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Kivonat

A biztonságkritikus rendszerek nagymértékben támaszkodnak szoftveres megoldásokra az
elvárt működésük biztosítása érdekében. Ezen szoftveres megoldásoknak minden esetben
megfelelően kell működniük, mivel meghibásodásuk veszélyes helyzetekhez vezethet. A
rendszer tesztelésével találhatóak a szoftverben hibák; azonban a tesztelés nem kimerítő
módszer, nem képes önmagában bizonyítani a szoftver hibamentességét. A formális ve-
rifikáció a szoftver lehetséges viselkedésformáinak kimerítő bejárására szolgáló technika,
de a lehetséges állapotok nagy vagy akár végtelen száma megakadályozhatja a sikeres
verifikációt.

A CEGAR (Counterexample Guided Abstraction Refinement) különböző absztrak-
ciókat használ a komplex adatok kezelésére a szoftver verifikálásakor. A CEGAR szá-
mos felhasználási esetben bizonyította hatékonyságát. Eddig azonban nem volt hatékony
pointer-támogatás.

A beágyazott rendszerekben használt programozási nyelvek gyakran erősen támasz-
kodnak pointerekre a hatékony memóriakezelés és adatmanipuláció érdekében. A pointe-
rek használata azonban az indirekciók bevezetésével növeli a program bonyolultságát, ami
nagyban megnehezíti az ilyen programok verifikációját. Annak ellenére, hogy a beágya-
zott és biztonságkritikus rendszerekben többnyire kerülik a pointerek használatát, valós
programokban teljesítményi és funkcionalitási elvárások miatt mégis gyakran szükséges a
használatuk.

A beágyazott rendszerekhez rendelkezésre álló többmagos processzorok elterjedésével
a többszálas programok is egyre gyakoribbá válnak. Az ilyen párhuzamos programok ve-
rifikációja még nagyobb kihívást jelent a szálak nem-determinisztikus átlapolódása miatt.
A részleges rendezés redukció (Partial order reduction, POR) hatékony módszer a párhu-
zamosság kezelésére a verifikáció során. Azonban a pointerek bevezetésével ezt a technikát
át kell alakítani, hogy képes legyen kezelni az újonnan megjelenő lehetséges viselkedésfor-
mákat.

A korábbi verifikációs megoldások a pointer-analízist a megoldó számára biztosított
problémába kódolták. Célunk, hogy a problémát a verifikációs algoritmus szintjére emel-
jük: újszerű megoldásunk a CEGAR ciklus állapottér-bejárási részében próbálja megoldani
a pointer analízis problémáját, lehetővé téve egy pontosabb, az absztrakció-alapú verifi-
káció által támogatott módszert, mindezt integrálva a párhuzamosság kezelésére szolgáló
részleges rendezés redukcióval. Kiértékeljük a javasolt módszer teljesítményét SV-COMP
benchmarkokon, és célunk az SV-COMP 2023-as nevezés részeként szerepeltetni.

i



Abstract

Safety-critical systems rely heavily on software-based solutions to provide the required
functionalities. Such software solutions have to operate correctly, as their failure might
lead to dangerous situations. Testing is traditionally used to find bugs in software; however,
testing is not an exhaustive method, it is not able to prove the absence of errors in software
alone. Formal verification is a technique to exhaustively explore the possible behaviours
of the software, but the large or even infinite number of possible states might prevent
successful verification.

Counterexample Guided Abstraction Refinement (CEGAR) uses various abstractions to
handle complex data when verifying software. CEGAR proved its efficiency in many use
cases. However, there was no efficient pointer support so far.

Programming languages used in embedded systems often heavily rely on pointers for ef-
ficient memory management and data manipulation. However, the use of pointers intro-
duces an additional level of indirection and complexity that makes verifying such programs
challenging. Despite the preference to avoid pointers in embedded and safety-critical
systems, real-world programs often necessitate the use of pointers for performance and
functionality reasons.

With the spread of multi-core processors available for embedded systems, multi-threaded
programs are becoming more common. The verification of such concurrent programs is
even more challenging due to the non-deterministic interleaving of threads. Partial order
reduction (POR) is an effective method to handle concurrency in verification. However,
with the introduction of pointers, this technique must be adapted to handle the additional
possible behaviours introduced.

Former solutions for the verification encoded the points-to analysis into the problem pro-
vided for the solver. Our goal is to lift the problem to the level of the verification algo-
rithm: our novel solution tries to solve the pointer analysis problem at the state space
traversal part of the CEGAR loop, enabling a more precise method supported by the
abstraction-based verification, while also integrating it with partial order reduction to
handle concurrency. We evaluate the performance of the proposed method on SV-COMP
benchmarks, and our goal is to include it as part of a submission for SV-COMP 2023.
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Chapter 1

Introduction

Our everyday life is surrounded by software-based solutions. Many times a day, we place
our trust, and even our lives in the hands of software usually running on embedded systems.
These systems are responsible for the correct operation of many safety-critical applications,
such as medical devices, automotive systems, or aircraft.

With the spread of multi-core processors, multi-threaded programs are also becoming more
common on embedded systems to take advantage of the increased performance.

The correct operation of these systems is crucial, as their failure might lead to catastrophic
outcomes. Therefore, it is essential to ensure that these critical systems operate correctly
at all times.

Pointers are an essential feature of low-level programming languages used in embedded
systems. They are used for efficient memory management and data manipulation.

However, the design and implementation of programs using pointers and concurrency
are challenging. The use of pointers introduces an additional level of indirection and
complexity, while the non-deterministic interleaving of threads requires special attention
from the programmer. It might become extremely challenging for them to consider all
possible behaviours of a concurrent program with the added complexity of pointers.

Testing is traditionally used to find bugs in software; however, testing is not an exhaustive
method, it is not able to prove the absence of errors in software alone. To ensure the
correctness of software, all possible behaviours of the program must be explored.

Formal verification is a technique used to prove safety properties of software, for example,
whether an error state is reachable from the initial state of the program. This is done by
exhaustively exploring the possible states of the program. However, this quickly becomes
infeasible due to the large or even infinite number of possible states and the exponentially
growing possible executions of concurrent programs.

This problem is usually solved by using abstraction. Abstraction is a technique to re-
duce the complexity of the problem by removing unrelevant details. With the reduced
complexity, there is a chance that the verification of the abstracted program becomes
feasible.

Counterexample Guided Abstraction Refinement (CEGAR) is an efficient technique that
uses abstraction and refinement in an iterative manner to come to a conclusion about the
correctness of the program.
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With the introduction of pointers, the verification process becomes more challenging. The
use of pointers introduces additional possible behaviours to the program, which must be
considered during the verification.

As pointers are an essential feature of low-level programming languages used in embedded
systems, the need for a solution to handle pointers in verification is evident.

Verification of concurrent programs is even more challenging due to many possible in-
terleavings of threads. Partial order reduction (POR) is an effective method to handle
concurrency in verification. However, with the introduction of pointers inside concurrent
programs, this technique must be adapted to handle the additional possible behaviours to
ensure the correctness of the verification.

This work aims to develop a novel solution to handle pointers in a CEGAR-based veri-
fication algorithm. This solution solves the pointer analysis problem at the state space
traversal part of the CEGAR loop, featuring a very precise, but efficient method of tracking
pointers.

Additionally, this solution is integrated with partial order reduction to handle concurrency,
enabling the verification of concurrent programs with pointers.

I have implemented this solution in the open-source verification tool Theta, and I have
evaluated its performance on SV-COMP benchmarks. The contribution leads to a sub-
stantial increase in the number of successfully verified benchmarks.

The rest of this report is structured as follows. In Chapter 2, the essential background
information is presented, basic concepts of formal verification, CEGAR, and partial order
reduction are introduced. Chapter 3 presents the main contribution of this work, a dy-
namic pointer analysis method integrated into the CEGAR loop. Chapter 4 describes the
integration of the pointer analysis method with partial order reduction. Chapter 5 eval-
uates the performance of the implemented solution on SV-COMP benchmarks. Finally,
Chapter 6 concludes the report and discusses possible future work.

2



Chapter 2

Background

This chapter introduces the background knowledge required to understand the rest of this
report.

2.1 Formal Software Verification

Formal verification is a method for ensuring the correctness of safety-critical software by
using math and logic-based techniques. Formal verification can mathematically prove
certain properties of a program, which is something that cannot be achieved through
testing only.

Such properties to be verified can include: [3]

• Memory safety: detecting invalid memory accesses or other memory-allocation prob-
lems

• Termination: detecting if the program will terminate in all its executions

• Reachability: detecting if an unsafe state is reachable from the initial state (such as
a division by zero error, a pre-specified assertion failure, etc.)

In this work, safety properties are always assumed to be reachability problems, i.e., whether
an unsafe state is reachable during the execution of the program.

Model checking is a technique used in formal verification to exhaustively analyze system
behaviours and ensure compliance with specified properties or requirements. By exploring
all possible execution paths, model checking can detect design flaws and potential bugs in
complex software systems.

Model checking involves constructing a formal model of the system capturing its behaviour
and structure. Through the traversal of all possible states, model checking verifies the pre-
specified properties. In practice, exploring the entire state space is often infeasible, and
model checking tools must address this issue to provide a useful analysis. [3]

2.2 C Programming Language

The C programming language [11], created in the early 1970s, known for its speed, ef-
ficiency, and portability, stands as one of the most widely used programming languages
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in the world. It is a general-purpose, imperative language with a static type system.
Its simplicity and low-level characteristics have established it as a popular option for
performance-critical tasks, like embedded systems, rendering it appropriate for high-risk
and safety-critical applications that require formal verification.

The language consists of many constructs. For simplicity, this work will only consider a
subset of the language, consisting of variables of the primitive types (e.g., int, float,
char, etc.), operations on these variables (e.g., arithmetic operations, assignment, etc.),
basic control-flow constructs (e.g., if, while, for, etc.), function calls, and pointers,
not including pointer arithmetic. This subset is sufficient to demonstrate the concepts
discussed in this work.

2.2.1 Pointers in C

Pointers allow storing addresses of memory in variables. They are a powerful tool used
widely in many programs. A pointer is essentially a variable, that is able to hold a memory
address, usually the address of another variable or struct.

In the C language, pointers are denoted by the ∗ sign. Pointers also have a type, which
corresponds to the type of variable stored at the address of the pointer.

A crucial operator when working with pointers is the & symbol, which is able to get the
memory address of a variable. For example, the expression &i would yield the memory
address of the variable i. A basic usage of this is shown in Listing 2.1.

1 int i = 5;
2 int* p = &i;

Listing 2.1: Basic pointer usage in C. i is a normal integer variable, p is a pointer to an
integer, now pointing to i.

The syntax for dereferencing pointers also uses the ∗ symbol. Dereferencing a pointer
means accessing the value stored at the address of the pointer. For example, the expression
∗p would yield the value stored at the address of the pointer p. Overwriting the value
stored at the address of the pointer is also possible using the ∗ operator. For example, the
expression ∗p = 5 would overwrite the value stored at the address of the pointer p with
the value 5. A small example of dereferencing pointers is shown in Listing 2.2.

1 int j = 5;
2 int* q = &j;
3 *q = 10;

Listing 2.2: Dereferencing pointers in C. The value of j will be 10 after line 3.

Pointers are also able to point to other pointers. For example, a pointer int** pp is a
pointer that holds the address of a int* pointer, thus it can be dereferenced twice to get
a value. This is called the level of indirection of the pointer.

Pointers are also an essential tool for dynamic memory allocation. The malloc function
is used to allocate memory on the heap and returns a pointer to the allocated memory.
The free function is used to free the allocated memory. Supporting dynamic memory
allocation is out of scope for this work.
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2.3 Pointer Analysis

The term pointer analysis [19] generally refers to the problem of collecting information
about pointers in a program, either statically or dynamically. Pointer analysis techniques
can be categorized based on several properties.

May and must analysis

In May analysis, if there exists at least one program path, where a points-to relation holds,
it will be considered. In Must analysis, a relation is only considered if it holds at all paths
of the program. Therefore, may analysis provides an over-approximation of the points-to
relations, while must analysis provides an under-approximation.

Flow-insensitive and flow-sensitive analysis

Another aspect of imprecision is whether the analysis considers the control flow of the
program. If it does, we call it flow-sensitive analysis, if it does not, meaning that it
considers that the lines of the program could be executed in any order, we call it flow-
insensitive analysis.

Intra-procedural and inter-procedural analysis

Intra-procedural analysis makes worst-call assumptions about function calls without eval-
uating them. In an inter-procedural analysis, all function calls are evaluated.

Context-insensitive and context-sensitive analysis

Context-insensitive analysis does not differentiate between different call sites of the same
function, while context-sensitive analysis does. [19]

2.3.1 Andersen’s Pointer Analysis

Andersen’s pointer analysis [2] is a flow- and context-insensitive, over-estimating (may)
approach. The algorithm first constructs a constraint system, consisting of subset con-
straints. Solving this constraint system yields the may-point-to sets.

The rules for constructing the constraint system are the following, where pts(x) denotes
a may-point-to set of x:

1. Referencing: p = &i ⇒ i ∈ pts(p)

2. Dereferencing read: p = *q ⇒ ∀x ∈ pts(q) : pts(x) ⊆ pts(p)

3. Dereferencing write: *p = q ⇒ ∀x ∈ pts(p) : pts(q) ⊆ pts(x)

4. Aliasing: p = q ⇒ pts(q) ⊆ pts(p)

Creating and solving the constraint system has a runtime complexity of O(n3) in the
worst-case [1], where n is the size of the input program.
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2.3.2 Steensgaard’s Pointer Analysis

Steensgaard’s pointer analysis [14] is also a flow- and context-insensitive, over-estimating
(may) approach. It is based on equality constraints, and has a speed advantage over
Andersen’s algorithm, at the cost of higher imprecision. The algorithm runs in almost
linear time, with a runtime complexity of O(nα(n, n)) [1], where n is the size of the input
program, α is the reverse Ackermann function, whose value is close to 1 for large values
of n, hence the author’s claim of almost linear time in the original publication.

The approach is based on the concept of abstract locations. First, every variable (including
pointers) identifies an abstract location, but later an abstract location can contain multiple
variables. The restriction is that an abstract location that contains a pointer can only point
to one abstract location. Therefore, in a case where a pointer may point to two different
locations in the memory during the execution of the program, those two corresponding
abstract locations will be joined, thus the pointer’s abstract location points to only one
abstract location, which now includes (at least) two variables.

Abstract locations are to be implemented in a union-find or disjoint-set data structure,
from which the complexity’s α function comes. This data structure defines the unify
method to merge two sets.

The rules for handling pointer operations are the following:

1. Referencing: p = &i ⇒ join(∗p, i)

2. Dereferencing read: p = *q ⇒ join(∗p, ∗ ∗ q)

3. Dereferencing write: *p = q ⇒ join(∗ ∗ p, ∗q)

4. Aliasing: p = q ⇒ join(∗p, ∗q)

The method join for the abstract locations p1 and p2 is as defined in Listing 2.3.
1 join(p1, p2)
2 if (p1 == p2)
3 return
4 p1next = *p1;
5 p2next = *p2;
6 unify(p1, p2)
7 join(p1next, p2next)

Listing 2.3: Pseudocode for Steensgaard’s join method

2.4 Control-Flow Automata

The programs discussed in this work are in the form of source code, written in the C
programming language. To support formal verification and pointer analysis on these
programs, a formal representation must be defined. Control-Flow Automata (CFA) is a
formalism widely used to model programs for verification purposes.

Definition 1 (Control-Flow Automata). A Control-Flow Automaton [10] is a tuple
CFA = (V, L, l0, E), where

• V = {v1, v2, ..., vn} is a set of variables with domains Dv1 , Dv2 , ..., Dvn

• L is a set of program locations modeling the program counter
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• l0 ∈ L is the initial program location

• E ⊆ L × Ops × L is a set of directed edges representing the operations that are
executed when control flows from the source location to the target.

op ∈ Ops: An assumption of a predicate over V asserting its truth (i.e., an execution is
only legal if the predicate is fulfilled), or an assignment of a new value to a v ∈ V . A
special kind of assignment has the form havoc v, which assigns a non-deterministic value
to v. [3] �

Example 1. Given a program in Listing 2.4, the corresponding CFA is shown in Fig-
ure 2.1. The distinguished location l0 is the initial location, and lE is the location corre-
sponding to an assertion failure. Guards and assignments are shown on the edges of the
CFA.

1 int x = 0;
2 int i = 0;
3 while (i < 100) {
4 if (x == 0) x = 1;
5 else x = 0;
6 i++;
7 }
8 assert (x <= 1);

Listing 2.4: Example C program with various elements of structured programming. [10]

x := 0

i := 0

[i < 100]

[x = 0] [x ̸= 0]

x := 1 x := 0

i := i + 1

[i ≥ 100]

[x ≤ 1] [x > 1]

l0

l1

l2

l3

l4 l5

l6

l7

lF lE

Figure 2.1: CFA representation of Listing 2.4. The distinguished location lE corresponds
to an assertion failure. [10]

2.5 State space

The execution of a program can be modeled as a sequence of operations that modify the
state of the program (e.g., the values of the variables). The state space of a program is
the set of all possible states that the program can be in during its execution.

Definition 2 (State space). The state space [18] is a tuple (S, t), where:

• S is a set of states.

• t : S × Ops → S is a transition function, where Ops is a set of operations. �

7



In the context of a CFA, the set of states S = L×Dv1 ×Dv2 × ...×Dvn , where L is the set
of locations, and Dv1 , Dv2 , ..., Dvn are the domains of the variables [18]. This means that
the state space of a CFA is the set of all possible combinations of locations and variable
values.

2.6 State space abstraction

It is easy to recognize that the state space of a program can be very large. For example,
if we declare a 32-bit integer variable whose value is non-deterministic (e.g., user input),
then the size of the state space grows by a factor of 232. With each additional variable,
the size of the state space grows exponentially. This problem is known as the state space
explosion problem.

Abstraction is a technique used to reduce the size of the state space. It is based on the idea
that not all information might be relevant to the verification process, certain information
can be abstracted away, i.e., ignored, thus creating an abstract state space. An abstract
state can represent multiple concrete states, making it possibly much smaller than the
original state space.

For example, if we have a 32-bit integer variable x, the original state space contains 232

states, where each state is a possible value of x. However, if we only care if x is positive
or negative, we can abstract away the exact value of x, and only keep track of whether x
is smaller or greater than zero. This newly formed abstract state space now only contains
two states, and thus is much smaller than the original state space.

Definition 3 (State space abstraction). A state space abstraction [18] is a tuple
(Sabstract, c, Π, tabstract), where:

• Sabstract is a set of abstract states. An abstract state is a set of concrete states. Two
special abstract states are ⊤ (top), which represents all possible concrete states, and
⊥ (bottom), which represents no concrete states.

• c : Sabstract → 2Sconcrete is a concretization function, that maps an abstract state to
a set of concrete states.

• Π is the precision of the abstraction. The exact definition of precision depends on
the type of abstraction.

• tabstract : Sabstract × Ops → 2Sabstract is an abstract transition function, that given an
abstract state and an operation, returns the successor abstract states. �

Two frequently used types of abstraction are explicit value abstraction and predicate ab-
straction.

• Explicit value abstraction defines the current abstraction precision as a set of tracked
variables, i.e., the variables that are considered relevant to the verification process.
All untracked variables’ values are unknown in all abstract states.

• In predicate abstraction, the precision is defined as a set of tracked predicates over
the variables (e.g., x > 5, or y = z).

Definition 4 (Abstract error state). An abstract state Sabstract is an abstract error
state if ∃s ∈ c(Sabstract) : s that violates the safety property. �

8



Given these definitions, we can define a partial order on the abstract states.

Definition 5 (Partial order on abstract states). ⪯⊆ Sabstract × Sabstract : A ⪯ B if
c(A) ⊆ c(B) [18] �

2.7 Abstract Reachability Graph

An Abstract Reachability Graph (ARG) [6, 18] is a graph representation of the execution
of a program on the abstract state space.

Definition 6 (Abstract Reachability Graph). An Abstract Reachability Graph
(ARG) is a graph ARG = (N, L, E, C), where

• N : set of nodes in the graph

• L : N → Sabstract: labeling that assigns an abstract state to a given node

• E ⊆ N × Ops × {1} × N : set of directed edges in the graph. E = {(n, op, 1, m)|n ∈
N, op ∈ Ops, s ∈ tabstract(L(n), op), m ∈ N, L(m) = s}

• C ⊆ N × {0} × N : set of cover edges in the graph. A cover edge can be inserted
from node n to node m if L(n) ⪯ L(m). �

s1

s3s2 s4

s5 s6 s7

s8 s9

Figure 2.2: An example ARG. Cover edges are shown with dashed lines.

This means that an ARG is a directed graph, where the nodes represent abstract states,
and the edges represent operations. Edges can also contain guards, which are predicates
over the variables that only allow the edge to be taken if the predicate is true. A complete
ARG represents all possible executions of the program on the abstract state space. It can
contain traces (routes) to abstract error states, however, these traces may not be feasible in
the concrete program, as the abstract state space is an over-approximation of the concrete
state space. An example of an ARG is shown in Figure 2.2.

2.8 Boolean satisfiability problem (SAT)

The Boolean satisfiability problem (SAT) is the problem of determining whether there
exists an assignment of boolean values to variables in a given boolean formula, so that the
formula evaluates to true.
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Example 2. Consider the formula (a ∨ b) ∧ (¬a ∨ ¬c). This formula is satisfiable, as the
assignment a = true, b = true, c = false satisfies the formula.

In contrast, the formula (a ∧ ¬a) is unsatisfiable, as there is no assignment of values to a
that would satisfy it.

The SAT problem was the first problem shown to be NP-complete [8], meaning that there
is no known algorithm that can solve the problem efficiently (i.e., in polynomial time).

2.9 Satisfiability Modulo Theories (SMT)

An SMT-problem (Satisfiability Modulo Theory) [4] is a decision problem for logical for-
mulas, in which, when given a first-order formula and the theories used in it, a solver can
decide whether there exists a substitution of variables in the formula to concrete values
so, after the substitution, the formula evaluates to true; or the formula is unsatisfiable. [7]

Example 3. Given the formula (x < 5 ∧ x ≥ 3 ∧ y > 7), where the symbols x and y
have the domain of integers (Z), an example model (a substitution of variables) would be
(x = 4); (y = 8), as substituting these values for x and y in the formula would result in a
true statement. As there exists a model for the formula, the formula is satisfiable.

In contrast, the formula (x < 4 ∧ x > 5) is unsatisfiable, as no substitution of x would
result in a true statement.

SMT problems can be reduced to SAT problems, and thus are also NP-complete. However,
specialized SMT solver software [13] exist that are usually able to solve SMT problems
more efficiently than the theoretical worst-case complexity.

2.10 Counterexample Guided Abstraction Refinement

Counterexample Guided Abstraction Refinement (CEGAR) is an abstraction-based itera-
tive model-checking technique.

Abstract counterexample

Refined precision

Construct Prune
Abstractor Refiner

Initial precision

Safe Unsafe

ARG

Figure 2.3: The CEGAR-loop [7]

The CEGAR algorithm consists of two main components: the Abstractor and the Refiner.

The Abstractor is responsible for constructing an ARG of the program along the current
precision and finding an error path in the ARG. This error path is called an abstract
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counterexample. As the abstract state space is an over-approximation of the concrete
state space, this abstract counterexample may not be feasible in the concrete program.

The Refiner is responsible for checking the feasibility of the abstract counterexample in
the concrete program. This is achieved by transforming the operations on the trace of the
abstract counterexample into a logical formula and checking its satisfiability with an SMT
solver. If the counterexample is not feasible (or spurious), the Refiner is also responsible
for reducing the amount of abstraction by refining the precision, so that the same error
path cannot be found in the ARG again. This new precision is returned once again to the
Abstractor, making it an iterative process, as shown in Figure 2.3.

The loop terminates either when:

a) the Abstractor is unable to find an error path in the ARG. As the ARG is an over-
approximation of the concrete program, the program itself is safe.

b) the Refiner finds an abstract counterexample that is feasible in the concrete program.
This means that an actual execution path of the program has been found that results
in an error, thus the program is unsafe.

The abstraction of the state space is refined until the program is proven to be either safe
or unsafe.

2.11 Concurrent Software

Concurrent software is able to execute multiple tasks at the same time. This is achieved by
executing the tasks on multiple threads. Threads are independent sequences of instructions
that can be executed concurrently, but threads of the same process share the same memory
space, thus their execution can influence each other by accessing and modifying the same
memory locations.

2.11.1 Control-Flow Automata for Concurrent Software

In order to also model and verify multi-threaded, concurrent programs, the CFA formalism
has been extended, resulting in the eXtended Control-Flow Automata (XCFA). [3]

Definition 7 (eXtended Control Flow Automaton). An eXtended Control Flow
Automaton (XCFA) [15] is a tuple XCFA = (Vg, P ), where:

• Vg is a set of global variables

• P is a set of processes. A process is a tuple p = (Vl, CFA), where:

- Vl is a set of local variables
- CFA is a CFA (whose variables are V ⊆ Vg ∪ Vl) extended with the following

operations: start thread and join thread, atomic begin and atomic end. �

A start thread operation creates a new process pnew (and marks pnew ∈ P as an active
process) and starts the concurrent execution of the new process at its initial CFA loca-
tion. A join thread operation is disabled until the specified process p terminates: after
p has terminated, the join thread operation can be fired. Atomic begin, and atomic end
operations mark atomic blocks: while the execution of a process is inside an atomic block,
all other processes are disabled. [15]
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1 #include <pthread.h>
2
3 int x = 0;
4
5 void* thread1(void* arg) {
6 x = 1;
7 }
8
9 void* thread2(void* arg) {

10 x = 2;
11 }
12
13 int main() {
14 pthread_t t1, t2;
15 pthread_create(&t1, NULL, thread1, NULL);
16 pthread_create(&t2, NULL, thread2, NULL);
17 pthread_join(t1, NULL);
18 pthread_join(t2, NULL);
19 assert(x == 2);
20 }

Listing 2.5: Example C program with pthreads. The program creates two threads, t1
and t2, and each thread writes a different value to the global variable x.
Then the termination of both threads is waited for with pthread_join.
The assertion at the end of the program cannot be guaranteed to hold.

2.11.2 Concurrency in C Programs

The C programming language standard does not support concurrency. POSIX threads (or
pthreads) is a standard for threads, and an implementation of this standard is available
to be used in C programs with the pthread library.

The library provides the following functions for creating and managing threads:

• pthread_create: creates a new thread
• pthread_join: waits for a thread to terminate
• pthread_mutex_lock: locks a mutex
• pthread_mutex_unlock: unlocks a mutex

2.12 Partial Order Reduction

Concurrency adds a new level of complexity to the verification of software.

Consider the program in Listing 2.5. The program creates two threads, t1 and t2, and
each thread writes a different value to the global variable x. However, the order in which
the threads are executed is non-deterministic, thus the value of x after joining the threads
can be either 1 or 2, therefore the assertion at the end of the program can fail.

One way to deal with concurrency is using the interleaving semantics, which uses over-
lapping traces of the threads to model the execution of the program, adhering to the
assumption that any of the threads may execute at any point in time. This means that to
verify the program, all possible interleavings of the threads must be considered. Checking
all possible interleavings could also quickly become infeasible as the number of options
grows exponentially with the number of threads and operations. [3]

A technique to combat this problem widely used in the verification of concurrent software
is Partial Order Reduction (POR).
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Partial Order Reduction is a well-known technique for avoiding the exploration of redun-
dant thread interleavings in the verification of a multi-threaded program [9]. Its key idea
is to define an equivalence relation on traces and explore a single representative (or as few
as possible) from each equivalence class. Traces are defined to be equivalent if they can
be obtained from each other by successively swapping adjacent independent actions. An
equivalence class is called a Mazurkiewicz trace [12]. Intuitively, if adjacent independent
actions are swapped, the outcome will remain the same: by exploring a single trace from
each equivalence class, we still cover all behaviours of the system.[16]

Essentially, with POR, we define a dependency relation between the operations of the
threads. Actions can be dependent of each other, for example, if they write the same
global variable. From these dependencies, the algorithm is able to deduce which thread
interleavings are in the same equivalence class, thus reducing the number of interleavings
that need to be actually checked for safety.

Two actions of different threads are dependent of each other if they access the same
variable, and at least one of them is a write operation. Actions of the same thread are
always dependent of each other.

vars(α) denotes the set of variables referenced by the action α.

Definition 8 (Syntactic Dependency Relation). A Syntactic Dependency Relation,
denoted by DS is, for two actions α and β: (α, β) ∈ DS (α and β are dependent) iff:

a) α and β are actions of the same thread, or
b) vars(α) ∩ vars(β) ̸= ∅, and at least one variable in vars(α) ∩ vars(β) is written by

α or β. �

2.12.1 Abstraction-aware POR

The syntactic dependency relation defined in Definition 8 is a valid dependency relation
in the concrete state space [9], but it may not be valid in the abstract state space [16], as
e.g., a single term in the precision of a predicate abstraction may include two variables,
making them dependent in the abstract state space, while they might be independent in
the concrete state space. [16]

Therefore, a new dependency relation is introduced for the abstract state space. vars(Π)
denotes the set of variables that appear in the abstract state expression formulae, that is,
for explicit value abstraction, the set of tracked variables, which is a subset of all variables
of the program (Π ⊆ V, vars(Π) = Π), and for predicate abstraction, the set of variables
that appear in the tracked predicates of the precision (e.g., for Π = {(x > 5), (y = z)},
vars(Π) = {x, y, z}). [16]

Definition 9 (Abstraction-Based Dependency Relation). Let us have an abstract
state space built with precision Π, and let DΠ be a binary, reflexive, and symmetric
relation. Two actions (α, β) ∈ DΠ (α and β are dependent with respect to precision Π) iff
[16]:

a) α and β are actions of the same thread, or
b) vars(α) ∩ vars(β) ∩ vars(Π) ̸= ∅, and at least one variable in vars(α) ∩ vars(β) ∩

vars(Π) is written by α or β. �

This also means that α and β may still be independent if they use common variables that
are not in the precision.
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It was shown that constructing a POR technique based on this dependency relation is still
sound [16].
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Chapter 3

Abstraction-based Pointer
Analysis

The methods introduced in Chapter 2 are static analysis techniques. In this chapter,
our goal is to construct a dynamic, flow-sensitive, and precise, but still efficient pointer
analysis method as a part of the CEGAR loop.

3.1 Overview

In order to perform a precise pointer analysis, we need to keep track of the exact values
of pointers.

In our approach, we maintain a points-to graph for each node while constructing the ARG.
This points-to graph represents the exact values of pointers at a given state of the program
execution. The points-to graph is updated based on the actions of the ARG edges and
the points-to graph of the source node. Explicitly keeping track of pointers allows us to
substitute a dereferenced pointer with the exact value it points to when needed, and we
can perform the analysis on the concrete values of the program variables. An overview of
the CEGAR-loop extended with the proposed approach is shown in Figure 3.1.

Abstract
counterexample

Bound abstract
counterexample

Refined precision

Construct Prune
Abstractor Refiner

Initial precision

Safe Unsafe

ARG
Points-to graph

Variable binding

Figure 3.1: CEGAR loop with pointer support
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To implement the approach, we only need to extend the Abstractor with the ability to com-
pute and store the points-to graphs, and create a pre-procession step for the input of the
Refiner. This has the major advantage that the Refiner does not need to be modified, and
only the general Abstractor must be extended, thus the many different implementations
of them already available can be used transparently.

3.2 The Points-to graph structure

To represent the points-to relations of pointers, we use a directed graph, where the nodes
are the variables of the program (including pointers), and the edges represent the points-to
relations.

Definition 10 (Points-to graph). A Points-to graph is a directed graph PG = (V, E),
where V is the set of variables of the program, and E ⊆ V × V , where (v1, v2) ∈ E if v1
can point to v2. �

The points-to set of a variable will be the set of variables it can point to directly.

Definition 11 (Points-to set). For a points-to graph PG = (V, E), the points-to set of
a variable v ∈ V is the set of variables that v can point to: pts(v, PG) = {u | (v, u) ∈ E}.�

The reachable set of a variable will be the set of variables it can point to, including the
variables that can be reached through pointers with higher levels of indirection.

Definition 12 (Reachable set). Let PG = (V, E) be a points-to graph, and v ∈ V be
a node in the graph. The reachable set of v is defined as: reachable(v, PG) = {u | ∃n ∈
N : u ∈ ptsn(v, PG)}, where ptsn(v, PG) is the n-th iteration of the points-to set of v. �

Definition 10 does not specify whether the points-to graph is a static or dynamic repre-
sentation of the program, nor if it is an under- or an over-approximation of the points-to
relations. In our approach, the points-to graphs will be an exact representation of a given
(abstract) state of the program. This means that in the points-to graph PG = (V, E) at
a state S, for any node v ∈ V , there exists at most one node u ∈ V such that (v, u) ∈ E,
as a pointer can only point to one location at a time.

Theorem 1. Given a Points-to graph PG = (V, E), representing an exact points-to re-
lation of a program state S in a CFA of a C program containing only primitive variable
types1 and pointers, PG is a directed acyclic graph.

Proof For a variable p with level of indirection i, the points-to set pts(p, PG) can only
contain variables with level of indirection (i − 1). Therefore, for any given route in the
points-to graph, the level of indirection of the variables in the route must be strictly
decreasing, thus the graph cannot contain any cycles.

Theorem 1 implies that the points-to set and the reachable set of a variable are finite.

Example 4. Take the example program in Listing 3.1. The points-to graph for this
program is shown in Figure 3.2, as an exact representation of the program state after line
4.

1In C, a struct is a user-defined type that is able to hold other variables of any type, including pointers.
It is possible to create a cyclic data structure using structs, however, strictly speaking, this does not result
in a cyclic points-to graph. Still, supporting structs are out of the scope of this work.
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1 int i;
2 int* p = &i;
3 int* q = &i;
4 int** u = &q;

Listing 3.1: An example C program with pointer operations.

i

*p *q

**u

Figure 3.2: An example Points-to graph for the program in Listing 3.1.

The points-to sets and reachable sets based on the points-to graph are the following:

• pts(i, PG) = ∅, reachable(i, PG) = ∅

• pts(p, PG) = {i}, reachable(p, PG) = {i}

• pts(q, PG) = {i}, reachable(q, PG) = {i}

• pts(u, PG) = {q}, reachable(u, PG) = {i, q}

3.3 Extending the Abstractor

To facilitate a dynamic pointer analysis, the Abstractor needs to be extended to be able
to store and compute a points-to graph of each abstract state.

3.3.1 Computing the points-to graph

When the Abstractor constructs the ARG, it computes possible successor states for each
node by applying the operations (Ops) of the program on the current abstract state,
starting from the initial state. These operations can include assignments, function calls,
or returns from function calls.

Assignment operations can modify the points-to relations of pointers and variables, there-
fore we need to compute a new points-to graph for the successor node when encountering
an assignment operation that involves pointers, as shown in Figure 3.3.
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Points-to graph
ARG Node

Ops

Apply Next Points-to graph
Next ARG Node

Figure 3.3: Applying operations on the ARG node results in a new state, including a
new points-to graph.

For the initial ARG node, the points-to graph is initialized as an empty graph. For an
ARG node N with points-to graph PG = (V, E), the successor node N ′’s points-to graph
PG′ = (V ′, E′) is computed based on the type of the assignment action:

1. Referencing:
p = &i ⇒ E′ = (E \ (p, j) | j ∈ V ) ∪ (p, i)
This operation removes all outgoing edges from p and adds a new edge from p to i,
as the pointer p now points to the variable i, and nothing else.

p = &i

*p

x i

*p

x i

Figure 3.4: Example of changes in the points-to graph for a referencing operation. After
the operation, p points to only i.

2. Dereferencing read:
p = *q ⇒ E′ = (E \ (p, j) | j ∈ V ) ∪ ((p, j) | (q, r) ∈ E ∧ (r, j) ∈ E)
This operation removes all outgoing edges from p and adds new edges from p to all
variables that ∗q points to (as in pts(pts(q, PG), PG)).

p = ∗q

q

r p

i x

q

r p

i x

Figure 3.5: Example of changes for a dereferencing read operation. After the operation,
p points to the same variables as ∗q, where ∗q in this case is r.
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3. Dereferencing write:
*p = q ⇒ E′ = (E \ (p, j) | j ∈ V ) ∪ ((r, j) | (p, r) ∈ E ∧ (q, j) ∈ E)
This operation removes all outgoing edges from ∗p and adds new edges from ∗p to
all variables that q points to.

∗p = qq r

i x

p

q r

i x

p

Figure 3.6: Example of changes for a dereferencing write operation. After the operation,
∗p, in this case r points to the same variables as q, in this case i.

4. Aliasing:
p = q ⇒ E′ = (E \ (p, j) | j ∈ V ) ∪ ((p, j) | (q, j) ∈ E)
This operation removes all outgoing edges from p and adds new edges from p to all
variables that q points to.

p = q

q

i

p

x

q

i

p

x

Figure 3.7: Example of changes for an aliasing operation. After the operation, p points
to the same variables as q, in this case i.

Unlike the static analysis techniques, performing these actions does not require any ad-
ditional steps, such as constraint solving; they are deterministic updates of the points-to
graph, conforming to the rules and expected behaviour of the C programming language.

3.4 Variable binding for the Refiner

In the refinement step, we need to examine whether an abstract counterexample is feasible
in the concrete program. This task is usually performed by an SMT solver, but an SMT
solver is not able to reason about pointers.

To solve this problem, we will substitute dereferenced pointers with the values they point
to. This method is referred to as variable binding. An overview of the variable binding
step is shown in Figure 3.8.
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Points-to graph
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Figure 3.8: Binding variables from the points-to graph

The output of the Abstractor will be an abstract counterexample, a path in the ARG as a
sequence of nodes and edges. The Refiner will then try to find a concrete counterexample,
a path in the program that corresponds to the abstract counterexample. This is done by
traversing the path in the ARG and transforming the operations and guards of the edges
to SMT formulas.

This transformation step is extended with the variable binding, where any dereferenced
pointer found inside an expression is bound or substituted with the variable it points to,
based on the points-to graph of the source node.

As each variable in our points-to graph can only point to one other variable, the binding
is deterministic.

The binding can be implemented in two ways:

a) Adding a binding term to the SMT formula for each dereferenced pointer. For
example, in case of (i = 1) ∧ (p = &i) ∧ (∗p ̸= 1), a new term (∗p = i) is added to
the formula.

b) Substituting the dereferenced pointer with the variable it points to. For example, in
case of (i = 1) ∧ (p = &i) ∧ (∗p ̸= 1), the formula is transformed to (i = 1) ∧ (p =
&i) ∧ (i ̸= 1). (In this case, the term (p = &i) could be omitted.)

Example 5. Take the example program in Listing 3.2 with basic pointer operations.
1 int i = 1;
2 int* p = &i;
3
4 assert(*p == 1);

Listing 3.2: A program with pointer operations.

A possible ARG built by the Abstractor for this program is shown in Figure 3.9. The
Abstractor is able to find an abstract counterexample, a path in the ARG that leads to a
violation of the assertion. This path (shown in red) can be represented as the following
formula: (i = 1) ∧ (p = &i) ∧ (∗p ̸= 1). The SMT solver’s task is to deduce whether this
formula is satisfiable or not, however, as discussed, it will not be able to reason about
pointers.

The variable binding step substitutes the dereferenced pointer ∗p with the variable it
points to, i, resulting in the formula (i = 1) ∧ (i ̸= 1), which now can be easily declared
unsatisfiable by the SMT solver.

3.5 Further Considerations

Our focus so far was on handling pointer dereferences. However, a case that also needs to
be considered is when pointers are not dereferenced, but their exact value is used in an

20



i := 1

p := &i

[∗p = 1] [∗p ̸= 1]

i := 1

p := &i

[∗p = 1] [∗p ̸= 1]

(init)

ip

ip ip

(init)

ip

ip ip

Figure 3.9: An example ARG that could be built by the Abstractor for the program
in Listing 3.2. The points-to graphs of the nodes are shown in the orange
boxes. The abstract counterexample found by the Abstractor is shown in
red.

expression. Of course, the exact value (i.e., the memory address itself) after setting it to
the address of a variable is non-deterministic and cannot be explicitly tracked. However,
there are a few reasonable cases when the pointer itself does appear in an expression
without dereferencing (other than an aliasing operation already discussed):

1. A pointer is checked whether it is a null pointer. This is a common check in C
programs, as dereferencing a null pointer is undefined behaviour, most probably
resulting in an error.

2. Two pointers are compared to each other. This is a less common, but still valid
operation, as it is possible to compare pointers to determine whether they point to
the same memory location.

3. A pointer is passed to a function as an argument.

4. A pointer is used in a pointer arithmetic operation. This is a common operation
when dealing with arrays, as the elements of an array are stored in a contiguous
memory block, and the elements can be accessed by adding an offset to the pointer
to the first element.

To handle the first two cases, we simply need to declare to both the Abstractor and the
Refiner that a pointer that has been assigned to the address of a variable can not be a
null pointer, and that any two pointers that point to the same variable are equal, while
two pointers that point to different variables cannot be equal.

These rules can be described formally as follows, given that the points-to graph is an exact
representation of the program state:

• pts(p, PG) ̸= ∅ =⇒ p ̸= 0

• (pts(p, PG) = pts(q, PG)) ∧ (pts(p, PG) ̸= ∅) =⇒ p = q
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• pts(p, PG) ̸= pts(q, PG) =⇒ p ̸= q

The third case, passing a pointer to a function, does not require any special handling, as
this is inherently handled by the way function calls are modeled in the formal representa-
tion of the program along with the usage of the proposed techniques.

As for the last case, as stated before, we do not wish to support pointer arithmetic in our
method.
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Chapter 4

Pointer Support in
Abstraction-Aware Partial Order
Reduction

Verification becomes more difficult for concurrent programs. With the interleaving se-
mantics of concurrent programs, the number of possible program executions grows expo-
nentially with the number of threads and operations. This can easily make the analysis
of concurrent programs infeasible in practice. To overcome this problem, partial order
reduction (POR) techniques were introduced. These techniques reduce the number of in-
terleavings needed to be explored by exploiting the independence of certain actions. For
example, two independent actions adjacent in the program can be executed in any order
without affecting the result of the program, therefore, only one of the possible interleavings
needs to be explored.

With the introduction of pointers inside concurrent programs, the independence of actions
and variables becomes more difficult to determine. For example, two pointers can point to
the same variable, therefore the actions on these pointers are not independent anymore,
but classical POR techniques might not be aware of this.

This raises the need to make POR techniques aware of the pointer operations and their
effects on the program state for a successful analysis.

In this chapter, we extend the abstraction-aware POR technique with pointer support.

4.1 Dependency Relations with Pointer Support

To make the dependency relation aware of pointers, we need to extend the definition of
the dependency relation defined in Definition 9. Generally, we also need to consider two
actions dependent if they can access the same memory location, even through the use of
pointers.

First, we need to define the set of variables that can be accessed by an action. This set
will be the union of the variables directly found in the action and all the variables that
can be reached through the pointers found in the action.

To compute this set, we need to acquire a points-to graph that is accurate in the context
where the action is performed. According to our method described in Chapter 3, a precise
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points-to graph is now available for each state. Therefore, we can use the points-to graph
of the state whose enabled action is the action we are considering.

However, in certain POR implementations (i.e., in static POR), an action considered for
the dependency relation might not have a corresponding state [16], therefore no precise
points-to graph is available for the action. For these cases, an alternate solution must be
found.

A static pointer analysis method, such as the ones described in Section 2.3.1 and Sec-
tion 2.3.2 can be run on the whole program, creating an over-approximation of the points-
to graph, valid at all times. We run such an over-estimating pointer analysis before the
verification process. This way, we can ensure that a points-to graph is available for every
action by using this over-approximation when no precise information is available.

Definition 13 (Reachable variables of an action). Let α be an action, and PGα be
the points-to graph of the state whose enabled action is α, if available, or an over-
approximating points-to graph of the whole program otherwise. The reachable variables
set of α along with PGα, is defined as:

reachablevars(α, PGα) = vars(α) ∪
⋃

v∈vars(α)
reachable(v, PGα) (4.1)

�

With the definition of the reachable variables, we can provide a new definition for the
dependency relation that also considers the variables that can be reached through pointers.

Definition 14 (Syntactic Dependency Relation with Pointer Support). A Syn-
tactic Dependency Relation with Pointer Support, denoted by DSP , for two actions α
and β, and points-to graphs PGα and PGβ being the points-to graphs of the state whose
enabled action is α and β respectively, if available, or an over-approximating points-to
graph of the whole program otherwise, (α, β) ∈ DSP (α and β are dependent) iff:

a) α and β are actions of the same thread, or
b) reachablevars(α, PGα) ∩ reachablevars(β, PGβ) ̸= ∅, and at least one variable in

reachablevars(α, PGα) ∩ reachablevars(β, PGβ) is written by α or β. �

This definition extends the original definition to not only consider the variables directly
found in the actions, but also the variables that can be reached through the pointers found
in the actions, by using the newly defined reachablevars instead of vars.

The same idea can also be applied to the abstraction-based dependency relation.

Definition 15 (Abstraction-Based Dependency Relation with Pointer Support).
Let us have an abstract state space built with precision Π, and let DP,Π be a binary,
reflexive, and symmetric relation. Two actions (α, β) ∈ DP,Π, with PGα and PGβ being
the points-to graphs of the state whose enabled action is α and β respectively, if available,
or an over-approximating points-to graph of the whole program otherwise, (α and β are
dependent with respect to precision Π) iff [16]:

a) α and β are actions of the same thread, or
b) reachablevars(α, PGα) ∩ reachablevars(β, PGβ) ∩ vars(Π) ̸= ∅, and at least one

variable in reachablevars(α, PGα) ∩ reachablevars(β, PGβ) ∩ vars(Π) is written by
α or β. �

Once again, this definition extends the original definition by using reachablevars instead
of vars.
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1 #include <pthread.h>
2
3 int x = 0;
4 int* p = &x;
5
6 void* thread1(void* arg) {
7 *p = 1;
8 }
9

10 void* thread2(void* arg) {
11 x = 2;
12 }
13
14 int main() {
15 pthread_t t1, t2;
16 pthread_create(&t1, NULL, thread1, NULL);
17 pthread_create(&t2, NULL, thread2, NULL);
18 pthread_join(t1, NULL);
19 pthread_join(t2, NULL);
20 assert(x == 2);
21 }

Listing 4.1: A modified version of the example program in Listing 2.5, with a pointer
operation.

Example 6. Take the example program in Listing 4.1. The program has two threads,
and both threads modify the variable x. However, the first thread modifies x through a
pointer p, while the second thread modifies x directly.

Let the two actions α =(*p = 1) and β =(x = 2) to be considered for the dependency
relation.

With the classical dependency relation, α and β are considered independent, as they are
actions of different threads, and they do not share any variables: vars(α) ∩ vars(β) =
{p} ∩ {x} = ∅. However, it is clear that they cannot be independent, as they both modify
the same variable x.

With the newly introduced pointer-aware dependency relation, α and β are con-
sidered dependent, as PGα will contain the information that p points to x, thus
reachablevars(α, PGα) ∩ reachablevars(β, PGβ) = {p, x} ∩ {x} = {x} ̸= ∅, and they
both write x.

4.2 Correctness of Pointer- and Abstraction-Aware POR

The non-trivial soundness of the abstraction-aware POR technique utilizing the
abstraction-based dependency relation was proven in [16]. We must show that using the
newly introduced pointer-aware dependency relation instead of the classical dependency
relation in the abstraction-aware POR technique for a concurrent program containing
pointers will result in a correct analysis.

First, we need to prove that the pointer-aware dependency relation is a superset of the
classical dependency relation. This is trivial, as the pointer-aware dependency relation is
defined to be the same as the classical dependency relation, except for using reachablevars
instead of vars, which is a superset of vars, thus there cannot be a case where the classical
dependency relation considers two actions dependent, but the pointer-aware dependency
relation does not.
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It is also easy to see that by using the reachablevars set, dependencies between actions that
have the ability to access the same memory location are also considered dependent, given
that one of the actions is a write action, correctly extending the main idea of dependency
relations to pointer operations. When the over-approximating points-to graph must be
used instead of a precise points-to graph, even though two actions might be unnecessarily
considered dependent, the analysis will still be sound, as additional dependencies will not
affect the correctness of the analysis, only its performance.

With these observations, we can conclude that the pointer-aware dependency relation used
in the abstraction-aware POR technique will also be correct.
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Chapter 5

Evaluation

The described approach has been implemented in the open-source model checker Theta1

[17] and evaluated on a large set of benchmarks in the form of C programs [5].

The practical output of my work is a contribution to the Theta model checker, adding
support for the verification of concurrent C programs containing pointers.

5.1 Theta

Theta is a configurable, CEGAR-based model checker, developed by the Fault Tolerant
Systems Research Group (FTSRG) at the Budapest University of Technology and Eco-
nomics. It is able to perform reachability analysis on several different formalisms with
different abstraction domains and refinement strategies.

Theta is able to parse C programs through its C front-end, including concurrent programs,
transforming them into an XCFA representation.

Abstraction-Aware Partial Order Reduction has been implemented in Theta as part of
the abstractor component [15], and was shown to successfully verify concurrent programs.

Theta had no support for the verification of programs containing pointers and pointer op-
erations so far. Its C front-end partially supported parsing programs containing pointers,
but the verification itself could not be performed.

5.2 Implementation

The implementation has been completed according to the theories described in the previous
chapters.

Firstly, I extended the C front-end to fully support parsing programs containing pointers,
along with some adjustments to the formal representation of the program.

I implemented a generic points-to graph data structure (PointerStore), and extended
the XcfaState class to be able to hold such a PointerStore instance, as described in
Section 3.2 and Section 3.3.

I extended the Abstractor to be able to compute and store the points-to graph of each
abstract state based on the specific actions of the program, as described in Section 3.3.

1https://github.com/ftsrg/theta
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I also implemented the variable binding mechanism by fully substituting any dereferenced
pointer with the variable it points to, as described in Section 3.4.

Lastly, I extended the already existing Abstraction-Aware Partial Order Reduction tech-
nique to also consider the variables a pointer can point to when determining the depen-
dency relation between actions, as described in Chapter 3. For this, I also implemented two
static pointer analysis methods (Andersen’s and Steensgaard’s) described in Section 2.3.1
and Section 2.3.2.

5.3 Evaluation on Benchmark C Programs

The implemented approach has been evaluated on a large set of benchmark C programs,
provided by SoSy-Lab2. These programs are used in the SV-COMP competition, a pres-
tigious competition for software verification tools.

5.3.1 Test Configuration

The changes were benchmarked and compared with a baseline configuration of Theta
without pointer support in two different configurations. The first configuration did not
use POR, only evaluating non-concurrent programs, and the second configuration used
Abstraction-Aware POR (AAPOR), evaluating only benchmarks of concurrent programs.

Every benchmark used explicit-value domain abstraction (EXPL) and had a time limit of
900 seconds.

5.3.2 Results

As my contributions are an extension to the Theta model checker, the results of the
benchmarks will be compared to a baseline version of it, which did not contain the pointer
support, but is otherwise identical.

Specifically, we are interested in comparing the number of solved tasks, which is the
number of benchmarks that were successfully deemed safe or unsafe by the model checker.
As programs containing pointers were not supported by the baseline version, they were
unsolved, thus we wish to see an increase in the number of solved tasks.

5.3.3 Results on non-concurrent benchmarks

The benchmarks of non-concurrent programs were evaluated using the explicit value do-
main abstraction (EXPL), first on a baseline version without pointer support, and then
with the newly added pointer support. The results are shown in Table 5.1.

2https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/
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Baseline version New version
Correct safe 256 266
Correct unsafe 274 284

Total correct 530 550
Incorrect 4 7

Table 5.1: Number of solved non-concurrent tasks.

The results show that with the newly added pointer support, Theta was able to solve 20
more tasks, increasing the number of solved tasks from 530 to 550.

The results also show that the number of incorrect results (as in, a safe program deemed
unsafe, or an unsafe program deemed safe) increased from 4 to 7. After careful exam-
ination, it was found that these new incorrect results were caused by a bug in Theta
unrelated to the newly added pointer support, and fixing this bug would result in these 3
incorrect benchmarks also being solved correctly, further increasing the number of solved
tasks.

The fact that (practically) no new incorrect results were introduced suggests that the
pointer support method described in Chapter 3 and the implementation of it is correct.

5.3.3.1 Results on concurrent benchmarks

The benchmarks containing concurrent programs, found in the ConcurrencySafety bench-
mark set, were evaluated using the AAPOR configuration, first on a baseline version without
pointer support, and then with the newly added pointer support. The results are shown
in Table 5.2.

Baseline version New version
Correct safe 54 54
Correct unsafe 193 238
Total correct 247 292
Incorrect 0 0

Table 5.2: Number of solved concurrent tasks.

The results show that the number of solved tasks increased from 247 to 292, which is
a notable 18.2% increase. This shows that the implemented pointer-analysis approach
along with the extension of the abstraction-aware POR technique can successfully verify
significantly more concurrent programs.

The results also show that the number of incorrect results remained 0, which suggests
that the extension of the abstraction-aware POR technique and its implementation is also
correct.

5.3.4 Summary of results

Overall, we can conclude that the contributions of this work, the implementation of a
pointer analysis method supporting concurrent programs for the Theta model checker,
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successfully increased the number of solved tasks significantly, in both non-concurrent and
concurrent benchmarks, without introducing any new incorrect results.
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Chapter 6

Summary and Future Work

This work aimed to broaden the applicability of formal verification to programs with
pointers in concurrent programs motivated by the growing need for the verification of
embedded systems.

In my work, I have developed a method to handle pointers from a C program in a CEGAR-
based verification algorithm, as described in Chapter 3. The method allows a precise, but
efficient tracking of pointers, allowing the verification of such programs. Additionally, in
Chapter 4, this method has been integrated with abstraction-aware partial order reduction
to handle concurrency, enabling the verification of concurrent programs with pointers.

Finally, in Chapter 5, I have implemented this method in the open-source verification tool
Theta, and I have evaluated its performance on SV-COMP benchmarks. The contribution
leads to a substantial increase in the number of successfully verified benchmarks.

The proposed method can be further improved in the future. A related field of research
is the support of handling dynamic memory allocation, such as malloc and free oper-
ations, as their usage is closely tied to the use of pointers. This is also related to the
support of arrays and pointer arithmetic, as arrays are a common usage of dynamically
allocated memory, and pointer arithmetic is often used to access array elements. It is also
a possible future direction to investigate the possibility of using the current precision of
the abstraction during the pointer analysis as a performance optimization.
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