

Budapest University of Technology and Economics

Faculty of Electrical Engineering and Informatics

Department of Networked Systems and Services

INTEGRATING NETWORK CODING

INTO SDN NETWORKS

NETWORK CODING INTEGRÁCIÓJA

SDN HÁLÓZATOKBA

Author

Nagy Szilárd Attila

Supervisors

Szabó Dávid

Csoma Attila

2

Contents

Absztrakt ... 3

Abstract .. 4

Introduction ... 5

1 Novel technologies .. 7

1.1 Software Defined Networking .. 7

1.2 Network Function Virtualization .. 9

1.3 Network Coding .. 11

1.3.1 Random Linear Network Coding ... 12

1.3.2 Kodo library ... 15

1.3.3 RLNC compared with other scenarios ... 17

2 NFV implementation platform ... 21

2.1 General overview .. 21

2.1.1 NFV Platform implementations ... 22

2.1.2 A feasible NFV platform implementation ... 25

2.2 ClickOS ... 26

2.2.1 About ClickOS ... 26

2.3 Acquiring ClickOS ... 28

3 Creating a VNF .. 31

4 Performance Measurements ... 36

4.1 VNF performance in ClickOS and in User-level Click .. 36

Implementing RLNC as ClickOS VNF ... 40

Conclusion ... 41

List of figures ... 42

References .. 44

3

Absztrakt

Napjainkra a hálózatokkal szemben támasztott követelmények elérték azt a

szintet, ami a jelenlegi rendszer teljesítőképességének a határait feszegeti. Ezt remekül

érzékelteti a hálózatos körökben egyre gyakrabban elhangzó 1 ms késleltetési idő elvárása

a 2020-ra beharangozott 5G-vel kapcsolatban. A szigorodó igények kiterjednek a

rendelkezésre állásra, a biztonságra és a sokrétű nagy sebességű szolgáltatásokra is.

Számos szakember szerint a megfelelő válasz a korábbi évek inkrementális fejlesztésével

szemben (2G, 3G, 4G) egy paradigmaváltás, amely képes új alapokra helyezni a

rendszert.

Több elképzelés is létezik a lehetséges irányokról, amelyek közül a jelenlegi

kutatási eredményeket is figyelembe véve a Network Coding tűnik a legígéretesebbnek.

Ez a technológia szakít a hagyományos csomagkapcsolt hálózatok kommunikációs

gyakorlatával és a jelenlegi router-ekben alkalmazott “tárol és továbbít” megközelítést

“feldolgoz és továbbít” megközelítésre cseréli. A Network Coding mögött mély

matematikai háttér húzódik, amely végeredményben lehetővé teszi a hálózati eszközök

hatékonyságának növelését, a késleltetés csökkentését és a biztonság egyfajta implicit

módon való fokozását, így megfelelő választ jelenthet a fent vázolt problémákra.

Mindazonáltal az alkalmazhatósághoz vezető első lépésként szükség van Network

Coding képes eszközökre a hálózatban, amely a jelenlegi szemlélettel majdnem az összes

csomópont cseréjét igényli.

Erre a problémára jelenthet megoldást a Software Defined Networking (SDN) és

a Network Function Virtualization (NFV) technológiák együttes alkalmazása.

Dolgozatomban azt vizsgálom, hogyan lehet hatékonyan integrálni a Network Coding

funkcionalitást SDN hálózatokban, ezáltal lehetővé téve a széleskörű alkalmazást egy a

jelenleginél hatékonyabb hálózat működésének érdekében.

4

Abstract

Nowadays, with the ever-growing demands from subscribers toward network

reliability and performance has grown so wide that the current system is unable to provide

the required services. Besides, the planned new telecommunication network, 5G has set

up requirements like zero-latency (1 ms) to support tactile internet, machine control or

augmented reality, which seems impossible with the current architecture. Thus,

technology shift is required in this field.

These new possible approaches are still under construction and haven’t been

reduced to a single idea. Numerous experts believe that the solution could be the Network

Coding technology to increase network capacity and providing almost no latency between

any nodes. This novel approach also achieves greater security due to encoding every

packet, and enable the possibility to use multipath routing in a seamless way. Another

virtue of Network Coding is the new compute-and-forward mechanism, which breaks

with the common store-and-forward approach. This new access enables to forward every

incoming packet instantly, and also has the possibility to generate redundancy, which can

eliminate packet losses.

However, the problem with this new approach is that it is impossible to implement

it in the current network architecture, due to the fact, that every single middlebox and all

of the other network nodes are needed to be replaced with compatible devices.

Therefore, it is very crucial to find a solution to implement Network Coding into

the current networks, thereby in this paper I’m going to take essential steps toward

achieving that goal.

5

Introduction

In today’s telecommunications network the number of middleboxes (any device

that manipulates the network traffic) has grown significantly. Their importance is also

increasingly grow due their essential functions such as traffic filtering, load balancing or

intrusion detection (IDS). However, they also come with immense drawback, due to their

high cost of design and development. Furthermore, their maintenance and operations are

not user-friendly either. Another issue of middleboxes is the impossibility to improve

their functionality and to develop them further, so the only way to replace or acquire a

new middlebox with the required functions.

It is also rather unfortunate that the current network is still based on the same

principles which were invented in the dawn of computer systems by engineers. In the last

decades it was refined in several times and with technological improvements it became

possible to achieve better performance. However, this approach already reached its limits.

To resolve this obstacle a new approach need to be introduced.

According to current researches this paradigm shift could be the integration of

Network Coding (NC) into the network. This novel technology enables to increase the

speed of network communication, data encryption and also reduce network latency by

introducing the compute-and-forward mechanism, instead of the store-and-forward

mechanism at network devices. As a consequence, integrating NC into the

telecommunication networks would require to replace most of the existing middleboxes

which is a highly non-trivial problem. A solution could be to improve the hardware based

network devices, but as mentioned before, it would be nearly impossible.

The combination of the recently expanding Software Defined Networking (SDN)

combined with Network Function Virtualization (NFV) technology offer a feasible

solution to the problem (the previously mentioned difficulties in developing and

modifying the hardware based middleboxes). One of the most promising networking

tendency (SDN), enables to control network traffic while the NFV approach makes it

available to implement and integrate different functions into the network as a software.

These technologies create an opportunity to expand the network capabilities in such a

way, that it doesn’t require to replace the whole architecture and network nodes, or if it

does, then it enables us to do it in small steps and also in a much more cost effective way.

6

This paper is organized as follows: in Section I I provide deeper understanding

for these new innovative technologies (SDN, NFV, NC); in Section II I present some

possible NFV platform solutions, then I’m going to choose one on which I’m going to

deploy a VNF; in Section III, I demonstrate step-by-step how to make a VNF on the

chosen platform; in Section IV I’m going to provide measurements results; and last but

not least, I make conclusion about the obtained results.

7

1 Novel technologies

In the following subchapters, I’m going to present SDN, NFV and NC principles

to get a deeper understanding about how are these technologies work, and why they are

essential in the future telecommunication network architectures.

1.1 Software Defined Networking

The demands of networked computer systems has changed so dramatically over

these years that it requires to re-evaluate the system. With the increasing usage of cloud-

based networks, virtualized desktops and servers, or remote data-storage devices to name

a few, the need of computing power, resource distribution, and planning are inevitable to

deploy these services in the network. However, these network functions are also needed

to be maintained to function properly, which gets harder every day, due to the current

architecture.

That is the main goal of Software Defined Networking paradigm (SDN), namely

to provide a programmatic interface to network devices, so it becomes possible for

network engineers to manage network services through a higher-level of abstraction. The

main idea is to separate the data plane from the control plane. By doing that, it creates a

possibility for a centralized network control which dramatically decreases the cost of

installation, maintenance and management. Furthermore, SDN enables network

administrators to handle the whole infrastructure as one entity.

This novel approach creates a dynamic network architecture which can be

customized and optimized as needed through an application programming interface

(API). SDN uses two APIs, one is called Northbound API which is the interface towards

applications, and the interface towards the data plane is called Southbound API. We can

see in Figure 1, how an SDN architecture is built.

8

For the Southbound API, the most preferred protocol is the OpenFlow, which was

created by the Open Networking Foundation (ONF) [2]. Since it was established (2011),

they were determined to promote the SDN approach, so they designed the OpenFlow

protocol for networking hardware, thereby providing a reliable interface to manage SDN

switches.

Due to the logic is sourced in the controller, therefore it doesn’t require to use

specialized and smart network devices. Commercial, off-the-shelf (COTS) hardware can

be placed on their steads, because OpenFlow enables the communication between them

and the controller platform, and provides a way for the instructions to be executed.

The power of OpenFlow comes from its simplicity. It uses flow tables, which

contains rules. If an incoming packets matches any rule, then it will be processed

accordingly, without any interaction needed from the controller, thus decreasing latency.

Otherwise, if the packet doesn’t match any rule, or the flow table is empty, then it is

forwarded to the controller, which can decide what to do with that peculiar packet, and

can install new rules accordingly to the switches/routers. Because of this behaviour, after

some time the flow-tables can achieve a semi-stable state on the network, so every packet

can be handled only on the data path, which means increased speed in processing.

Figure 1: SDN architecture [1]

9

The other benefit, which comes with flow table that it opens up plenty new ways

for routing, thus enabling new services for each customers separately. For example it

becomes possible, to not only route based on destination address, but also on source

address.

SDN is a flexible, agile, programmable and most important, open standards-based

and vendor neutral platform, that is capable of handling the most demanding current, and

future networking need.

1.2 Network Function Virtualization

Modern telecommunication networks contain an ever increasing number of

network devices apart from switches/routers. These are the hardware appliances, a.k.a.

middleboxes, that manipulates network traffic implements various essential functions like

traffic filtering, load balancing, domain name service (DNS) resolving, intrusion

detection (IDS), network address translation (NAT) and caching to name a few.

Although, these are stationary appliances, and there are often a need for

functionalities to be deployed elsewhere. Another problem with middleboxes lie in their

hardware based nature, because they are not just extremely expensive, but excessively

hard to maintain and operate them. Using OpenFlow would solve these problem, but it

would bring forth another one, namely it would decrease network performance and

increase delay in each communication, due to filling each middleboxes’ queue. Further

issue with them is the impossibility to update or upgrade with new features. Therefore a

new approach is desired to be able to deploy middleboxes whenever and wherever is

needed efficiently.

As a result of these drawbacks, in October 2012, seven of the world’s largest

telecom operators presented a new proposal, named Network Function Virtualization at

the SDN and OpenFlow World Congress [3]. It is important to note that NFV differs from

SDN, although it is common to use them together due they complement each other. While

SDN aims to provide a programmatic interface to network devices, NFV targets to turn

hardware middleboxes into software components.

First white paper released in November 2012, and selected the European

Telecommunications Standards Institute (ETSI) [4] to be the main home of NFV. ETSI

10

approved the proposal and created the NFV Industry Specification Group (NFV ISG)

with the objective to develop the required standards. NFV ISG publishes NFV use cases,

proof of concepts, architectural framework and terminology, which is required for

researchers to effectively realize NFV tools and principles. ETSI NFV ISG vision for

NFV which relies on COTS hardware and software delivered through the cloud can be

seen in Figure 2 [5].

NFV offers a new way to design, deploy and manage networking services,

because instead of using hardware appliances, it realizes middleboxes as a software

component. Due to this new approach, it becomes possible to deliver agility and

flexibility to networks, because middleboxes now can be deployed anywhere on demand,

can be scaled up or down to address changing demands from network users, and most

importantly doesn’t require dedicated special hardware, because it can run on COTS

hardware or even in a virtualized computer. Another advantage of NFV, that it reduces

the time needed to deploy new services into networks and because they are a software, it

can be changed as required to consolidate new needs. In addition, NFV reduces the capital

expense (CapEx) by eliminating wasteful overprovisioning and also reduces the

operational expense (OpEx), because it doesn’t require space, nor heat-ventilation-air

conditioning (HVAC) and it simplifies the management and roll out of network services.

Figure 2: ETSI vision for NFV [5]

11

NFV decouples the network functions from proprietary hardware appliances so

they can run as a software.

1.3 Network Coding

Network Coding (NC) [6] is a new discipline in which the transmitted data is

encoded at source, recoded in the path, and only decoded at the destination. This new

approach increases network throughput, significantly reduces latency, makes the network

more robust and also gives provides greater security against eavesdropping, hacking and

other forms of attack.

NC breaks with the current store-and-forward mechanism, in which packets are

copied then forwarded towards its destination. Furthermore, Kirchoff’s law (the sum of

bits flowing into that node is equal to the sum of bits flowing out of that node) doesn’t

apply anymore because network coding treats each independent data flow as algebraically

combinable information. Therefore the sum of bits flowing out of the node are not

required to be equal of the sum of bits flowing into this node (so the output is the function

of the input).

These nodes that apply some function on the data flows are called either sources

or relays, according to their position in the actual route between two communicating

devices. Implicitly, the node that will apply the inverse function, to retrieve the original

flow is called the decoder. Therefore each path always contains one source and one sink,

and can contain zero or more relays as shown in Figure 3, which is a simple topology that

uses multipath routes between the source and destination nodes.

Figure 3: Simple (multipath) topology for naming conventions

12

In the beginning, when network coding was first introduced [7], the elementary

butterfly topology, as can be seen in Figure 4, widespread over the world, and mistakenly

cause a confusion about the technology, thinking network coding can only be used in such

a farfetched situation. This misunderstanding even appears in literature, forestalled its

evolution and also clouded its immense assets. Today it has been eliminated, therefore

NC can be used in any network topology.

Nowadays, NC has greatly evolved since its formalization and there are different

implementations of the mathematical concept. One of these implementation is the random

linear network coding (RLNC), which breaks up with “butterfly topologies” and XOR

operators, instead it is creating linear combination of the incoming flows. The way the

coding vector are produced is based on random number generation, hence its name.

Furthermore, RLNC defines a new function for relays by enabling them to recode

incoming packets without waiting for the whole original data to arrive. This improves

transmission speed and also reduces latency between communicating participants. In the

implementation relays are often called as recoders. (Although they are not required to

always recode every data flow, it can be set as demanded.)

1.3.1 Random Linear Network Coding

RLNC is a rateless code, which means an infinite number of representations of

the original data can be created. This makes it available for this technique to recover from

any number of erasures. It comes from the mathematical construct behind it, which is

called Galois Field (GF) or finite field. A finite field is a variable where special rules are

defined for the arithmetical operators. These rules guarantee that operating on a GF, the

Figure 4: Elementary butterfly topology [8]

13

result of the operation will also be in the same finite field. A common field for instance

is a GF(2), where the addition is defined by the XOR operator. An illustrative example

can be seen on Figure 4, which is the mentioned elementary butterfly topology, where

recoders haven’t existed, and each node still needed to wait some packets to be able to

encode them together. Still, it is a great example to show how we can reach a higher

throughput rate on the middle link using a basic network coding over a GF(2).

Essential naming conventions that RLNC uses [9] :

A symbol is a vector of GF elements that represent some data. The size of it

depends on the number of elements and the size of each element.

A coded symbol is a symbol which is a combination of the original symbols in a

generation, therefore it represent all the data in it, but it has the same size as the original

symbol.

A generation contains g coded symbols of size m, where g is called the generation

size. The g original symbols in one generation are arranged in the M (m1; m2; …; mg)

matrix, where mi is a column vector. The original data with the size of B, is divided in

⌈
𝑩

𝒎∗𝒈
⌉ pieces creating ⌈

𝑩

𝒎∗𝒈
⌉ generations.

A coding vector describes how the symbol was encoded. It contains the

coefficient for each symbol in the generation.

A coded packet is a pair of a coded symbol and a coding vector. These must travel

together, due the only possible way to decode the symbols is by knowing the

corresponding coded vector.

14

A basic overview of RLNC can be seen in Figure 5. If the original data is large,

then it needs to be split into multiple generation, because if the whole data would be

considered as one generation, then the computing complexity would be very high. In this

scenario, the encoder generates linear combinations of the original symbols which will

represent some part of the original data but has the same size as one symbol. Because it

operates over a GF, means it can create infinite number of linear combinations, thus

providing the possibility to recover any number of erasures. After the encoded packets

transmitted, some will be erased in the lossy channel. This doesn’t matter, if at least g

linearly independent packets arrive at the decoder, because that way the decoder can still

decode the original data (by choosing a feasible GF size there is a very high probability

(almost 1) that a linearly independent packet will be generated). All received symbols are

placed in the matrix �̂� = [�̂�𝟏; �̂�𝟐; …; �̂�𝒈] and the coding vectors in the matrix �̂� = [�̂�𝟏;

�̂�𝟐; …; �̂�𝒈]. The original M data can be decoded as M = �̂� * �̂� −𝟏.

Network Coding involves some overhead, due to the coding vectors, because it is

needed to be added in the encoded packet. The size of it depends on the GF size, the

generation size (g) and the representation of the coding vector, but in practise, it is smaller

compared to the payload size. The other source of overhead can come from the GF size,

Figure 5: Overview of RLNC [10]

15

if we chose a small field size, due to it might produce a small number of linearly

dependent coded packets.

In the profile of delays, the generation size is what matters. With g generation

size, at least g symbols, which means g * m amount of data must be received to start

decoding,

RLNC is useful in many different scenarios, for example in point-to-point

communication due to it can eliminate packet losses on a lossy link. It can realize reliable

multicast in wireless networks by efficiently using broadcast transmissions. Furthermore,

by overshooting symbols in each generation, it work as a Forward Error Correction (FEC)

code as well, eliminating possible link losses, and if retransmission is needed, there is a

high probability that one retransmission will be sufficient for multiple sinks. Due to this

ability of RLNC, it is also a great way to utilize best-effort multicast, for example in video

streaming. In a multi-hop network with the ability to recode, intermediate node helps to

minimize signalling between two communicating devices, due each recoder can generate

another linear combination, which means it will contain new information with a high

probability. Therefore, instead of the source providing new information, a closer node

can do that task.

Network Coding changes the current network’s packet forwarding principles, and

nowadays with Random Linear Network Coding, it can greatly decrease latency, improve

throughput, reliability and security.

1.3.2 Kodo library

There are many implementations of Random Linear Network Coding including

some proprietary solutions as well. I chose the Kodo implementation, because compared

to others, it provides the highest coding speed and also the most functionalities that comes

with the package.

The first comparison (Table 1), compares the coding speed of the existing libraries

using different generation size parameters (in other words, using more and more packets

coded together). All measurements used GF(28) with 1 MB packet size.

Table 2 shows the different functionalities that each implementation supports.

16

Library Capabilities Kodo Jerasure 1.2 Jerasure 2.0 ISA-L Open FEC

Reed-Solomon
Codes Supported

✔ ✔ ✔ ✔ ✔

Network Coding
Supported

✔

Updated with Novel
Code Support

✔ (✔)

Contiuous
Optimization of
Algorithms

✔

Automatic
Adaptation to CPU
Features

✔

OS Support

Ubuntu, Debian,
Arch Linux,
Windows,

Android, IOS,
Kindle Fire HD,
Raspberry PI,

Open WRT

Ubuntu,
Debian

Ubuntu,
Debian

FreeBSD,
Ubuntu,
Debian,

Windows

Ubuntu,
Debian,
MacOSX

Compiler Support
GCC, Clang, MS
VS, Apple LLVM

6.0
? GCC GCC ?

Date of Lat Release 10/2015 8/2008 1/2014 11/2013 12/2014

Hardware
Acceleration on
Intel Chipsets

SSSE3, SSE4.2,
CLMUL, AVX2

 SSSE3 SSSE3, CLMUL SSE

Hardware
Acceleration on
ARM Chipsets

NEON

Multi-core support ✔

Simulation support Internal, NS3

Table 2: Functionality comparison [23]

F = GF(28)
P = 1 MB

Kodo 17 ISA-L Jerasure 2.0 OpenFEC

G=8 3096/280 2255/2635 1250/1365 353/292

G=9 2542/2559 1961/2252 1096/1185 305/264

G=10 2136/2227 1724/1796 997/1072 285/245

G=16 1807/1496 1075/1180 628/644 179/160

G=30 950/647 266/271 349/361 96/90

G=60 594/329 123/122 184/184 48/46

G=100 383/209 74/73 111/111 29/28

G=150 266/141 47/46 74/74 19/19

Table 1: Performance comparison of RLNC implementations in coding speed [22]

17

All of the compared erasure code implementations are open source projects if used

for research or individual purpose.

1.3.3 RLNC compared with other scenarios

In this section some measurement results are provided that compare random linear

network coding against block or fountain coding schemes (Raptor, Reed-Solomon) [24].

These codes can be used basically in two way: in an end-to-end (E2E) manner or in a

hop-by-hop (HbH) manner. In E2E, encoding and decoding only performed once, in the

endpoints of the communication at E and D (Figure 6). This implies that E should emit

enough amount of extra packets to ensure that all of the information can be recoded at D.

The intermediate nodes acts as simple store-and-forward nodes, namely they only forward

successfully received packets. The HbH approach unburdens the network from

unnecessary packets, but at the same time, it also infuses extra latency as every relay has

to wait to receive the full message in order to be able to start encoding.

The measurements were carried out on a fully fledged implementation of the

compute and forward router with the respective networking scenarios built in Click. The

parameter setting include erasure probability (∈), packet size (L), generation size (G),

number of hops (H) and channel rate. The analysis is done assuming a single path – multi

hop channel where E delivers a message of G packets through H number of relays to a

decoder D. The link loss probability on each link set on 0 < ∈ < 1.

Figure 6: Illustration of E2E, HbH and RLNC coding schemes, with 50% probability loss on each link

18

The first measurement examines the overall number of sent packets that D

requires to successfully decode the message. In Figure 7, where packets conveyed in a

three hop communication network, the theoretical (indicated by (T)) and measured results

can be seen. It shows that while RLNC and HbH packet number linearly with the loss,

the E2E increases exponentially.

The next measurement gives a different result, where the concern was on the

latency versus different channel rate. This simulation was taken on the same three hop

communication without any loss. As the result shows (Figure 9), this time RLNC is

compared with E2E coding. Since there are no packet losses E2E with inmediate forwards

performs just as well as RLNC. In the HbH case each node has to wait to fully receive

the whole message in order to be able to start forwarding. The gain of RLNC over HbH

remain constant for the higher values which means that the ratio of latency is independent

from the bandwidth.

The latency results change a lot if the channel is error prone with the probability

of 50% (Figure 8). Now the advantage of RLNC over the other two schemes becomes

evident and E2E is now even worse than HbH. After having a look again at Figure 6 this

is not so surprising, since E2E have to send through all redundancy on the whole channel.

Figure 7: Number of overall packets require to successfully decode the full message

19

Finally, in Figure 10 the latency for the three transmission schemes depending on

number of hops and loss probabilities is given. In the case of small number of hops with

low loss E2E can keep pace with RLNC, at the expense of more sent packets. However,

the latency increases significantly for large number of hops that are highly error prone.

For HbH it increases linearly with the number of hops and increases with the probability

of losses. RLNC has a lower latency than the other two schemes over a wide range of

parameters.

Figure 8: Latency results over different channel rates, and no losses

Figure 9: Latency results over different channel rates and 50% probability of loss

20

Figure 10: Latency for the three transmission schemes depending on number of hops and loss (Packets 64 – Size 205

B – Bitrate 0.25 Mb/s).

21

2 NFV implementation platform

2.1 General overview

The utilization of NFV in the networks, would dramatically change the current

networking practices. NFV can help reducing operation and equipment cost, can also

lower power consumption and reduce time-to-market for new services or functionalities.

However, to successfully integrate VNFs into the current system, an NFV platform/NFV

Infrastructure is required.

An NFV platform must fulfil plenty requirements [11]. The foremost requirement

is to be reliable and efficient, since service providers (SP) won’t accept, if a network

function is unavailable due to a cloud data centre or an entire region loses service. To

guarantee this, it has to provide five-nines availability and also to offer at least the same

quality of service levels as telecommunication networks. Since NFV platform runs on

COTS equipment, therefore to provide availability, it is needed to be measured at the

system level, and has to be able to transfer whole services if an error occurred. The

efficiency part comes from the software based profile of VNF, because it provides a much

higher degree of automatization, and can be programmed on demand.

Since they are intended to concurrently run software, they must support multi-

tenancy. Therefore collocated middleboxes should be isolated in both performance and

security point of view, in CPU, memory and device access. Furthermore, NFV platforms

must accommodate with different OSes, APIs and software packages, hence the

requirement for being flexible.

Further demand is to be able to achieve high throughput with low delay. It is more

concerned requirement, due to middleboxes would be deployed typically in operator

environments, so it needs to handle large traffic rates while adding negligible delay to

RTTs.

Another important necessity is to be scalable. Since SPs would run middleboxes

for third-parties, they must be very efficient. The platform should ideally support large

number of middleboxes belonging to different third-parties. For this reason, and to make

better use of additional resources, or additional servers, the platform should be able to

quickly scale out processing on demand.

22

By taking ETSI ISG view of what requirements should a NFV Infrastructure

platform fulfil, we can see the resemblance with the criterions above, just in a more

general, service provider point of view. In Alcatel-Lucent’s whitepaper titled “Why

service providers need an NFV platform”, they provide a detailed description for a NFV

platform demands [12].

A NFVI platform must support distributed architecture to provide the needed

flexibility with as little delays as possible, just as in the telco networks. Moreover it should

automatically find the optimal workload locations to further improve in the performance

aspect. The distributed datacenters and networks should also be managed and orchestrated

as a single virtual cloud, in order to be able to analyse and monitor the entire cloud

platform in real time.

The next condition is about the cloud nodes that they must be highly automated,

and should be pre-configured to be able to replace services on demand, or to eliminate

possible mechanical failures in the COTS hardware.

A further requirement for a NFV platform is to have an automated application

lifecycle management, to enable new services to be deployed in minutes, instead of

weeks, like nowadays.

To maintain the network with deployed VNFs, the platform must be rapidly

configurable, and should have a flexible network abstractions, thereby should have access

to SDN, to be able to automatically create the required communication paths between

different VNF applications.

Last but not least, it needs to be an open and shared environment, due to the

platform should be able running applications from different vendors. Therefore, it is

important to support industry-standard APIs.

2.1.1 NFV Platform implementations

CloudBand [12]

This NFV platform consists two major components. One is the CloudBand Node,

which provides the infrastructure, that the ETSI NFV set up, and the other on is the

CloudBand Management System, which provides the required management and

orchestration framework.

23

Their north and southbound APIs are using industry-standard open APIs, such as

OpenStack. For the lifecycle management, it uses Carrier PaaS, while the cloud

optimization functions runs on their own algorithms. CloudBand integrates with the

Nuage Networks programmable SDN solution, and uses its framework to automatically

set up the network structure.

CloudBand Red Hat approach

In this implementation [13], the platform uses CloudStack instead of OpenStack,

which greatly increases the performance of the platform.

The other difference is that the virtual infrastructure manager (VIM) of it relies

on Red Hat Enterprise Linux OpenStack Platform without any modification.

The drawback for these implementation is the OpenStack service, due to it is still

in its early ages, and under heavy development in many areas. The other issue with

CloudBand that it is not ready to use out of the box. The OpenStack need a lot of

configuration, which are not very straightforward.

OPNFV

OPNFV [14] is a carrier-grade, integrated open source platform that looks to

realize the ETSI NFV ISG’s architectural framework. This solution is focused on the

NFVI and VIM portions, because they aim to provide for the industry a good basis to

build on. Therefore it is still under construction, and it is done by upstreaming and project

collaborations. In this way it can ensure every requirements of the industry is fulfilled.

OPNFV Arno Release

The Arno release is a developer-focused release. It is aimed at those who are

exploring NFV for proof-of-concepts, or developing VNF applications or just interested

in performance and use case-based testing. It provides an initial build with the required

infrastructure and VIM components of ETSI NFV architecture. OPNFV integrates

components from the upstream of Arno release, and the community integrated

components from upstream communities like Ceph, KVM, OpenStack, Open vSwitch

etc. The advantage of OPNF is that it implements the ETSI NFV architecture, fully open

source, and provides a good basis to build on, but it is still under development, not ready

to deploy at the moment.

24

There are many other implementations that uses the OPNFV solution, but changes

some functionality, or some parts of the implementation, therefore they become

proprietary solutions.

HP OpenNFV Architecture

This is one of those implementation, which uses OPNFV as a basic. It relies on

OpenStack de-facto standard, but made it more robust for communication service

provider (CSP) environments. This cloud compute operating systems is called HP Helion

OpenStack Carrier Grade [15].

vCloud NFV

Another platform that utilizes OpenStack bases is their solution is VMware [16].

Their platform is the vCloud NFV. It is also made for CSP environments using some of

their own technologies like vSphere, vSAN, vCloud Director or VMware to provide to

required functionalities.

Dell NFV platform

Dell also made their version of NFV platform, which is also based on OPNFV

architecture [17]. For the NFV platform at the moment there are two starter kits available

for early adopters, but they both runs on specific dell devices.

Intel NFV platform

Intel’s NFV platform are based on OpenFlow protocol as the SDN southbound

API, and runs on Wind River Linux distribution and uses KVM and OpenStack solutions.

The problem with these platform comes from proprietary source profiles, therefore needs

a special hardware/software components which are COTS devices or not open source.

25

2.1.2 A feasible NFV platform implementation

In another point of view, if we consider how middleboxes should be programmed,

then it is recommended to support code re-use to reduce cost, time and overhead.

Therefore it isn’t needed for the platform to run one commodity OS just to support

middleboxes coded as applications.

Continuing on this approach, there are plenty of ways to implement such a

platform, given the goal is to run middleboxes on the same COTS hardware. One solution

is using a container like chroot, FreeBSD Jails, Solaris Zones, OpenVZ to name a few.

The advantage of using a container is that they are very popular, lightweight and easy-to-

use. Although it forces all middleboxes to run on the same operating system, which is a

limitation that conflicts the flexibility requirement as mentioned above.

Instead of using a container, the other possibility is to use a hypervisor.

Hypervisors provide the flexibility that is needed for multi-tenant middleboxes, but this

comes with the price of low performance. For this issue, a common solution is to utilize

device pass-through, where the virtual machines can directly access the network interface

card (NIC). Although this also has downsides, namely it complicates the live migrations

and the COTS device is monopolized by that virtual machine, which harms the scalability

criteria. There is also a workaround for the latter issue, this new technology is called

hardware multi-queuing, but using this solution would still limit the number of VMs that

can be concurrently run.

Further solution that can come to mind, is using a minimalistic OSs, or micro

kernels. The reason they are attractive is due to they aim to provide just the required

functionalities. Although they typically lack driver support, especially NICs, and most do

not run in virtualized environments.

The final solution is to combine some of these approaches, to achieve a system

that fulfils the delineated requirements. To achieve the flexibility, isolation and multi-

tenancy a hypervisor based solution is needed. As mentioned before, it comes with higher

cost of performance, but this can be reduced to a negligible cost, by using para-

virtualization. Para-virtualization makes only minor changes to the guest OSs, therefore

greatly reducing the overhead that would exists if a full virtualization would be used.

As indicated before, there is a need of a programming abstraction. Instead of

writing a user-space application on top of a commodity OS in C, which is the de-facto

26

programming language due to it offers high performance, we need to use a language that

flexible, has a high performance while the written code can be re-used. According to

researches, one of the best tool today is the Click Modular Router software [18]. Click

comes with hundreds of stock elements, and can be extended with new elements, therefore

we are not limited by only out of the box functionalities. Another advantage of Click that

it is easy to re-use previously written elements.

Therefore a feasible solution for a lightweight, fast, reliable NFV platform should

use a hypervisor based para-virtualization that runs a minimalistic OS on which Click can

be integrated.

2.2 ClickOS

 ClickOS meets all these requirements, moreover it is wildly in the research

community. An example for that is the latest SIGCOMM conference (August 2015, in

London) where they were creating VNF using Click [19], although they built its own OS

named Scylla, but it is similar to ClickOS. In previous SIGCOMM conferences there were

also attendants whom were using Click or implicitly the ClickOS platform [11].

From all the possible solutions ClickOS excels, due to its impressive nature.

ClickOS virtual machines are small (5 MB), has a fast booting time (about 30

milliseconds) meanwhile adding the lowest delays into the networks (45 microseconds)

and hundreds of them can be concurrently run on a COTS server while saturating a 10

GB pipe. Due to these reasons why I chose to use ClickOS NFV platform.

2.2.1 About ClickOS

ClickOS [21] is using a Xen Hypervisor based virtualization technology running

a minimalistic OS, MiniOS, that is able to run the Click Modular Router software.

Other possibility for virtualization could be KVM technology, but performance

results showed it yields lower performance than Xen. Furthermore, Xen’s support for

para-virtualized VMs provides the required high throughput demands with low delay.

Although to achieve full potential changes needed to be made in the system. These

changes concerns Xen’s network I/O subsystem, the software switch (Open vSwitch), and

the netback-, netfront drivers.

27

The original architecture of an out of the box ClickOS can be seen in Figure 11.

Xen uses a split network driver model, where the netback driver running on the

host OS in kernel domain, while the netfront drivers running in each guest domain

(ClickOS). They communicate to each other via shared memory (ring-based API).

Meanwhile, the NIC is linked to a virtual network device, called vif, through a Linux

Bridge (SW switch, or in newer Xen versions, via an Open vSwitch). When a packet is

received, it is forwarded to the virtual network device named vif (it can be found in the

netback driver), then it queues the packet at the netback driver. Later, one of the netback’s

thread picks it up and puts on the shared ring, meanwhile notifying the netfront driver.

Without any optimization, it performs poorly, therefore it needed to be changed.

The first optimization was carried out at the netfront drivers, to pull for packets instead

of waiting for an interrupt. Second change was that once a guest domain share information

with the host domain, Xen keeps alive their shared memory, instead of reallocating it each

time. Further changes has been made at the netback driver, namely it had been completely

removed and a netmap-based driver has been set to operate, which allows to directly map

Figure 11: ClickOS architecture [21]

28

the network buffers of each port of the backend software switch onto the VM’s local

memory. This rework provides greater performance by enabling a much more direct route

between the NIC and the guest domains.

There was another bottleneck in the system, namely the software switch (Open

vSwitch) which significantly reduced the achievable speed. This has been also replaced

with another device, namely with a VALE switch (often referenced as ClickOS Switch),

which relies on a netmap driver, thus making it is easy to interact with the netfront driver.

Further modification is about the port number, it has been increased from 64 to 256, to

accommodate a larger number of VMs. In addition, the ring size has been altered to take

2048 slots. Moreover, the switching behaviour has been set to modular switching instead

of a learning one. In Figure 12, we can see the changes illustrated.

2.3 Acquiring ClickOS

Getting started with ClickOS and installing of it, is not as straightforward as it is

mentioned in several publications. Even in the official webpage of the ClickOS

developers [20], the only tutorial that is available for public use, has some not precise

instructions. Furthermore, it isn’t indicated, that those steps aim to optimize ClickOS’s

performance, instead of acquiring it.

Figure 12: Standard ClickOS pipe on top,

Optimized pipe on bottom [21]

29

 The first thing on the way, is to acquire the kernel source files that matches the

version of the running one. I was using the 3.16.7 Linux kernel, and this is important

because if a newer kernel version would be used, then a different version of Xen would

be required.

For instance, on the 3.19 Linux kernel only the 4.5 version of Xen hypervisor is

accessible. But if someone would try to install Cosmos (the management system for

ClickOS) with those versions, then it would throw a runtime exception saying some

functions requires missing parameters, other are completely missing due to the code has

been refactored between versions. For this particular problem, it has only been solved in

6. October by creating a side-branch for those who are running Xen 4.5.

The next thing to do is to get the Xen sources, preferably the 4.4 version of it.

After a successful installation of the Xen hypervisor and a reboot, the running kernel’s

configuration and System map must be copied into the kernel source directory, which was

previously downloaded.

The following step is to install SWIG to be able to connect libraries written in C

or C++ with scripting languages, in this scenario with python. This is a prerequisite for

ClickOS. After this, the MiniOS source files can be obtained.

Due to ClickOS redefines some function definitions that MiniOS implements, and

also uses some of STL functions, there is a need to download ClickOS’s toolchain, which

contains their own libraries. Thereby the ClickOS sources can be configured without any

error, and the ClickOS image can be created.

As for the management service, namely Cosmos, should be acquired after this

step. If someone would follow those instruction on the official webpage, it would make a

different outcome as it would be expected. To properly install Cosmos, it should be

configured with a flag, which specifies to enable the xcl (Xen Control Light) domain

library. Without using this option, it would be impossible to manage running instances of

ClickOS, only by manually overwriting Xen created temporary files.

Although, as I tried to install with this option, it failed with an error message that

didn’t provided any information about why did that error occur. Since there was no

solution to this problem, I tried to use a newer kernel version, namely the 3.19, in which

case the error message I got was the following: Unknown type name.

30

Due to these setback, I chose to do the required management manually, because

this doesn’t affect the performance of the platform, only a convenience.

By all of the mentioned failures at installations, we can draw a lesson, that newer

versions are incompatible with previous one. Although, even if it is possible to build the

required programs, that doesn’t necessarily mean that everything will be compatible with

each other. I experienced it when I tried to modify the interface’s name of a running

ClickOS. For this to take action, an option should be enabled in the Xen configuration

file. When Xen tried to parse this configuration, it throw another runtime exception, in

which the message pointed toward Xen scripts, which handles virtual device creations. I

managed to restrict the source of the problem to a function call. I had to modify this

function to be able to execute this simple setting.

After a successful implementation of a VNF in a simulated prototype architecture,

the first milestone is to deploy a VNF in a real-life environment. The first step-stone to

achieve that goal, is to select a VNF Platform, which enables to do just so.

Therefore, to overcome all of these setbacks, and to be able to create a ClickOS

instance is essential, because it provides a powerful tool to create any kind of VNF which

can be used real time, on real, COTS hardware.

31

3 Creating a VNF

After the VNF platform instance has been successfully created, the next target to

aim is a VNF creation on that platform, to provide a proof of concept. To create a VNF

in the ClickOS platform, a click and a Xen configuration file are required.

The Xen configuration file must define some aspects of the running ClickOS like name,

on which that specific instance can be accessed, full path to the ClickOS kernel image,

how much memory should be allocated for the VM, and finally, the name of the virtual

bridge should be specified. These are the required options, but more can be set on demand,

an example can be seen on Figure 13.

With these secondary options, settings like preferred IP address, MAC address,

and virtual interface name can be provided, also the click file path can be set here (which

lets Cosmos to simplify the creation of the VNF). The default virtual device creation

script can be also replaced with a different one to adapt to different environments.

Meanwhile the click file should contain the implementation of the chosen network

function. This middlebox must be written in Click language. It is important to note, while

in a traditional Click file, the FromDevice and ToDevice elements must be set to an

interface, in this configurations it should not be initialized with anything (or only with the

number zero) due to the fact, that the running instance has only one interface, and they

are numbered instead of named.

Figure 13: A minimalistic VNF Xen configuration file

32

An example Click configuration can be seen on Figure 14, which objective is only

to demonstrate how Click works. This illustrative example reads packets from the

interface, which has been assigned through the FromDevice element, and then Prints

packets by their protocol.

First, the FromDevice and ToDevice elements should be observed. As mentioned

before, these provides the interface to connect to NICs, therefore a configuration must

always contain one of these to be able to have a dynamic behaviour. (The other possibility

is to use random packet generator, which only generates dummy packets, thereby only

used for debugging.)

The following element, which needs to be concerned, is the Classifier named “in”.

This element has N outputs, each associated with the corresponding pattern from the

Figure 14: Click example in a graph view

33

configuration string. The pattern is a set of clauses, where clause is an offset/value pair.

Therefore this element should be used, if multiple type of packets can be transferred.

The IPClassifier element has a similar function, namely to filter incoming packets,

but in this case, it requires each packet to start with its IP header. Due to this, the filtering

can be simplified as patterns can be used like TCP, ICMP, UDP, and can also filter by

source or destination address etc.

Click provides many different elements for packet verification, for which an

example in this configuration is the CheckIPHeader element. This job is to only let

through packets which has a valid IP header, checksum and length.

There are elements which can modify packets. For this functionality, the Strip,

Unstrip elements can be shown as an example, this can strip and unstrip given bytes from

the start of the packet.

The rest of the element that this peculiar configuration contains, are the Print,

Discard and Queue elements. The first element write out packets contents in hexadecimal

format, the second just simply throws the package, meaning it won’t be processed any

longer, and the last element is implementing a FIFO queue. On Figure 15, the output can

be observed while the VNF runs as a user-level component on a local machine.

Now, when both the Click and Xen configuration are done, it can be deployed in

a running instance of ClickOS.

In Figure 16, part of the ClickOS initializing sequence can be seen, as well as

some of its property, but most importantly, the proof of the theory can be perceived,

Figure 15: The example VNF's output running on user-lever component

34

namely that any network function can be deployed as a software. At the shutdown process

(Figure 17), can be also seen that the integration of a VNF was successful.

Figure 16: VNF running on a ClickOS platform

Figure 17: Shutdown process of ClickOS

35

The graph view of the VNF, which uses Network Coding, and implements a basic

router functionality (can handle ARP and ICMP messages, and can forward IP packets),

also encapsulates specific TCP packets into UDP packets, on which it can utilize RLNC

(Figure 18).

Figure 18: VNF that utilizes RLNC

36

4 Performance Measurements

4.1 VNF performance in ClickOS and in User-level Click

All measurement was taken on the same environment, using a Debian 8 operating

system. For the user-level components, I created three network namespaces; two for the

hosts, and one which was running Click. For the ClickOS analysis, I created a similar

topology with two namespace for the two hosts, but instead using another namespace for

Click, I used a running instance of ClickOS which contained the same middlebox

implementation (Figure 19).

Figure 19: The user-level topology on a)

The ClickOS topology on b)

Figure 20: Bandwidth results for 10 measurements

37

The first aspect that I investigated was the bandwidth attribute, for which I used

the iperf tool. In Figure 20, the results can be seen.

The difference between them significance even more, if viewed both cases’s

results together (Figure 21), where the maximum, minimum and average bandwidth

values can be seen. This difference in bandwidth capabilities in practice can generate

approximately 25 times higher packet processing.

A further feature in which I compared this two environment is the scalability. As

the results show in Figure 22, using ClickOS over a user-level Click provides a much

higher performance even in a more extreme condition.

On the current VNF, I experienced with its memory usage under ClickOS, and I

could narrow it down till 8 Mbyte. In comparison with a general computer running a

standard operating system, which memory usage is in GB magnitudes, it fairs

Figure 21: Comparison on minimum, maximum and average values

38

extraordinarily. Therefore, if ClickOS would be deployed on a Raspberry Pi (with 512

MB of memory for 48 USD) would mean it could run concurrently 64 different VNFs.

The next aspect that I concerned, was again a scalability quality, but this time I

measured the time needed to create one thousand times a ClickOS instance, then

uploading a VNF into it, and destroying it before repeating this action. To do this

efficiently, I created a script which saves the time before the first instance of ClickOS is

deployed, and after the last one finished. This can be seen in Figure 23, while Figure 24

shows that 1000 ClickOS has been created in the process.

Figure 22: Scalability results

Figure 23: Time needed to create 1000 times ClickOS

Figure 24: Proof, that 1000 ClickOS instance has been created

39

The data shows, it took 94 seconds to create one thousand instance of ClickOS,

therefore and average time to create one is around 94 milliseconds.

I also examined the CPU usage in both cases. First I repeated the bandwidth

measures with 100 parallel clients connected to the server, but this time I was

concentrating on CPU usage. The user-level Click used almost 44% of the CPU time as

shown in Figure 25, while ClickOS was using approximately 42% as shown in Figure 26.

Figure 25: User-level Click CPU usage

Figure 26: ClickOS CPU usage

40

Implementing RLNC as ClickOS VNF

So based on the previous results combining ClickOS VNF with Network Coding

is something that really worth trying. With these technologies it is possible to create

network middleboxes with small memory footprint, portability and efficient forwarding.

As a last step of my work I started to implement an RLNC VNF in ClickOS based

on the other VNF I created (described in Section 3). Based on ClickOS seminal paper

[21], official tutorial and my previous experience this is a quite straightforward process.

The only extra step required is to copy the necessary third party libraries into a specific

folder and define its name. All the rest is handled by their compile script.

However I didn’t managed to do this. Even after a few weeks of debugging it

seemed impossible for me. Finally I reduced the problem to the toolchain shipped with

the ClickOS, created by the same authors, and it turned out that this tool is originally

dedicated to mask original system headers with custom ones tailored to ClickOS.

However this masking is partial and other important functions was removed including

vital headers for Kodo library. I contacted with the developers of both sides (ClickOS and

Kodo) and this problem was confirmed from the ClickOS team. In the current state of

their project it seems the merging is require a lot of unexpected extra work that is

extending ClickOS core and modifying Makefiles and source of the toolchain.

So summarize my experience with ClickOS implementing a VNF is not as

straightforward as they promise if it requires to use third party libraries. Another very

interesting constraint that I discovered is a 1009 byte limit for the length of the Click

configuration file implementing the desired VNF (which is independent from the

previously described issue).

41

Conclusion

Initially, I have provided an insight to SDN, NFV and Network Coding

technologies, which can change the concept about how we design the network thus enable

to shift current networks onto a completely new basis.

With Software Defined Networking we can make network description more

abstract that leads to better optimization possibilities and also provides a more

understandable view of the system. Utilizing NFV technology in this concept enables us

to deploy middleboxes as software components which can be scaled, moved, upgraded

and replaced on demand. Finally, Network Coding can ensure the technical solution for

future requirements. It can provide throughput improvements, high degree of robustness,

low delay and latency, and a more secure, reliable communication. Moreover, NC can

utilize multipath routing in a seamless way.

I investigated current NFV platform implementations in order to be able to deploy

any VNF, including Network Coding functionality as well and selected one of the best

available tool, ClickOS. Afterwards, I went through the steps of creating a simple VNF

and provided measurement results that is a proof of using ClickOS as a NFV platform for

VNF implementation has way more better performance, than using the same VNF on a

local machine as a user-level component. Moreover, using ClickOS provides an easier

VNF management and there are no physical restrictions. In addition, it requires very small

amount of memory (8 Mbyte), unlike typical full operating systems. Finally I tried to

compile our existing custom Network Coding Click elements into ClickOS VNF and it

turned out it is highly non trivial and also beyond the scope of this paper. As a future

work it is worth to consider of using another MiniOS implementation.

42

List of figures

Figure 1: SDN architecture [1] ... 8

Figure 2: ETSI vision for NFV [5] ... 10

Figure 3: Simple (multipath) topology for naming conventions 11

Figure 4: Elementary butterfly topology [8] ... 12

Figure 5: Overview of RLNC [10] ... 14

Figure 6: Illustration of E2E, HbH and RLNC coding schemes, with 50%

probability loss on each link ... 17

Figure 7: Number of overall packets require to successfully decode the full

message ... 18

Figure 8: Latency results over different channel rates and 50% probability of loss

 .. 19

Figure 9: Latency results over different channel rates, and no losses 19

Figure 10: Latency for the three transmission schemes depending on number of

hops and loss (Packets 64 – Size 205 B – Bitrate 0.25 Mb/s). 20

Figure 11: ClickOS architecture [21] .. 27

Figure 12: Standard ClickOS pipe on top, Optimized pipe on bottom [21] 28

Figure 13: A minimalistic VNF Xen configuration file 31

Figure 14: Click example in a graph view .. 32

Figure 15: The example VNF's output running on user-lever component 33

Figure 16: VNF running on a ClickOS platform .. 34

Figure 17: Shutdown process of ClickOS ... 34

Figure 18: VNF that utilizes RLNC .. 35

Figure 19: The user-level topology on a) The ClickOS topology on b) 36

Figure 20: Bandwidth results for 10 measurements ... 36

Figure 21: Comparison on minimum, maximum and average values 37

43

Figure 22: Scalability results .. 38

Figure 23: Time needed to create 1000 times ClickOS 38

Figure 24: Proof, that 1000 ClickOS instance has been created 38

Figure 25: User-level Click CPU usage .. 39

Figure 26: ClickOS CPU usage .. 39

44

References

[1] K. Kirkpatrick, “Software-defined networking”, in ACM, New York, NY, USA,

2013 Available: http://dl.acm.org/citation.cfm?id=2500473

[2] “ONF Overview - Open Network Foundation”, Open Network Foundation,

[Online]. Available: https://www.opennetworking.org/about/onf-overview,

[Accessed 23 October 2015].

[3] „Network Functions Virtualisation”, in SDN and OpenFlow World Congress,

Darmstadt-Germany, 2012.

Available: https://portal.etsi.org/nfv/nfv_white_paper.pdf

[4] „ETSI - NFV”, ETSI, [Online]. Available: http://www.etsi.org/technologies-

clusters/technologies/nfv. [Accessed: 23 October 2015].

[5] F. Yue, “Network Functions Virtualization – Everything Old Is New Again”, 2013.

Available: https://f5.com/Portals/1/Cache/Pdfs/2421/network-functions-

virtualization--everything-old-is-new-again.pdf

[6] C. Fragouli, J.-Y. Le Boudec and J. Widmer. “Network Coding: An Instant Primer”,

in ACM Sigcomm Computer Communication Review, vol. 36, num. 1, p. 63-68,

2006. Available: http://infoscience.epfl.ch/record/58339/files/rt.pdf

[7] R. Ahlswede, N. Cai, S.-Y. R. Li and R. W. Yeung, “Network Information Flow”,

in IEEE Transactions on information theory, 2000. Available:

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=850663

[8] Linear network coding [Online] Available:

https://upload.wikimedia.org/wikipedia/commons/thumb/3/33/Butterfly_network.s

vg/2000px-Butterfly_network.svg.png [Accessed 23 October 2015].

[9] “Frequently Asked Questions – Kodo master documentation” Steinwurf [Online]

Available: http://kodo-docs.steinwurf.com/en/latest/faq.html [Accessed 23 October

2015].

[10] “Introduction to Network Coding” Steinwurf [Online] Available: http://kodo-

docs.steinwurf.com/en/latest/nc_intro.html [Accessed 23 October 2015].

[11] J. Martins, M. Ahmed, C. Raiciu és F. Huici, „Enabling Fast, Dynamic Network

Processing with ClickOS,” 2013. Available:

http://conferences.sigcomm.org/sigcomm/2013/papers/hotsdn/p67.pdf

[12] Alcatel Lucent, „Why Service Providers Need an NFV Platform,” 2013. Available:

https://networkbuilders.intel.com/docs/NP2013113597EN_NFV_Platform_StraW

hitePaper.pdf

[13] Alcatel Lucent, redhat, „CloudBand with OpenStack as NFV platform ,” 2013.

Available:

http://dl.acm.org/citation.cfm?id=2500473
https://www.opennetworking.org/about/onf-overview
https://portal.etsi.org/nfv/nfv_white_paper.pdf
http://www.etsi.org/technologies-clusters/technologies/nfv
http://www.etsi.org/technologies-clusters/technologies/nfv
https://f5.com/Portals/1/Cache/Pdfs/2421/network-functions-virtualization--everything-old-is-new-again.pdf
https://f5.com/Portals/1/Cache/Pdfs/2421/network-functions-virtualization--everything-old-is-new-again.pdf
http://infoscience.epfl.ch/record/58339/files/rt.pdf
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=850663
https://upload.wikimedia.org/wikipedia/commons/thumb/3/33/Butterfly_network.svg/2000px-Butterfly_network.svg.png
https://upload.wikimedia.org/wikipedia/commons/thumb/3/33/Butterfly_network.svg/2000px-Butterfly_network.svg.png
http://kodo-docs.steinwurf.com/en/latest/faq.html
http://kodo-docs.steinwurf.com/en/latest/nc_intro.html
http://kodo-docs.steinwurf.com/en/latest/nc_intro.html
http://conferences.sigcomm.org/sigcomm/2013/papers/hotsdn/p67.pdf
https://networkbuilders.intel.com/docs/NP2013113597EN_NFV_Platform_StraWhitePaper.pdf
https://networkbuilders.intel.com/docs/NP2013113597EN_NFV_Platform_StraWhitePaper.pdf

45

http://www.tmcnet.com/tmc/whitepapers/documents/whitepapers/2014/10694-

cloudband-with-openstack-as-nfv-platform.pdf

[14] „Technical Overview | Open Platform For NFV”, OPNFV, [Online]. Available:

https://www.opnfv.org/software/technical-overview. [Accessed: 23 October 2015].

[15] HP, „Network functions virtualization,” 2015. Available:

http://www8.hp.com/h20195/v2/GetDocument.aspx?docname=4AA5-1114ENW

[16] WMware, „WMware vCloud NFV,” 2015. Available:

https://www.vmware.com/files/pdf/solutions/vmware-vcloud-nfv-datasheet.pdf

[17] „Dell Introduces Network Function Virtualization Platform and Starter Kits to

Accelerate Carrier Trials and Applications | Dell”, Dell, [Online]. Available:

http://www.dell.com/learn/us/en/uscorp1/press-releases/2014-10-14-dell-

software-open-networking-network-functions-virtualization [Accessed: 23 October

2015].

[18] E. Kohler, R. Morris, B. Chen, J. Jannotti and K. M. Frans, “The Click Modular

Router,” ACM Transactions on Computer Systems (TOCS), 2000. Available:

http://dl.acm.org/citation.cfm?id=354874

[19] R. Riggio, J. Schulz–Zander and A. Bradai, “Virtual Network Function

Orchestration with Scylla,” 2015. Available:

http://conferences.sigcomm.org/sigcomm/2015/pdf/papers/p375.pdf

[20] „Cloud Networking Performance Lab | ClickOS | Modular VALE | XEN”, CNP

Lab, [Online]. Available: http://cnp.neclab.eu/getting-started, [Accessed: 23

October 2015].

[21] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M. Honda, R. Bifulco and F. Huici,

“ClickOS and the Art of Network Function Virtualization,” in 11th USENIX

Symposium on Networked Systems Design and Implementation (NSDI ’14), 2014.

Available: https://www.usenix.org/system/files/conference/nsdi14/nsdi14-paper-

martins.pdf

[22] F. H. P. Fitzek and G. Fettweis, “Holistic View on 5G,” in IT Gipfel: Fokusgruppe

5G, Berlin, Germany, 2015. Available:

https://www.aut.bme.hu/Upload/Pages/Events/5GCommunication/Holistic.pdf

[23] M. V. Pedersen, D. Lucani and F. H. P. Fitzek, “Network Coding: Theory and

Implementation,” in European Wireless 2014, Barcelona, Spain, 2014

[24] D. Szabó, A. Csoma, P. Megyesi, A. Gulyás, F. H. P. Fitzek “Network Coding as a

Software Defined Networking Service” in European Wireless, Budapest, 2015

http://www.tmcnet.com/tmc/whitepapers/documents/whitepapers/2014/10694-cloudband-with-openstack-as-nfv-platform.pdf
http://www.tmcnet.com/tmc/whitepapers/documents/whitepapers/2014/10694-cloudband-with-openstack-as-nfv-platform.pdf
https://www.opnfv.org/software/technical-overview
http://www8.hp.com/h20195/v2/GetDocument.aspx?docname=4AA5-1114ENW
https://www.vmware.com/files/pdf/solutions/vmware-vcloud-nfv-datasheet.pdf
http://www.dell.com/learn/us/en/uscorp1/press-releases/2014-10-14-dell-software-open-networking-network-functions-virtualization
http://www.dell.com/learn/us/en/uscorp1/press-releases/2014-10-14-dell-software-open-networking-network-functions-virtualization
http://dl.acm.org/citation.cfm?id=354874
http://conferences.sigcomm.org/sigcomm/2015/pdf/papers/p375.pdf
http://cnp.neclab.eu/getting-started
https://www.usenix.org/system/files/conference/nsdi14/nsdi14-paper-martins.pdf
https://www.usenix.org/system/files/conference/nsdi14/nsdi14-paper-martins.pdf
https://www.aut.bme.hu/Upload/Pages/Events/5GCommunication/Holistic.pdf

