
Budapest University of Technology and Economics
Faculty of Electrical Engineering and Informatics

Department of Measurement and Information Systems

Smile detection from video using deep neural
network-based methods

Scientific Students’ Association Report

Author:

Mátyás Pólya

Advisor:

Dr. Hullám Gábor
Gábor Révy

2022

Contents

Kivonat i

Abstract ii

1 Introduction 1

2 Background 3
2.1 Neural Networks . 3

2.1.1 Overview . 3
2.1.1.1 Example XOR implementation 5

2.1.2 Fully connected neural networks . 5
2.1.3 Convolutional neural networks . 6

2.1.3.1 Convolutional operation . 7
2.1.3.2 Pooling layers . 8
2.1.3.3 Network architecture . 8

2.1.4 Transfer Learning . 9
2.1.5 Recurrent neural networks . 9

2.1.5.1 Long short-term memory (LSTM) 9
2.1.5.2 Gated Recurrent Unit (GRU) 10

2.1.6 Autoencoders . 11
2.1.7 Dropout . 12
2.1.8 Data augmentation . 12

2.2 Facial landmark points detectors . 13
2.3 Datasets . 14

2.3.1 GENKI-4K . 14
2.3.2 AM-FED+ . 15
2.3.3 Dataset for autoencoders . 16

2.3.3.1 Labeled Faces in the Wild (LFW) dataset 16
2.3.3.2 Human Faces dataset . 16

2.4 Related works . 17
2.4.1 Smile and expression detection . 17

3 Implemented methods 18
3.1 Feature processing . 18

3.1.1 Input generation . 18
3.1.2 Augmentation . 18

3.2 Fully connected neural networks . 20
3.2.1 Architecture . 20
3.2.2 Dropouts, activation functions . 21
3.2.3 Image flipping, contrast . 22
3.2.4 Translation . 23
3.2.5 AM-FED+ . 24
3.2.6 Model evaulation . 24

3.3 Convolutional neural networks . 26
3.3.1 Architecture . 27
3.3.2 Image flipping, contrast . 28
3.3.3 Translation . 29
3.3.4 Dropout layers . 29
3.3.5 AM-FED+ . 30
3.3.6 Evaluation . 31

3.4 Transfer learning . 33
3.4.1 ResNet models . 33
3.4.2 Xception model . 33
3.4.3 Translation . 34
3.4.4 Contrast . 34
3.4.5 Evaluation . 35

3.5 Recurrent neural networks . 37
3.6 Autoencoders . 39

3.6.1 Evaluation . 39

4 Conclusion 42

5 Future works 43

Acknowledgements 44

Bibliography 45

Kivonat

A mosolygás egy olyan arckifejezés, amit a száj két oldalán található izmok befeszítése
vált ki. A legkorábbi ismert, mosolyra emlékeztető arckifejezés 30 millió évvel ezelőttre
vezethető vissza. Ilyen sok idő alatt az emberi lét szerves része lett ez az arckifejezés. A
mosoly lényeges jelzője az érzelmi állapotnak, megelégedettségnek és segít csökkenteni a
stresszt. Modern gépi tanuló módszerek segítségével több ilyesfajta kapcsolat feltárása is
megoldható lenne. Ehhez az első lépés a mosoly felismerése.

A munkám célja egy mosolydetekciós eljárás megalkotása, neurális hálózatok segít-
ségével. Dolgozatomban megvizsgálok több, eltérő komplexitású módszert. Elsőként egy
teljesen összekötött neurális hálózatot, majd több konvolúciós neurális hálózat alapú meg-
oldást tekintek át. Ezek során elemzem a különböző adataugmentációs technikák hatásait,
továbbá megvizsgálom, hogy a transzfer learning metodológiáját felhasználva javítható-e
az eljárás teljesítménye.

Újdonságértékkel bír, hogy kihasználva az adathalmaz videó voltát, visszacsatolt ne-
urális hálózatok segítségével végzek mosolydetekciót. A szakirodalomban fellelhető algo-
ritmusok jellemzően képek alapján működnek, és nem veszik figyelembe a megelőző kép-
kockák nyújtotta információt.

Az implementált módszerek teljesítményének vizsgálatára a kutatási célra elérhető
GENKI-4K és AM-FED+ adathalmazokon végzek összehasonlító elemzést.

i

Abstract

Smiling is a facial expression that is triggered by the tightening of muscles on both sides of
the mouth. The earliest known facial expression resembling a smile dates back to 30 million
years ago. Since then it has become an integral part of human expressions. Research has
shown that smiling is an essential indicator of emotional state, contentment and it also
helps to reduce stress. Modern machine learning methods can be used to explore such
relationships. Naturally, the first step is to recognise the smile.
In my research I aim to build a smile detection method using neural networks. In my thesis
I investigate several methods with different complexities. First, I consider a fully connected
neural network and then several convolutional neural network based solutions. Then I
analyze the effects of different data augmentation techniques and investigate whether the
performance of learning methods can be improved by using transfer learning methodology.
The novelty of my work is that it exploits the video nature of the dataset to perform
detection using recurrent neural networks. Algorithms in the literature typically operate
on images and do not take into account the information provided by previous frames.
In order to investigate the performance of the implemented methods, I perform a compar-
ative analysis on the GENKI-4K and AM-FED+ datasets available for research purposes.

ii

Chapter 1

Introduction

Smiling is one of the most common facial expression of a person. It is thought to be evolved
from a “fear grin”, that was used to signal harmlessness, or submission [22]. Nowadays,
it is mainly used to express positive emotions, such as happiness or amusement. It is not
a learned facial expression, people smile instinctively, even before being born [13], in the
womb.
Many studies have investigated the link between a person’s smile, and other traits, ar-
riving at interesting conclusions: researchers found in an experiment [16], that smiling
participants had lower heart rates while recovering from a stressful task than those with
neutral expressions. This indicates, that smiling can actually reduce stress. In the age of
the big data, tools are already commonly available to get the dataset related to the topic
of interest, and to create predictive models. However, smile and emotion recognition are
still fairly open problems.
In my thesis I aim to build an automated smile detection algorithm. Two types of methods
can be considered for such a task: expert system-based, an neural network-based algo-
rithms. The former requires extensive knowledge of the workings of the human face and
its muscles, which I do not possess, so my choice fell on the latter. However, the neural
network-based methods require an adequately large sample size. The quality of these data
can make or break the detection algorithm, so it was essential for me to acquire a solid
dataset. Unfortunately, each dataset acquired had its shortfalling, be it repetitiveness, or
quantity.
The GENKI-4K [21] and the AM-FED+AM-FED+ [20] datasets were used during the
development of the algorithm. The GENKI-4K dataset consists of 4000 images retrieved
from the internet. In each image there is a person, who is either smiling, or not. The
dataset is labeled accordingly, with binary values. The AM-FED+ dataset consists of
545 videos, or 263 705 frames of people watching advertisements, recorded through their
webcams. They are labelled according to the degree to which the participants smile on a
scale of 0 to 100. For the autoencoder method, I used the Labeled Faces in the Wild [10]
dataset and the Human Faces dataset1. These datasets contain 13233 and 7219 face images
respectively.
Neural network based methods utilize several different architectures, varying in complexity
and generalization ability. In my thesis, I examine a few of them, starting with the simplest
one, the fully connected neural network (FNN). Its disadvantage for the desired application
is that it does not consider the structure of the input. The input - being an image - bears

1https://www.kaggle.com/datasets/ashwingupta3012/human-faces (accessed 20.10.2022.)

1

https://www.kaggle.com/datasets/ashwingupta3012/human-faces

extra information, such as when moving or rotating it slightly, it still depicts largely the
same thing. The convolutional neural networks (CNN) solve this problem, as they utilize
the spacial information of the input, using convolutional layers. The inspiration for them
comes from the way the eyes work. Through transfer learning methodology, we can reuse
models that were trained on millions of pictures, to take advantage of their already learned
representations. Using frames from videos as input for a neural network still holds extra
information that we can use to further improve the algorithm. The frames depict the same
face at different points of time. To utilize this extra information, we can use recurrent
neural networks (RNNs), that were developed for inference on sequential data.
An alternative approach for smile recognition involves the usage of the autoencoder ar-
chitecture, which includes an encoder and a decoder part. Autoencoder is a type of un-
supervised learning algorithm, so labels for the data are not needed, only images of faces.
When the model has successfully learned the hidden representation of faces, training of
smile recognition can begin, using the outputs of the encoder as inputs for the classifier
model.
When working with neural networks, the preprocessing of the input data is a crucial step.
The location of the face in each picture found in the aforementioned datasets are different
from one another, so if they are utilized as inputs for a neural network, then the model
would not only need to learn how to recognise whether a person is smiling, but would
need to find where that person’s face is located. For the latter, there are readily available
solutions. Such method is the facial landmark points detector, which allows to easily
determine the location of the face, or even the location of the eyes. Using the landmark
detector during the preprocessing of the data, our learning algorithm only needs to focus
on smile recognition and not on face localization.
After the initial training of the acquired and preprocessed data is done, we can apply data
augmentation, which is used when the quantity of the available data is not sufficent. With
the help of data augmentation, we can expand the number of available inputs without
introducing new data samples, by changing the input images in such ways that do not
affect the desired output (e.g. rotation, translation, mirroring).
The thesis is structured as follows. In Chapter 2, I discuss the background of my work.
The concepts related to basic neural networks and their variants are described, and the
datasets used for the trainings are examined. After that, I review the previous works
done in the smile recognition field. In Chapter 3, I go into the details regarding the
implemented data preprocessing and neural networks. For each examined model, the
effect of its architecture and hyperparameters are investigated. In Chapter 4, I draw
conclusions about the examined models, methods and their effects. In Chapter 5, I discuss
the improvement possibilities of my work.

2

Chapter 2

Background

2.1 Neural Networks

Neural networks are a subset of machine learning methods. They were created to imitate
the behaviour of the human brain, where millions of neurons are interconnected with
one another. In this section a concise overview is presented, introducing basic concepts
and components, which is then followed by the description of advanced architectures and
related techniques.

2.1.1 Overview

In neural networks, neurons are structured into 3 kinds of layers: the input layer, the
output layer, and the hidden layers, of which there can be arbitrary numbers present.

Input Layer Hidden Layer Hidden Layer Output Layer

Figure 2.1: A fully connected neural network with 2 hidden layers

The inputs of neural networks are real (R) numbers. Connections between neurons can
be present based on different kind of rules. In a basic feed forward network (Figure 2.1),
every neuron in the neighbouring layers are connected to each other in a forward facing
way. Each connection applies a multiplication to the signal sent through it. The coefficient
of the applied multiplications are called weights. The neuron sums the incoming signal
values, and applies an activation function to this sum. Then, it sends this new value to
the neurons that it is connected to. To let the network calculate more complex functions,
a bias input is introduced into every layer, which takes on a constant 1 value. It enables

3

the intermediate neurons to apply an offset to their function, independently of their input
values.
The activation functions introduce non-linearity to the model, which enables it to be an
“universal approximator”, meaning that it can approximate any arbitrary function.

(a) Sigmoid function: 1
1+e−x (b) Tanh function: ex−e−x

ex+e−x

(c) ReLU function: max(0, x) (d) Leaky ReLU function: max(0.1 · x, x)

(e) ELU function:
{

x if x ≥ 0,

α(ex − 1) otherwise
(f) Swish function: x

1+e−x

Figure 2.2: Activation functions used in practice

The notation for neural network components is the following:

• W
(l)
(n,m) is the weight of the connection between the n-th neuron of the l-th layer and

the m-th neuron of the (l − 1)-th layer

• W
(l)
(n,0) is the weight of the bias in the n-th neuron of the l-th layer

• y
(l)
(n) is the output of the n-th neuron of the l-th layer

• g(·) is the activation function of a neuron

To make the math easier, the bias inputs are considered in each layer as the 0th neuron
The following equation holds for every neuron that has other neurons connected to it as
inputs:

y
(l)
(n) = g

(∑
i

(
W

(l)
(n,i) · y

(l−1)
(i)

))
(2.1)

4

When assessing the performance of a neural network, we would like to quantify how well
the model performs. For this, we use a loss function, which tells us how close are the
predictions (ŷn) to the actual known values (yn) :

• Cross Entropy Loss = −1
N

∑N
n=1 [yn log ŷn + (1 − yn) log(1 − ŷn)] is used for classifi-

cation problems, such as smile recognition

• Mean Squared Error = 1
N

∑N
n=1 (yn − ŷn)2 is used for regression problems, such as

image reconstruction through autoencoders

For the training of neural networks, the available dataset is typically divided into 3 disjoint
sets: training, validation and test set. The network is only trained on the training dataset,
and evaluated on the validation, and test sets. This helps preventing overfitting to the
training data, as the training is ended when the model begins the underperform on the
datapoints not present during learning.
Neural networks learn with the help of the backpropagation algorithm. The weights of the
model are updated based on the value of the derivative of the loss function, with regard
to the value of the weight

(
dL
dW

)
.

2.1.1.1 Example XOR implementation

The problem with the predecessors of neural networks, i.e. perceptrons, was that they
could not realize even simple functions, such as the XOR function. However, the appli-
cation of the backpropagation method, the utilization of appropriate activation functions,
and creating more complex networks by stacking several layers enabled the learning of
arbitrarily complex functions.

x y x ⊕ y

0 0 0
0 1 1
1 0 1
1 1 0

Table 2.1: XOR operation on 2 variable

For example, neural network found in Figure 2.3 satisfies the given conditions, using
ReLU (Figure 2.2c) as activation function. Figure 2.4 shows the output value of the
aforementioned neural network, as a function of (x, y).

2.1.2 Fully connected neural networks

In a fully connected neural network, each neuron of a layer is connected to every neuron in
the previous layer (except the neurons of the input layer). With this kind of architecture,
they are “structure agnostic”, there are no assumptions made about the input’s property.
This kind of behaviour makes them widely applicable, but they tend to underperform in
case of sequential or other highly structured data, compared to other architectures that
utilize the information acquired from the input’s structure. Figure 2.1 depicts a fully
connected neural network.

5

Input Layer Hidden Layer Output Layer

x

y

1 0
-1

1

1

1

1

1 0

1

-2

Figure 2.3: A fully connected neural network calculating the XOR
function

Figure 2.4: The plot of the network found in Figure 2.3

2.1.3 Convolutional neural networks

The idea for convolutional neural networks comes from the way the eye works. When re-
searchers were examining how cats’ eyes worked [23], they found that similar shapes caused
the activation of same regions of the cat’s brain (for an illustration of the experimental
setup see Figure 2.5). After further investigation, they concluded that these regions act
as a kind of feature extractor, and only their outputs get passed deeper into the brain.

6

Figure 2.5: The setup of the experiment, in which the brain acti-
vations of cats induced by different shapes were investigated [23]

To simulate this kind of feature extraction, the convolutional layers were created. These
layers use kernels, which are applied to the image to perform the feature extraction. The
output of these operations produce a tensor (multidimensional matrix), which can also
fed into another convolutional layer. Depending on the application, several consecutive
convolutional layers can be built into a network.

2.1.3.1 Convolutional operation

The result of the convolution operation is calculated as follows:

g[m, n] = (f ∗ h)[m, n] =
k−1∑
i=0

l−1∑
j=0

f [m + i, n + j] · h[i, j] (2.2)

where

• h is a k × l convolutional kernel

• f is an o × p input matrix (o ≥ k and p ≥ l)

• g is the (o − k + 1) × (p − l + 1) convolved matrix

Convolving a 2 × 2 kernel on a 3 × 3 matrix would look like as follows:

 a00 a01 a02
a10 a11 a12
a20 a21 a22

 ∗
[

b00 b01
b10 b11

]
=

[
a00 · b00 + a01 · b01 + a10 · b10 + a11 · b11 a01 · b00 + a02 · b01 + a11 · b10 + a12 · b11
a10 · b00 + a11 · b01 + a20 · b10 + a21 · b11 a11 · b00 + a12 · b01 + a21 · b10 + a22 · b11

]

The function can be extended to work on multi-dimensional matrices (tensors), as is the
case with RGB images having three color channels.

7

1 2 3 4
5 6 7 8
9 0 1 2
3 4 5 6

 ⇒
[

6 8
9 6

]

Figure 2.6: 2 × 2 max pooling on a 4 × 4 matrix

1 2 3 4
5 6 7 8
9 0 1 2
3 4 5 6

 ⇒
[

3.5 5.5
4 3.5

]

Figure 2.7: 2 × 2 average pooling on a 4 × 4 matrix

2.1.3.2 Pooling layers

Using pooling layers, we reduce the dimensionality of the features, while still retaining
most of the important information found in them. Further operations are performed on
these reduced features, making the model less dependent on the location of the original
feature.

• Max pooling layer selects the maximum element found amongst the examined values
(see Figure 2.6).

• Average pooling calculates the average of the examined values (see Figure 2.7).

2.1.3.3 Network architecture

A typical convolutional neural network (CNN) consists of multiple convolutional layers,
each one followed by a pooling layer, then finally, several fully connected (dense) layers
(see Figure 2.8).

Max-Pool (2x2) Convolution Max-Pool (3x3) Dense

8@128x128
8@64x64

24@48x48
24@16x16 1x256

1x128

Figure 2.8: A convolutional neural network

CNNs are mainly used for applications, where the input contains structural information,
like in the case of images, where neighbouring pixels can be highly correlated with each
other (e.g. they belong to the same object).

8

2.1.4 Transfer Learning

There are several models with millions of parameters trained on millions of data points
made available to use. These models can be used out-of-the-box for the specific appli-
cation that they were created for. In the case of image recognition, a model is typically
constructed to recognize the objects found in their training data, and inside the model,
important image features are recognized. With these models, predictions can only be made
on objects that they were trained on, but with the help of transfer learning, additional
classes can be “inserted” into the prediction space.
In order to achieve this, we take the original model, and “freeze” its weights: this means
that they are not updated during training. Then, we remove the original output layer,
and add hidden layers after the last remaining one, as well as a new output layer, tailored
to our desired application. With this kind of setup, we take advantage of the learned inner
representation of the original model, while not having to sacrifice valuable computational
resources to train it. After the initial training with the original layers frozen, fine-tuning
can be applied, meaning that the model is trained again, this time with its layers unfrozen.
Fine-tuning can greatly increase the performance of the model.
Transfer learning is ideal, when working with small sample size.
Applications include:

• Natural Language Processing

• Computer vision

• Speech/Audio recognition

• Computer games (e.g. AlphaGo)

2.1.5 Recurrent neural networks

A recurrent neural network (RNN) has connections between neurons, that create a cycle,
allowing the output of a neuron to affect its subsequent inputs (see Figure 2.9). This
makes it ideal for working with sequential data, as the inner features of RNNs can store
features calculated from preceding datapoints. RNNs are also useful when working with
variable-length data, contrary to feed forward neural networks, which need fixed-length
data.
Training a basic recurrent neural network involves a concept called “unrolling”, meaning
that from each neuron, time indexed copies are created, and backward connections are
replaced with forward connections. This causes the worsening of the exploding/vanishing
gradient problem. It also fails to remember information for a longer period of time. To
combat these issues, cell-based RNNs are used in practice, such as LSTM and GRU.

2.1.5.1 Long short-term memory (LSTM)

LSTMs introduced gates, which allow it to remember information for arbitrary time in-
tervals. They also solve the vanishing gradient problem.
The LSTM consists of 3 gates:

• Input gate: determines what information from the cell states that were given as
input should be kept.

9

Input Layer Hidden Layer Output Layer

Figure 2.9: A simple recurrent neural network with recurrent
nodes in the hidden layer.

σ

σ

σ tanh

ht

ct

ht

xt

ct-1

tanh

x +

x

x

ht-1

Figure 2.10: The architecture of an LSTM cell, source: Wikimedia
Commons [5]

• Forget gate: determines what information from the cell state should be forgotten.

• Output gate: determines what information from the hidden state should be exposed
to the next layers.

Figure 2.10 shows how the hidden state (ht) and the cell state (ct) are calculated from the
inputs.

2.1.5.2 Gated Recurrent Unit (GRU)

GRU is very similar to LSTM, but in contrast with them, they lack an output gate, thus
they have fewer parameters. GRU’s performance on certain tasks was found to be similar
to that of LSTM. GRUs have been shown [3, 26] to perform better on certain smaller and
less frequent datasets.
The GRU consists of 2 gates:

• Reset gate: determines the information to be be passed from the current cell state
to the next time step.

10

h[t-1] h[t]

×

×

×

x[t]

ŷ[t]

ĥ[t]z[t]
r[t]

σ σ tanh

1-

+

Figure 2.11: The architecture of a GRU cell, source: Wikimedia
Commons [4]

• Update gate: determines what information from the previous time step cell state
should be used in the current time step.

Figure 2.11 shows how the cell state (ht) is calculated from the inputs.
With the spread of cell based RNNs, new applications arose, and the performance of
existing applications improved. Such applications include:

• Time series prediction

• Machine translation

• Speech recognition

• Generating image descriptions

• Text summarization

• Music composition

2.1.6 Autoencoders

Autoencoders are a type of neural networks, that aim to learn the hidden encoding of
unlabeled data. Introducing information bottleneck into the model forces it to compress
the data into a lower dimensional feature space. The fitness of encodings are calculated
on how accurately the data can be reconstructed based on them.
Autoencoders consist of 3 parts:

• Encoder: transforms the input data into an encoded representation that is typically
several orders of magnitude smaller.

• Bottleneck layer: contains the compressed feature representation.

• Decoder: reconstructs the data based on the compressed features.

Figure 2.12 depicts an autoencoder neural network, which encodes a 10 dimensional feature
space into a 3 dimensional one.

11

Encoder

Bottleneck

Decoder

Figure 2.12: An autoencoder neural network

2.1.7 Dropout

Dropout is a regularization technique used to reduce overfitting to the training dataset.
Outputs of neurons are randomly zeroed out, making the model less dependant on indi-
vidual neurons. It approximates simultaneously training a large number of models with
different architectures.

2.1.8 Data augmentation

Data augmentation is a technique of expanding the quantity of datapoints. It involves
modifying the existing input data in such a way, that the labels belonging to them remain
the same, thus creating more datapoints, without the need for extra labeling work. For
images, such modifications include: flipping, translating, noise adding, scaling, cropping,
bluring or contrast changing.

12

2.2 Facial landmark points detectors

Facial landmark point detection algorithms identify predefined points on the face. They
are usually created using deep learning methods, where the dataset consists of face images
and the location of the points to be identified.

Figure 2.13: The face mesh, that is fitted to the face by a neural
network [12] in the MediaPipe [17] library. source: MediaPipe

Figure 2.14: The face mesh, that is fitted to the face by a neural
network [12] in the MediaPipe [17] library. source: MediaPipe

Figure 2.14 shows the landmark points of Figure 2.13 detected on a face.

13

2.3 Datasets

To recognize smile using machine learning techniques, adequately labeled datasets are
needed. The diversity and quantity of the provided data is positively correlated with how
well the model can perform.

2.3.1 GENKI-4K

The GENKI-4K [21] dataset consists of – as its name implies – 4000 images, collected
from the internet. The images were taken in a natural environment instead of a controlled
one, making them ideal for the smile activated camera shutter mechanism, for which it
was collected.

Figure 2.15: Sample of the images found in the GENKI-4K
dataset (top 2 rows: smiling, bottom 2 rows: not smiling)

The dataset consists of 2162 smiling and 1838 non-smiling pictures. The labels include
whether the subject is smiling, and the subject’s head orientation expressed in Euler angles
(roll/pitch/yaw).
As it can be seen in Figure 2.15, the images are of different quality, making them ideal for
generalization.

14

2.3.2 AM-FED+

The AM-FED+ [20] dataset consists of 1044 webcam videos recorded in real world condi-
tions. The subjects were tasked to watch video advertisement, while their reactions were
being filmed.

Figure 2.16: Sample of the frames found in the AM-FED+ dataset
(top 2 rows: smiling, bottom 2 rows: not smiling)

545 videos, or 263705 frames are labeled as follows:

• 10 symmetrical and 4 asymmetric (unilateral) action units (AUs) from the Facial
Action Coding System [6] (FACS). Action units are the smallest unit of movements
produced by a muscle or muscle group on the face.

• 2 head movements: whether the head is tilted forwards or backwards

• the extent of smile (on a scale of 0-100)

• expressiveness: the presence of a non-neutral facial expression

• gender

• facial landmark points

• familiarity with, liking of and desire to watch again for the stimuli videos

15

2.3.3 Dataset for autoencoders

For the training of autoencoders, labeled data is not required. Datasets containing images
of faces were downloaded from the kaggle.com website.

2.3.3.1 Labeled Faces in the Wild (LFW) dataset

The Labeled Faces in the Wild [10] dataset consists of 13233 images. The “Labeled” word
in the name refers to the fact that the name of the famous person belonging to the image
is given. Figure 2.17a shows a small sample of the dataset.

2.3.3.2 Human Faces dataset

The Human Faces dataset1 consists of 7219 images, with diverse qualities. Figure 2.17b
shows a small sample of the images found in the dataset.

(a) Sample of images found in the LFW dataset (b) Sample of images found in the Human
Faces dataset

Figure 2.17: Datasets used for training the autoencoder

1https://www.kaggle.com/datasets/ashwingupta3012/human-faces (accessed 20.10.2022.)

16

https://www.kaggle.com/
https://www.kaggle.com/datasets/ashwingupta3012/human-faces

2.4 Related works

There are several papers discussing smile, and other expression detection algorithms, rang-
ing from simple to complex ones. In this section, related works are discussed.

2.4.1 Smile and expression detection

Glauner [8] detected smiles with the help of deep neural networks. They tested their
algorithm on the Denver Intensity of Spontaneous Facial Action (DISFA) database [18],
achieving a 99.45% accuracy. They compared the performance of models receiving images
of a person’s whole face, with those that obtained images of only the area around the
person’s mouth, arriving at the conclusion that smile detection performs better when the
whole face is shown to the models as inputs.
Whitehill et al. [25] presented the GENKI [24] dataset (a superset of GENKI-4K [21]).
They created a standard linear regression model that achieved a 97% accuracy based on
8 × 8 pixel downsampled images retrieved from the DFAT [11] dataset, illustrating the
underlying problem with it. With the help of Gabor Energy Filters, Box Filters, Edge
Orientation Histograms and Local Binary Patterns, they created a smile detection algo-
rithm, using GentleBoost [7] and SVMs. They also discussed the performance improving
effect of fixing the eyes to constant locations.
Bianco et al. [1] created a smile detection convolutional neural network trained on the
GENKI-4K [21] dataset, achieving an accuracy of 93.77%. They discussed the usage of
facial landmark points for the input image generation. Image augmentation and distortion
effects were examined throughout the work. The obtained model is compared to other
smile recognition solutions.
McDuff et al. [19, 20] presented the AM-FED and AM-FED+ datasets. The data obtain-
ing and labeling steps were thoroughly documented. They examined and compared the
qualities of popular datasets used for emotion detection and concluded that posed datasets
have disadvantages when compared to fully spontaneous datasets. A baseline solution was
given for the recognition of facial expressions.

17

Chapter 3

Implemented methods

The methods presented in this thesis were implemented using the Python programming
language. The implementations for the neural networks were made using the Tensor-
flow/Keras library. The models were mainly optimized for the GENKI-4K dataset, as
the AM-FED+ dataset has too much data samples, thus making the training slower (by a
factor of 50).

3.1 Feature processing

In machine learning, the quality of the training data has great impact on the results,
therefore it is important to preprocess the datasets before feeding them into the model.

3.1.1 Input generation

As seen in Figure 2.15 and Figure 2.16 the location of the faces found in the data samples
varies from image to image. This is unfortunate, as this introduces extra features that
the model has to learn. To work around this, a face or landmark detector can be used
to locate the faces in the images, and then translate and clip them in such a way that
their position is well-defined. In my implementation, I fixed the position of the eyes to a
constant location.
Figure 3.1 depicts the steps involved in generating the input images. In the second row
of the figure, the detected landmark points are projected onto the images. The centers of
the eyes (colored green) are not part of detected points, but are calculated from the points
belonging to the perimeters of the eyes (colored blue). In the 3rd column, a differently
shaped “mask” can be seen. As a fail-safe mechanism, two landmark detector was used
(Mediapipe [17] and dlib [15, 14]), for handling situations, when one of them fails to detect
the landmark points.

3.1.2 Augmentation

Throughout the thesis, data augmentations were implemented using preprocessing lay-
ers. Preprocessing layers can be inserted into a neural network the same way as non-
preprocessing layers (e.g. dense layers, convolutional layers), but contrary to them, their
behaviour are not learnt during the training period, but given at construction time. Such
layers include the random translation layer, which takes 2 parameters, denoting the extent

18

Figure 3.1: Examples of input image generation using facial land-
mark points detector

of the maximum horizontal and vertical translation, which are random generated from a
uniform probability function. The random contrast layer adjusts the contrast of the image,
based on a randomly generated factor, and the random flip layer flips the image horizon-
tally 50% of the time. It is important to mention, that new random values are continuously
generated throughout the training period, not just once at the start of it. During inference
time, the preprocessing layers are disabled, they don’t make modifications on the received
images.

19

3.2 Fully connected neural networks

As discussed previously, fully connected neural networks have the simplest architecture.
The input is a preprocessed image, whose values are flattened, transforming it from a tensor
(image height, image width, 3) into a (image height×image width×3) vector, which can
be used as input for the dense layers. In Figure 3.2 a sample implementation can be seen.

input_1
InputLayer

input:
output:

[(None, 224, 224, 3)]
[(None, 224, 224, 3)]

flatten
Flatten

input:
output:

(None, 224, 224, 3)
(None, 150528)

dense
Dense

input:
output:

(None, 150528)
(None, 30)

dense_1
Dense

input:
output:

(None, 30)
(None, 30)

dense_2
Dense

input:
output:

(None, 30)
(None, 2)

Figure 3.2: Implemented fully connected neural network, with
image height = 224; image width = 224; 2 hidden layers, each with
30 neurons

3.2.1 Architecture

First, 30 different models were trained on the GENKI-4K dataset, having different number
of layers [1,2,3,4,5,6], and neurons [10,20,30,40,50]. Each model was trained 10 times, to
account for statistical irregularities.
We can see in Figure 3.4a, that the models having 1 hidden layer, or 10 neurons, underper-
formed the other models. The models having more than 10 neurons, or more than 1 layers
had almost identical validation accuracies (∼ 0.9). Examining Figure 3.3, we can see that
every model could reach that kind of accuracy, but for simpler models, the value highly
differed between each run. The reason for this phenomenon lies in the weight initialization
process: if the initial values of the weights were wrongly set, the model could not learn.
For further examination, models having 2 or 3 layers, with 20 or 30 neurons were used.

20

Figure 3.3: Validation accuracies of the examined model

(a) Average of validation accuracies (b) Standard deviation of validation accuracies

Figure 3.4: Statistics based on the performance measures of mod-
els having different number of layers and neurons (N=10)

3.2.2 Dropouts, activation functions

Next, the effect of dropout layers [not present, 0.2] and different activation functions [leaky
ReLU, ReLU, tanh, sigmoid] were tested.
The sigmoid and tanh functions underperformed the other functions. The dropout layers
made the models perform more consistently, as the standard deviations decreased while
using them. The leaky ReLU function had better results than the ReLU function. For
further analysis, models with leaky ReLU activation functions and 0.2 dropouts are con-
sidered.

21

Figure 3.5: Validation accuracies of models with different activa-
tion functions and dropout values.

(a) Average of validation accuracies. (b) Standard deviation of validation accuracies

Figure 3.6: Statistics based on the performance measures of mod-
els with different activation functions and dropout values (N=3).

3.2.3 Image flipping, contrast

Next, the effects of augmentation are examined. For the implementation, preprocessing
layers are used, meaning that the augmentation is done inside the model. GPU resources
are used instead of CPU, making it faster. It is also not needed to temporary store the
augmented dataset in the memory. Figure 3.7 and Figure 3.8 shows the results of the
trained models.

Figure 3.7: Validation accuracies of models with flipping and con-
trast modifying preprocessing layers

In Figure 3.8a it can be clearly seen, that the flipping layer improves the models. The
same thing cannot be said about the contrast layer. Further examined models implement
the flipping layer, but not the contrast layer.

22

(a) Average of validation accura-
cies

(b) Standard deviation of valida-
tion accuracies

Figure 3.8: Statistics based on the performance measures of mod-
els, with and without flip and contrast preprocessing layers (N=30)

3.2.4 Translation

Another examined image augmentation operation is the translation. The images are trans-
lated randomly by an uniform probability bounded by the given parameters. Different
values for the vertical and horizontal parameters were used.

(a) Average of validation accuracies (b) Standard deviation of validation accuracies

Figure 3.9: Statistics of performance measures of models with
different translation layers (N=3)

Figure 3.9a shows that the models performed worse the bigger the translations were. This
is the opposite of what we would expect from an augmentation, but it can be explained
by the fact that this fully connected neural network model was first optimized for non-

23

augmented learning. For it to perform better on translated images, the architectures would
have to be examined again, while trained on translated datapoints.

3.2.5 AM-FED+

The obtained models with the best results are trained on the AM-FED+ dataset.

Figure 3.10: Validation accuracies of models trained on the AM-
FED+ dataset

(a) Average of validation ac-
curacies

(b) Standard deviation of
validation accuracies

Figure 3.11: Statistics of models with different number of layers
and neurons, trained on the AM-FED+ dataset (N=5)

The best performing model had 2 hidden layers, with 20 neurons each.

3.2.6 Model evaulation

Figure 3.12 shows the accuracies achieved by different models tested and trained on dif-
ferent datasets. In Figure 3.12a and Figure 3.12d the models were evaluated on the test
partition of their associated datasets. The models in Figure 3.12b and Figure 3.12c were
evaluated on the dataset not trained on. On the AM-FED+ dataset, the GENKI-4K model
(∼ 0.77) almost performed as well as the AM-FED+ model (∼ 0.79). This does not hold
for the opposite case, as the AM-FED+ model performed significantly worse (∼ 0.72), than
the GENKI-4K model (∼ 0.89) on the GENKI-4K dataset. This can be explained by the
diverse quality of the images found in the GENKI-4K dataset.

24

(a) Test accuracy of GENKI-4K model (b) GENKI-4K model accuracy on AM-FED+
dataset

(c) AM-FED+ model accuracy on GENKI-4K
dataset

(d) Test accuracy of AM-FED+ model

Figure 3.12: Confusion matrices obtained on data not seen by the
fully connected model

25

3.3 Convolutional neural networks

Convolutional neural networks utilize convolutional and pooling layers. They are con-
structed as follows: the input layer receives the preprocessed image, with its shape infor-
mation still intact (image height, image width, 3), then several convolution and pooling
layers are implemented. The last pooling layer gets flattened, then fed into a dense layer,
which is followed by more dense layers. The output layer has 2 neurons, as we need to
predict 2 classes. As with the fully connected neural network, the models are optimized
on the GENKI-4K dataset. Figure 3.13 shows a sample CNN implementation.

input_1
InputLayer

input:
output:

[(None, 224, 224, 3)]
[(None, 224, 224, 3)]

conv2d
Conv2D

input:
output:

(None, 224, 224, 3)
(None, 220, 220, 16)

max_pooling2d
MaxPooling2D

input:
output:

(None, 220, 220, 16)
(None, 110, 110, 16)

flatten
Flatten

input:
output:

(None, 110, 110, 16)
(None, 193600)

dense
Dense

input:
output:

(None, 193600)
(None, 30)

dense_1
Dense

input:
output:

(None, 30)
(None, 2)

Figure 3.13: A CNN, with 1 convolutional and max pooling layer,
and 1 dense hidden layer

26

3.3.1 Architecture

First, the performance of different architectures is evaluated. Models with different num-
ber of convolution layers [1,2,3,4], differently sized kernels [3 × 3, 5 × 5, 7 × 7, 9 × 9],
and different number of kernels [16,32] are examined. Figure 3.14 shows the validation
accuracies achieved by the inspected models.
Figure 3.15 depicts the statistics calculated from the validation accuracies of the examined
models. Models with 2 or less convolutional layers underperformed the models with 3 or
more convolutional layers. In both case, models with 3 convolutional layers and 3 × 3
or 9 × 9 kernel sizes achieved less than 0.94 average validation accuracy, while all the
other models having 3 or more convolution layers achived above 0.94 results. The best
performing model had 3 convolutional layers, and 5 × 5 sized kernell , and achieved 0.948
accuracy. There was no considerable difference between the models with different number
of kernels. For further analysis the model with 3 convolutional layers, 5 × 5 kernel size,
and 32 kernels was choosen.

(a) Validation accuracies of the models with 16 number of kernels in each convolutional layer

(b) Validation accuracies of the models with 32 number of kernels in each convolutional layer

Figure 3.14: Validation accuracies of the models with different
kernels and convolutional layers

27

(a) Average of validation accuracies of models
with 16 kernels

(b) Standard deviation of validation accuracies
of models with 16 kernels

(c) Average of validation accuracies of models
with 32 kernels

(d) Standard deviation of validation accuracies
of models with 32 kernels

Figure 3.15: Statistics of models with different kernels and con-
volutional layers (N=5)

3.3.2 Image flipping, contrast

The effects of the horizontal flipping and contrasting preprocessing layers are examined.
Figure 3.16 show the validation accuracies achieved with different models. In Figure 3.17,
it can be seen, that flipping the images improves the performance of the model. The
contrast changing layer slightly improves the model until the 0.5 value when the flipping

28

layer is active, but has varying effects when it is not. It also decreases the standard
deviation in the first case. For further model analysis, flipping layer and contrast layer
with 0.5 value is used.

Figure 3.16: Validation accuracies of models with flipping and
contrast modifying preprocessing layers

(a) Average of validation accuracies (b) Standard deviation of validation accuracies

Figure 3.17: Statistics of models with flipping and contrast mod-
ifying preprocessing layers (N=10)

3.3.3 Translation

The performance of models with different translation preprocessing layers are tested. Fig-
ure 3.18 shows the effect of differently parameterized layers. It can be seen that the
augmentations had a positive effect on the performance of the model, in contrary to the
case of the fully connected neural network (Figure 3.9), further proving the advantages
of CNNs. On the other hand, above a certain translational value, the model started to
perform worse, which can again be explained by the initial model selecting process, opti-
mized on the non-augmented images. For ease of implementation, 0.05 value was selected
for both horizontal and vertical translation in subsequent models.

3.3.4 Dropout layers

The effect of dropout layers are examined next. Figure 3.19 shows the performance of
models with different dropout layers. No clear relation between the performance and
dropouts can be seen, but the models with higher dropout rates took significantly longer
to train. Subsequent models don’t implement dropout layers.

29

(a) Average of validation accuracies (b) Standard deviation of validation accuracies

Figure 3.18: Statistics of models with translation preprocessing
layer (N=5)

(a) Average of validation accuracies

(b) Standard deviation of validation accuracies

Figure 3.19: Statistics based on the performance measures of mod-
els having different dropout layers (N=5)

3.3.5 AM-FED+

Models with the optimized parameters are trained on the AM-FED+ dataset. As its data-
points are different than that of GENKI-4K, the number of convolutional layers and kernel
sizes are examined again. Figure 3.20 shows the validation accuracies of the trained mod-
els. The model with 4 convolutional layer, and 7 × 7 kernel size had the best performance,
and is used for further analysis.

30

(a) Average of validation accu-
racies

(b) Standard deviation of vali-
dation accuracies

Figure 3.20: Statistics of models with different number of convo-
lutional layers and different sized kernels, trained on the AM-FED+
dataset (N=3)

3.3.6 Evaluation

Figure 3.21 shows the accuracies achieved by different models tested and trained on dif-
ferent datasets in the same format as Figure 3.12. Almost all models performed better
than their FNN counterpart:

• Models trained and evaluated on GENKI-4K dataset improved from 0.89 to 0.93
accuracy

• Models trained on GENKI-4K dataset and evaluated on AM-FED+ improved from
0.77 to 0.81 accuracy

• Models trained on AM-FED+ dataset and evaluated on GENKI-4K deteriorated
from 0.72 to 0.68 accuracy

• Models trained and evaluated on AM-FED+ dataset improved from 0.79 to 0.8 ac-
curacy

It can be seen once more, that the quality of the GENKI-4K dataset is superior to that of
AM-FED+, as the models trained on the former even performed better on the AM-FED+
dataset, than the models trained on it.

31

(a) Test accuracy of GENKI-4K model (b) GENKI-4K model accuracy on AM-FED+
dataset

(c) AM-FED+ model accuracy on GENKI-4K
dataset

(d) Test accuracy of AM-FED+ model

Figure 3.21: Confusion matrices obtained on data not seen by the
CNN model

32

3.4 Transfer learning

Transfer learning involves reusing a completed model that was typically trained on a
great quantity of quality data. The models used here are made available through the
Tensorflow/Keras library.

3.4.1 ResNet models

The ResNet [9] models introduced a revolutionary concept, called “identity shortcut con-
nection”. With the help of it, extremely deep neural networks can be trained, as it removes
the problem of vanishing gradient.

Figure 3.22: Identity shortcut connection introduced in ResNet.
source: [9]

In the thesis the ResNet-50 variant is used, which has 50 layers.

3.4.2 Xception model

The Xception [2] models are built on the foundation of inception modules, first found
in the GoogLeNet architecture. Inception modules perform a convolution on the input
with not one, but many different sized filters, whose outputs are concatenated and sent to
the next layer. The Xception model introduced another interpretation of these inception
modules, which performed better than the original one.

Model Top-1 Accuracy Top-5 Accuracy Parameters Depth

ResNet50V2 76.0% 93.0% 25.6M 103
Xception 79.0% 94.5% 22.9M 81

Table 3.1: The models’ performance on the ImageNet validation dataset.The top 1
accuracy is the general accuracy, only taking into account the match between the ground
truth and the prediction. Top 5 accuracy considers a prediction to be correct if the ground
truth label matches any of the 5 highest score predicted labels.

The models were trained on the ImageNet dataset, consisting of 14197122 annotated
images, belonging to 1000 different classes.
The output layers were changed to accomodate 2 classes for the purpose of smile recog-
nition, but no extra dense layers were added, as the last hidden layer had 2048 neurons,
making the usage of extra layers prone to overfitting.

33

3.4.3 Translation

As the random flipping preprocessing layer proved its performance improving effects, the
models were equipped with it. Contrary to the previous examinations of the translation
preprocessing layer, the horizontal and vertical translations were not examined separately,
they were fixed to the same value.

(a) Average of validation accuracies without
finetuning

(b) Standard deviation of validation accuracies
without finetuning

(c) Average of validation accuracies with fine-
tuning

(d) Standard deviation of validation accuracies
with finetuning

Figure 3.23: Statistics based on the performance measures of mod-
els having different translation layers, with and without the usage
of finetuning (N=3)

Figure 3.23 shows the validation accuracies of the examined models. Comparing Fig-
ure 3.23c to Figure 3.23a, the positive effect of finetuning is apparent, as it increased the
validation accuracy by ∼ 0.1 and ∼ 0.2 in the ResNet and the Xception model respectively.
A positive correlation can be seen between the value of the random translation factor and
validation accuracy, contrary to the previously examined CNN models (Figure 3.18), where
above the 0.25 mark, the models’ performance began to decrease. This can be explained
by the pretrained models’ training on extensive data, which made it more location agnostic
compared to the simple CNN models.
Comparing the validation accuracies with finetuning, it can be seen that the ResNet model
outperforms the Xception model, therefore, for further analysis, only the ResNet model is
used.

3.4.4 Contrast

Figure 3.24 shows the impact of the random contrast preprocessing layer. The best per-
forming model is the one with the highest contrast modifying layer. Comparing the effects
to the ones found in the CNN models (Figure 3.17a), the same situation arises as with the
translation preprocessing layer: thanks to the pretraining on the ImageNet dataset, the
model is more contrast independent.

34

(a) Average of validation accuracies without
finetuning

(b) Average of validation accuracies with fine-
tuning

Figure 3.24: Statistics based on the performance measures of mod-
els having different contrast layers, with and without the usage of
finetuning (N=2)

3.4.5 Evaluation

Figure 3.25 show the performance of the obtained models, tested on different datasets.
As previously mentioned, the model reacted better to higher levels of image augmenta-
tions, as it has more optimal architecture and better initialized weights acquired from the
pretraining on millions of images.
Compared to the accuracies of the simple convolution neural network, all aspect of per-
formance improved as follows:

• Models trained and evaluated on GENKI-4K dataset improved from 0.93 to 0.95
accuracy

• Models trained on GENKI-4K dataset and evaluated on AM-FED+ remained at 0.81
accuracy

• Models trained on AM-FED+ dataset and evaluated on GENKI-4K improved from
0.68 (0.72 with FNN) to 0.85 accuracy

• Models trained and evaluated on AM-FED+ dataset improved from 0.8 to 0.82 ac-
curacy

The most notable performance increase happened to models trained on the AM-FED+,
whose accuracy increased by ∼ 0.13 when evaluated on the GENKI-4K dataset.

35

(a) Test accuracy of GENKI-4K model (b) GENKI-4K model accuracy on AM-FED+
dataset

(c) AM-FED+ model accuracy on GENKI-4K
dataset

(d) Test accuracy of AM-FED+ model

Figure 3.25: Confusion matrices obtained on data not seen by the
ResNet50 model

36

3.5 Recurrent neural networks

Recurrent neural networks are trained on sequential data, such as videos. Because only
the AM-FED+ dataset consists of videos, the whole recurrent part of the model can only
be trained on them.
The examined models are based on the ones found in the CNN section. The last hidden
layer of the CNN model is changed to a recurrent layer. The usage of Keras’ TimeDis-
tributed layer is necessary, as the model and the recurrent layers expect sequences of
images, while the non-recurrent layers expect non-sequential data. Figure 3.26 shows a
sample implementation of the discussed RNN models.

time_distributed_input
InputLayer

input:
output:

[(None, 10, 224, 224, 3)]
[(None, 10, 224, 224, 3)]

time_distributed(conv2d)
TimeDistributed(Conv2D)

input:
output:

(None, 10, 224, 224, 3)
(None, 10, 222, 222, 16)

time_distributed_1(max_pooling2d)
TimeDistributed(MaxPooling2D)

input:
output:

(None, 10, 222, 222, 16)
(None, 10, 111, 111, 16)

time_distributed_2(flatten)
TimeDistributed(Flatten)

input:
output:

(None, 10, 111, 111, 16)
(None, 10, 197136)

time_distributed_3(dense)
TimeDistributed(Dense)

input:
output:

(None, 10, 197136)
(None, 10, 20)

lstm
LSTM

input:
output:

(None, 10, 20)
(None, 20)

dense_1
Dense

input:
output:

(None, 20)
(None, 2)

Figure 3.26: A sample implementation of the recurrent neural
network, using LSTM cells

Different recurrent cells [SimpleRNN, LSTM, GRU] and input sequence lengths [3, 5,
10] were examined. Figure 3.27 shows the performance of the models acquired through
training. If uninitialized convolutional layers are used, the models learn very slowly, or
don’t learn at all. To circumvent this, the convolutional layers are pretrained on the
GENKI-4K dataset, and then inserted into the recurrent network. The models are then
trained in 2 different ways: with the convolutional layers freezed (as in transfer learning),
and not freezed.
As seen in Figure 3.27a and Figure 3.27c, the models with freezed CNN layers substantially
underperform their non-freezed counterpart. As seen in Figure 3.27b and Figure 3.27d the
model was able to learn the training data, but was not able to generalize based on it. The
disparity between the training and validation accuracy is apparent, as recurrent cells have
greater representational ability, making them more prone to overfitting.
No clear connections were discovered between the examined parameters and the models’
performance.

37

(a) Average of validation accuracies with CNN
freezing

(b) Average of training accuracies with CNN
freezing at the point where the model had the
maximum validation accuracy

(c) Average of validation accuracies without
CNN freezing

(d) Average of training accuracies without
CNN freezing at the point where the model had
the maximum validation accuracy

Figure 3.27: Statistics based on the performance measures of mod-
els having different recurrent cells and sequence lengths (N=3)

38

3.6 Autoencoders

The autoencoder model was trained on the datasets found in Section 2.3.3. The encoder
part of the model consists of convolutional and maxpooling layers, flattened at its last
layer. The encoded part is a simple dense layer. The decoder part’s first layer is a dense
layer, which gets reshaped into a 3 dimensional tensor, to serve as input for the following
convolutional and upsampling layers.
Models with different dimension of latent space were examined. Figure 3.28 shows the
compression and reconstruction ability of the autoencoders, in different latent feature
dimensions.

Figure 3.28: The learned representations of the autoencoders

After the autoencoder is trained, its decoder part is discarded, the inference is done using
the encoder and encoding part. 2 hidden dense and an output layer is connected to the
output of the encoding layer. To limit the possibility of overfitting on the training data,
all the newly connect layers have 2 neurons. This means that the maximum number of
trainable parameters (in the case of 200 dimensional latent feature space) is 414. For com-
parison, the ResNet50 model has ∼25 million parameters (Table 3.1). Figure 3.30 shows
the validation accuracies of models trained based on different autoencoders. The model
trained on the GENKI-4K dataset exhibits a positively correlated connection between the
validation accuracy and the value of the latent dimension. The same can’t be said about
its AM-FED+ counterpart.

3.6.1 Evaluation

To maintain symmetry, models with 200 latent dimensions were evaluated on both
datasets. Figure 3.31 shows the obtained accuracies. Based on the values, the mod-
els’ performance is between the fully connected neural networks and the convolutional
neural networks:

• Models trained and evaluated on GENKI-4K dataset had 0.9 average accuracy (FNN
had 0.89 and CNN had 0.93)

• Models trained on GENKI-4K dataset and evaluated on AM-FED+ had 0.79 average
accuracy (FNN had 0.77 and CNN had 0.81)

39

• Models trained on AM-FED+ dataset and evaluated on GENKI-4K had 0.68 average
accuracy (FNN had 0.72 and CNN had 0.68)

• Models trained and evaluated on AM-FED+ dataset had 0.8 average accuracy (FNN
had 0.79 and CNN had 0.8)

Comparing the number of trainable parameter of the autencoder (414) to the parameter
numbers of the FNN model (4517792), and CNN model (196802), the autoencoder based
model performed very well.

Figure 3.29: The validation losses of the autoencoders with dif-
ferent latent dimensions

(a) Average of validation accuracies with differ-
ent latent dimensions, trained on the GENKI-
4K dataset

(b) Average of validation accuracies with dif-
ferent latent dimensions, trained on the AM-
FED+ dataset

Figure 3.30: Statistics based on the performance measures of au-
toencoders having different latent dimension (N=5)

40

(a) Test accuracy of GENKI-4K model (b) GENKI-4K model accuracy on AM-FED+
dataset

(c) AM-FED+ model accuracy on GENKI-4K
dataset

(d) Test accuracy of AM-FED+ model

Figure 3.31: Confusion matrices obtained on data not seen by the
autoencoder based model

41

Chapter 4

Conclusion

In my work I examined and compared different approaches for smile detection using neu-
ral networks. The effects of various model architectures, parameters, datasets and data
augmentation operations were studied.
The importance of data quality was many times apparent when comparing models trained
on the GENKI-4K and AM-FED+ datasets. The GENKI-4K trained models were often
producing better results on the AM-FED+ dataset, than the models trained on it. This is
to some extent unexpected, because all of the datapoints found in the AM-FED+ dataset
share the same underlying qualities: people watching advertisements, while being recorded
by their webcamera. This quality infers traits such as characteristic head posture, or
gaze direction. The results obtained from the transfer learning section further prove
the disparity of the datasets, as the state-of-the-art ResNet model displayed the same
phenomenon, as our simple convolutional neural network implementation.
The fully connected neural network was not able to take advantage of the effects of image
augmentations, as it is “structure agnostic”, so it couldn’t recognize the hidden information
found in the images’ structure.
The convolutional neural network architecture could take advantage of the information
in the structure, as it was specifically made for these kind of applications, but after a
certain augmentation factor, it began performing worse. This can be explained by the
CNN model’s simplicity, as it was selected based on its performance on non-augmented
data.
The transfer learning model (using the ResNet50 pretrained weights) performed well, as it
has already seen millions of images, from which it has learnt useful feature representations.
It also responded well to the increasing level of augmentation.
The examined RNN model was too simple to be able to take advantage of the sequential
data, as it overfit heavily to the training data.
The autoencoder model performed very well considering its small number of trainable
parameters. Its performance was between the performance of the examined FNN, and
CNN model.

42

Chapter 5

Future works

Performance improvements could be made with the usage of more diverse augmentation
operations, such as rotation, shearing, bluring, or noise adding. Software incompatibility
and time constraint prevented the implementation of these. The help of subject specific
methods, such as the computation of histogram of oriented gradients or other image pro-
cessing operations could offer valuable informations for the neural networks in the form of
feature extraction.
The facial landmark points, which were only used for eye localization, have vast amount
of unutilized information. With the help of them, the background of the images could be
removed, eliminating non significant input noise, or a high level structure of the face could
be engineered.
Further examination is needed in the case of the recurrent neural network architecture, as
it is almost the simplest implementation possible. The need for engineering extra features
incorporating the changes between the frames (e.g. optical flow) is highly likely.
The usage of the autoencoder model has great potential, different architectures could be
investigated, in both the encoder and decoder parts, as only the dimensionality of encoding
layers were examined.

43

Acknowledgements

I would like to thank Gábor Révy and Dr. Gábor Hullám for their help and support
during the preparation of this thesis and the related research.

44

Bibliography

[1] Simone Bianco, Luigi Celona, and Raimondo Schettini. Robust smile detection using
convolutional neural networks. Journal of Electronic Imaging, 25:063002, 11 2016.
DOI: 10.1117/1.JEI.25.6.063002.

[2] François Chollet. Xception: Deep learning with depthwise separable convolutions.
In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 1251–1258, 2017.

[3] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical
evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint
arXiv:1412.3555, 2014.

[4] Wikimedia Commons. Gated recurrent unit, 2018. URL https://commons.
wikimedia.org/wiki/File:Gated_Recurrent_Unit,_base_type.svg.

[5] Wikimedia Commons. The lstm cell, 2018. URL https://commons.wikimedia.org/
wiki/File:The_LSTM_Cell.svg.

[6] Paul Ekman and Wallace V Friesen. Facial action coding system. Environmental
Psychology & Nonverbal Behavior, 1978.

[7] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Additive logistic regression:
a statistical view of boosting (with discussion and a rejoinder by the authors). The
annals of statistics, 28(2):337–407, 2000.

[8] Patrick O Glauner. Deep convolutional neural networks for smile recognition. arXiv
preprint arXiv:1508.06535, 2015.

[9] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 770–778, 2016.

[10] Gary B. Huang, Manu Ramesh, Tamara Berg, and Erik Learned-Miller. Labeled faces
in the wild: A database for studying face recognition in unconstrained environments.
Technical Report 07-49, University of Massachusetts, Amherst, October 2007.

[11] Takeo Kanade, Jeffrey F Cohn, and Yingli Tian. Comprehensive database for facial
expression analysis. In Proceedings fourth IEEE international conference on automatic
face and gesture recognition (cat. No. PR00580), pages 46–53. IEEE, 2000.

[12] Yury Kartynnik, Artsiom Ablavatski, Ivan Grishchenko, and Matthias Grundmann.
Real-time facial surface geometry from monocular video on mobile gpus. arXiv
preprint arXiv:1907.06724, 2019.

45

http://dx.doi.org/10.1117/1.JEI.25.6.063002
https://commons.wikimedia.org/wiki/File:Gated_Recurrent_Unit,_base_type.svg
https://commons.wikimedia.org/wiki/File:Gated_Recurrent_Unit,_base_type.svg
https://commons.wikimedia.org/wiki/File:The_LSTM_Cell.svg
https://commons.wikimedia.org/wiki/File:The_LSTM_Cell.svg

[13] Fumito Kawakami and Takumi Yanaihara. Smiles in the fetal period. Infant Behavior
and Development, 35(3):466–471, 2012.

[14] Vahid Kazemi and Josephine Sullivan. One millisecond face alignment with an en-
semble of regression trees. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 1867–1874, 2014.

[15] Davis E. King. Dlib-ml: A machine learning toolkit. Journal of Machine Learning
Research, 10:1755–1758, 2009.

[16] Tara L Kraft and Sarah D Pressman. Grin and bear it: The influence of manipulated
facial expression on the stress response. Psychological science, 23(11):1372–1378,
2012.

[17] Camillo Lugaresi, Jiuqiang Tang, Hadon Nash, Chris McClanahan, Esha Uboweja,
Michael Hays, Fan Zhang, Chuo-Ling Chang, Ming Guang Yong, Juhyun Lee,
et al. Mediapipe: A framework for building perception pipelines. arXiv preprint
arXiv:1906.08172, 2019.

[18] S Mohammad Mavadati, Mohammad H Mahoor, Kevin Bartlett, Philip Trinh, and
Jeffrey F Cohn. Disfa: A spontaneous facial action intensity database. IEEE Trans-
actions on Affective Computing, 4(2):151–160, 2013.

[19] Daniel McDuff, Rana el Kaliouby, Thibaud Senechal, May Amr, Jeffrey F. Cohn, and
Rosalind Picard. Affectiva-mit facial expression dataset (am-fed): Naturalistic and
spontaneous facial expressions collected "in-the-wild". In 2013 IEEE Conference on
Computer Vision and Pattern Recognition Workshops, pages 881–888, 2013. DOI:
10.1109/CVPRW.2013.130.

[20] Daniel McDuff, May Amr, and Rana El Kaliouby. Am-fed+: An extended dataset of
naturalistic facial expressions collected in everyday settings. IEEE Transactions on
Affective Computing, 10(1):7–17, 2018.

[21] T MPLab. The mplab genki database, genki-4k subset, 2009.

[22] Signe Preuschoft. Primate faces and facial expressions. Social Research, pages 245–
271, 2000.

[23] Dale Purves. Brains: how they seem to work. Ft Press, 2010.

[24] http://mplab.ucsd.edu. The MPLab GENKI Database, 2009.

[25] Jacob Whitehill, Gwen Littlewort, Ian Fasel, Marian Bartlett, and Javier Movellan.
Toward practical smile detection. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 31:2106–2111, 2009.

[26] A Yazidi, R Goyal, A Paes, N Gruber, NG De, and A Jockisch. Are gru cells more
specific and lstm cells more sensitive in motive classification of text?, front. Artif.
Intell, 3(40):10–3389, 2020.

46

http://dx.doi.org/10.1109/CVPRW.2013.130
http://mplab.ucsd.edu

	Kivonat
	Abstract
	Introduction
	Background
	Neural Networks
	Overview
	Example XOR implementation

	Fully connected neural networks
	Convolutional neural networks
	Convolutional operation
	Pooling layers
	Network architecture

	Transfer Learning
	Recurrent neural networks
	Long short-term memory (LSTM)
	Gated Recurrent Unit (GRU)

	Autoencoders
	Dropout
	Data augmentation

	Facial landmark points detectors
	Datasets
	GENKI-4K
	AM-FED+
	Dataset for autoencoders
	Labeled Faces in the Wild (LFW) dataset
	Human Faces dataset

	Related works
	Smile and expression detection

	Implemented methods
	Feature processing
	Input generation
	Augmentation

	Fully connected neural networks
	Architecture
	Dropouts, activation functions
	Image flipping, contrast
	Translation
	AM-FED+
	Model evaulation

	Convolutional neural networks
	Architecture
	Image flipping, contrast
	Translation
	Dropout layers
	AM-FED+
	Evaluation

	Transfer learning
	ResNet models
	Xception model
	Translation
	Contrast
	Evaluation

	Recurrent neural networks
	Autoencoders
	Evaluation

	Conclusion
	Future works
	Acknowledgements
	Bibliography

