
Budapest University of Technology and Economics
Faculty of Electrical Engineering and Informatics

Department of Measurement and Information Systems

Managing Operational Uncertainties
in Deployed Systems Using Logic Reasoning

Scientific Students’ Association Report

Author:

Márton Tarnay

Advisor:

András Földvári
Dr. Imre Kocsis

2023

Contents

Kivonat i

Abstract ii

1 Introduction 1
1.1 Application . 2

1.2 Structure of the report . 3

2 Deployed Systems 4
2.1 Monolithic Applications . 4

2.2 Distributed Systems . 4

2.3 Microservice Architecture . 5

2.4 System deployment . 6

3 Distributed Tracing 7
3.1 Modern Tracing Frameworks . 7

3.1.1 Dapper . 7

3.1.2 OpenTelemetry . 8

3.2 Trace and Span Structure . 9

3.3 Benchmark System: Train Ticket . 11

4 Qualitative Reasoning 12
4.1 Overview . 12

4.2 Modeling . 12

5 Allen’s Interval Algebra 15
5.1 Requirements for Time Representation . 15

5.2 Temporal Intervals . 16

5.3 Example . 16

6 Answer Set Programming 18

6.1 Stable Solution . 18

6.2 Reasoning . 18

6.2.1 Incomplete Information . 19

6.2.2 Additional Building Blocks . 19

6.3 Difference Logic Extension . 20

6.3.1 Clingo-DL . 22

6.4 Interval Logic in ASP . 23

7 Proposed Approach: Temporal Reasoning over Distributed Traces 24
7.1 Distributed Traces in Allen’s Interval Algebra 24

7.1.1 Spans as Intervals . 24

7.1.2 Modeling from Timing data . 25

7.1.3 Modeling from Relation Tree . 25

7.2 Applications . 27

7.2.1 Missing Span Substitution . 28

7.2.2 Behavior Consistency Check . 29

7.2.3 Trace Comparison . 30

7.2.4 Merge . 31

8 Proposed Approach: Qualitative Diagnosis over Distributed Traces 32
8.1 Qualitative Approach . 32

8.2 Propagation Analysis . 32

8.3 Mapping Traces and Spans . 33

8.4 Applications . 34

8.4.1 Example Trace . 34

8.4.2 Diagnostics . 35

8.4.3 What-ifs . 36

8.4.4 Co-deployment Design and Evaluation 37

9 Summary 39
9.1 Conclusion . 39

9.2 Further Work . 39

Acknowledgements 40

Bibliography 41

Kivonat

A modern, nagyméretű, elosztott rendszerek egyre összetettebbé válnak, és akár több
ezer számítógépre kiterjedő szoftvermodulok gyűjteményéből állnak. Az elosztott rendsze-
rek tranzakciói számos erőforrást használnak lefutásuk során, ami rendkívül nehézzé teszi
nyomon követesüket. Bár az elosztott alkalmazások megfigyelhetősége és a rendszerrel
kapcsolatos bizonytalanságok csökkentése egyre jobban javul, mégis akadnak olyan meg-
felelési és megfigyelhetőségi követelmények, amiknek vizsgálata csak az éles rendszerben
lehetséges.

A dolgozat bemutat egy logikai következtetés alapú módszert az elosztott rendszerek-
ben lévő működési bizonytalanságok feltárására és csökkentésére. A megoldás kihasználja
az elosztott rendszerekben használt nyomkövetésből származó információkat, amik lehe-
tővé teszik a hibaterjedés elemzést és a konzisztencia ellenőrzést a rendszer működése
során rögzített tranzakciók útvonalai és a rendszerrel szemben támasztott feltételezések és
követelmények között.

A dolgozatban bemutatott módszer a működési nyomok fölötti következtetéshez, a
folyamatok közötti temporális kapcsolatok összefüggéseit vizsgálja. A megoldás kiértéke-
léséhez a dolgozat mintapéldákon bemutat több következtetési célt a bizonytalanságok
csökkentéséhez. Továbbá a megoldás beillesztését az elosztott nyomkövetési munkafolya-
matba.

Egyetlen tranzakció egy nagyméretű elosztott rendszerben számos szolgáltatást érint-
het az útvonala mentén. A dolgozatban bemutatott megközelítés az elosztott rendszerek-
ben elterjedt nyomkövetési megoldásra épít, ahol intervallumokra bontva vizsgálhatók a
tranzakció kiszolgálásához kapcsolódó folyamatok és igénybe vett szolgáltatások. Ezál-
tal a kiértékelésre az Allen intervallum-algebrájának széleskörű eszköztárát használhatjuk.
Allen intervallumalgebrája egy olyan kalkulus, amely meghatározza az időintervallumok
közötti kapcsolatokat, és alapot nyújt az események időbeli leírásaival kapcsolatos követ-
keztetésekhez.

A megoldás a logikai következtetés a deklaratív Answer Set Programming, Differen-
ce Logic kiterjesztését használja, amivel kezelhetők a temporális kapcsolatok a működési
nyomvonalak között. Az intervallumok és nyomvonalak feletti következtetés rugalmas és
adaptálható eszközöket biztosít a fejlesztők és az üzemeltetési csapatok számára a nyom-
vonalak elemzéséhez és értékeléséhez. Ez pedig a rendszerrel kapcsolatos bizonytalanságok
csökkentésére, hibakeresésre, teljesítményoptimalizálásra és anomáliák észlelésére használ-
ható.

i

Abstract

Modern large-scale distributed systems are becoming more and more complex, comprised
of a collection of software modules spanning up to thousands of services. With modern
tools, observability and reducing uncertainties within systems are becoming more manage-
able. However, some compliance and observability requirements remain, which can only
be examined in production systems.

This report presents a logical reasoning-based approach to uncover and reduce uncer-
tainties in distributed systems. The solution takes advantage of context from tracing
frameworks already common in distributed systems. This information makes error prop-
agation analysis and consistency checking between the system’s actual behavior and the
prior assumptions possible.

The method shown in the report uses the temporal relations between processes for logical
reasoning over operational traces. In order to evaluate the solution, the report presents
several examples of use cases in reducing uncertainties. It also presents how these methods
can be used in conjunction with distributed tracing workflows.

A single transaction in a large-scale distributed system may involve many services along
its path. The approach presented in the report is based on tracing frameworks common in
distributed systems, where process calls and services can be examined as interval spans.
We can evaluate and reason across these spans using the extensive toolset of Allen’s
interval algebra. Allen’s interval algebra is a calculus for temporal reasoning, defining the
relationships between intervals and providing a basis for temporal reasoning.

The solution is based on a form of declarative programming called Answer Set Program-
ming, extended by Difference Logic, which allows the handling of temporal relations be-
tween operational traces. Reasoning over spans and traces provides flexible and adaptable
tools for developers and operations teams to analyze and evaluate traces. This approach
can reduce uncertainties related to the system, performance optimization, and anomaly
detection.

ii

Chapter 1

Introduction

Modern large-scale distributed systems are becoming more and more complex, comprised
of a collection of software modules spanning up to thousands of services. With modern
tools, observability and reducing uncertainties within systems are becoming more manage-
able. However, some compliance and observability requirements remain, which can only be
examined in production systems. This report presents a logic reasoning-based approach to
uncover and reduce uncertainties in distributed systems. The solution takes advantage of
context from tracing frameworks already common in distributed systems. Using temporal
and qualitative reasoning methods to increase knowledge and reduce uncertainties in the
system.

The methodologies I developed, and their use cases are shown in Figure 1.1.

Reasoning Engine
Allen's Interval

Algebra

Qualitative Reasoning

System Deployment

Distributed Traces Service Graphs

Behavior
Consistency Check Trace Merge Root Cause

Diagnostics What-if

Codeployment Design
and Evaluation

Answer Set Programming

Missing Span
Subsitution Trace Comparison

Applications

Figure 1.1: Overview

1

1.1 Application

Modeling and representing the data collected and known about these systems is parsed to
a logic reasoning engine. This logic reasoning engine will provide the tools to reason and
evaluate over this information in the methods shown in this report. This is showcased in
Figure 1.1 in the upper section.

The bottom section of Figure 1.1 shows the applications of the methodologies outlined
in the report. The yellow color represents the methods based on the temporal knowledge
extracted from the traces and Allen’s Interval Algebra. The applications marked with pur-
ple are based on Qualitative Reasoning and Error Propagation. The following paragraphs
highlight the key features and use cases of these applications.

Temporal methods In tracing the path of a request and its sub-processes can be
described in temporal space. Observing the timing and temporal relationships between
these calls provides valuable insight into the inner workings of these systems. The following
subsections describe use cases where the temporal methods of this report can be employed.

• Missing Span Substitution: Incomplete traces may be caused by a number of de-
fects in the tracing framework, from missing instrumentation to faults in the record-
ing and storage systems. The Missing Knowledge application introduced in this
report reduces the uncertainty caused by these issues, allowing engineers to extend
these partial traces with the missing spans based on system knowledge.

• Behavior Consistency Check: The expected normal execution and behavior of
request is defined and known during system design. During testing and operation,
identifying abnormal or unexpected behavior is extremely beneficial from a large
data set. To aid in this, the report introduces trace consistency checking based on
the temporal relations of executions. This provides flexibility to only mark recorded
requests where the requirements set towards the system are broken.

• Trace Comparison: The execution of requests in a system may differ for a number
of reasons. The comparison of traces allows engineers to understand the behavior
of these requests better. It is also a valuable tool to analyze faulty requests and the
effect of changes in the system.

• Trace Merge: Real-world systems are often made up of multiple sub-systems de-
veloped by separate teams and organizations. These sub-systems may be provided
with their own tracing and instrumentation. Still, the connection points between
these sub-systems can lead to situations where the detailed trace information is hid-
den by only a call to the other sub-system. To increase observability and promote
modularity, this report introduces a temporal relation-based method to merge traces
related to the same high-level request but recorded on different sub-systems.

Propagation-based methods Services, spans, and physical or virtual nodes are all
interconnected. Exploring the propagation and spread of information, faults, and other
metadata can be beneficial during the planning, modeling, and operating of these large-
scale systems. Often, however, there is very little information to use in this type of analysis.
This report presents methodologies based on the minimum and maximum execution time
of calls and functions while also taking into account other known properties of the system,
such as service structure and both physical and virtual architecture.

2

• Root Cause Diagnostics: Based on known timing data and the architecture,
abductive reasoning can find the possible root causes of faults. Abductive reasoning
involves inferring the possible causes of system behavior from measured and known
symptoms.

• What-if: System designers and operators can find insight into possible future issues
or improvements by evaluating changes and abnormal behavior without testing on
real operational systems. To support this task, this report introduces deductive
reasoning to model system behavior based on introduced faults or modifications.

• Co-deployment design and evaluation: Called Affinity Check in the report.
Services often need to be separated into different physical or virtual nodes to provide
the required performance and safety needed in distributed systems. This ensures
that two subsystems may not interfere with each other even under heavy loads
or possible fault conditions. This report introduces tracing-based affinity and anti-
affinity checking to validate the correct configuration and behavior of these separated
services and functions.

1.2 Structure of the report

The following chapters describe the basics of microservice-based deployed systems in Chap-
ter 2 and the tracing frameworks commonly used to increase observability in Chapter 3.
After that, it introduces the concepts and technologies used in the report. Chapter 4
introduces Qualitative Reasoning, a form of abstraction used to reduce temporal complex-
ity. Chapter 5 describes Allen’s Interval Algebra, a powerful tool to represent and reason
over temporal intervals. Chapter 6 details Answer Set Programming, a form of declarative
programming used in the report.

The report showcases the two novel approaches I created to assist in reducing uncertainties
in deployed systems. The first is a temporal knowledge-based solution. The methods and
its applications are shown in Chapter 7 and the qualitative diagnosis-based approach and
its applications are in Chapter 8. Finally, the conclusions, further plans and possibilities
are described in Chapter 9.

3

Chapter 2

Deployed Systems

2.1 Monolithic Applications

Monolithic applications and architecture represent a traditional approach to software de-
sign, where all components and functions of an application are tightly integrated into a
single, unified system. The entire application, including the user interface, business logic,
and data access layers, is built as a single, self-contained unit. Monolithic applications
are known for their simplicity, as they are easier to develop, test, and deploy compared to
more complex architectures.

Client

Monolith

UI

Business Layer

Data Access

Database

Figure 2.1: Monolithic Applications

However, they can become unwieldy and difficult to maintain as they grow in size and
complexity. One of the key challenges with monolithic applications is that any changes or
updates to one part of the system can potentially affect the entire application, making it
challenging to scale and adapt to evolving business needs. With the advent of microservices
architecture, many organizations are transitioning away from monolithic applications to
embrace more modular and scalable approaches to software development.

2.2 Distributed Systems

Distributed systems, in contrast to monolithic architectures, are designed to handle com-
plex tasks by distributing them across a network of interconnected computers. This ap-
proach enables collaboration and resource sharing, enhancing performance, fault tolerance,
and scalability. In distributed systems, components can be geographically dispersed yet

4

work together as a single, cohesive unit. The fundamental idea behind distributed systems
is to break down a large task into smaller sub-tasks that can be processed independently
on different machines. These systems often rely on technologies such as remote procedure
calls to facilitate communication between components.

Component 1

Component 2

Component 3Component 4

Component 5Communication
Network

Figure 2.2: Distributed Architecture

Distributed systems offer several advantages, including improved reliability, as failures in
one part of the system do not necessarily affect the entire system. However, building
and managing distributed systems come with their challenges, such as debugging, han-
dling network failures, and emergent properties from the interaction of a large number of
subsystems. Despite the complexities involved, distributed systems play a crucial role in
modern computing, powering everything from cloud computing platforms to large-scale
web applications.

2.3 Microservice Architecture

Microservice architecture is a contemporary approach to software design where a complex
application is broken down into smaller, loosely coupled services, each representing a
specific business functionality. These services operate independently and communicate
with each other through well-defined APIs. Unlike monolithic architectures, microservices
allow for flexibility and scalability as each service can be developed, deployed, and scaled
independently.

Client API
Gateway

Microservices

Service 1

Service 2

Service 3

Service 4

Figure 2.3: Microservice Architecture

Microservices promote a distributed, decentralized approach to development, allowing
teams to work on different services concurrently, using different technologies and pro-

5

gramming languages best suited for each service’s requirements. This architectural style
fosters rapid development, facilitates continuous integration and deployment, and enables
organizations to adapt to changing business needs more effectively.

However, managing the communication between services, ensuring data consistency, and
dealing with potential service failures are challenges that need to be carefully addressed
in microservice architectures. Despite the complexities, the benefits of microservices, such
as improved agility, scalability, and resilience, make them a popular choice for building
modern, large-scale applications and services. [6]

2.4 System deployment

System deployment is a critical phase in the software development lifecycle where the
developed application or system is prepared and released for users. It involves the process
of installing, configuring, testing, and making the software operational for its intended
users or clients.

Maintenance Monitoring

Design Implementation Testing

Deployment

Figure 2.4: Deployment Process

Deployment strategies can vary widely, from distributed cyberphysical systems to tradi-
tional on-premises installations and cloud-based deployments. Continuous monitoring and
maintenance post-deployment are essential to address user concerns, implement updates,
and maintain the system’s performance and security.

6

Chapter 3

Distributed Tracing

In complex, distributed systems, where requests are spread across many applications and
services, understanding the flow of information and the interactions between different
components is paramount. Distributed tracing provides a solution to this challenge by
offering a comprehensive view of the entire system’s behavior, transcending the boundaries
of individual services and servers. This approach not only facilitates rapid issue detection
and troubleshooting but also empowers organizations to enhance their system performance.

3.1 Modern Tracing Frameworks

Distributed Tracing Frameworks were created to increase the observability of systems
based on microservice architecture. These frameworks have emerged as indispensable
tools, providing developers with invaluable insights into the internal workings of complex
systems. [3] The following chapters describe state-of-the-art distributed tracing frame-
works and tools, common standards used for tracing, and a benchmark example system
used as an example later in the report.

3.1.1 Dapper

Dapper [12] is a tried and proven distributed systems tracing infrastructure created and
used by Google. After two years of deploying and using the system, there are a number of
important achievements and lessons to take away. The aim of this section is to highlight the
positive impact and characteristics of a high-quality tracing infrastructure and showcase
the importance of this technology.

The aim of Dapper was to aid Google developers in understanding the behavior of their
complex distributed systems. These systems were particularly important to Google, as
large collections of small servers proved to be a cost-efficient platform for Internet services
workloads. Tracing was selected as the optimal solution to observe these systems because
the behavior is spread across a number of services and machines.

Three main requirements were made before development:

• Low overhead: For the result to be useful and normal operation to remain possible,
the tracing infrastructure needed to have a negligible performance impact on the
service performance.

7

• Application-level transparency: To maintain a ubiquitous tracing environment, it
was important to not rely on application-level developers’ collaborations. This is
why Dapper opted in general, that developers should not need to be aware of the
tracing system. However, it is important to note that Dapper still allows developers
to include additional instrumentation.

• Scalability: Google’s systems are increasingly large, and the system needed to handle
this vast size.

Trace collection is handled by a three-stage logging and collection pipeline, shown in Figure
3.1. First of all, local log files are created from span data. These logs are pulled from the
production host by Dapper collectors. Finally, it is written to one cell of a regional Dapper
Bigtable repository. Each cell represents a span, and a row makes up an entire trace. The
median latency in this collection process is less than 15 seconds. Allowing developers to
almost immediately access and process traces from their systems.

Figure 3.1: Dapper Pipeline. Source: [12], p5

After over two years of being the main production tracing system for Google, Dapper has
generally met its objectives and shown previously unseen uses of tracing data. Providing
extremely low overhead and paving the way for a number of developer tools.

3.1.2 OpenTelemetry

This section aims to show that there are existing free, open-source, and modular trac-
ing and observation frameworks and tools. These make the use of distributed tracing
a significantly more favorable option for developers seeking to increase productivity and
efficiency.

OpenTelemetry is a vendor-neutral open-source Observability framework under the Cloud
Native Computing Foundation project for for instrumenting, generating, collecting, and
exporting telemetry data such as traces, metrics, and logs. [13] This report focuses on
its tracing framework, previously known as OpenTracing. This framework became the
industry standard and is currently supported by over 40 observability vendors, integrated
by many external libraries, tools, and services. It is important to note that OpenTelemetry

8

is solely focused on the generation, collection, management, and export of telemetry data.
In itself, it provides no tools to store or visualize this data.

The main objective of OpenTelemetry was to fulfill the ever-increasing need for observ-
ability in modern complex systems. Observability is the ability to understand the internal
state of a system by examining its outputs. In the context of software, this means being
able to understand the internal state of a system by examining its telemetry data, which
includes traces, metrics, and logs. [13] To fulfill this objective, it created a new common
standard for code instrumentation and sending telemetry data to an Observability back-
end. This was achieved by combining two prior projects, OpenTracing and OpenCensus.

Application

API SDK

Exporter

Collector

Exporter

Tracing
Backend

Processing

Figure 3.2: OpenTelemetry Architecture

OpenTelemetry is designed to be extensible. It allows developers to extend the framework
at almost every possible level. This could allow us in the future to extend the framework
with the methods and programs showcased in the report.

3.2 Trace and Span Structure

From now on, this report will focus on the trace and span structure of the OpenTelemetry
standard, as it is considered the industry standard.

A trace represents the complete journey of a specific request as it traverses various services
and components within an application. These traces provide insights into how requests
are processed, which services are involved, and how much time is spent at each stage of
the request. Traces in OpenTelemetry have a hierarchical structure consisting of spans.

Spans are the building blocks of traces. They represent a single operation within a trace
and encapsulate information about a specific interval during which an operation occurred.
Spans are organized hierarchically, allowing for the representation of parent-child relation-
ships between different spans. The root span represents the overall request, while child
spans represent sub-operations or actions that are part of the larger request processing
flow. Spans in OpenTelemetry include information and attributes about the operation
(Table 3.1).

9

Information Description Example
Name The name of the operation. /v1/ts-food-service/food-list
Parent span ID Specifies the parent span, re-

quired for the hierarchical tree
structure.

086e83747d0e381e

Start and End
Timestamps

The start and end times of the
span.

start_time:
2023-10-31 03:33:32.209459162
end_time:
2023-10-31 03:33:32.210512132

Span Context Span context contains the
Trace ID, the Span ID. May
also contain other metadata.

"context":{
"trace_id":
"0x5b8aa5a2d2c872e8321cf373",
"span_id":
"0x5fb397be34d26b51" },

Attributes Attributes are key-value pairs
to annotate a Span to carry
information about its opera-
tion.

"attributes": {
"http.route": "example_route"
},

Span Events A Span Event is a structured
log message on a Span, used
to denote a singular point in
time during the span.

"event": {
"name": "hello world!",
"timestamp": "2023-10-
30T14:56:59.124761Z" }

Span Links Links associate one span with
one or more spans, implying a
causal relationship.

Meets 086e83747d0e381e

Span Status A span status is set, when
there is a known error in the
application code, such as an
exception.

Unset, Ok or Error

Table 3.1: Span information [13]

10

3.3 Benchmark System: Train Ticket

Train Ticket is an Open-Source Microservice Benchmark consisting of a train ticket book-
ing system that contains 41 microservices. [4] The architecture of this system can be seen
on Figure 3.3.

In this benchmark system, a user has the capability to inquire about available train tickets
for a journey from city A to city B on a specific date. The user can make a reservation
by selecting the passenger details and seat class that meet their requirements. Upon a
successful booking, prompt payment is required. Subsequent to the successful payment,
the user will receive an email confirming their ticket reservation. The user retains the
flexibility to make ticket modifications before the scheduled departure or within a specified
time window following the train’s departure. [14]

The system is designed using the principles of microservice architecture. It contains and
uses synchronous invocations, asynchronous invocations, and message queues. The design
strategy also promotes flexibility and adaptability, the two main strengths of microservice-
based systems. The design and structure of this benchmark system make it the ideal
candidate to use in this report.

Train Ticket provides support for both Docker and Kubernetes deployment for bench-
marking. This report does not utilize these features. However, in the future, this system
is to be used in the performance benchmarking and testing of the methods shown in this
report.

Figure 3.3: Train Ticket Benchmark - Service Architecture Graph. Source [4]

11

Chapter 4

Qualitative Reasoning

4.1 Overview

Qualitative reasoning is a form of abstraction, which considers the understanding and
analysis of systems based on qualitative rather than quantitative information. Unlike
quantitative methods that rely on numerical measurements, qualitative reasoning focuses
on abstract, qualitative aspects to gain insights into complex phenomena. This approach
is particularly valuable when dealing with diverse and intricate systems, where precise
quantitative data might be challenging to interpret.

Discretization In qualitative reasoning, continuous properties are represented by dis-
crete entities. This allows symbolic representation and reasoning. Secondly, it is a means
of abstraction. A continuous variable with an infinite number of possible values may be
represented only by its sign (+,0,-). This abstraction allows models to work even with
minimal information, requiring only a few details. [9]

Relevance Discretization is based on the nature of the system and the planned reasoning
about it. Qualitative value sets are defined to be relevant to the task at hand. Within
a specific qualitative value, the behavior should be the same, in regards to the goal of
the reasoning. Different purposes require a different approach to discretization, keeping
in mind the relevance of the qualitative regions. [9]

Ambiguity The abstraction introduced by Qualitative Reasoning comes with its draw-
backs. Often there is not enough information to come to a certain conclusion, leading to
several possible predictions. Because of this, qualitative models often produce ambiguous
results. However, this can also be seen as a strength. Qualitative modeling algorithms
can help identify the relevant phenomena and find possible behaviors of the system. [9]

4.2 Modeling

Figure 4.1 shows a possible quality space in the case of water temperature. The quality
space is separated by multiple landmarks, absolute nil point, freeze point, boil point, and
infinite plus. The values were chosen to show the physical properties of water. If the goal
of the system requires it, this quality space could be expanded or simplified as needed.

12

Figure 4.1: Quality Space. Source [11], p14.

For example, in the case of drinking water, more landmarks could be introduced to mark
the safe temperature range for consumption.

Systems are made up of entities, which are physical objects or abstract concepts in the
system. The relevant properties of these entities are represented as quantities that can
change from influences within the system. Qualitative Reasoning considers two main types
of relations between properties shown in Figure 4.2.

Direct Relation is a directed relation between two properties. The influence may be
positive or negative. In the case of a positive direct influence, the increase in the source
quantity will lead to an increase in the target quantity, while a decrease will lead to a
decrease. In the case of negative influence, the increase in the source quantity will cause a
decrease within the target quantity. An example of this relation can be seen in Figure 4.2
(left) between the source Flow In quantity and the target Change Amount (water level).
As the Flow In increases, the Change Amount of the water level will increase, as more
water will flow in.

Proportional Relation helps to propagate the effects within a modeled system. The
derivative of the target quantity changes based on the derivative of the source quantity.
This relation can also be positive or negative, where this change will be directly propor-
tional in the case of positive proportional influence and inversely proportional in the case
of negative proportional influence. This relation is shown in Figure 4.2 (right) between
(water) Amount and (water) Height. As the water amount increases, its derivative be-
comes positive, leading to the derivative of the water height to be positive, causing an
increase in Height.

Water
Tank

δAmount

I+

Flow In

Flow Out

I-

I+

I-

Water
Tank

P+

Height

Amount

P+

Pressure

Figure 4.2: Direct Influence (left) and Proportionality (right). Source [11], p15, p16.

13

+ 0 -
+ + + ?
0 + 0 -
- ? - -

Table 4.1: Two Influence Relations

Magnitudes of properties is important to consider, as sometimes effects can be ignored
because they are negligible compared to others. The pressure decrease inside the water
tank caused by the expansion of the universe would be negligible compared to the pressure
increase caused by the water level increases. A common strategy to deal with magnitude
representation is partitioning the magnitude into distinct equivalence classes, such as small,
medium, and large. In the previous example, the first property would be a small decrease,
and the pressure increase caused by the water level increasing would be a large increase.
With this additional information about the magnitude, it can easily be deduced that
the sum of these influences will lead to an increase. However introducing magnitude
representation into qualitative models will lead to an increase in complexity, and the
system requirements must be considered when deciding the ideal system model.

Uncertainty is caused due to influences from multiple sources. Deducing the sum of
multiple contradictory influences is not possible for a single solution. To handle this the
model needs to have a defined way to deal with multiple influences. Table 4.1 shows the
sum of two influences can be seen. In two scenarios the sum of the influences may be
uncertain. In this case, all possible outcomes have to be examined (increasing, steady,
decreasing).

In case of more than two influences, if there are both increasing and decreasing influences
the outcome can not be evaluated with complete certainty. This is because the abstraction
of the qualitative model hides the relation and magnitude between changes. Using some
form of magnitude representation helps to decrease unknowns caused by this delta calculus
but due to the abstraction nature of qualitative reasoning, uncertainties can never be
completely avoided, only mitigated.

14

Chapter 5

Allen’s Interval Algebra

Representing and reasoning with temporal knowledge is needed in many areas, including
computer science, from program verification to process modeling and even artificial intel-
ligence. Interval-based temporal logic strives to effectively deduce and express temporal
hierarchy. Allen’s Interval Algebra [1] takes intervals as primitives and describes the
relationships between these intervals using constraint propagation.

5.1 Requirements for Time Representation

Timing in microservice-based applications is ever-changing. This requires a great deal
of flexibility in time representation. To be able to create assumptions and reason across
traces recorded from these systems the following characteristics are needed:

Uncertainties about the architecture, deployment, and execution of requests must be
considered and allowed. Due to the ever-changing and adapting architecture designers and
operators do not have a concrete rule set about the relation of spans in traces. Ensuring
that spans and their behavior can be analyzed while allowing unknowns in the model way
is imperative.

Relative knowledge makes up most of the constraints and conditions when overseeing
traces. Viewing spans relative to one another allows the required freedom needed to view
and reason in changing conditions. The framework used to model spans and traces must
be able to accommodate this.

Variable precision is a fundamental requirement when modeling complex systems. It
is essential to recognize that different situations demand varying degrees of detail and
accuracy in capturing temporal aspects. In some scenarios, a broad overview of time-
related events might suffice, while in others, a highly granular and precise representation is
necessary to capture subtle nuances. Acknowledging these disparities in timing magnitudes
is crucial for developing effective models that reflect the intricate dynamics of the overall
system.

Time point and state space-based approaches prove insufficient in modeling microservice-
based systems due to their limitations in capturing complex temporal relationships, con-
currency, and dynamic nature of microservices. Time points lack precision in representing

15

interactions, leading to inadequate modeling of overlaps and durations, while state space
methods struggle to handle concurrent activities and dependencies effectively.

Allen’s interval algebra offers a richer and more expressive framework for modeling the
complex temporal aspects of microservice-based systems. It provides a versatile way to
capture temporal relationships, concurrency, dynamic behaviors, temporal constraints,
and dependencies, and supports formal reasoning, making it a suitable choice for modeling
and analyzing the temporal aspects of microservice architectures.

5.2 Temporal Intervals

The calculus characterizes the possible interactions and their inverse between intervals in
13 distinct relations, including "before," "after," "meets," "met by," "overlaps," "overlapped
by," "during," "contains," "starts," "started by," "finishes," "finished by," and "equals," each
describing a specific temporal relationship between two intervals. These can be seen on
Figure 5.1. These relations provide a standardized and intuitive way to describe the
temporal order and overlap between intervals, allowing for precise modeling of complex
temporal scenarios.

Understanding these relations is crucial for analyzing the temporal aspects of complex
processes. The formalism provided by Allen’s Interval Algebra and its associated toolset
serves as a base for applications requiring temporal reasoning, ensuring accurate modeling
and analysis of temporal relationships.

X precedes Y

X equal Y

X meets Y

X overlaps Y

X during Y

X starts Y

X finishes Y

Relation Symbol Inverse
Symbol Example

p

eq

m

o

d

s

f

pi

mi

oi

di

si

fi

X
Y

X
Y
X

Y
X

Y
X
Y

X
Y

X
Y

Figure 5.1: Interval relations

5.3 Example

The following example, taken from "Maintaining Knowledge about Temporal Intervals" [1]
by James F. Allen, showcases the uses and methods of Allen’s Interval Algebra.

"John was not in the room when I touched the switch to turn on the light."

Let S be the time of touching the switch, and L be the time interval where the light was
on. R shall be the time that John was in the Room. We can describe the possible relations
as follows:

16

time

L

S (overlaps)

S (meets)

Figure 5.2: S overlaps (o) or meets (m) L.

time

L

S (o)

S (m)

R (oi)

R (mi)

Figure 5.3: S precedes (p), meets (m), is met by (mi) or after (pi) R.

• S overlaps (o) or meets (m) L.

• S precedes (p), meets (m), is met by (mi) or after (pi) R.

The possible arrangement of intervals is visualized on Figure 5.2 and Figure 5.3.

Continuing the story with the statement: "But John was in the room later while the light
went out" allows us to expand the knowledge base of relations.

The possible relations deducted from this statement are as follows:

• L overlaps (o) or starts (s) R.

Combining this with all the temporal knowledge deducted previously we decrease the
number of uncertainties about the intervals. Figure 5.4 shows the complete reconstruction
of events. It can be seen, that some relations proved to be impossible in the complete
story.

From this information and from the previous knowledge about the relations between R
and S, the fact, that S precedes or meets R can be deduced.

Allen’s Interval Algebra introduces its own algorithm to reason across relations. This
report uses a different approach based on difference logic, introduced in Section 6.3.

time

L

S (o)

S (m)

R (oi)

R (mi)

p,m

Figure 5.4: Reconstruction of events

17

Chapter 6

Answer Set Programming

Answer Set Programming (ASP) [2] is a declarative problem-solving approach, mainly
focused on knowledge-intense combinatorial problems. The major advantages of ASP are
its simplicity and its ability to model incomplete specifications.

In this report, ASP will be used as the reasoning framework to model and evaluate the
relationships in and between traces.

6.1 Stable Solution

The ASP solving process consists of three main steps, as shown in Figure 6.1. Modeling
transforms the problem into a logic program. During the solving, the grounder and solver
determine the answer sets (stable models) that fulfill the rules of the logic program. The
solution is created by interpreting the stable models.

Problem

Logic
Program Grounder Solver Stable

Models

Solution

Solving

Modeling Interpreting

Figure 6.1: Solving Process

6.2 Reasoning

The building blocks for ASP programs are atoms, literals, and rules. Atoms are considered
elementary propositions that may be true or false. Literals are atoms or their negations.
Rules can be created from literals, as seen here:

r : − a1, a2, not a3.

18

Where a1, a2, a3, and r is also an atom.

The head of this rule is r, the body consists of the literals a1, a2, and not a3. This rule
provides justification to "establish" or "derive" that the head is true if all literals in the
body are true. A non-negated literal (a1) is true if the atom (a1) has a derivation. A
negated literal (not a3) is true if the atom (a3) has no derivation.

Facts represent the background knowledge of the system. Rules are used to deduct results
from facts. Facts are special rules which contain no body.

service_ok.

behavior_steady : −service_ok, notfault_outage.

{network_ok, behavior_steady}

Disjunctive rules are used to describe the nondeterministic behavior of the system. A
simple example may be when, out of two facts, only one is true, but determining which
exactly is impossible.

service_ok.

behavior_steady : −service_ok, notfault_outage.

1{response_time_low, response_time_medium}1 : −behavior_steady.

{service_ok, behavior_steady; response_time_low}
{service_ok, behavior_steady; response_time_medium}

Integrity constraints determine the boundaries of the system to eliminate undesirable
results and inconsistencies.

1{fault_overload, fault_ratelimit, fault_outage}1.

{fault_overload}, {fault_ratelimit}, {fault_outage}

6.2.1 Incomplete Information

ASP considers two types of negation. Negation as failure means that deriving "not a3"
comes from a failure to derive "a3". This differs from the classical logic negation of "¬a3".
"not fault." means that we have no knowledge of a fault in the system. While "¬ fault."
means that there is no fault in the system. With this tool, incomplete information can be
accurately modeled.

6.2.2 Additional Building Blocks

Atoms can be extended by arguments and variables. Arguments begin with a small first
letter, while variables begin with a capital first letter. The solver replaces variables with
all possible arguments that could be in their places.

min_time(foodlist, steady).
min_time(ticketinfo, steady).

19

The above code snippet contains the min_time atom, which represents the minimum
execution time of a span with its span name, and the qualitative representation of the
execution time (decreasing, steady, increasing). The two span names, foodlist, and tick-
etinfo, are considered arguments. This is evidenced by them starting with a small first
letter.

span_name(Name) : − min_time(Name, _).

{span_name(foodlist), span_name(ticketinfo)}

This code snippet collects the names of all spans. In the body of this rule "Name" is a
variable, which will be replaced with all possible variables that exist in this atom. The
underscore character indicates that an attribute is irrelevant during the evaluation of this
rule.

Aggregates are functions that evaluate over a set of atoms and return a number. In this
report, the Count aggregate will be used most commonly. This aggregate returns the
cardinality of the atom set it is applied to.

numberOfPosInfluence(N) : − N = #count{B : influence(B, pos)}.

Directives instruct the solver how to process the rules. Most commonly the #show direc-
tive is used, which determines what kind of atoms the output should include. The following
number shows the number of arguments for the atom. In (2.2) start_point atoms with
two arguments will be shown. In (2.3) the relation atoms with 3 arguments will be shown.

%Directives (6.1)
#show start_point/2. (6.2)

#show relation/3. (6.3)

Single-line comments in ASP are marked with a % character at the start of the line, as
seen in the previous code snippet (2.1).

6.3 Difference Logic Extension

Difference logic handles problems in the description of differences. These formulas are
called difference constraints and must take the following form:

x − y ≤ c

Where x and y are variables, and c is a constant. Meaning, the difference of x and y shall
be less than or equal to c.

Usually, the inequalities in difference problems are not in the normal form by default.
To create a difference constraint from an inequality, it must be brought to its equivalent
normal form. The following are common transformations:

x ≤ y must be written as x − y ≤ 0.

x − y = c must be written as x − y ≤ c and y − x ≤ c

x − y ≥ c must be written as y − x ≤ −c

20

1 M(A) 20
2 M(B) 10
3 M(C) 5

Table 6.1: Job 1

1 M(B) 30
2 M(A) 15

Table 6.2: Job 2

x ≤ c must be written as x − z0 ≤ c, where the special zero variable, z0, must be 0.

The following example consists of finding a feasible schedule to get two jobs executed over
three machines in the allotted time. The jobs consist of different operations, which may
have to be executed on a different machine. Table 6.1 and Table 6.2 show the execution
order of these operations, the machine that can execute the given operation, and the
execution time.

From this, the difference constraints can be created as follows.

All operations must start after 0. In other words, the start time of each operation is
greater than or equal to 0.

z0 − s11 ≤ 0

z0 − s12 ≤ 0

z0 − s13 ≤ 0

z0 − s21 ≤ 0

z0 − s22 ≤ 0

All operations within one job are executed sequentially. This means that the start time of
the next operation is greater than the sum of the start time of the current operation and
the current operations execution time.

s11 − s12 ≤ −20

s12 − s13 ≤ −10

s21 − s22 ≤ −30

The operations on a machine are also performed sequentially.

M(A) : s11 − s22 ≤ −20 or s22 − s11 ≤ −15

M(B) : s12 − s21 ≤ −10 or s21 − s12 ≤ −30

From these difference constraints, the solution can be calculated using multiple methods.
This report employs Clingo-DL to solve these difference logic problems.

21

6.3.1 Clingo-DL

Clingo is an ASP system to ground and solve logic programs. Created by the University
of Potsdam as part of the Potassco project for Answer Set Programming. It combines the
capabilities of their grounder, gringo, and their solver, clasp, into a complete system.
Clingo also includes powerful integration tools with common scripting languages. [5]

Clingo-DL extends Clingo with constraints over difference logic. Allowing for modeling
and solving naturally encoded timing-related problems, solvable in polynomial time. [8]
Difference constraints can be implemented very efficiently since they enable a linear-time
check for unsatisfiability. [7]

Formally, Clingo-DL creates assignments mapping variables to integers. A difference con-
straint x − y ≤ c is satisfied by assignment τ if τ(x) − τ(y) ≤ c, this is denoted by
τ ⊨ x − y ≤ c. τ ⊨ S for a set of difference constraints S means that for every difference
constraint τ ⊨ x − y ≤ c. In this case, S is satisfiable and τ is a solution to S. [7]

The returned value assignment (solution) is the one with the lowest sum of the values for
all variables. For example, in case scheduling, this leads to scheduling each job as soon as
possible.

A simple example shows the basic structure of difference constraints: The two variables
inside the &diff block are calculated based on the constraints emposed by the model. In
this example, it is known that x-y is smaller or equal to -3. The solver attempts to find
the lowest possible values; thus, the solution is x = 0, y = 3.

& diff {x − y} <= −3.

{dl(x, 0)dl(y, 3)}

The example described in Section 6.3 can be implemented and solved in Clingo-DL. The
inequalities created from the problem statement have already been modified to the stan-
dard form required by Difference Logic. All that is left to do is create the Clingo-DL
program.

The inequalities ensuring that operations start after 0 can be written as shown in List-
ing 6.1. The atom "s" contains the information about the operation start time, the job
identifier, and the operations index in the job.

z0 − s11 ≤ 0

&diff {0 - s(1,1)} <= 0.
&diff {0 - s(1,2)} <= 0.
&diff {0 - s(1,3)} <= 0.
&diff {0 - s(2,1)} <= 0.
&diff {0 - s(2,1)} <= 0.

Listing 6.1: Ensure Start After 0

The code in Listing 6.2 implements the sequential operation within jobs.
&diff {s(1,1) - s(1,2)} <= -20.
&diff {s(1,2) - s(1,3)} <= -10.
&diff {s(2,1) - s(2,2)} <= -30.

Listing 6.2: Jobs

22

Sequential operation on the machines is constrained by the code snippet shown in Listing
6.3. Difference constraints can not be placed inside disjunctive rules, so another atom
is used to determine which start time is earlier. A more suitable implementation of this
behavior is possible, but that goes beyond the scope of this example.
0{s11_before_s22}1.
&diff {s(1,1) - s(2,2)} <= -20 :- s11_before_s22.
&diff {s(2,2) - s(1,1)} <= -15 :- not s11_before_s22.

0{s12_before_s21}1.
&diff {s(1,2) - s(2,1)} <= -10 :- s12_before_s21.
&diff {s(2,1) - s(1,2)} <= -30 :- not s12_before_s21.

Listing 6.3: Machines

Running the program yields the following solutions to the problem.
Answer: 1
dl(s(1,1),45) dl(s(1,2),65) dl(s(1,3),75) dl(s(2,1),0) dl(s(2,2),30)
Answer: 2
dl(s(1,1),0) dl(s(1,2),30) dl(s(1,3),40) dl(s(2,1),0) dl(s(2,2),30) s11_before_s22
Answer: 3
dl(s(1,1),0) dl(s(1,2),20) dl(s(1,3),30) dl(s(2,1),30) dl(s(2,2),60) s12_before_s21 s11_before_s22
SATISFIABLE

Listing 6.4: Solution

6.4 Interval Logic in ASP

"Allen’s Interval Algebra Makes the Difference" [7] presents an encoding method for tem-
poral networks using ASP extended by difference constraints. For each interval, a start
and end point integer variable is introduced. Their approach introduces constants for the
13 relations (eq, p, pi, m, mi, o, oi, s, si, d, di, f) in Allen’s Interval Algebra. An example of
the overlap relation can be seen in Listing 6.5. The relations are described via a predicate,
which contains three arguments. The first two arguments describe the intervals, and the
third argument defines the relation between the two temporal intervals. This report uses
this encoding to reason across spans in distributed traces, further elaborated in Chapter
7.
% X overlaps Y
& diff { sp(Y) - ep(X) } <= -1 :- relation(X,Y,o).
& diff { sp(X) - sp(Y) } <= -1 :- relation(X,Y,o).
& diff { ep(X) - ep(Y) } <= -1 :- relation(X,Y,o).
% X is overlapped by Y
relation(X,Y,o) :- relation(Y,X,oi).

Listing 6.5: Overlap relation

23

Chapter 7

Proposed Approach: Temporal
Reasoning over Distributed Traces

Temporal Reasoning over Distributed traces is a novel approach I created for this report
to better explore the use of temporal interval relations in the scope of distributed tracing.
Viewing spans in traces as intervals I was able to use the tool set of Allen’s Interval Algebra
to reduce the uncertainties common in microservice based systems.

7.1 Distributed Traces in Allen’s Interval Algebra

7.1.1 Spans as Intervals

I considered spans as temporal intervals. This allows the use of Allen’s Interval Algebra
for logic reasoning. This is an abstraction over normal tracing, as exact timing and other
attributes are dismissed, keeping only the temporal relations between spans.

A span is described using Clingo-DL to be an at least 1 time unit long temporal interval.
The atom contains the Span ID and the Trace ID as arguments as shown in Listing
??. This allows traceability between the results of temporal reasoning and the real-world
systems tracing framework.

The following examples use the Example Trace shown in Figure 7.1. The left side of the
figure shows the relationship graph of the trace, while the right side shows the temporal
structure of the trace.

A

B E

C D

time

A

B

C

D

E

Figure 7.1: Example trace. Source [14], p5

24

7.1.2 Modeling from Timing data

Start and End time data from spans can be used to create a complete relation tree using
Allen’s Interval Algebras relations. The timing data must be sampled to allow time coin-
cidence with other spans, as in real-world systems timing is continuous and when one span
ends another may be beginning in logic, but won’t start immediately but with a slight
delay. Without this, only the overlap and during relations could be evaluated.

Timing data is always logged by tracing frameworks. Sometimes, links or relations may be
absent or difficult to deduct. Creating relation trees from timing data allows for further
analysis such as trace comparison, consistency checking, and other methods driven by
relations. The ASP mapping of spans, using their start and endpoint, can be seen on
Listing 7.1.
&diff {sp(SPAN)-ep(SPAN)} <= -1 :- span(SPAN,PARENT,TRACE,SP,EP).
&diff {SP - sp(SPAN)} <= 0 :- span(SPAN,PARENT,TRACE,SP,EP).
&diff {sp(SPAN) - SP} <= 0 :- span(SPAN,PARENT,TRACE,SP,EP).
&diff {EP - ep(SPAN)} <= 0 :- span(SPAN,PARENT,TRACE,SP,EP).
&diff {ep(SPAN) - EP} <= 0 :- span(SPAN,PARENT,TRACE,SP,EP).

Listing 7.1: Span Description

From the created intervals, relations can be deduced using. As only one relation can be
true between two intervals I chose to use a disjunctive rule, which declares, that exactly
one relation shall be true. To introduce the relation between two intervals to the knowledge
base the "relates" atom is used with its two arguments being the two intervals present in
the relation. This can be seen on Listing ??.
1{relation(A, B, eq);relation(A, B, d);relation(A, B, p);relation(A, B, m);\\relation(A, B, o);

relation(A, B, s);relation(A, B, f); relation(A, B, di);relation(A, B, pi);relation(A, B, mi);
relation(A, B, oi);relation(A, B, si);relation(A, B, fi)}1 :- relates(A,B).

Listing 7.2: Deducing Relation

The following example shows the example span recreated using simplified timing data. I
defined all spans using their start and endpoints. Clingo-DL then creates the intervals
satisfying the description. Using the relates atom, I can find the relation between any two
spans, in this case, span A and span B. This can be seen on Listing 7.3.
span(a, none, t, 0, 5).

span(b, a, t, 1, 3).
span(c, b, t, 1, 2).
span(d, b, t, 2, 3).

span(e, a, t, 3, 4).

relates(b, c).

Listing 7.3: Timing Data

The solution contains all intervals created correctly, and the difference constraints are
fulfilled as expected. The relation between span B and span C is solved as such:

{relation(b, c, si)}

7.1.3 Modeling from Relation Tree

Accurately reasoning over spans and traces requires a solid knowledge base about the
relations between all spans. However, there may only be incomplete information about
a trace. Tracing data must contain the parent-child hierarchy building a directed acyclic
graph (DAG), where the first vertex is the root span. The edges are directed from the

25

parent spans to their child spans. In this DAG, all vertices can only have one edge directed
to them but may have multiple or no outgoing edges. All edges represent the inverse of
the During relation, also known as Contains. The graph and the span timeline recreated
only from this information, based on the example trace shown on Figure 7.1 can be seen
on Figure 7.2.

A

B E

di di

C D

di di

time

A

B

C

D

E

Figure 7.2: Trace from Parent-Child relation tree

This information by itself is not enough to reproduce an accurate representation of the
temporal structure of this trace. The ASP implementation of this state of knowledge can
be seen in Listing 7.4.
span(a, none, t).
relation(a, b, di).
relation(a, e, di).

span(b, a, t).
relation(c, b, di).
relation(d, b, di).

span(c, b, t).
span(d, b, t).

span(e, a, di).

Listing 7.4: Relation Tree

Expanding this graph with other relations allows for more accurate temporal knowledge.
This information can come from span links in the tracing data. The result can be seen
on Figure 7.3 In this step, I introduce the fact, that B meets E, shown by the dashed line
between vertices B and E. This can be added by system knowledge about the fact that
E will begin when B ends. With this information, the knowledge base is closer to reality,
however, it is still not completely accurate.

A

B E

di di

C D

di di

time

A

B

C

D

E

m

Figure 7.3: Trace from relation tree expanded with span link

26

Using more knowledge from span links, I can introduce more edges, thus including more
edges in the relation tree, creating an accurate temporal structure of this example trace.
For this, however, the system has to be instrumented with span links. The final result can
be seen on Figure 7.4. The expanded ASP representation can be seen on Listing 7.5.

A

B E

di di

C D

s fi

time

A

B

C

D

E

m

m

Figure 7.4: Complete Trace recreated from expanded relation tree

span(a, none, t).
relation(a, b, di).
relation(a, e, di).

span(b, a, t).
relation(c, b, s).
relation(d, b, f).

span(c, b, t).
span(d, b, t).

span(e, a, t).

relation(b,e,m).
relation(c,d,m).

Listing 7.5: Complete Knowledge

7.2 Applications

Various factors contribute to uncertainties in the operation of deployed systems:

• Emergent properties: The intricate details of how these services interact and
function are not fully understood, leading to uncertainties in their behavior. This
lack of comprehensive understanding gives rise to a plethora of uncertainties in their
behavior. Developers may struggle to predict how these services will respond to
various inputs or under different conditions due to the obscurity surrounding their
internal mechanisms.

• Actual and expected behavior: Discrepancies between the expected or docu-
mented behavior and the real-time execution and calls within the environment have
the potential to introduce a significant degree of uncertainty. These disparities can
emerge due to a variety of factors, such as unforeseen bugs, and irregularities in the
underlying hardware or software configurations.

• Flexible and adaptive behavior: Even a single type of request can yield different
outcomes based on a multitude of conditions. These conditions encompass a wide
array of variables, including user input, system load, network latency, and the current
state of the underlying hardware and software components. The intricate interplay
of these variables introduces unpredictability into system operations.

27

• Separation of sub-systems: The separation of sub-systems within a larger sys-
tem architecture results in unknowns in different parts of the system and their
connections. This separation can lead to complexities where the interactions and
dependencies between these subsystems are not entirely clear, adding to the overall
uncertainties in the system’s operation.

7.2.1 Missing Span Substitution

Issues may arise from incomplete instrumentation or the use of external services, which
cause spans to be missing from the tracing data. However, there may be system knowledge
about this span and the relations compared to other, known spans. Using this information,
I can extend an existing trace with a span that was not recorded during runtime.

In this example, the D span was not recorded, but it is known from system knowledge
that it must be somewhere in this trace. The initial knowledge can be seen on Figure 7.5.

A

B E

C

D?
time

A

B

C

D?

E

Figure 7.5: Missing Knowledge

Two temporal relations are known about span D. D finishes B (B fi D), and C meets D.
Using these two relations, the program can find a solution, where D fits in the trace. The
result can be seen on Figure 7.6. The ASP model of this can be seen on Listing 7.6.

A

B E

C D

time

A

B

C

D

Em

fi

Figure 7.6: Finding the Missing Span

As the span and trace IDs are both also contained in the ASP model. These properties are
enough to identify a span with complete certainty. This allows for traceability between the
ASP model and the tracing framework. The missing span can be reintroduced to complete
the trace.

28

span(a, none, t, 0, 5).
span(b, a, t, 1, 3).

span(c, b, t, 1, 2).
% d missing

span(e, a, t, 3, 4).

relation(d, b, f).
relation(c, d, m).

Listing 7.6: Missing Knowledge

7.2.2 Behavior Consistency Check

Defining constraints over span relations can be used to find abnormal traces. This is a
valuable tool when analyzing a large data set. The temporal relations are able to uncover
unexpected behavior from the system. I implemented this method using two atoms, which
constrain relations between two traces as shall be or shall not be. This allows the creation
of a set of relations to which two spans are constrained. If these constraints are broken,
the trace contains an error. These atoms are shown in Listing 7.8.
relates(A,B) :- relation_shall_be(A,B,REF).
error(A,B,REF,REL) :- relation_shall_be(A,B,REF), relation(A,B,REL), REF != REL.

relates(A,B) :- relation_shall_not_be(A,B,REF).
error(A,B,REF,REL) :- relation_shall_not_be(A,B,REF), relation(A,B,REL), REF = REL.

Listing 7.7: Relation Constraints

span(a, none, t, 0, 5).
span(b, a, t, 1, 3).

span(c, b, t, 2, 3).
span(d, b, t, 2, 3).

span(e, a, t, 3, 4).

% Only allow C precedes D and C meets D.
% Example System Requirement:
% C must be executed by the time D begins.
relation_shall_not_be(c,d,pi).
relation_shall_not_be(c,d,mi).
relation_shall_not_be(c,d,o).
relation_shall_not_be(c,d,oi).
relation_shall_not_be(c,d,d).
relation_shall_not_be(c,d,di).
relation_shall_not_be(c,d,f).
relation_shall_not_be(c,d,fi).
relation_shall_not_be(c,d,e).

Listing 7.8: Relation Constraints

Solving this program returns the following solution: {relation(c,d,eq) error(c,d,eq,eq} As
the C and D spans interval relation is equal, breaking the imposed constraints.

29

7.2.3 Trace Comparison

Trace comparison is an invaluable tool when analyzing anomalous behavior in the system.
Span relations are handled with a relationship matrix. Comparing the relationship ma-
trices of the compared traces, the differences can be evaluated. With this method, the
uncertainties within the execution of a type of request can be evaluated.

Differences in the two relationship matrices can be seen on Table 7.1 marked in red. The
elements inside the matrix show the relationship between the trace on the left side and the
trace on the top side. For example, in Table 7.1 of the Left Traces matrix, the intersection
of D on the left header and A on the top hear is d, meaning D is during A in the Left Trace.
After evaluating the temporal relations in a trace, a matrix can be created. Comparing
these two matrices shows the comparison of temporal relations between the two examined
traces. This difference, marked with a red arrow, is visualized in Figure 7.7.

\ A B C D E
A e di di di di
B d e si fi m
C d s e m p
D d f mi e m
E d mi pi mi e

\ A B C D E
A e di di di di
B d e si fi m
C d s e o p
D d f oi e m
E d mi pi mi e

Table 7.1: Relationship Matrices of the Left and Right Trace

time

A

B

C

D

E

time

A

B

C

D

E

Figure 7.7: Comparison of the traces

30

7.2.4 Merge

Due to inadequate configuration, multiple subsystems may provide two separate traces
from a single main request. This situation can create a fragmented view of the request’s
journey, making it challenging to comprehensively analyze its flow and pinpoint potential
issues. However, merging these multiple traces, which collectively constitute a single
request, can prove to be immensely beneficial during operational activities.

In this example, the root span of the main request is span A. Span A has a child span, span
B, which is a request to a separated sub-system. Due to this, the path that the request
takes inside the B sub-system is obscured from the original span. As distributed tracing
is also implemented in the sub-system this path is known in a separate trace, recorded
by the sub-system. Using the knowledge about the execution of this request, I can add
the fact that span B and span X are equal. With this fact, the complete trace can be
reconstructed.

timetime

A

B E

X

Y

Z

Trace from the main
system

Trace from the
B sub-system

time

A

B

Y

Z

E

Merge Traces

Figure 7.8: Trace Merge.

31

Chapter 8

Proposed Approach: Qualitative
Diagnosis over Distributed Traces

The interconnected nature of services, spans, and both physical and virtual nodes form a
complex network. Studying how information, faults, and other metadata propagate within
this intricate system is crucial for effective planning, modeling, and operation. Despite the
significance of this analysis, there is frequently a scarcity of relevant data available. This
report addresses this challenge by introducing methodologies that rely on qualitative fac-
tors like the change in the minimum and maximum execution time of spans. Additionally,
these methodologies consider other well-known properties of the system, such as service
structure and the architecture of both physical and virtual components. By integrating
these diverse elements, I present a qualitative diagnosis approach to understanding the
behavior of large-scale microservice-based systems.

This approach can be used to extend the Temporal Methods described in the previous
chapter. As they view the system from a different perspective, their concurrent use can
yield a greater reduction of uncertainties.

8.1 Qualitative Approach

The methods described in this chapter use a subset from the area of Qualitative Reasoning.
For this use, I considered the change (increase, steady, decrease) of significant timing
characteristics in aggregates of a type of span, minimum execution time, and maximum
execution time. These quantities are derived from the real-world timing data of traces
collected in a certain time frame. The two quantities are assigned to each span. Because
of this, the model only contains Proportional Relations, and a simplified form of delta
calculus for calculating the effect of multiple influences.

8.2 Propagation Analysis

Error propagation analysis (EPA) is a systematic model-based approach to assess the im-
pact of incidental or malicious faults in the dependability and security analysis of complex
systems. [10]

EPA is able to discover the effects and path of an initial error using the qualitative model
of the system. This is used in this report to discover paths that lead to accidents.

32

In our case propagation may also be used in non-fault conditions, to assess the effect of a
change in the system.

8.3 Mapping Traces and Spans

Traces and their spans by themselves contain fairly little information by default. Instru-
menting the code base with status messages, error codes, and other metadata requires a
common standard, which may prove difficult in large-scale systems or where commercial
off-the-shelf software is being used. A common denominator between all tracing systems
and standards is the start and end time of a span. Using only this data allows usage across
all possible systems and frameworks.

Sampling traces in a given time frame allows us to calculate the minimum and maximum
execution times of the spans. Common fault modes of the components can often be
connected to a specific type of minimum and maximum time frame change. For example,
in the case of a component outage, the minimum and maximum duration both decrease, as
all requests immediately fail after being sent. If a component is rate-limited, it may cause
the minimum duration to decrease, as the component denies some requests immediately.
However, some requests will be successful, but still slower than during normal operation
due to the high load.

The spans of a common trace type (request) are vertices in a directed acyclic graph (DAG).
The edges are directed from lower-level spans to their parent span. They could also point
at other higher-level spans if this influence is known from other knowledge.

In this DAG, microservices and physical computers or other elements can also be included,
which influence the system behavior as vertices. Edges from these vertices shall be directed
to other vertices which are influenced by them. In this case, the minimum and maximum
duration do not mean the execution time of the vertices, but the way they influence the
connected spans.

A

B C

min maxmin max

min max

A

B C

0 -+ -

+ -

Figure 8.1: Propagation

n_inc(A, lp, N) :- span(A), POS_INC = #count{B: influence(A, B, pos), lp(B, increasing)},
NEG_DEC = #count{B: influence(A, B, neg), lp(B, decreasing)}, N = POS_INC + NEG_DEC.

n_dec(A, lp, N) :- span(A), POS_DEC = #count{B: influence(A, B, pos), lp(B, decreasing)},
NEG_INC = #count{B: influence(A, B, neg), lp(B, increasing)}, N = POS_DEC + NEG_INC.

Listing 8.1: Collecting influences

33

% n_inc > 0 && n_dec = 0 => +
lp(A, increasing) :- n_inc(A, lp, X), X > 0, n_dec(A, lp, 0).
% n_inc = 0 && n_dec = 0 => 0
lp(A, steady) :- n_inc(A, lp, Y), Y = 0, n_dec(A, lp, Y), Y = 0, not lp(A, increasing), not lp(A,

decreasing).
% n_inc = 0 && n_dec > 0 => -
lp(A, decreasing) :- n_inc(A, lp, 0), n_dec(A, lp, X), X > 0.
% n_inc > 0 && n_dec > 0 => ?
1{lp(A, increasing); lp(A, steady); lp(A, decreasing)}1 :- n_inc(A, lp, X), X > 0, n_dec(A, lp, Y), Y

> 0.

Listing 8.2: Calculating influences

8.4 Applications

8.4.1 Example Trace

In the following sections, the use cases will be showcased with an example trace, called
Query Ticket Information, the service graph can be seen on Figure 8.2. This activity
originates from a UI request based on the Dashboard. In the blocks, the upper line shows
the span name, and the lower line shows the provided service. It should be noted that
the getTrainFoodList and the getFoodStoresInThisTrip request are both based on the ts-
food-map-service. The rest of the spans are all handled by their own separate service,
to simplify the diagram and the ASP code, these services are not considered or shown
separately. The ASP model of this trace can be seen in Listing 8.3.

Dashboard

getContactsInformation
ts-contacts-service

getAssuranceInformation
ts-assurance-service

getFoodList
ts-food-service

getTrainFoodList
ts-food-map-service

getTravelService
ts-travel-service

getFoodStoresInThisTrip
ts-food-map-service

Figure 8.2: Query Ticket Information Service Graph

span(dashboard).
span(getContactsInformation).
span(getAssuranceInformation).
span(getFoodList).

span(getTrainFoodList).
span(getStations).
span(getFoodStores).

influence(dashboard,getContactsInformation,pos).
influence(dashboard,getAssuranceInformation,pos).
influence(dashboard,getFoodList,pos).

influence(getFoodList,getTrainFoodList,pos).
influence(getFoodList,getStations,pos).
influence(getFoodList,getFoodStores,pos).

Listing 8.3: Span description

34

8.4.2 Diagnostics

To create diagnostics from observations, abductive reasoning must be used. Creating
plausible conclusions from the known duration changes in traces. In this mode of operation,
there is no knowledge of the properties of the non-span vertices in the DAG. There may
also be missing data from spans.

Abductive reasoning, often referred to as inference to the best explanation, is a vital
form of logical inference where uncertainties are reduced based on the most plausible
explanation for a set of observations and knowledge. When faced with incomplete or
ambiguous information, abductive reasoning enables to exploration of various possibilities
and proposes explanations that can account for the available evidence.

Figure 8.3 shows the base propagation graph containing all spans and the relevant mi-
croservices of the trace. In normal usage all microservices would be included, however,
in this example, all spans except getTrainFoodList and getFoodStores are contained in a
separate microservice. For ease of understanding these microservices are not included in
this model.

Dash

get
Contacts get

Food
List

min max

min max

min max

get
Assurance

min max

getTrain
FoodList

get
Travel
Service

min max

min max

getFood
Stores

min max

min max
FoodMap

MicroService

Figure 8.3: Trace Structure in Propagation

I will showcase the use of the diagnostics using a simple example, shown in Figure 8.4. We
have the relevant timing data from the distributed tracing framework, showing, that the
minimum and maximum execution time of spans Dash, getFoodList, getTrainFoodList,
and getFoodStores both increased. The timing statistics remained steady for spans get-
Contacts, getAssurance, and getTravelService. The ASP representation of this information
is shown in Listing 8.4.
%symptoms
lp(getFoodList, increasing).
hp(getFoodList, increasing).
lp(getContacts, steady).
hp(getContacts, steady).

Listing 8.4: Part of the ASP propagation input

35

In this example, three types of faults are considered for the foodMap microservice, outage,
highload, and rate limit. These and their possible effect in the propagation model can be
seen in detail on Listing 8.5.
%fault(foodMapSERVICE, outage).
lp(foodMapSERVICE, decreasing) :- fault(foodMapSERVICE, outage).
hp(foodMapSERVICE, decreasing) :- fault(foodMapSERVICE, outage).

%fault(foodMapSERVICE, highload).
lp(foodMapSERVICE, increasing) :- fault(foodMapSERVICE, highload).
hp(foodMapSERVICE, increasing) :- fault(foodMapSERVICE, highload).

%fault(foodMapSERVICE, ratelimit).
lp(foodMapSERVICE, decreasing) :- fault(foodMapSERVICE, ratelimit).
ep(foodMapSERVICE, increasing) :- fault(foodMapSERVICE, ratelimit).

Listing 8.5: Fault Modes

To find the source of the quantity changes in the propagation graph, one of the faults must
be in effect. This is defined in ASP using disjunctive rules, shown in Listing 8.6.
1{fault(foodMapSERVICE, highload); fault(foodMapSERVICE, outage); fault(foodMapSERVICE, ratelimit)}1.

Listing 8.6: Disjunctive Fault rule

After running the program, abductive reasoning gives us the fault that caused the dis-
crepancies. The root cause was a fault of the High Load fault mode in the FoodMap
microservice. The path of the error can be seen on 8.4.

Dash

get
Contacts get

Food
List

+ +

0 0

+ +

get
Assurance

0 0

getTrain
FoodList

get
Travel
Service

0 0

+ +

getFood
Stores

+ +

+ +
FoodMap

MicroService FAULT:
High Load

Figure 8.4: Running Propagation - High Load fault mode

8.4.3 What-ifs

Experimenting on deployed systems is costly and may cause a worse user experience. This
propagation-based model allows cheap and quick evaluation of possible scenarios. Due to
its abstraction, exact results can not be made, however, this could be further refined in
the future.

36

This approach allows for a clear understanding of the relationships between different vari-
ables and how errors in one variable can propagate through the system, influencing the
system’s behavior. Through deductive reasoning, engineers can identify vulnerable points
in the system, enabling them to focus on minimizing faults in these critical areas, thus
enhancing the overall reliability of the system.

In the example shown on Figure 8.5, the scenario defines a Rate Limit fault in the FoodMap
microservice, and the increase of the minimal execution time in the getAssurance span.
From this using deductive reasoning the solution can be found. These scenarios will lead
to the overall request maximum execution time to increase. Due to the abstraction of
Qualitative Reasoning the change of the minimum execution time can not be determined.

Dash

get
Contacts get

Food
List

- +

0 0

? +

get
Assurance

+ 0

getTrain
FoodList

get
Travel
Service

0 0

- +

getFood
Stores

- +

- +
FoodMap

MicroService FAULT:
Rate Limit

Figure 8.5: What if? example

8.4.4 Co-deployment Design and Evaluation

Deploying microservices on the same node offers several advantages in terms of resource
optimization and efficient utilization of computing resources. Sharing the same node
allows for streamlined resource allocation, making it easier to scale services horizontally
and manage workloads effectively. Furthermore, deploying microservices on a single node
simplifies deployment and monitoring processes. However, careful consideration must
be given to resource allocation, load balancing, and fault tolerance to ensure optimal
performance and reliability when co-locating microservices on a single node.

During deployment, it is crucial to model and assess the outcomes of co-deployment to
guarantee the system operates correctly. Understanding how different services interact
and influence one another when deployed together is essential for achieving optimal system
behavior. The framework introduced in this report, encompassing propagation analysis

37

and the Qualitative Diagnostics methodology, serves as a powerful tool in comprehensively
studying the effects of co-deployment.

Modeling and evaluating the result of this co-deployment is paramount to ensure optimal
system behavior. Using propagation and the Qualitative Diagnostics framework developed
in this report the effects of co-deployment can be studied and also taken into consideration
during operations. My approach can also be used to ensure that the co-deployed services
not only function as anticipated but also verifying that they are indeed hosted on the same
node.

An example of co-deployment in the propagation graph can be seen on Figure 8.6. Where
the Contacts microservice and the FoodMap microservice are both hosted on the same
node, marked Node1.

The boundaries of this report did not allow to completely explore the possibilities of this
methodology.

Dash

get
Contacts get

Food
List

min max

min max

min max

get
Assurance

min max

getTrain
FoodList

get
Travel
Service

min max

min max

getFood
Stores

min max

FoodMap
MicroService

Contacts
Microservice

Node1
contains

contains

Figure 8.6: Co-deployment of the Contacts and FoodMap microservice

38

Chapter 9

Summary

9.1 Conclusion

In this report I showcased two novel approaches to reasoning across traces from distributed
tracing. The first approach is a temporal method, where I considered spans as intervals
in Allen’s Interval Algebra to reduce uncertainties about system behvaior using temporal
knowledge. In the second approach I used Qualitative Reasoning and Error Propagation
across a knowledge base crated from aggregate timing statistics of traces. This allows
root cause diagnosis, impact analysis, and codeployment evaluation without the need for
instrumentation, as fault modes can be defined using the statistical anomalies of recorded
span timing data. I explored the benefits of both of these novel approaches on several
possible applications for microservice based system designers and operators.

9.2 Further Work

The possibilities in using logic reasoning across distributed traces are extensive. This
report scratches the surface of possibilities. To further enhance these novel approaches
and evaluate their effectiveness in real-world systems, I have the following plans:

• Magnitudes in Qualititve Reasoning would benefit the more accurate modeling
and reasoning of my Qualitative Approach. As spans differ greatly in terms of timing
magnitude, some may be only nanoseconds long, while others can take as long as
multiple seconds.

• Testing with real-world trace data is the next step to evaluating the useful-
ness of these novel approaches. Creating an efficient parser to place the reasoning
engine inside the distributed tracing workflow is imperative to further testing and
evaluation.

• Deployment using the TrainTicket benchmarking system could bring light the new
strengths and weaknesses. Further testing using fault injection could help evaluate
the need for this approach and the efficiency of it as well. This step is also needed
to study the use of the codeployment evaluation methodology.

• Benchmarking is important for such approaches. As distributed tracing systems
create incredibly vast amounts of data, it is important for these methods to work
efficiently and with low overhead.

39

Acknowledgements

I want to express my sincere appreciation to my advisors, András Földvári and Imre Kocsis,
for their enduring support, encouragement, and invaluable guidance. Their expertise,
patience, and commitment have played a pivotal role in the completion of this report.

40

Bibliography

[1] James F Allen. Maintaining knowledge about temporal intervals. Communications
of the ACM, 26(11):832–843, 1983.

[2] Christian Anger, Kathrin Konczak, Thomas Linke, and Torsten Schaub. A glimpse
of answer set programming. Künstliche Intell., 19(1):12, 2005.

[3] Andre Bento, Jaime Correia, Ricardo Filipe, Filipe Araujo, and Jorge Cardoso. Au-
tomated analysis of distributed tracing: Challenges and research directions. Journal
of Grid Computing, 19:1–15, 2021.

[4] CodeWisdom Fudan University. Train Ticket: A Benchmark Microservice System
(2021.). https://github.com/FudanSELab/train-ticket/.

[5] Martin Gebser, Benjamin Kaufmann, Roland Kaminski, Max Ostrowski, Torsten
Schaub, and Marius Schneider. Potassco: The potsdam answer set solving collection.
Ai Communications, 24(2):107–124, 2011.

[6] Javad Ghofrani and Daniel Lübke. Challenges of microservices architecture: A survey
on the state of the practice. ZEUS, 2018:1–8, 2018.

[7] Tomi Janhunen and Michael Sioutis. Allen’s interval algebra makes the difference. In
International Conference on Applications of Declarative Programming and Knowledge
Management, pages 89–98. Springer, 2019.

[8] Tomi Janhunen et al. Clingo goes linear constraints over reals and inte-
gers. Theory and Practice of Logic Programming, 17(5-6):872–888, 2017. DOI:
10.1017/S1471068417000242.

[9] Kenneth D. Forbus. Handbook of Knowledge Representation, Chapter 9 Qualitative
Modeling (2008). https://web.stanford.edu/class/cs227/Lectures/lec13.pdf.

[10] András Pataricza. Model-Based Dependability Analysis. DSc thesis. 2008.

[11] Prof. Vinay K. Chaudhri, Stanford. CS 227: Knowledge Represen-
tation and Reasoning, Lecture 13. Qualitative Reasoning (spring 2011).
https://web.stanford.edu/class/cs227/Lectures/lec13.pdf.

[12] Benjamin H Sigelman, Luiz André Barroso, Mike Burrows, Pat Stephenson, Manoj
Plakal, Donald Beaver, Saul Jaspan, and Chandan Shanbhag. Dapper, a large-scale
distributed systems tracing infrastructure. 2010.

[13] The OpenTelemetry Authors. OpenTelemetry Documentation (2023.).
https://opentelemetry.io/docs/.

41

http://dx.doi.org/10.1017/S1471068417000242

[14] Xiang Zhou, Xin Peng, Tao Xie, Jun Sun, Chenjie Xu, Chao Ji, and Wenyun Zhao.
Benchmarking microservice systems for software engineering research. In Proceedings
of the 40th International Conference on Software Engineering: Companion Proceeed-
ings, ICSE ’18, page 323–324, New York, NY, USA, 2018. Association for Com-
puting Machinery. ISBN 9781450356633. DOI: 10.1145/3183440.3194991. URL
https://doi.org/10.1145/3183440.3194991.

42

http://dx.doi.org/10.1145/3183440.3194991
https://doi.org/10.1145/3183440.3194991

	Kivonat
	Abstract
	Introduction
	Application
	Structure of the report

	Deployed Systems
	Monolithic Applications
	Distributed Systems
	Microservice Architecture
	System deployment

	Distributed Tracing
	Modern Tracing Frameworks
	Dapper
	OpenTelemetry

	Trace and Span Structure
	Benchmark System: Train Ticket

	Qualitative Reasoning
	Overview
	Modeling

	Allen's Interval Algebra
	Requirements for Time Representation
	Temporal Intervals
	Example

	Answer Set Programming
	Stable Solution
	Reasoning
	Incomplete Information
	Additional Building Blocks

	Difference Logic Extension
	Clingo-DL

	Interval Logic in ASP

	Proposed Approach: Temporal Reasoning over Distributed Traces
	Distributed Traces in Allen's Interval Algebra
	Spans as Intervals
	Modeling from Timing data
	Modeling from Relation Tree

	Applications
	Missing Span Substitution
	Behavior Consistency Check
	Trace Comparison
	Merge

	Proposed Approach: Qualitative Diagnosis over Distributed Traces
	Qualitative Approach
	Propagation Analysis
	Mapping Traces and Spans
	Applications
	Example Trace
	Diagnostics
	What-ifs
	Co-deployment Design and Evaluation

	Summary
	Conclusion
	Further Work

	Acknowledgements
	Bibliography

