makes it possible 

to simply redirect the output of a subprocess with a pipe and then with different methods 

(e.g. readline()). This solution did not function, because YOLO does not have information 

constantly written to its output and this causes all methods, which would read the lines of 

the output, fail. This is the reason for why another thread has to be started. 
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Another difficulty was, that YOLO does not write its output to stdout, but to stderr 

and this took me some time to realise. 

So up until now we have a system, which feeds images to YOLO, and then the 

results are saved in a given folder. Here it is important to note that the system has two 

free variables, which depend on the network used for prediction. 

One variable determines how many results from previous moments are used as 

inputs for the prediction. So for example, we have a network used for prediction that 

expects data from five timestamps, moments. That means that ideally we should have five 

result files, each containing the same detected class and its different coordinates in five 

different images. Then we could use this data of five timestamps as input for the 

prediction network. 

The other variable determines how far into the future, how many timestamps, 

moments ahead we would like to predict the location of objects. E.g. we could predict the 

location two timestamps ahead, this means that we could skip the processing of two 

images, the detection of objects in two images, since we already have a location for the 

object further ahead in the future. After two timestamps or frames, we have to use the 

object detection algorithm again. 

To sum it up, the first variable determines how many result files we should have 

in the result folder, how many processed frames are necessary for the whole prediction 

process. The second variable shows us how many images, frames we should skip, because 

we already predicted the location of the objects for frames that come later in time. 

6.2 Network for prediction 

6.2.1 The preparation of the dataset used for training and validation 

In the dataset, there is an annotation file in XML format to every frame. These 

annotations were created either by hand or were generated. The usage of XML files is not 

as convenient as other file formats, so I decided to generate separate training and 

validation files in csv format for every class. 

Since there are cases, when not just one, but two or more objects are present in a 

frame, the creation of the aforementioned files was a bit difficult. Because of the presence 

of multiple object in a frame, it is not ideal for the further usage of these files to simply 
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loop over the files and write everything to the files, because then every line could contain 

different objects and that would make the post-processing quite complex. 

Instead of doing that, I decided to create separate temporary files for every object 

in a video and write the data belonging to the objects with given object IDs to the 

appropriate temporary file. In the end of a video, the content of the temporary files are 

moved to the final file and concatenated simply behind one another. 

The final files contain the video and frame IDs, the resolution of the given image, 

the object label, the coordinates of the bounding box and finally the object IDs. The 

coordinates of the objects are written standardised to the file too, meaning that the x and 

y coordinates are divided respectively by the width and height of the image. 

Besides all of the above and because of the existence of generated annotations and 

its relevance in later usage, I decided to write the “status”, whether an annotation was 

generated or made by hand, to the final files as well. In Figure 22 we can see a short part 

of a final training file, though it is not its full content, the standardised coordinates are 

missing from it. When using the files for training, one must pay attention, so that only 

such data is used, that belongs together. For example, the video ID must be the same when 

creating a set for training, because only within a video can we speak of coherent data. 

Another aspect to consider is the object ID, we cannot mix data from different objects 

even when they are present in the same video. 

 

Figure 22. An example of the final training file 

 

I decided to experiment with three different data preparation methods that can be 

used for training and evaluation. 

 original method: the first method uses the every line of the file, makes no difference 

between the annotations made by hand and the generated annotations. E.g. in Figure 

22, in case of using data from five earlier frames and predicting only the next one 
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ahed, the first five rows would constitute a sufficient set, plus we need the sixth row, 

that is the result we expect from the network 

 jump-over method: in this case, we simply jump over the lines, which were generated 

and not made by hand, so in this case the first six rows would make up to a set, 

because the second row would be jumped over, since it is a generated annotation, the 

seventh row would be the expected result 

 skip method: in this method we look for consecutive rows, meaning that we only use 

the data for training, when there is sufficient amount, the number of earlier 

timestamps needed, annotations made by hand in consecutive rows. So in this case, 

we would need five rows, where the video and frame IDS, the object ID is the same 

for five rows and each row needs to be annotated by hand. This method is the strictest 

out of all the described methods 

6.2.2 Actual network 

The implementation is written in Keras, which is an open source neural network 

library written in Python. Keras can be used with different backends as well; in my 

implementation, Tensorflow was used. 

The model is a sequential model, meaning that it is a linear stack of different 

layers, it can be completely customised in this aspect. 

The first layer is an implicit input layer, it is determined by the batch_input_shape 

argument of the first added neural layer. This makes it possible, that there is no need to 

include in every layer an argument regarding the shape of the input, they can be inferred 

from the output of previous layers. 

The second layer is the actual LSTM layer with 16 cells. Cells are units, which 

together form a layer, they have also an impact on the dimensionality of the output space. 

As described earlier, LSTM networks work great with object movement prediction, so 

they would be a good choice for this task. LSTM network can be used effectively in case 

of time-series [17] problems. Time-series problems represent such tasks, where we have 

information about events in the past and we want to predict the next event like that in the 

future based on the earlier events. Since we have a fully annotated dataset, we can easily 

create a time-series problem. The main obstacle in the generation of the training and 

validation datasets was that sometimes there are multiple objects in a video, so there are 
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multiple objects in the annotation belonging to the frames. Due to this we cannot simply 

read the annotations in order and assemble a training dataset, because then the annotation 

of the different objects were mixed together, which would result in a quite complicated 

post-processing. Because of this the annotation data of the object are collected separately 

for the objects, based on the object identification number, and they are concatenated only 

at the end of the video. 

All that having said, we have to note that the input of this layer depends heavily 

on the actual configuration we have set earlier. The configuration consists of the number 

of timestamps, of how many earlier data we would like to base our prediction on. Besides 

that we can change the time of the prediction as well, by that we can change how far 

ahead in the future we would like to predict the position of the object. So on the one hand 

the input is determined by the number of timestamps, and on the other hand it is fixed. It 

is fixed in one aspect, because no matter how many timestamps or prediction distance we 

choose, we always have to input the four coordinates and an integer-label representing 

the given class. 

The third layer is a so called Dense layer, which represents a fully connected 

neural network layer. This being the last layer, the output of this layer is going to 

determine the output of the whole network. Since we want to predict the future location 

of an object, we need to have the four bounding box coordinates as an output, so this 

Dense layer has four neurons as outputs as well. 

 

Figure 22. An example of the inputs and outputs of a network 
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In Figure 22. we can see an LSTM network that requires data from four earlier 

timestamps, and based on the five data (four coordinates and the class labels) from those 

timestamps it predicts the future location. In this example the prediction distance was 3, 

however this cannot be seen in the picture of the model, it only influences the pre-

processing of the annotation and the validation data. 

The training and validation data needed for the creation of the LSTM network was 

extracted from the original annotations. Both for the training and the validation, the input 

coordinates were standardised, meaning they were divided respectively by the height or 

the width of the images. 

Different versions of the network with the same architecture as above were 

trained, they are going to be discussed further in detail later, here I just list the different 

types: 

 trained for every class with the original method data preparation 

 trained for the 11, known by YOLO, classes with the original method data 

preparation 

 trained for the 11, known by YOLO, classes with the jump-over method 

data preparation 

 trained for the 11, known by YOLO, classes with the skip method data 

preparation 
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7 Results 

The results (Table 4.) of the realised solution, where the object detection algorithm 

YOLOv3 and a trained LSTM are working together are going to be detailed in this 

section. The used weights for YOLOv3 were downloaded from the official website, the 

LSTM model was trained on the university server. 

The LSTM model used for the measurements takes inputs from five earlier frames 

and predicts three frames ahead in the future. 

For the training, the training files, generated from the annotations of the training 

videos, were used, for the validation the validation files generated from the annotations 

of the validation videos were used. The LSTM model was trained for different number of 

epochs, and for every model, the validation results were saved so that a good model could 

be chosen easily. The validation results were created by calculating the root-mean-square 

error (RMSE) between the validation ground truth values and the predicted values. Four 

different LSTM models were tested. 

The used loss function was the mean_squared_error loss function, and the 

optimizer used for the training was Adam. 

1. all LSTM: The first model was trained for every class (30) and for 62 epochs, because 

the RMSE values calculated from the validation data were not decreasing any longer. 

The results of this model were at best on par, but in average worse than the results 

from linear regression. Since this performance was not good enough, I tried to change 

up a few things. 

2. original 11-classes LSTM: The second model was trained only for the 11 classes that 

are known to YOLOv3 base model, so this YOLO model could not recognise the 

other 19 classes anyway. This model was trained for 68 epochs. 

Since I was looking for further improvements, I decided to change up the data preparation 

part of the training script. Up until now, all of the annotation data was used for the 

training. As I mentioned earlier, more than 77% of the annotation data was annotated by 

hand.  

3. jump-over LSTM: The first variant of the new data preparation excluded the 

generated, not by hand annotated annotations for the objects. So whenever a 
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generated annotation comes by, it is simply jumped over, and the processing 

continues with the oncoming annotation data. In this case it is not necessary, that the 

data needed for the training is located consecutively, there can be gaps between the 

hand annotations, those hand annotations are going to be grouped together. The 

model shown in Table 4. was trained for 131 epochs. 

4. skip LSTM : The second variant of the new data preparation is even stricter than that, 

it looks for as many consecutive hand annotations as many timestamps we have set. 

So e.g. if we need information from 5 earlier timestamps, than only such annotations 

are included, where all of the 5 consecutive frames were annotated by hand. The used 

version of this model was trained for 120 epochs. 

To evaluate the results of the different models, a baseline needed to be determined and 

implemented. For the evaluation of the results of this previously described hybrid system 

consisting of an object detection algorithm and an LSTM network, I used linear 

regression. The script implementing the linear regression works very similarly as the real 

system. This script loops over the result files, which are ordered into different folders, 

one for each video. Then based on the two free variables, the number of previous 

timestamps needed for input and the “distance” of the prediction, the script uses the same 

inputs as the real system, and with linear regression “predicts” a future location for the 

objects and saves the results in the same folder structure. This way we have the same 

structure for the real results and for the linear regression results, so the comparison of 

these two are quite simple. 

Table 4. The results of the two methods, linear regression and LSTM prediction 

 Metrics    
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bear 17.92 22.58 22.80 22.81 22.33 0.65 0.73 0.78 0.77 0.73 

bicycle 25.87 46.96 48.39 48.35 47.24 0.58 0.67 0.67 0.67 0.66 

bird 33.16 42.53 43.56 43.58 41.41 0.62 0.70 0.73 0.74 0.69 

bus 46.72 55.38 55.45 55.96 54.44 0.65 0.71 0.73 0.73 0.70 
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car 32.66 37.61 39.25 41.78 41.83 0.65 0.68 0.74 0.74 0.71 

dog 41.43 43.49 44.32 44.84 43.13 0.67 0.72 0.75 0.75 0.70 

elephant 29.39 31.24 31.98 32.35 30.34 0.66 0.73 0.76 0.77 0.70 

horse 54.31 55.50 55.92 56.66 54.63 0.68 0.73 0.76 0.77 0.70 

sheep 14.58 14.93 15.34 15.72 14.98 0.71 0.72 0.74 0.77 0.78 

train 76.34 83.53 83.89 83.64 83.83 0.72 0.73 0.74 0.74 0.72 

zebra 26.89 28.78 29.12 29.28 27.35 0.70 0.70 0.72 0.72 0.72 

 

In Table 4 we can see the test results of all four, different models. It can be seen, 

that the all LSTM model was in case of every class worse, than linear regression. Because 

of this, I decided to reduce the number of classes to do the training for, so the only 

difference between the all LSTM and original 11-classes LSTM is the number of classes 

that they were trained for. This only difference resulted in much better results, original 

11-classes LSTM is already better in most cases, than linear regression. jump-over LSTM 

is the model, where the jump-over data preparation method was used. This model is even 

better, then the previous ones. The last model, skip LSTM is the best out of these four 

models, this network was trained with using the skip data preparation method. 

The higher the numbers in case of both metrics, mAP and MABO, are, the better. 

In Table 5. we can see the overall results for the five different methods, the 

prediction with the LSTM models and linear regression: 

Table 5. The hardware utilization results of the prediction processes 

                 Metrics     

 

Algorithms 

mAP(%) MABO 

all LSTM 36.30 0.66 

original 11-classes 

LSTM 
42.05 0.71 

jump-over LSTM 42.73 0.74 
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skip LSTM 43.18 0.74 

Linear regression 41.96 0.71 

 

The overall results (Table 5) support the results, we have seen in Table 4. All 

LSTM has the worst performance, its mAP and MABO is the lowest of all. Just by reducing 

the number of classes to do the training for, significant increase in accuracy could be 

achieved. Original 11-classes LSTM model is better than all LSTM by more than 5% in 

mAP, and 0.05 in MABO. The first usage of the changed data preparation is in the case of 

jump-over LSTM. Just by using another method for the data preparation, we could achieve 

0.68% increase in mAP and 0.03 in MABO. The best model was the skip LSTM, for the 

training of this model the skip data preparation method was used. This change resulted in 

another 045% increase in mAP, but no increase in MABO. It can be seen, that the different 

data preparation methods have quite a high impact on the overall performance of the 

network. Between  the original 11-classes LSTM model, jump-over LSTM and skip LSTM 

the only difference was in data preparation and thanks to this a positive change of 1.13% 

in mAP and a 0.03 in MABO could be achieved. 

The hardware utilisation results of the full can be seen in Table 6, this is for the 

best model, the skip model: 

Table 6. The results of the prediction processes 

     Hardware utilisation     

 

 

Algorithms 

CPU 

(%) 

Memory 

(%) 

Streaming 

Multiprocessor 

Utilisation 

(%) 

GPU 

Memory 

Utilisation 

(%) 

Full system 12.96 4.2 2 1 
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8 Evaluation 

The results show, that this architecture could not be successfully trained for all 

thirty classes, which then makes the training of YOLO for this usage unnecessary as well. 

The first model, which was trained for all 30 classes, delivered worse results, then 

the linear regression serving as baseline. So this model should not be used, since linear 

regression is a simpler solution, which delivers better results. 

The second model, which was trained only for the eleven classes known by YOLO 

from this dataset, is proven to be just as good as linear regression, so the usage of this 

mode could be spared too, simply by using linear regression instead. 

The third model is trained only for eleven classes too, but thanks to the change in 

the data preparation, this model is already better, then linear regression. 

The fourth model, which looks for consecutive hand annotated segments among 

the annotations was proven to be the best one for this particular scenario, where we have 

this kind of model and where we need to have 5 timestamps in order to predict 3 

timestamps ahead in the future. Since the data preparation script is in this case strictest, 

meaning that only the hand annotated parts are used for training, which represent the 

reality obviously as precisely, as closely as possible, it is logical, that this model is the 

most successful one. Naturally, this model is better than the baseline too, so this could 

have some real life use too. 

The hardware utilisation results of the final system are much less than the results 

of the standalone YOLOv3 system. This is mainly due to the more simple way of 

functioning, namely YOLOv3 is running object detection in three threads constantly, in 

order to achieve such speed as it does. By eliminating the need for these threads, the 

hardware needs drop quite much. The skipping of processing of certain number (3) of 

frames supports the drop in hardware utilisation. 
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9 Future work 

In the nearby future, my solution for this particular problem could be developed 

in many ways. 

In order to achieve better result, YOLOv3 could be trained for this particular 

dataset. The training process was indeed begun, but its results could not been evaluated, 

so I used the original weights, that can be downloaded from the official webpage of 

YOLO. 

Although the current results are already better, than the baseline, there is quite 

much room for development. The number of earlier timestamps needed, and the 

prediction distance are both free variables, so many experiments could be done in this 

aspect too. 

Otherwise, I think that the LSTM architecture could be changed too, something 

new could be tried out, it might result in better performance. The change of the 

architecture would be necessary anyway, since as we could see in the results, the current 

architecture is not capable of handling all of the thirty classes. 

Another interesting point would be the investigation of the usage of this kind of 

solution with object segmentation algorithms. Those kind of algorithms are getting better 

and better every day, and since they deliver a more precise position of objects, it would 

be very much desirable to extend the solution to this field. 
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10 Summary 

The main purpose of this thesis was to develop a solution that can predict the 

movement of different objects. In order to achieve this, I investigated a various number 

of object detection algorithms, so that I can choose the most fitting one for the purpose. 

After the evaluation of the two best alternatives, YOLOv3 and SSD, on the 

dataset, which was surprisingly difficult to find, I decided to go with YOLOv3. 

The next step was the experimentation with different time-series LSTM models 

and data preparation methods. I managed to find a model that is better than the baseline, 

linear regression solution, though thanks to the many free variables, a lot of possibilities 

(number of timestamps, prediction distance, architecture) are left untested. 

In the end a fully operational system was developed, where YOLOv3 is loaded 

into the memory and prepares constantly the input data for the prediction network. After 

we have enough input data for the prediction, the LSTM model is predicting the future 

position of the already recognised objects, so that YOLO should not be run for every 

frame. When the predicted time surpasses, YOLO can continue recognising the object 

again, so that the next prediction could commence. 

The results of this kind of object movement prediction are promising, though there 

is much room for further improvement. 
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